JP2009234929A - Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof - Google Patents

Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof Download PDF

Info

Publication number
JP2009234929A
JP2009234929A JP2008079396A JP2008079396A JP2009234929A JP 2009234929 A JP2009234929 A JP 2009234929A JP 2008079396 A JP2008079396 A JP 2008079396A JP 2008079396 A JP2008079396 A JP 2008079396A JP 2009234929 A JP2009234929 A JP 2009234929A
Authority
JP
Japan
Prior art keywords
hemoglobin
oxygen
liposome
liposome suspension
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008079396A
Other languages
Japanese (ja)
Inventor
Shinichi Kaneda
伸一 金田
Hiroshi Goto
博 後藤
Tetsuhiro Kimura
哲寛 木村
Takanobu Ishizuka
隆伸 石塚
Tsutomu Ueda
努 上田
Junya Kojima
潤也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2008079396A priority Critical patent/JP2009234929A/en
Publication of JP2009234929A publication Critical patent/JP2009234929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hemoglobin-containing liposome suspension with high oxygen affinity, which efficiently delivers oxygen to hypoxic parts such as sites of infarction, cancer, etc., and drastically improves hemoglobin yield. <P>SOLUTION: The hemoglobin-containing liposome suspension comprises a hemoglobin solution free of allosteric factors as an inner aqueous phase. Lipids forming a liposome membrane comprises stearic acid, and the concentration of hemoglobin, the lipids forming the liposome membrane and stearic acid in the liposome suspension are appropriately adjusted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は人工酸素運搬体としてのヘモグロビン含有リポソーム懸濁液に関する。詳しくは、血栓、栓塞等で血流が阻害されて低酸素状態となった細胞、組織又はガン細胞、ガン組織等の低酸素状態の部位に選択的に酸素を輸送し、供給する事が可能な前記リポソーム懸濁液に関する。   The present invention relates to a hemoglobin-containing liposome suspension as an artificial oxygen carrier. Specifically, oxygen can be selectively transported and supplied to hypoxic sites such as cells, tissues or cancer cells, cancer tissues, etc., where blood flow has been inhibited by thrombus, plugging, etc. The liposome suspension.

ヘモグロビン含有リポソーム懸濁液を人工酸素運搬体として、梗塞部位、ガン部位など、通常の組織末端(酸素分圧:40mmHg)より、更に低酸素状態の部位に、酸素を供給し易くする為に、酸素放出能を制御したヘモグロビン含有リポソーム懸濁液を、本発明者らは鋭意検討して来た(特開2001-348341)。酸素解離曲線を左右にシフトさせ、酸素放出能を制御するファクターはアロステリック因子(0011に詳述)及び前記リポソーム内水相ヘモグロビンのpHであるが、この前記内水相ヘモグロビンのpHは、リポソーム化操作前(ヘモグロビンとリポソーム膜形成脂質を混合させる前)のヘモグロビンのpHではなく、リポソーム化後の内水相ヘモグロビンのpHである。リポソーム膜形成脂質の種類及び組成比、中和操作等により、「リポソーム化操作前のヘモグロビンのpH」と「リポソーム化後の内水相ヘモグロビンのpH」とは異なる。この内水相ヘモグロビンのpHに影響を与える因子の設定及び内水相ヘモグロビンのpHの適切な数値設定をした上で、酸素放出能を制御する検討は十分ではなかったので、本発明者らは、低酸素親和性(天然の赤血球と比較して、酸素解離曲線が右にシフト:天然の赤血球と比較して、酸素分圧100mmHgの部位と酸素分圧40mmHgの部位の間で酸素を離し易い)のヘモグロビン含有リポソーム懸濁液において、この観点より検討を行なって来た(特願2006-308816)。しかし、本発明の目的とする高酸素親和性(天然の赤血球と比較して、酸素解離曲線が左にシフト:天然の赤血球と比較して、酸素分圧40mmHg以下の部位で酸素を離し易い)のヘモグロビン含有リポソーム懸濁液においては、上記観点よりの検討は十分ではなかった。
特開2001-348341号公報 人工血液2003;11(3):179-184
In order to make it easier to supply oxygen to hypoxic sites from normal tissue ends (oxygen partial pressure: 40 mmHg), such as infarcted sites and cancer sites, using hemoglobin-containing liposome suspensions as artificial oxygen carriers, The present inventors have intensively studied a hemoglobin-containing liposome suspension in which the oxygen releasing ability is controlled (Japanese Patent Laid-Open No. 2001-348341). Factors that shift the oxygen dissociation curve to the right and left and control the oxygen release ability are allosteric factor (detailed in 0011) and the pH of the aqueous phase hemoglobin in the liposome. It is not the pH of hemoglobin before operation (before mixing hemoglobin and liposome membrane-forming lipid), but the pH of internal aqueous phase hemoglobin after liposome formation. Depending on the type and composition ratio of the liposome membrane-forming lipid, the neutralization operation, etc., the “pH of hemoglobin before the liposome formation” differs from the “pH of the internal aqueous phase hemoglobin after the liposome formation”. Since the study of controlling the oxygen release ability was not sufficient after setting the factors affecting the pH of the inner aqueous phase hemoglobin and setting the appropriate numerical value of the pH of the inner aqueous phase hemoglobin, the present inventors , Low oxygen affinity (Oxygen dissociation curve shifts to the right compared to natural red blood cells: Compared with natural red blood cells, it is easy to separate oxygen between the oxygen partial pressure 100mmHg and oxygen partial pressure 40mmHg sites ) In the hemoglobin-containing liposome suspension (Japanese Patent Application No. 2006-308816). However, the high oxygen affinity targeted by the present invention (the oxygen dissociation curve is shifted to the left as compared with natural red blood cells: compared with natural red blood cells, it is easy to release oxygen at a site where the oxygen partial pressure is 40 mmHg or less) In the hemoglobin-containing liposome suspension, examination from the above viewpoint was not sufficient.
JP 2001-348341 A Artificial blood 2003; 11 (3): 179-184

ヘモグロビン含有リポソームは生理食塩水等の外水相媒体に懸濁させて、人工酸素運搬体として用いられる。このリポソーム懸濁液の単位量当たりの酸素運搬量設定に関与するファクターは次の通りである。前記リポソーム懸濁液における(1)ヘモグロビン濃度(2)内水相ヘモグロビンのpH(3)アロステリック因子濃度であり、本発明者らは、これらのファクターの最適な数値設定による酸素運搬量制御方法を鋭意検討してきた。しかながら、リポソーム化操作前のヘモグロビンのpH設定検討は行なわれていたが、酸素運搬量設定に直接関与するのは、リポソーム化操作前のヘモグロビンのpHではなく、最終的に出来上がったリポソーム内水相のヘモグロビンのpHであり、この観点よりの十分な検討は行なわれていなかった。用いるリポソーム膜形成脂質膜の種類、組成比、中和操作等により、「リポソーム化操作前のヘモグロビンのpH」と「リポソーム化後の内水相ヘモグロビンのpH」とは異なるので、この観点により、低酸素親和性のヘモグロビン含有リポソーム懸濁液において、「リポソーム化後の内水相ヘモグロビンのpH」を一定範囲に制御し、前記リポソーム懸濁液中の(1)ヘモグロビン濃度(2)アロステリック因子濃度(3)ヘモグロビンメト化率の最適な数値限定を行い、これらのファクターと組み合わせる検討を行なって来た(特願2006-308816)。
一方、人工酸素運搬体としてのヘモグロビン含有リポソームの平均粒子径は0.2μm前後であり、天然赤血球(7〜8μm)と比較すると、非常に小さいので、虚血により低酸素状態に陥った部位(酸素分圧が、通常の組織末端の酸素分圧40mmHgより更に低い)に対して、天然赤血球では通過困難な狭窄部位を通過して、あるいは側副血行路や周囲の毛細血管を介して、酸素を供給する事も可能である(Circulation,2004;100(Suppl-I):483、CirculationJ.,2004:68(Suppl-I):I-133)。また、癌組織においては、時として癌細胞の増殖に見合った血管新生を伴わないので、その血管網は無秩序で且つ、脆弱であり、癌組織の血流は不安定であり、一時的な血流遮断を繰り返している。この為、癌組織内部の細胞は低酸素状態にさらされている。この低酸素状態の為、癌治療の為の放射線照射に対して抵抗性を示す。人工酸素運搬体としてのヘモグロビン含有リポソーム懸濁液は、天然赤血球では到達不可能な癌組織内低酸素組織部位にまで、酸素を供給出来る可能性がある(ASAIOJ.,2004:50:164)。
本発明では、梗塞部位或いは癌組織等の低酸素部位に効率よく酸素を運搬出来る様に、高酸素親和性とする為、ヘモグロビン含有リポソーム懸濁液において、酸素運搬効率に影響を与える因子である「リポソーム化後の内水相のヘモグロビンのpH」及び「アロステリック因子」について、鋭意検討を行なった。その結果、以下の事実が判明した。従来の検討において、低酸素親和性とする為、アロステリック因子を添加したヘモグロビン含有リポソーム懸濁液では、「リポソーム化後の内水相ヘモグロビンのpH」が酸素運搬効率に影響を与え、結果として酸素運搬量制御に関与する。一方、本発明において、高酸素親和性にする為、アロステリック因子を添加しないヘモグロビン含有リポソーム懸濁液では(0011に詳述)、「リポソーム化後の内水相ヘモグロビンのpH」は酸素運搬効率に殆ど影響を与えず、結果として酸素運搬量制御に実質的には関与しない。そして、アロステリック因子を含有しない場合は、ヘモグロビン収率(仕込みヘモグロビン量に対するリポソーム化されたヘモグロビン量の割合(%))が向上する。また、リポソーム膜構成脂質の成分の一つとして、ステアリン酸等の高級飽和脂肪酸が好ましく用いられるが、ステアリン酸組成比はヘモグロビン収率に関与する(0014に詳述)。以上により、本発明では、「リポソーム内水相のヘモグロビンのpH」を特定しなくても、「アロステリック因子を添加しない」事と「適切なステアリン酸組成比」を組み合わせる事により、梗塞部位又は癌組織等の低酸素状態の部位へ効率よく酸素を運搬出来、しかも、ヘモグロビン収率が飛躍的に向上した高酸素親和性のヘモグロビン含有リポソーム懸濁液が提供される。
Hemoglobin-containing liposomes are suspended in an external aqueous phase medium such as physiological saline and used as an artificial oxygen carrier. The factors involved in setting the oxygen carrying amount per unit amount of the liposome suspension are as follows. (1) hemoglobin concentration in the liposome suspension (2) pH of the inner aqueous phase hemoglobin (3) allosteric factor concentration, and the present inventors conducted an oxygen transport amount control method by optimal numerical setting of these factors. I have been studying earnestly. However, the hemoglobin pH setting prior to the liposomal operation was studied, but it was not the hemoglobin pH prior to the liposomal operation that was directly related to the oxygen carrying amount setting, but the final liposome water. The pH of the phase hemoglobin has not been fully investigated from this point of view. Depending on the type, composition ratio, neutralization operation, etc. of the liposome membrane-forming lipid membrane to be used, the `` pH of hemoglobin before liposome formation '' and the `` pH of internal aqueous phase hemoglobin after liposome formation '' are different. In the hemoglobin-containing liposome suspension with low oxygen affinity, the “pH of the inner aqueous phase hemoglobin after the formation of the liposome” is controlled within a certain range, and (1) hemoglobin concentration (2) allosteric factor concentration in the liposome suspension. (3) The optimal numerical value of the hemoglobin methotonization rate has been limited, and studies have been conducted in combination with these factors (Japanese Patent Application 2006-308816).
On the other hand, the average particle size of hemoglobin-containing liposomes as artificial oxygen carriers is around 0.2 μm, which is very small compared to natural red blood cells (7-8 μm). (Partial pressure is lower than the normal tissue oxygen partial pressure of 40 mmHg), and oxygen is passed through stenotic sites that are difficult for natural red blood cells to pass through, or through collateral blood vessels and surrounding capillaries. It is also possible to supply (Circulation, 2004; 100 (Suppl-I): 483, Circulation J., 2004: 68 (Suppl-I): I-133). In cancer tissue, there is sometimes no angiogenesis commensurate with the growth of cancer cells, so the vascular network is disordered and fragile, the blood flow of cancer tissue is unstable, and temporary blood Repeated flow interruption. For this reason, the cells inside the cancer tissue are exposed to hypoxia. Because of this hypoxic state, it is resistant to radiation for cancer treatment. A hemoglobin-containing liposome suspension as an artificial oxygen carrier may be able to supply oxygen to a hypoxic tissue site in cancer tissue that cannot be reached by natural erythrocytes (ASAIOJ., 2004: 50: 164).
In the present invention, in order to achieve high oxygen affinity so that oxygen can be efficiently transported to hypoxic sites such as infarcted sites or cancer tissues, it is a factor that affects oxygen transporting efficiency in hemoglobin-containing liposome suspensions. Intensive study was conducted on “pH of hemoglobin in the inner aqueous phase after liposome formation” and “allosteric factor”. As a result, the following facts were found. In conventional studies, in order to achieve low oxygen affinity, in hemoglobin-containing liposome suspensions to which allosteric factors have been added, the pH of the inner aqueous phase hemoglobin after liposome formation has an effect on oxygen transport efficiency, resulting in oxygen Involved in transport control. On the other hand, in the present invention, in order to achieve high oxygen affinity, in the hemoglobin-containing liposome suspension to which no allosteric factor is added (detailed in 0011), “the pH of the inner aqueous phase hemoglobin after the formation of liposome” is related to the oxygen carrying efficiency. It has little effect and as a result it is not substantially involved in oxygen transport control. And when allosteric factor is not contained, the hemoglobin yield (ratio (%) of the amount of hemoglobin in the form of liposome to the amount of charged hemoglobin) is improved. Further, higher saturated fatty acids such as stearic acid are preferably used as one of the components of the liposome membrane-constituting lipid, and the stearic acid composition ratio is related to the hemoglobin yield (detailed in 0014). As described above, in the present invention, even if the "pH of hemoglobin in the aqueous phase in the liposome" is not specified, the combination of "not adding allosteric factor" and "appropriate stearic acid composition ratio" allows the infarct site or cancer Provided is a high oxygen affinity hemoglobin-containing liposome suspension that can efficiently transport oxygen to a hypoxic site such as a tissue and that has a dramatically improved hemoglobin yield.

アロステリック因子を添加せず、ヘモグロビン含有リポソーム懸濁液中のヘモグロビン濃度及びリポソーム膜形成脂質濃度、ステアリン酸濃度を適切に設定する事により、梗塞部位又は癌組織等の低酸素状態の部位に効率よく酸素を運搬出来、しかもヘモグロビン収率が飛躍的に向上した高酸素親和性のヘモグロビン含有リポソーム懸濁液が以下のごとく、提供される。   Without adding allosteric factor, by setting appropriately the hemoglobin concentration, liposome membrane-forming lipid concentration, and stearic acid concentration in the hemoglobin-containing liposome suspension, it can be efficiently applied to hypoxia sites such as infarcted sites or cancer tissues A high oxygen affinity hemoglobin-containing liposome suspension capable of transporting oxygen and having dramatically improved hemoglobin yield is provided as follows.

(1) アロステリック因子を含有しないヘモグロビン溶液を内水相とするリポソーム懸濁液であって、前記リポソーム膜形成脂質がステアリン酸を含み、前記リポソーム懸濁液中のヘモグロビン濃度が5.6〜6.7w/v%であり、リポソーム膜形成脂質の濃度が3.05〜5.10w/v%であり、ステアリン酸濃度が0.45〜0.73w/v%である事を特徴とする前記リポソーム懸濁液。
(1) A liposome suspension having a hemoglobin solution containing no allosteric factor as an inner aqueous phase, wherein the liposome membrane-forming lipid contains stearic acid, and the hemoglobin concentration in the liposome suspension is 5.6 to 6.7 w / The liposome suspension characterized in that it is v%, the concentration of liposome membrane-forming lipid is 3.05 to 5.10 w / v%, and the stearic acid concentration is 0.45 to 0.73 w / v%.

(2) 前記リポソーム懸濁液中のヘモグロビンメト化率が10%以下である事を特徴とする請求項1に記載の前記リポソーム懸濁液。 (2) The liposome suspension according to claim 1, wherein a hemoglobin metration rate in the liposome suspension is 10% or less.

以上、詳述した様に、本発明はヘモグロビン含有リポソーム懸濁液において、(1)アロステリック因子を添加しない(2)ヘモグロビン濃度(3)リポソーム膜形成脂質濃度及びステアリン酸濃度を適切に設定する事により、梗塞部位或いは癌組織等の様な低酸素状態の部位に、効率よく酸素を提供出来、しかもヘモグロビン収率が飛躍的に向上した高酸素親和性のヘモグロビン含有リポソーム懸濁液及びその製法が提供される。   As described above, in the present invention, in the hemoglobin-containing liposome suspension, (1) no allosteric factor is added (2) hemoglobin concentration (3) liposome membrane-forming lipid concentration and stearic acid concentration are appropriately set. Thus, a high oxygen affinity hemoglobin-containing liposome suspension capable of efficiently providing oxygen to a hypoxic site such as an infarct site or a cancer tissue and a hemoglobin yield has been dramatically improved, and a method for producing the same. Provided.

以下、本発明を、より具体的に説明する。
<リポソーム膜形成脂質>
本発明におけるリポソーム膜形成脂質は天然又は合成の脂質が使用可能である。特にリン脂質が好適に使用され、これらを常法に従って水素添加したものがあげられる。更にリポソーム膜形成脂質には所望によりステロール等の膜強化剤や荷電物質として高級飽和脂肪酸が添加される。リン脂質として水素添加大豆リン脂質、膜強化剤としてコレステロール、荷電物質としてステアリン酸が好適に使用される。
Hereinafter, the present invention will be described more specifically.
<Liposome membrane-forming lipid>
The liposome membrane-forming lipid in the present invention can be a natural or synthetic lipid. In particular, phospholipids are preferably used, and those obtained by hydrogenation according to a conventional method can be mentioned. Furthermore, a membrane-strengthening agent such as sterol or a higher saturated fatty acid as a charged substance is added to the liposome membrane-forming lipid as desired. Hydrogenated soybean phospholipid is preferably used as the phospholipid, cholesterol as the membrane strengthening agent, and stearic acid as the charged substance.

<リポソーム内水相に含有されるヘモグロビン>
本発明のリポソーム内水相に含有されるヘモグロビンは、公知の方法によりヒト期限切れ濃厚赤血球製剤より白血球、血小板、血漿及び赤血球膜を除去した後、溶血、精製、濃縮したヒト由来濃厚ヘモグロビンが得られる。
<Hemoglobin contained in liposome aqueous phase>
The hemoglobin contained in the aqueous phase of liposome of the present invention is obtained by removing leukocytes, platelets, plasma and erythrocyte membrane from a human expired concentrated erythrocyte preparation by a known method, and then hemolyzed, purified and concentrated human-derived concentrated hemoglobin is obtained. .

<リポソーム表面修飾剤>
リポソーム表面への蛋白吸着抑制又はリポソーム凝集抑制の防止、リポソームの血管内投与後の血中での安定性向上等を目的として、一端に疎水性部を有し、且つ、他端に親水性高分子を有する化合物がリポソームの表面修飾に用いられる。ポリエチレングリコールとリン脂質が共有結合したポリエチレングリコール結合リン脂質が好適に用いられる。
<Liposome surface modifier>
It has a hydrophobic part at one end and high hydrophilicity at the other end for the purpose of preventing protein adsorption inhibition or liposome aggregation inhibition on the liposome surface and improving blood stability after intravascular administration of liposomes. Compounds having molecules are used for the surface modification of liposomes. A polyethylene glycol-linked phospholipid in which polyethylene glycol and phospholipid are covalently bonded is preferably used.

<アロステリック因子と酸素解離曲線>
本発明に記載されるアロステリック因子とは、酸素解離曲線(ヘモグロビンの酸素飽和度と酸素分圧の関係を示す曲線。ヒト赤血球の酸素解離曲線は図1参照)に影響を与える因子である。アロステリック因子は酸素解離曲線を右にシフトさせ、その結果として酸素運搬効率を高くする。天然赤血球における酸素運搬効率とは、通常の肺の酸素分圧である100mmHgと酸素供給先の組織末端の酸素分圧40mmHgとの間のヘモグロビンの酸素飽和度の差を示す。図1が示す様に、ヒト天然血液では肺(酸素分圧100mmHg)で酸素飽和度約100%であり、静脈(組織末端、酸素分圧40mmHg)では酸素飽和度約75%なので、肺と組織末端との間で、酸素飽和量の約25%を組織に供給する。人工酸素運搬体としてのヘモグロビン含有リポソーム懸濁液において、ヒト血液を原料とする場合、赤血球からヘモグロビンを取り出す工程において、ヒト赤血球に元々存在するアロステリック因子の2,3-DPG(酸素親和性調節に働く燐酸化合物)が失われる。その結果として、酸素解離曲線は左にシフトし、正常状態の組織への酸素運搬効率は低くなってしまう問題があった。この現象に対する対策として、予めヘモグロビン溶液にアロステリック因子を溶解させ、これをリポソーム化する事により、この問題点を解決する方法を鋭意検討して来た(特公平4-66456)。しかし、梗塞部位或いは癌組織等の様に低酸素状態の部位では通常の組織末端の酸素分圧(=静脈の酸素分圧)40mmHgよりも更に低い酸素分圧となる。これらの領域への酸素供給を目的とする場合においては、酸素分圧40mmHg以下の低酸素領域へ運搬可能な酸素運搬量が重要であり、酸素解離曲線は赤血球に比較して、左にシフトさせた方が有利である。低酸素領域へ運搬可能な酸素運搬量を増加させるには、酸素解離曲線を右にシフトさせる作用のあるアロステリック因子添加量は少なくするか、又は添加しない方が有利である。また、ヘモグロビンにアロステリック因子を添加すると、リポソーム化の際に、ヘモグロン収率が低下する傾向にあることを見出しており、低酸素組織への酸素供給目的とした高酸素親和性のヘモグロビン含有リポソーム懸濁液においては、酸素運搬量及びヘモグロビン収率の面から、アロステリック因子は添加しない方が良い事を見出した。
<Allosteric factor and oxygen dissociation curve>
The allosteric factor described in the present invention is a factor that affects the oxygen dissociation curve (a curve showing the relationship between the oxygen saturation of hemoglobin and the oxygen partial pressure. See FIG. 1 for the oxygen dissociation curve of human erythrocytes). Allosteric factors shift the oxygen dissociation curve to the right, resulting in higher oxygen carrying efficiency. The oxygen carrying efficiency in natural erythrocytes indicates the difference in oxygen saturation of hemoglobin between 100 mmHg, which is the normal partial pressure of oxygen in the lung, and 40 mmHg, which is the oxygen partial pressure at the end of the tissue to which oxygen is supplied. As Figure 1 shows, human natural blood has about 100% oxygen saturation in the lung (oxygen partial pressure 100mmHg), and vein (tissue end, oxygen partial pressure 40mmHg) has oxygen saturation about 75%. Between the ends, about 25% of the oxygen saturation is supplied to the tissue. In a hemoglobin-containing liposome suspension as an artificial oxygen carrier, when human blood is used as a raw material, 2,3-DPG (allosteric factor originally present in human erythrocytes is used to regulate oxygen affinity in the process of taking out hemoglobin from erythrocytes. The working phosphoric acid compound) is lost. As a result, the oxygen dissociation curve shifts to the left, and there is a problem that the efficiency of oxygen transport to the normal tissue is lowered. As a countermeasure against this phenomenon, a method for solving this problem has been intensively studied by dissolving allosteric factor in a hemoglobin solution in advance and making it into liposomes (Japanese Patent Publication No. 4-66456). However, in a hypoxic region such as an infarcted region or a cancer tissue, the oxygen partial pressure is lower than a normal tissue partial oxygen partial pressure (= venous oxygen partial pressure) of 40 mmHg. For the purpose of supplying oxygen to these regions, the amount of oxygen that can be transported to a low oxygen region with an oxygen partial pressure of 40 mmHg or less is important, and the oxygen dissociation curve is shifted to the left as compared to red blood cells. Is more advantageous. In order to increase the amount of oxygen that can be transported to the low oxygen region, it is advantageous that the amount of allosteric factor added to act to shift the oxygen dissociation curve to the right is reduced or not added. It has also been found that when allosteric factor is added to hemoglobin, the yield of hemoglobin tends to decrease during liposome formation, and high oxygen affinity hemoglobin-containing liposome suspension for the purpose of supplying oxygen to hypoxic tissue is found. In the suspension, it was found that it is better not to add allosteric factors in terms of oxygen carrying amount and hemoglobin yield.

<ヘモグロビン含有リポソーム懸濁液の酸素運搬量>
本発明に係わる人工酸素運搬体は、ヒト天然赤血球から赤血球膜を除去したヘモグロビをリポソーム化する事により得られる。本発明においては、アロステリック因子を含有しないヘモグロビン溶液を内水相とするリポソーム懸濁液1mLが酸素分圧40mmHg以下の低酸素領域に運搬可能な酸素量は(1)前記リポソーム懸濁液中のヘモグロビン濃度(ヘモグロビンが酸素運搬の主役である)(2)前記リポソーム懸濁液中のヘモグロビンメト化率(ヘモグロビンが酸化されてメトヘモグロビンとなると酸素運搬能を失う)(3)前記リポソーム懸濁液の酸素運搬効率から理論的に算出する。本発明における酸素運搬効率とは酸素分圧40mmHg以下の低酸素領域への酸素運搬について述べるもので、本発明のアロステリック因子を含有しないヘモグロビンを内水相とするリポソーム懸濁液の酸素解離曲線において、酸素分圧40mmHgと酸素分圧0mmHgとの間のヘモグロビンの酸素飽和度の差として示される。本発明における酸素運搬効率は酸素解離曲線が左にシフトする程、高くなる。低酸素親和性のヘモグロビン含有リポソーム懸濁液では、酸素運搬効率(低酸素親和性設定:酸素分圧100mmHgと40mmHgの間で設定)に内水相ヘモグロビンのpHが関与するが、本発明における高酸素親和性のヘモグロビン含有リポソーム懸濁液では、内水相ヘモグロビンのpHは酸素運搬効率(高酸素親和性設定:酸素分圧40mmHgと0mmHgの間で設定)に影響を与えない事が判明した。従って、内水相ヘモグロビンpHに影響を与える因子であるステアリン酸組成比は、ヘモグロビン収率を向上させる観点のみより選択される。前記リポソーム懸濁液中のヘモグロビン濃度:Aw/v%、前記リポソーム懸濁液中のヘモグロビンメト化率:B%、前記リポソーム懸濁液の酸素運搬効率(本発明においては酸素分圧40mmHgと酸素分圧0mmHgにおける酸素飽和度の差):C%とすると、前記リポソーム懸濁液1mLが酸素分圧40mmHgの部位から酸素分圧0mmHgの部位の間で運搬可能な酸素運搬量DmL(37℃、1気圧)は以下の様に理論的に計算される。
リポソーム懸濁液1mL中のヘモグロビンに結合可能な酸素分子数(moL)は、ヘモグロビンに結合可能な酸素分子が4つである事から、
{A(1-B/100)×4/64500}/100 → (1)となる。
更に、酸素運搬効率がC%である事から、リポソーム懸濁液1mLが放出可能な酸素分子数(moL)は、(1)×(C/100)→ (2)となる。
また、気体の状態方程式PV=nRT・R(atm・1/K・moL)・=0.082より、
D(mL)= (2) ×0.082×(37+273) ×1000 → (3) となる。
<Oxygen transport amount of hemoglobin-containing liposome suspension>
The artificial oxygen carrier according to the present invention can be obtained by liposome-forming hemoglobin from which the erythrocyte membrane has been removed from human natural erythrocytes. In the present invention, 1 mL of a liposome suspension having a hemoglobin solution containing no allosteric factor as an inner aqueous phase can be transported to a low oxygen region having an oxygen partial pressure of 40 mmHg or less. (1) Hemoglobin concentration (hemoglobin plays a major role in oxygen transport) (2) hemoglobin metration rate in the liposome suspension (has lost oxygen transport capacity when hemoglobin is oxidized to methemoglobin) (3) the liposome suspension Theoretically calculated from the oxygen transport efficiency. The oxygen transport efficiency in the present invention describes oxygen transport to a low oxygen region having an oxygen partial pressure of 40 mmHg or less. In the oxygen dissociation curve of a liposome suspension having hemoglobin that does not contain allosteric factor of the present invention as an inner aqueous phase, It is shown as the difference in oxygen saturation of hemoglobin between oxygen partial pressure of 40 mmHg and oxygen partial pressure of 0 mmHg. The oxygen carrying efficiency in the present invention increases as the oxygen dissociation curve shifts to the left. In the low oxygen affinity hemoglobin-containing liposome suspension, the oxygen transport efficiency (low oxygen affinity setting: oxygen partial pressure set between 100 mmHg and 40 mmHg) is related to the pH of the internal aqueous phase hemoglobin. In the lipophilic suspension containing oxygen affinity hemoglobin, the pH of the inner aqueous phase hemoglobin was found to have no effect on oxygen transport efficiency (high oxygen affinity setting: oxygen partial pressure set between 40 mmHg and 0 mmHg). Therefore, the stearic acid composition ratio, which is a factor affecting the inner aqueous phase hemoglobin pH, is selected only from the viewpoint of improving the hemoglobin yield. Hemoglobin concentration in the liposome suspension: Aw / v%, hemoglobin metration rate in the liposome suspension: B%, oxygen transport efficiency of the liposome suspension (in the present invention, oxygen partial pressure of 40 mmHg and oxygen Difference in oxygen saturation at partial pressure of 0 mmHg): Assuming C%, the amount of oxygen transport DmL (37 ° C, 1 mL of liposome suspension) that can be transported between the site of oxygen partial pressure of 40 mmHg and the site of oxygen partial pressure of 0 mmHg 1 atm) is calculated theoretically as follows.
Since the number of oxygen molecules that can bind to hemoglobin (moL) in 1 mL of liposome suspension is four oxygen molecules that can bind to hemoglobin,
{A (1-B / 100) × 4/64500} / 100 → (1)
Furthermore, since the oxygen carrying efficiency is C%, the number of oxygen molecules (moL) that can be released by 1 mL of liposome suspension is (1) × (C / 100) → (2).
Also, from the equation of state of gas PV = nRT · R (atm · 1 / K · moL) · = 0.082,
D (mL) = (2) x 0.082 x (37 + 273) x 1000 → (3)

<リポソーム懸濁液中のヘモグロビン濃度>
本発明における人工赤血球としてのリポソーム懸濁液の酸素運搬の主役はヘモグロビンである。前記リポソーム懸濁液中のヘモグロビン濃度が高過ぎると、ヘモグロビンをリポソーム化する為のリポソーム形成脂質濃度が必然的に高くなり、生体に投与される総脂質濃度が高くなって安全性の面で懸念がある。また、前記リポソーム懸濁液中のヘモグロビン濃度が低過ぎると、酸素運搬の主役であるヘモグロビンの絶対量が不足して、酸素運搬量設定に不利となる。従って前記リポソーム懸濁液中のヘモグロビン濃度は5.6〜6.7w/v%であり、より好ましくは5.7〜6.6w/v%である。
<Hemoglobin concentration in liposome suspension>
The main role of oxygen transportation of the liposome suspension as artificial red blood cells in the present invention is hemoglobin. If the concentration of hemoglobin in the liposome suspension is too high, the concentration of liposome-forming lipids for converting hemoglobin into liposomes will inevitably increase, and the total lipid concentration administered to the living body will increase, raising concerns regarding safety. There is. On the other hand, if the hemoglobin concentration in the liposome suspension is too low, the absolute amount of hemoglobin, which is the main oxygen transporter, is insufficient, which is disadvantageous in setting the oxygen transport amount. Therefore, the hemoglobin concentration in the liposome suspension is 5.6 to 6.7 w / v%, more preferably 5.7 to 6.6 w / v%.

<リポソーム懸濁液中のリポソーム膜形成脂質濃度>
リポソーム懸濁液中のリポソーム膜形成脂質の濃度が高過ぎると、リポソーム懸濁液の粘度が高くなり、血管中に投与した場合、循環器系に負担をかける事になり、また投与される総資質量が多くなるので安全性の面で懸念がある。一方、リポソーム膜形成脂質の濃度が低過ぎると、必然的に含有される薬剤又は生理活性物質の濃度も低くなるので、用途に対する効果が期待出来なくなる。従って、本発明において設定されたリポソーム懸濁液中のリポソーム膜形成脂質の濃度の適正値は3.05〜5.10w/v%であり、好ましくは3.25〜4.87w/v%である。
<Liposome membrane-forming lipid concentration in liposome suspension>
If the concentration of liposome membrane-forming lipid in the liposome suspension is too high, the viscosity of the liposome suspension will increase, and if administered into blood vessels, it will place a burden on the circulatory system and the total amount administered. There is a concern in terms of safety because the amount of resources increases. On the other hand, if the concentration of the liposome membrane-forming lipid is too low, the concentration of the drug or physiologically active substance that is inevitably contained also decreases, so that the effect on the use cannot be expected. Therefore, the appropriate value of the concentration of the liposome membrane-forming lipid in the liposome suspension set in the present invention is 3.05 to 5.10 w / v%, preferably 3.25 to 4.87 w / v%.

<リポソーム懸濁液中のステアリン酸濃度>
リポソーム膜形成脂質の成分の一つとして、荷電物質であるステアリン酸が好ましく使用される。リポソーム膜形成脂質中のステアリン酸組成比が高くなると(ヘモグロビン含有リポソーム懸濁液中のステアリン酸濃度が高くなる)、ヘモグロビン収率が向上する傾向があるが、一方リポソームからのヘモグロビン漏れ出しが認められる様になる。また、リポソーム膜形成脂質中のステアリン酸組成比が低くなると(ヘモグロビン含有リポソーム懸濁液中のステアリン酸濃度が低くなる)、ヘモグロビン収率が低下するだけでなく、ステアリン酸以外のリポソーム膜構成脂質の一つであるホスファチジルコリンの組成比を上げる事となる。ホスファチジルコリンは高価であるので、コストアップに繋がる。以上によりヘモグロビン含有リポソーム懸濁液中の適切なステアリン酸濃度は0.45〜0.73w/v%であり、より好ましくは0.47〜0.71w/v%である。
<Stearic acid concentration in liposome suspension>
As one of the components of the liposome membrane-forming lipid, stearic acid which is a charged substance is preferably used. When the composition ratio of stearic acid in the liposome membrane-forming lipid increases (the stearic acid concentration in the hemoglobin-containing liposome suspension increases), the hemoglobin yield tends to improve, while hemoglobin leakage from the liposome is observed. It becomes like. Moreover, when the composition ratio of stearic acid in the liposome membrane-forming lipid is lowered (the stearic acid concentration in the hemoglobin-containing liposome suspension is lowered), not only the hemoglobin yield is lowered, but also the liposome membrane-constituting lipid other than stearic acid. The composition ratio of phosphatidylcholine, which is one of the above, will be increased. Since phosphatidylcholine is expensive, it leads to an increase in cost. As described above, the appropriate stearic acid concentration in the hemoglobin-containing liposome suspension is 0.45 to 0.73 w / v%, more preferably 0.47 to 0.71 w / v%.

<リポソーム懸濁液中のヘモグロビンメト化率>
ヘモグロビンは酸化されて、メトヘモグロビンとなると酸素運搬能を失うので、人工酸素運搬体としてのヘモグロビン含有リポソームにおいては、ヘモグロビンの酸化防止(ヘモグロビンメト化防止)は、重要な課題の一つである。ヘモグロビンのpHが過度に低下すると、ヘモグロビンの酸化が促進するので、製造工程では、低温条件を保つと同時に、ヘモグロビンのpH制御を行い、公知の方法(特開2006-104069)により、脱酸素化剤使用による脱酸素化及び脱酸素化状態のまま製剤バッグに無菌充填した後、脱酸素化状態を維持出来る様に外包装を行う。前記リポソーム懸濁液製造直後及び有効保存期間中のヘモグロビンメト化率は10%以下である。ヘモグロビンメト化率がこれより高くなると、前記リポソーム懸濁液の酸素運搬効率の面で不利となる。
<Hemoglobin methaization rate in liposome suspension>
When hemoglobin is oxidized to methemoglobin, it loses its ability to carry oxygen. Therefore, in hemoglobin-containing liposomes as an artificial oxygen carrier, antioxidation of hemoglobin (prevention of hemoglobin methation) is one of the important issues. If the pH of hemoglobin decreases excessively, the oxidation of hemoglobin is promoted. Therefore, in the production process, while maintaining low temperature conditions, the pH of hemoglobin is controlled and deoxygenation is performed by a known method (Japanese Patent Laid-Open No. 2006-104069). After aseptically filling the preparation bag in the deoxygenated and deoxygenated state using the agent, outer packaging is performed so that the deoxygenated state can be maintained. Immediately after the preparation of the liposome suspension and during the effective storage period, the hemoglobin metation rate is 10% or less. If the hemoglobin metration rate is higher than this, it is disadvantageous in terms of the oxygen carrying efficiency of the liposome suspension.

次に本発明の実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、前記リポソーム懸濁液の製造工程は無菌環境下での操作とした。   EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the manufacturing process of the said liposome suspension was made into operation in aseptic environment.

アロステリック因子を添加せず、酸素解離曲線を天然赤血球と比較して、より左にシフトさせた例(高酸素親和性)
水素添加大豆ホスファチジルコリン182g、コレステロール89g、ステアリン酸46gからなる均一混合脂質に水317gを加えて、85℃で30分間加熱して水和膨潤均一混合脂質を調整した。期限切れ濃厚赤血球製剤からヘモグロビンを精製、濃縮し、ヘモグロビン濃度42.0w/w%の濃厚ヘモグロビンを調整した。前記水和膨潤均一混合脂質634gに前記濃厚ヘモグロビン溶液2264gを添加し、水和膨潤均一混合脂質中のステアリン酸を中和する量の水酸化ナトリウムを添加しつつ、均一に攪拌し、前乳化を行った。前記前乳化後に更に強力な攪拌により、本乳化を行った。前記本乳化後の混合液を生理食塩水により希釈して、0.45μm膜を用いて、循環濾過により粒子径の制御を行った。次に10mg/mL濃度の亜硫酸ナトリウム生理食塩水溶液を使用し、亜硫酸ナトリウムによる脱酸素化を行った後、分画分子量30万の限外濾過膜を用いて、0.5mg/mL濃度の亜硫酸ナトリウム生理食塩水溶液による加水濾過濃縮で、リポソーム化されなかったヘモグロビンを除去し、ヒト由来濃厚ヘモグロビン含有リポソーム懸濁液を作成した。前記リポソーム懸濁液に、PEG結合リン脂質として、DSPE-PEG5000(日本油脂製)を生理食塩水に溶解させたPEG結合リン脂質生理食塩水溶液を添加した。前記リポソーム及びPEG結合リン脂質を含有した前記リポソーム懸濁液中のリポソーム膜形成脂質濃度が4.05w/v%であり、PEG結合リン脂質濃度が0.31w/v%である様に調整した後、37℃、24時間処理し、PEG結合リン脂質をリポソーム表面に固定化した前記リポソーム懸濁液8000mLを得た。
前記リポソーム懸濁液中のヘモグロビン濃度は6.3w/v%、ステアリン酸濃度は0.58w/v%であり、ヘモグロビン収率53.0%であった。製造直後の前記リポソーム懸濁液中のヘモグロビンメト化率は4.0%であった。前記リポソーム懸濁液の酸素解離曲線(37℃)から求めた酸素運搬効率(低酸素組織用に設定。酸素分圧40mmHgと酸素分圧0mmHgの間の酸素飽和度の差)は97%であった。前記リポソーム懸濁液中のヘモグロビン濃度:6.3w/v%、ヘモグロビンメト化率:4.0%、前記リポソーム懸濁液の酸素運搬効率:97%を前述0015に記載の(3)式に当てはめると、前記リポソーム懸濁液1mLが酸素分圧40mmHg〜0mmHgの間で運び得る酸素運搬量(37℃、1気圧)は0.092mLと算出された。
(比較例)
An example in which the oxygen dissociation curve is shifted to the left compared to natural red blood cells without adding allosteric factor (high oxygen affinity)
317 g of water was added to a uniformly mixed lipid composed of 182 g of hydrogenated soybean phosphatidylcholine, 89 g of cholesterol and 46 g of stearic acid, and heated at 85 ° C. for 30 minutes to prepare a hydrated and swollen uniformly mixed lipid. Hemoglobin was purified and concentrated from the expired concentrated red blood cell preparation to prepare concentrated hemoglobin having a hemoglobin concentration of 42.0 w / w%. Add 2264 g of the concentrated hemoglobin solution to 634 g of the hydrated and swollen uniformly mixed lipid and add sodium hydroxide in an amount to neutralize the stearic acid in the hydrated and swollen uniformly mixed lipid while stirring uniformly to pre-emulsify. went. After the pre-emulsification, the emulsification was carried out by a stronger stirring. The mixed solution after the main emulsification was diluted with physiological saline, and the particle size was controlled by circulating filtration using a 0.45 μm membrane. Next, 10 mg / mL sodium sulfite physiological saline solution was used, and after deoxygenation with sodium sulfite, a 0.5 mg / mL sodium sulfite physiological solution was used using an ultrafiltration membrane with a molecular weight cut off of 300,000. The hemoglobin that had not been converted to liposomes was removed by hydrofiltration concentration using a saline solution, and a human-derived concentrated hemoglobin-containing liposome suspension was prepared. A PEG-linked phospholipid physiological saline solution in which DSPE-PEG5000 (manufactured by NOF Corporation) was dissolved in physiological saline was added to the liposome suspension as a PEG-conjugated phospholipid. After adjusting the liposome membrane-forming lipid concentration in the liposome suspension containing the liposome and PEG-bound phospholipid to 4.05 w / v% and adjusting the PEG-bound phospholipid concentration to 0.31 w / v%, After treatment at 37 ° C. for 24 hours, 8000 mL of the above-described liposome suspension in which PEG-linked phospholipid was immobilized on the liposome surface was obtained.
The hemoglobin concentration in the liposome suspension was 6.3 w / v%, the stearic acid concentration was 0.58 w / v%, and the hemoglobin yield was 53.0% . The hemoglobin metation rate in the liposome suspension immediately after production was 4.0%. The oxygen carrying efficiency (set for low oxygen tissues. Difference in oxygen saturation between oxygen partial pressure 40 mmHg and oxygen partial pressure 0 mmHg) determined from the oxygen dissociation curve (37 ° C) of the liposome suspension was 97%. It was. When the hemoglobin concentration in the liposome suspension: 6.3 w / v%, the hemoglobin metation rate: 4.0%, and the oxygen transport efficiency of the liposome suspension: 97% are applied to the formula (3) described in the above 0015, The amount of oxygen transport (37 ° C., 1 atm) that can be carried by 1 mL of the liposome suspension between an oxygen partial pressure of 40 mmHg to 0 mmHg was calculated to be 0.092 mL .
(Comparative example)

アロステリック因子を添加して、酸素解離曲線を天然赤血球と比較して、より右にシフトさせた例(低酸素親和性)
水素添加大豆ホスファチジルコリン182g、コレステロール89g、ステアリン酸46gからなる均一混合脂質に水317gを加えて、85℃で30分間加熱して水和膨潤均一混合脂質を調整した。期限切れ濃厚赤血球製剤からヘモグロビンを精製、濃縮し、アロステリック因子として、フィチン酸12ナトリウムをヘモグロビンに対して等モル添加したヘモグロビン濃度42.6w/w%の濃厚ヘモグロビンを調整した。前記水和膨潤均一混合脂質634gに前記フイチン酸12ナトリウム添加濃厚ヘモグロビン溶液2264gを添加し、水和膨潤均一混合脂質中のステアリン酸を中和する量の水酸化ナトリウムを添加しつつ、均一に攪拌し、前乳化を行った。前記前乳化後に更に強力な攪拌により、本乳化を行った。前記本乳化後の混合液を生理食塩水により希釈して、0.45μm膜を用いて、循環濾過により粒子径の制御を行った。次に10mg/mL濃度の亜硫酸ナトリウム生理食塩水溶液を使用し、亜硫酸ナトリウムによる脱酸素化を行った後、文画分子量30万の限外濾過膜を用いて、0.5mg/mL濃度の亜硫酸ナトリウム生理食塩水溶液による加水濾過濃縮で、リポソーム化されなかったヘモグロビン及びフイチン酸12ナトリウムを除去し、ヒト由来濃厚ヘモグロビン及びアロステリック因子含有リポソーム懸濁液を作成した。前記リポソーム懸濁液に、PEG結合リン脂質として、DSPE-PEG5000(日本油脂製)を生理食塩水に溶解させたPEG結合リン脂質水溶液を添加した。前記リポソーム及びPEG結合リン脂質を含有した前記リポソーム懸濁液中のリポソーム膜構成脂質濃度が4.04%であり、PEG結合リン脂質濃度が0.33w/v%である様に調整した後、37℃、24時間処理し、PEG結合リン脂質をリポソーム表面に固定化した前記リポソーム懸濁液1991mLを得た。
前記リポソーム懸濁液中のヘモグロビン濃度は6.2w/v%、ステアリン酸濃度は0.60w/v%であり、ヘモグロビン収率は12.8%であった。製造直後の前記リポソーム懸濁液中のヘモグロビンメト化率は4.5%であった。前記リポソーム懸濁液の酸素解離曲線(37℃)から求めた酸素運搬効率(低酸素組織用に設定。酸素分圧40mmHgと酸素分圧0mmHgの間の酸素飽和度の差)は41%であった。前記リポソーム懸濁液中のヘモグロビン濃度6.2%、ヘモグロビンメト化率4.5%、前記リポソーム懸濁液の酸素運搬効率41%を前述0016に記載の(3)式に当てはめると、前記リポソーム懸濁液1mLが酸素分圧40mmHg〜0mmHgの間で運び得る酸素運搬量(37℃、1気圧)は0.038mLと算出され、実施例の1/2以下の量であった。
Example of adding allosteric factors and shifting the oxygen dissociation curve to the right compared to natural red blood cells (low oxygen affinity)
317 g of water was added to a uniformly mixed lipid composed of 182 g of hydrogenated soybean phosphatidylcholine, 89 g of cholesterol and 46 g of stearic acid, and heated at 85 ° C. for 30 minutes to prepare a hydrated and swollen uniformly mixed lipid. Hemoglobin was purified and concentrated from the expired concentrated erythrocyte preparation, and concentrated hemoglobin having a hemoglobin concentration of 42.6 w / w% was prepared by adding equimolar amounts of 12 sodium phytate to hemoglobin as an allosteric factor. Add 2264 g of the concentrated hemoglobin solution with 12 sodium phytate to 634 g of the hydrated and swollen uniformly mixed lipid, and stir uniformly while adding sodium hydroxide in an amount to neutralize the stearic acid in the hydrated and swollen uniformly mixed lipid. And pre-emulsified. After the pre-emulsification, the emulsification was carried out by a stronger stirring. The mixed solution after the main emulsification was diluted with physiological saline, and the particle size was controlled by circulating filtration using a 0.45 μm membrane. Next, 10 mg / mL sodium sulfite physiological saline solution was used, and after deoxygenation with sodium sulfite, using a ultrafiltration membrane with a molecular weight of 300,000, a 0.5 mg / mL sodium sulfite physiological solution The hemoglobin and 12 sodium phytate that had not been made into liposomes were removed by hydrofiltration concentration using a saline solution, and a human-derived concentrated hemoglobin and allosteric factor-containing liposome suspension was prepared. To the liposome suspension, an aqueous PEG-conjugated phospholipid solution in which DSPE-PEG5000 (manufactured by NOF Corporation) was dissolved in physiological saline was added as a PEG-conjugated phospholipid. The liposome membrane-constituting lipid concentration in the liposome suspension containing the liposome and PEG-bound phospholipid is 4.04%, and adjusted so that the PEG-bound phospholipid concentration is 0.33 w / v%, then at 37 ° C., The liposome suspension was treated for 24 hours to obtain 1991 mL of the liposome suspension having the PEG-linked phospholipid immobilized on the liposome surface.
The hemoglobin concentration in the liposome suspension was 6.2 w / v%, the stearic acid concentration was 0.60 w / v%, and the hemoglobin yield was 12.8% . The hemoglobin metation rate in the liposome suspension immediately after production was 4.5%. The oxygen transport efficiency (set for low oxygen tissues. Difference in oxygen saturation between oxygen partial pressure of 40 mmHg and oxygen partial pressure of 0 mmHg) determined from the oxygen dissociation curve (37 ° C) of the liposome suspension was 41%. It was. When the hemoglobin concentration in the liposome suspension is 6.2%, the hemoglobin metation rate is 4.5%, and the oxygen transport efficiency of 41% is applied to the formula (3) described in the above 0016, 1 mL of the liposome suspension is obtained. The oxygen carrying amount (37 ° C., 1 atm) that can be carried between oxygen partial pressures of 40 mmHg and 0 mmHg was calculated to be 0.038 mL , which was less than 1/2 of the example.

ヒト天然血液の酸素解離曲線を示す。The oxygen dissociation curve of human natural blood is shown.

Claims (2)

アロステリック因子を含有しないヘモグロビン溶液を内水相とするリポソーム懸濁液であって、前記リポソーム膜形成脂質がステアリン酸を含み、前記リポソーム懸濁液中のヘモグロビン濃度が5.6〜6.7w/v%であり、リポソーム膜形成脂質の濃度が3.05〜5.10w/v%であり、ステアリン酸濃度が0.45〜0.73w/v%である事を特徴とする前記リポソーム懸濁液。
A liposome suspension having a hemoglobin solution containing no allosteric factor as an inner aqueous phase, wherein the liposome membrane-forming lipid contains stearic acid, and the hemoglobin concentration in the liposome suspension is 5.6 to 6.7 w / v% The liposome suspension characterized in that the liposome membrane-forming lipid concentration is 3.05 to 5.10 w / v% and the stearic acid concentration is 0.45 to 0.73 w / v%.
前記リポソーム懸濁液中のヘモグロビンメト化率が10%以下である事を特徴とする請求項1に記載の前記リポソーム懸濁液。   2. The liposome suspension according to claim 1, wherein a hemoglobin metration rate in the liposome suspension is 10% or less.
JP2008079396A 2008-03-26 2008-03-26 Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof Pending JP2009234929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008079396A JP2009234929A (en) 2008-03-26 2008-03-26 Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079396A JP2009234929A (en) 2008-03-26 2008-03-26 Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof

Publications (1)

Publication Number Publication Date
JP2009234929A true JP2009234929A (en) 2009-10-15

Family

ID=41249352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079396A Pending JP2009234929A (en) 2008-03-26 2008-03-26 Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof

Country Status (1)

Country Link
JP (1) JP2009234929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125225A1 (en) * 2013-02-15 2014-08-21 Hemarina Use of haemoglobin of annelids for treating cancer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125225A1 (en) * 2013-02-15 2014-08-21 Hemarina Use of haemoglobin of annelids for treating cancer
FR3002146A1 (en) * 2013-02-15 2014-08-22 Hemarina USE OF ANNILIDES HEMOGLOBIN FOR THE TREATMENT OF CANCERS

Similar Documents

Publication Publication Date Title
US5344393A (en) Use of synthetic oxygen carriers to facilitate oxygen delivery
US4752586A (en) Apparatus for encapsulating biological active substances into erythrocytes
US20110256225A1 (en) Biodegradable nanoparticles as novel hemoglobin-based oxygen carriers and methods of using the same
JPH0546327B2 (en)
JP5837044B2 (en) Oxygen carrier administration system, oxygen carrier oxygenator, and oxygen carrier container
Kure et al. Preparation of artificial red blood cells (hemoglobin vesicles) using the rotation–revolution mixer for high encapsulation efficiency
Gaber et al. Encapsulation of hemoglobin in phospholipid vesicles
US20060088583A1 (en) Artificial oxygen carrier containing preventive agents of metHb formation
Sakai et al. Hemoglobin-vesicles as an artificial oxygen carrier
MXPA04012299A (en) A stable bicarbonate-based solution in a single container.
EP1297843B1 (en) Method of photoreduction of hemoglobin vesicles
JP2009234929A (en) Hemoglobin-containing liposome suspension effective in oxygen delivery to hypoxic cell and tissue and production method thereof
JP2010215517A (en) Hemoglobin-containing liposome suspension having controlled oxygen affinity to medium oxygen affinity
JP2008120760A (en) Hemoglobin- and allosteric factor-containing liposome suspension and its preparation method
WO2017172898A1 (en) Solution comprising poly-oxygenated metal hydroxide
JP5916743B2 (en) Hemoglobin-containing liposome and method for producing the same
Kobayashi et al. The oxygen carrying capability of hemoglobin vesicles evaluated in rat exchange transfusion models
JP5020525B2 (en) Ligand substitution infusion formulation
US20170290772A1 (en) Stable micelle and/or liposome compositions and uses thereof
JP2009263269A (en) Artificial oxygen carrier used for treating hemorrhage
JP2001072595A (en) Stably storable oxygen transfusion
JP2021165276A (en) Chemical pool medicament, injection formulation, internal use formulation, infusion formulation and dialysis device
Ogata et al. Characteristics of neo red cells, their function and safety: in vivo studies
JP2001348341A (en) Artificial oxygen carrier effective for cell and tissue in hypoxic state
JP4763265B2 (en) Artificial oxygen carrier containing an anti-methanizing agent