JP2009263206A - Boron carbide-silicon carbide-silicon composite material and its producing method - Google Patents

Boron carbide-silicon carbide-silicon composite material and its producing method Download PDF

Info

Publication number
JP2009263206A
JP2009263206A JP2009022433A JP2009022433A JP2009263206A JP 2009263206 A JP2009263206 A JP 2009263206A JP 2009022433 A JP2009022433 A JP 2009022433A JP 2009022433 A JP2009022433 A JP 2009022433A JP 2009263206 A JP2009263206 A JP 2009263206A
Authority
JP
Japan
Prior art keywords
silicon
boron carbide
silicon carbide
composite material
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009022433A
Other languages
Japanese (ja)
Inventor
Akio Matsumoto
彰夫 松本
Shogo Shimada
正吾 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009022433A priority Critical patent/JP2009263206A/en
Priority to CN2009801101986A priority patent/CN101977875B/en
Priority to EP09727004A priority patent/EP2289860A4/en
Priority to KR1020107023758A priority patent/KR101190561B1/en
Priority to PCT/JP2009/056884 priority patent/WO2009123282A1/en
Priority to US12/384,481 priority patent/US7833921B2/en
Priority to TW098111217A priority patent/TW201004894A/en
Publication of JP2009263206A publication Critical patent/JP2009263206A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material excellent in grindability regardless of the composite material with high specific rigidity utilizing the high specific rigidity of boron carbide and to provide its producing method. <P>SOLUTION: The composite material whose main ingredients are X pts.vol. of boron carbide, Y pts.vol. of silicon carbide and Z pts.vol. of silicon (wherein, 10<X<60; 20<Y<70; and 5<Z<30) and where boron carbide and silicon carbide having a particle size of 10 μm or more are contained by 10-50 pts.vol. is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明の態様は、一般に、炭化硼素・炭化珪素・シリコンを主成分とする複合材料およびその製造方法に係り、特に高比剛性で低コストで製造可能な複合材料およびその製造方法に関する。   Aspects of the present invention generally relate to a composite material mainly composed of boron carbide, silicon carbide, and silicon and a manufacturing method thereof, and more particularly to a composite material that can be manufactured with high specific rigidity and low cost and a manufacturing method thereof.

比剛性とはヤング率を比重(水に対する重量比)で除したパラメーターであり、各種の機械部品にはこの値が高い材料が求められる場合がある。
その例としては高精度の位置決め機能が必要な移動体装置である3次元測定器、直線度測定器、平面状物体のパターンを形成するための露光機などがあげられる。特に露光機においては半導体ウェハーや液晶パネルなどを製造するにあたり、近年のパターンの微細化の要求に対応したさらに高精度の位置決め機能が求められていると共に、経済的にパターンを形成するために高速で被露光ワークやレチクルなどが搭載された静水圧流体軸受け装置などの移動体を高速で動かして、装置のスループットを向上させることが求められている。
Specific rigidity is a parameter obtained by dividing Young's modulus by specific gravity (weight ratio with respect to water), and various mechanical parts may require materials having a high value.
Examples thereof include a three-dimensional measuring device, a linearity measuring device, and an exposure machine for forming a pattern of a planar object, which are mobile devices that require a highly accurate positioning function. In particular, in an exposure machine, when manufacturing semiconductor wafers, liquid crystal panels, etc., there is a demand for a more accurate positioning function that meets the recent demands for pattern miniaturization, and high-speed operation for economical pattern formation. Therefore, it is required to improve the throughput of the apparatus by moving a moving body such as a hydrostatic pressure fluid bearing apparatus on which an object to be exposed or a reticle is mounted at a high speed.

しかしながらこのような移動体を高速度で動かすことは必然的に振動が発生することであり、これは位置決め精度に関してはマイナスの要因である。この振動を早く減衰させるためには高比剛性の材料が求められており、また一定の駆動力の元で移動体を高速で動かすためには可動部分の軽量化が必要であり、また装置の撓みは位置決め精度の低下につながるため、そのためにもヤング率が大きく比重が小さい材料が求められている。   However, moving such a moving body at high speed inevitably generates vibration, which is a negative factor with respect to positioning accuracy. In order to damp this vibration quickly, a material with high specific rigidity is required, and in order to move the moving body at a high speed under a constant driving force, it is necessary to reduce the weight of the movable part. Since bending leads to a decrease in positioning accuracy, a material having a large Young's modulus and a small specific gravity is also required for this purpose.

このような高比剛性が要求される機械部品としては、従来は鉄鋼等の金属系素材が用いられてきたが、最近ではさらに高比剛性のセラミック系のアルミナが用いられるようになってきている。しかしながらさらに高比剛性が要求される場合においてはセラミック系でもアルミナのような酸化物セラミックスではなく非酸化物セラミックスを用いる必要があるが、その中でも工業材料としては最高の比剛性率を持つ炭化硼素系の材料が期待されている。   Conventionally, metal materials such as steel have been used as such mechanical parts that require high specific rigidity. Recently, however, ceramic alumina with higher specific rigidity has been used. . However, when higher specific rigidity is required, it is necessary to use non-oxide ceramics instead of oxide ceramics such as alumina even in the ceramic system. Among them, boron carbide having the highest specific rigidity ratio as an industrial material. System materials are expected.

炭化硼素系素材として最も高比剛性が期待されるのは、ほぼ純粋な炭化硼素焼結体であるが、炭化硼素は難焼結体として知られている。そこで従来の炭化硼素焼結体はホットプレスにより製造されていた。しかしながらホットプレス焼結法においては、大型複雑形状品は製造することが困難であり、また高温・高圧を付与するためのホットプレス装置や金型のコストが大きいために現実的に構造部材を製造する方法とは云えない。   The boron carbide material that is expected to have the highest specific rigidity is a substantially pure boron carbide sintered body, but boron carbide is known as a hardly sintered body. Therefore, conventional boron carbide sintered bodies have been manufactured by hot pressing. However, in the hot press sintering method, it is difficult to manufacture large-sized complex products, and the cost of hot press equipment and dies for applying high temperature and high pressure is high, so structural members are actually manufactured. It's not a way to do it.

この問題を解決するために炭化硼素の鋳込成形・常圧焼結の手法が開示されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6参照。)。しかしながらこの方法においては、焼成体が難研削性であるため、半導体・液晶製造装置のような高寸法精度が要求される用途においては研削コストが大きくなることと、常圧焼結温度が2200℃以上とかなり高いため焼成コストが大きくなるという問題点がある。   In order to solve this problem, methods of casting molding and atmospheric pressure sintering of boron carbide have been disclosed (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document) 6). However, in this method, since the fired body is difficult to grind, in applications where high dimensional accuracy is required, such as a semiconductor / liquid crystal manufacturing apparatus, the grinding cost is increased, and the atmospheric pressure sintering temperature is 2200 ° C. Since it is quite high as mentioned above, there is a problem that the firing cost increases.

そこで炭化硼素を焼結させるのではなく、金属マトリックス相内に炭化硼素粉をフィラーとして分散させた材料も開示されている(例えば、特許文献7参照。)。この材料はアルミニウム中に炭化硼素を分散させたものであるが、炭化硼素とアルミニウムの濡れ性が悪いため炭化硼素とアルミニウムの混合物をホットプレスして製造しており、ホットプレスでは大型複雑形状品はできないし製造コストも大きいために、現実的に構造部材を製造する方法とはいえない。   Therefore, a material in which boron carbide powder is dispersed as a filler in a metal matrix phase instead of sintering boron carbide is also disclosed (for example, see Patent Document 7). This material is a material in which boron carbide is dispersed in aluminum, but because the wettability of boron carbide and aluminum is poor, it is manufactured by hot pressing a mixture of boron carbide and aluminum. However, since the manufacturing cost is high, it cannot be said to be a method for manufacturing a structural member in practice.

そこで炭化硼素との濡れ性が比較的優れているシリコンを金属として用い、炭化硼素成形体に溶融したシリコンを含浸させた複合材料も開示されており(例えば、特許文献8、特許文献9、特許文献10参照。)、その中には原材料として少量の炭素源となりうる素材を含む例もある。しかしながらこの方法においては、シリコンが含浸されているとはいうものの炭化硼素が高充填されている複合材料となるので、炭化硼素単独のものよりやや研削性は改良されて入るものの、難研削性であることは変わらない。また炭化硼素を主成分とする成形体の隙間にシリコンが充填されるため、できあがった複合材料は大量のシリコンを含むことになり、このような材料は比剛性率が低く炭化硼素の持つ高い比剛性率を生かすことができない。   Therefore, composite materials in which silicon having relatively good wettability with boron carbide is used as a metal and a boron carbide molded body is impregnated with molten silicon are also disclosed (for example, Patent Document 8, Patent Document 9, Patent). Reference 10), and some examples include materials that can serve as a small amount of carbon source as raw materials. However, this method is a composite material that is highly impregnated with boron carbide although it is impregnated with silicon. There is no change. In addition, since silicon is filled in the gaps between the molded bodies mainly composed of boron carbide, the resulting composite material contains a large amount of silicon. Such a material has a low specific rigidity and a high ratio of boron carbide. The rigidity cannot be utilized.

また成形体の原料として炭化硼素に加えて炭化珪素をも含む材料を用い、この成形体に溶融したシリコンを含浸させた複合材料も開示されており(例えば特許文献11参照。)、その中には原材料として少量の炭素源となりうる素材を含む例もある。しかしながらこの方法においてもやはり炭化硼素・炭化珪素が高充填された複合材料となるので、炭化硼素単独で充填されているものよりやや研削性は改良されているものの、やはり難研削性であることには変わらない。また炭化硼素・炭化珪素を主成分とする成形体の隙間にシリコンが充填されるため、できあがった複合材料は大量のシリコンを含むことになり、このような材料は比剛性率が低く炭化硼素の持つ高い比剛性率を生かすことができない。   Also disclosed is a composite material in which a material containing silicon carbide in addition to boron carbide is used as a raw material of a molded body, and this molded body is impregnated with molten silicon (see, for example, Patent Document 11). In some cases, the raw material contains a material that can be a small amount of carbon source. However, this method also results in a composite material that is highly filled with boron carbide / silicon carbide, so the grindability is slightly improved compared to that filled with boron carbide alone, but it is still difficult to grind. Will not change. In addition, since silicon is filled in the gaps between the molded bodies mainly composed of boron carbide and silicon carbide, the resulting composite material contains a large amount of silicon. Such a material has a low specific rigidity and is low in boron carbide. It cannot take advantage of the high specific rigidity that it has.

WO01/72659A1号公報(第15−16頁)WO01 / 72659A1 (pages 15-16) 特開2001−342069(第3−4頁)JP 2001-342069 (page 3-4) 特開2002−160975(第4−6頁)JP 2002-160975 (page 4-6) 特開2002−167278(第4−6頁)JP 2002-167278 (page 4-6) 特開2003−109892(第3−5頁)JP 2003-109982 (page 3-5) 特開2003−201178(第4−9頁)JP2003-2011178 (page 4-9) United States Patent 4104062号公報(col2−5)United States Patent 4104062 (col2-5) United States Patent 3725015号公報(col2−6)United States Patent 37225015 (col2-6) United States Patent 3796564号公報(col2−13)United States Patent 3796564 (col2-13) United States Patent 3857744号公報(col1−3)United States Patent 3857744 (col1-3) 特表2007−51384号公報(第20−22頁)JP-T-2007-51384 (pages 20-22)

本発明の態様は、上記問題を解決するためになされたもので、炭化硼素の持つ高い比剛性を利用した高比剛性複合材料でありながら研削性が優れた複合材料、及びその製造方法を提供することである。   An aspect of the present invention has been made to solve the above-described problems, and provides a composite material having excellent grindability while being a high specific rigidity composite material using the high specific rigidity of boron carbide, and a method for manufacturing the same. It is to be.

上記目的を達成するために本発明の一実施形態によれば、炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30であり、炭化硼素と炭化珪素の10μm以上の粒子が10〜50体積部であることを特徴とする複合材料により、高比剛性でありながら研削性が優れた複合材料を可能とした。   In order to achieve the above object, according to one embodiment of the present invention, boron carbide X volume part, silicon carbide Y volume part, silicon Z volume part is a main component, 10 <X <60, 20 <Y <70, Composite material characterized by 5 <Z <30 and 10 to 50 parts by volume of particles of boron carbide and silicon carbide of 10 μm or more. High composite rigidity and excellent grindability are possible. It was.

また、本発明の他の実施形態によれば、炭化硼素、炭化珪素、炭素源を主成分とする原料を成形して成形体を製造する成形工程と、該成形体に溶融シリコンを含浸させることにより炭素を炭化珪素に転換させる反応焼結工程を備えたことを特徴とする、炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30であり、炭化硼素と炭化珪素の10μm以上の粒子が10〜50体積部であることを特徴とする複合材料の製造方法により、高比剛性でありながら研削性が優れた複合材料の製造を可能とした。   According to another embodiment of the present invention, a molding step of manufacturing a molded body by molding a raw material mainly composed of boron carbide, silicon carbide, and a carbon source, and impregnating the molded body with molten silicon And a reaction sintering step of converting carbon into silicon carbide by the following, comprising boron carbide X volume part, silicon carbide Y volume part, silicon Z volume part as main components, 10 <X <60, 20 < Y <70, 5 <Z <30, and 10 to 50 parts by volume of boron carbide and silicon carbide particles having a size of 10 to 50 parts by volume. Made it possible to produce excellent composite materials.

また、本発明の他の実施形態によれば、炭化硼素、炭化珪素、炭素源を主成分とする原料を成形した成形体に、溶融シリコンを含浸させることにより炭素を炭化珪素に転換させる反応焼結工程を備えたことを特徴とする、炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30であり、炭化硼素と炭化珪素の10μm以上の粒子が10〜50体積部であることを特徴とする複合材料の製造方法とした。これにより、高比剛性でありながら研削性が優れた複合材料の製造を可能とした。   Further, according to another embodiment of the present invention, a reaction firing in which carbon is converted to silicon carbide by impregnating molten silicon into a molded body obtained by molding a raw material mainly composed of boron carbide, silicon carbide, and carbon source. The main component is a boron carbide X volume part, a silicon carbide Y volume part, and a silicon Z volume part, characterized in that it comprises a sintering step, and 10 <X <60, 20 <Y <70, and 5 <Z <30. In addition, a composite material manufacturing method is characterized in that 10 μm or more particles of boron carbide and silicon carbide are 10 to 50 parts by volume. As a result, it was possible to produce a composite material having high specific rigidity and excellent grindability.

本発明の態様によれば、炭化硼素の持つ高い比剛性を利用した高比剛性複合材料でありながら研削性が優れた複合材料、及びその製造方法を提供することが可能となる。
According to the aspect of the present invention, it is possible to provide a composite material having excellent grindability while being a high specific rigidity composite material utilizing the high specific rigidity of boron carbide, and a method for manufacturing the same.

本発明の一実施例で用いられた原料の粒度分布を示す図である。It is a figure which shows the particle size distribution of the raw material used in one Example of this invention. 本発明の一実施例で用いられた焼成工程ノヒートカーブを示す図である。It is a figure which shows the baking process no heat curve used in one Example of this invention. 本発明の一実施例の反応焼結体の微構造を示す図である。It is a figure which shows the microstructure of the reaction sintered compact of one Example of this invention.

以下に本発明における主要な用語について説明する。   The main terms in the present invention will be described below.

(比剛性率)
比剛性とはヤング率を比重で割った値であり、比重は水に対する密度比で単位はないので、比剛性率の単位はヤング率の単位と同じである。ヤング率は共振法にて測定し、比重はアルキメデス法により測定する。
(Specific rigidity)
Specific rigidity is a value obtained by dividing Young's modulus by specific gravity. Since specific gravity is a density ratio to water and has no unit, the unit of specific rigidity is the same as the unit of Young's modulus. Young's modulus is measured by the resonance method, and specific gravity is measured by the Archimedes method.

(粒径)
複合材料中の粒子の粒径とは複合材料の切断面をラップし、光学顕微鏡で観察したときの粒子のさしわたし最大径をさすものとする。
(Particle size)
The particle size of the particles in the composite material refers to the maximum diameter of the particles when the cut surface of the composite material is wrapped and observed with an optical microscope.

(粗粒)
上記粒径が10μm以上の粒子をさすものとする。
(Coarse grain)
It shall mean particles having a particle size of 10 μm or more.

(微粒)
上記粒径が10μm未満の粒子をさすものとする。
(Fine particles)
It shall mean particles having a particle size of less than 10 μm.

(F1)
本発明における複合材料の製造工程において鋳込成形を採用するとき、スラリー中の固形分の体積分率をさすものとする。
(F1)
When adopting cast molding in the manufacturing process of the composite material in the present invention, it refers to the volume fraction of solids in the slurry.

(F3)
本発明における複合材料の製造工程における成形体の固形分の充填率をさすものでアルキメデス法により測定する
(F3)
This refers to the filling rate of the solid content of the compact in the manufacturing process of the composite material in the present invention, and is measured by the Archimedes method.

(F3‘)
本発明における複合材料の製造工程における成形体の固形分の充填率から揮散分を除いたものであり、揮散分は調合比から計算する。
(F3 ')
Volatile components are removed from the solid content filling rate in the composite material manufacturing process of the present invention, and the volatilized components are calculated from the blending ratio.

本発明の一実施形態における複合材料は炭化硼素・炭化珪素を主成分とする粉体の隙間にシリコンが充填された構造をとる。本複合材料を形成する炭化硼素は成形工程から炭化硼素粉体として原材料の主成分として加えられる。また炭化珪素は成形工程から炭化珪素粉体として原材料の主成分として加えられるもの(以後初期投入炭化珪素と呼ぶ)と、成形体中の炭素源とシリコンが反応して生成した炭化珪素(以後、反応生成炭化珪素と呼ぶ)の両方からなる。   The composite material according to one embodiment of the present invention has a structure in which silicon is filled in a gap between powders mainly composed of boron carbide and silicon carbide. Boron carbide forming the composite material is added as a main component of the raw material as a boron carbide powder from the molding process. Silicon carbide is added as a main component of the raw material as a silicon carbide powder from the molding process (hereinafter referred to as initial charged silicon carbide), and silicon carbide produced by the reaction of silicon in the molded body with silicon (hereinafter referred to as silicon carbide) Reaction product silicon carbide).

本発明の一実施形態における複合材料の製造方法は、炭化硼素、初期投入炭化珪素、及び炭素源を主成分とする成形体に熔融シリコンを含浸させ、炭素源とシリコンを反応させて反応生成炭化珪素を生成させ、また炭化硼素、初期投入炭化珪素、反応生成炭化珪素の隙間にシリコンを含浸させる反応焼結工程をとる。また本発明における複合材料は、炭化硼素と初期投入炭化珪素の10μm以上の粒子の体積分率が10〜50体積部であることを特徴としており、このような構造をとることにより、高比剛性率と優れた研削性を両立させることができる。   In one embodiment of the present invention, a composite material manufacturing method includes impregnating molten silicon into a molded body mainly composed of boron carbide, initially charged silicon carbide, and a carbon source, and reacting the carbon source with silicon to generate a reaction carbonized product. A reactive sintering step is performed in which silicon is produced and silicon is impregnated in the gaps between boron carbide, initially charged silicon carbide, and reaction produced silicon carbide. The composite material according to the present invention is characterized in that the volume fraction of particles of 10 μm or more of boron carbide and initially charged silicon carbide is 10 to 50 parts by volume. By taking such a structure, high specific rigidity is obtained. Rate and excellent grindability can be achieved.

したがって本発明の一実施形態における複合材料は、高比剛性率が必要で、また精密な研削が必要とされる製品に好適に応用される。   Therefore, the composite material in one embodiment of the present invention is suitably applied to a product that requires a high specific rigidity and requires precise grinding.

以下に本発明の一実施形態における、材料及び工程の詳細について説明する。   Details of materials and processes in one embodiment of the present invention will be described below.

本発明の一実施形態における複合材料は、複合材料全体を100体積部として、炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30である。炭化硼素の量が10体積部以下になると複合材料は充分な比剛性率を得られなくなり、60体積部以上になると複合材料の研削性が低下する。また研削性を重視すれば10<X<50である方がさらに好ましい。また炭化珪素の量が20体積部以下になると、複合材料は充分な比剛性率を得られなくなり、また70体積部以上になると複合材料の研削性が低下する。また比剛性率を重視すれば30<Y<70である方がさらに好ましく、研削性を重視すれば20<Y<65である方がさらに好ましい。またシリコンの量が5体積部以下の複合材料は反応焼結工程においてクラックが発生したりシリコンが未含浸のポアが発生する欠点が生じやすくなり、また30体積部以上になると複合材料の比剛性率が低下する。また厚肉大型製品などクラック発生に特に注意しなければならない製品では10<Z<30である方がさらに好ましい。   The composite material according to one embodiment of the present invention is composed of 100 parts by volume of the entire composite material, X volume part of boron carbide, Y volume part of silicon carbide, and Z volume part of silicon Z as main components, and 10 <X <60, 20 <Y. <70, 5 <Z <30. When the amount of boron carbide is 10 parts by volume or less, the composite material cannot obtain a sufficient specific rigidity, and when it is 60 parts by volume or more, the grindability of the composite material is deteriorated. Further, if importance is attached to grindability, it is more preferable that 10 <X <50. When the amount of silicon carbide is 20 parts by volume or less, the composite material cannot obtain a sufficient specific rigidity, and when it is 70 parts by volume or more, the grindability of the composite material is deteriorated. Further, if importance is attached to the specific rigidity, 30 <Y <70 is more preferable, and if importance is given to grindability, 20 <Y <65 is more preferable. In addition, composite materials with an amount of silicon of 5 parts by volume or less are prone to defects such as cracks or non-impregnated pores in the reaction sintering process. The rate drops. In addition, it is more preferable that 10 <Z <30 for products that require particular attention to the occurrence of cracks, such as thick-walled large products.

本発明の一実施形態における複合材料の、炭化硼素と炭化珪素の10μm以上の粒子の体積分率は10〜50体積部であり、10体積部より小さくなると複合材料は充分な比剛性率を得られなくなり、50体積部を超えると複合材料の研削性が低下する。なおここでいう10μm以上の粒子とは、好ましくは原料として加えられる炭化硼素粉末の全部、または原料として加えられる炭化硼素粉体の全部と原料として加えられる初期投入炭化珪素粉体の一部である。   The volume fraction of particles of 10 μm or more of boron carbide and silicon carbide in the composite material according to one embodiment of the present invention is 10 to 50 parts by volume. When the volume fraction is smaller than 10 parts by volume, the composite material has a sufficient specific rigidity. When it exceeds 50 volume parts, the grindability of a composite material will fall. Here, the particles of 10 μm or more are preferably all of the boron carbide powder added as a raw material, or all of the boron carbide powder added as a raw material and a part of the initially charged silicon carbide powder added as a raw material. .

本発明の一実施形態における複合材料を製造するための原料である炭化硼素粉体の平均粒径は10μmから200μmが好ましく、さらに好ましくは20μmから100μmである。炭化硼素粉体の平均粒径が10μm以下になると反応焼結時の焼結体にクラックが入りやすくなり、このクラック防止の意味では平均粒径が20μm以上であることが好ましい。また炭化硼素の平均粒径が200μm以上になると複合材料の研削性が悪くなり、この研削性悪化防止の意味では平均粒径100μm以下であることが望ましい。   The average particle size of the boron carbide powder, which is a raw material for producing the composite material in one embodiment of the present invention, is preferably 10 μm to 200 μm, more preferably 20 μm to 100 μm. If the average particle size of the boron carbide powder is 10 μm or less, cracks are likely to occur in the sintered body during reaction sintering, and the average particle size is preferably 20 μm or more for the purpose of preventing cracks. Further, when the average particle diameter of boron carbide is 200 μm or more, the grindability of the composite material is deteriorated, and in order to prevent the deterioration of the grindability, the average particle diameter is desirably 100 μm or less.

なお原料として用いられる炭化硼素粉体の粒径と、複合材料中の炭化硼素粉体の粒径については、ほぼ一致している。ただし炭化硼素は含浸されたシリコンと表面が反応して表面にはその反応生成物で覆われていると思われ、SEMで観察した炭化硼素粉体の表面はややコントラストが異なる層で覆われている。本発明の一実施形態における複合材料の炭化硼素粒子やその粒径に関してはこの反応性生物からなる表面層も含めて定義するものとする。なお、前述の微粒の炭化硼素粉体を用いると反応焼結時にクラックが発生するという理由はこの表面の反応生成物からなる層の割合が炭化硼素粉体全体に対して無視できないほど大きくなったためであろうと推定される。   Note that the particle size of the boron carbide powder used as a raw material is almost the same as the particle size of the boron carbide powder in the composite material. However, it seems that boron carbide reacts with the impregnated silicon and the surface is covered with the reaction product, and the surface of boron carbide powder observed by SEM is covered with a layer with slightly different contrast. Yes. The boron carbide particles of the composite material according to an embodiment of the present invention and the particle size thereof are defined including the surface layer made of this reactive organism. The reason why cracks occur during reaction sintering when the fine boron carbide powder is used is that the ratio of the reaction product layer on the surface is so large that it cannot be ignored relative to the entire boron carbide powder. It is estimated that it will be.

本発明の一実施形態における複合材料を製造するための原料である初期投入炭化珪素の好ましい粒径は、炭化硼素の量によって異なる。即ち複合材料中の初期投入炭化珪素の粒径は原料として用いられる炭化珪素粉体の粒径と変わらず、これは初期投入炭化珪素粉体はシリコンと反応しないためであると思われる。   The preferable particle diameter of the initially charged silicon carbide that is a raw material for producing the composite material in one embodiment of the present invention varies depending on the amount of boron carbide. That is, the particle diameter of the initially charged silicon carbide in the composite material is not different from the particle diameter of the silicon carbide powder used as a raw material, which is considered to be because the initially charged silicon carbide powder does not react with silicon.

したがって好ましい10μm以上の粒子の体積分率である10〜50体積部をすべて炭化硼素からとるならば初期投入炭化珪素は10μm未満の微粒分だけでよく、またその一部を炭化珪素からとるならば、初期投入炭化珪素は10μm以上の粗粒分と10μm未満の微粒分が必要となる。   Therefore, if 10 to 50 parts by volume, which is a preferable volume fraction of particles of 10 μm or more, are all taken from boron carbide, the initial charge silicon carbide may be fine particles less than 10 μm, and if a part thereof is taken from silicon carbide. Initially charged silicon carbide requires a coarse particle part of 10 μm or more and a fine particle part of less than 10 μm.

粗粒分として好ましい炭化珪素の平均粒径は20μmから100μmであり、100μmを超えると複合材料の研削性が悪化する。また微粒分として好ましい初期投入炭化珪素の平均粒径は0.1μmから5μmであり、0.1μmより小さくなると成形時に高充填の成形体を作ることが困難になり、5μmを超えると複合材料の研削性が低下する。   The average particle diameter of silicon carbide preferable as a coarse particle is 20 μm to 100 μm, and if it exceeds 100 μm, the grindability of the composite material deteriorates. The average particle size of the initially charged silicon carbide, which is preferable as a fine particle, is 0.1 μm to 5 μm. When the average particle size is smaller than 0.1 μm, it becomes difficult to form a highly filled molded body at the time of molding. Grindability decreases.

本発明の一実施形態における複合材料を製造するための原料である炭素源として好ましいのはカーボン粉末であり、そのカーボンとシリコンが反応してできた反応成形炭化珪素の粒径は実質的に全部が10μm未満であることが好ましい。   Preferred as a carbon source as a raw material for producing a composite material in one embodiment of the present invention is carbon powder, and the particle size of the reaction-molded silicon carbide formed by the reaction of the carbon and silicon is substantially all. Is preferably less than 10 μm.

カーボン粉末としては結晶度が非常に低いものから結晶度が非常に高い黒鉛まで何でも用いることができるが、一般にカーボンブラックと呼ばれる結晶度がそれほど高くないものが入手しやすい。カーボン粉末の好ましい平均粒径は10nmから1μmである。   As the carbon powder, anything from a very low crystallinity to a graphite having a very high crystallinity can be used, but generally a carbon black having a low crystallinity is easily available. The preferred average particle size of the carbon powder is 10 nm to 1 μm.

なおこのようなカーボン粉末は反応焼結工程において実質的にその全量がシリコンとの反応により反応生成SiCに転換したものと推定され、複合材料の観察の結果では未反応と思われるカーボン粉末は観察されなかった。   In addition, it is estimated that such carbon powder is substantially converted into reaction-produced SiC by reaction with silicon in the reaction sintering process, and carbon powder that is considered to be unreacted is observed in the result of observation of the composite material. Was not.

また炭素源としてカーボン粉末に加えて有機物を用いることも可能である。カーボン源として有機物を用いる場合には非酸化性雰囲気における焼結工程において残炭率が高い有機物を選定する必要があり、特に好適な有機物としてはフェノール樹脂やフラン樹脂をあげることができる。なおこのような有機物を炭素源として用いる場合においては成形工程におけるバインダーとしての役割や可塑性付与剤としての役割や粉体を分散させるための溶媒としての役割を期待することもできる。   In addition to carbon powder, an organic substance can be used as a carbon source. When an organic substance is used as the carbon source, it is necessary to select an organic substance having a high residual carbon ratio in the sintering step in a non-oxidizing atmosphere, and particularly suitable organic substances include phenol resins and furan resins. When such an organic substance is used as a carbon source, it can be expected to serve as a binder, a plasticizer, or a solvent for dispersing powder in the molding process.

本発明の一実施形態における複合材料を製造するための原料であるシリコンは、熔融含浸されるものであるため、粉体状、顆粒状、板状など特に形状は問わず、成形体に含浸しやすいように配置できるような形状のものを使用すればよい。   Since silicon, which is a raw material for producing a composite material in one embodiment of the present invention, is melt impregnated, it is impregnated into a molded body regardless of the shape such as powder, granule, or plate. A shape that can be easily arranged may be used.

またシリコンは不純物としてシリコン以外の物質を含む場合もあるが、その不純物も含んだシリコンマトリックス層として本発明における複合材料中のシリコンの量は定義される。   Silicon may contain a substance other than silicon as an impurity, but the amount of silicon in the composite material in the present invention is defined as a silicon matrix layer containing the impurity.

なおシリコン中の不純物としてはシリコンの製造工程上不可避的に含まれるもの以外にも、シリコンの融点を下げて反応焼結工程の温度を下げるため、炭化硼素表面における炭化硼素との反応を防止するため、反応焼結後の温度下げ時にシリコンの反応焼結体からの吹き出しを防止するため、またシリコンの熱膨張係数をコントロールするため、複合材料に導電性を付与するためなどに意図的にB、C、Al、Ca、Mg、Cu、Ba、Sr、Sn、Ge、Pb、Ni、Co、Zn、Ag、Au、Ti、Y、Zr、V、Cr、Mn、Moなどの不純物を加えることもできる。   In addition to impurities inevitably included in the silicon production process, impurities in silicon are prevented from reacting with boron carbide on the surface of boron carbide because the melting point of silicon is lowered to lower the temperature of the reaction sintering process. Therefore, in order to prevent the silicon from blowing out from the reaction sintered body when the temperature is lowered after the reaction sintering, to control the thermal expansion coefficient of silicon, to intentionally impart conductivity to the composite material, etc. Impurities such as C, Al, Ca, Mg, Cu, Ba, Sr, Sn, Ge, Pb, Ni, Co, Zn, Ag, Au, Ti, Y, Zr, V, Cr, Mn, and Mo are added. You can also.

本発明の一実施形態における複合材料の製造方法は、炭化硼素、初期投入炭化珪素、炭素源を主成分とする原料を成形して成形体を製造する成形工程と、その成形体にシリコンを含浸させることにより炭素を炭化珪素に転換させて空隙にシリコンを埋めていく反応焼結工程を備えている。   A method for producing a composite material according to an embodiment of the present invention includes: a molding step of molding a raw material mainly composed of boron carbide, initially charged silicon carbide, and a carbon source; and a molded body impregnated with silicon. The reaction sintering step of converting carbon into silicon carbide and filling the voids with silicon is thus provided.

本発明の一実施形態における成形方法としては特に制限はなく、乾式プレス成形、湿式プレス成形、CIP成形、鋳込成形、射出成形、押し出し成形、可塑性成形、振動成形などを目標とするワークの形状や生産量により選定することができる。   There is no restriction | limiting in particular as the shaping | molding method in one Embodiment of this invention, The shape of the workpiece | work aiming at dry press molding, wet press molding, CIP molding, cast molding, injection molding, extrusion molding, plastic molding, vibration molding, etc. And can be selected according to production volume.

その中でも特に大型複雑形状品の製造に適しているのは鋳込成形である。   Among them, cast molding is particularly suitable for the production of large complex shaped products.

本発明の一実施形態における成形方法として鋳込成形を採用する場合、溶媒としては有機溶媒を用いても水を用いてもよいが、工程の簡略化や地球環境への影響を考えると水を溶媒とするのが好ましい。   When adopting cast molding as a molding method according to an embodiment of the present invention, an organic solvent or water may be used as a solvent, but water is used in consideration of simplification of the process and influence on the global environment. A solvent is preferred.

水を溶媒とした鋳込成形の場合には、原料である炭化硼素粉体、初期投入炭化珪素粉体、炭素源と水を混合したスラリーをまず製造するが、その際に高濃度のスラリーを製造するための分散剤・解膠剤、バインダー、可塑性付与剤などの添加剤を加えることもできる。   In the case of casting using water as a solvent, a raw material boron carbide powder, initially charged silicon carbide powder, and a slurry in which a carbon source and water are mixed are first manufactured. Additives such as dispersants / peptizers, binders, and plasticizers for production can also be added.

好適な添加剤としてはポリカルボン酸アンモニウム、ポリカルボン酸ナトリウム、アルギン酸ナトリウム、アルギン酸アンモニウム、アルギン酸トリエタノールアミン、スチレン・マレイン酸共重合体、ジブタルフタール、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、カルボキシルメチルセルロースアンモニウム、メチルセルロース、メチルセルロースナトリウム、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸ナトリウム塩、アクリル酸またはそのアンモニウム塩のオリゴマー、モノエチルアミンなどの各種アミン、ピリジン、ピペリジン、水酸化テトラメチルアンモニウム、デキストリン、ペプトン、水溶性デンプン、アクリルエマルジョンなどの各種樹脂エマルジョン、レゾルシン型フェノール樹脂などの各種水溶性樹脂、ノボラック型フェノール樹脂などの各種非水溶性樹脂、水ガラスなどをあげることができる。   Suitable additives include ammonium polycarboxylate, sodium polycarboxylate, sodium alginate, ammonium alginate, triethanolamine alginate, styrene / maleic acid copolymer, dibutalftal, carboxymethylcellulose, sodium carboxymethylcellulose, carboxymethylcellulose ammonium, methylcellulose, Sodium methylcellulose, polyvinyl alcohol, polyethylene oxide, sodium polyacrylate, oligomers of acrylic acid or its ammonium salt, various amines such as monoethylamine, pyridine, piperidine, tetramethylammonium hydroxide, dextrin, peptone, water-soluble starch, acrylic Various resin emulsions such as emulsion, resorcin Various water-soluble resins such as phenol resins, novolak type various water-insoluble resins such as phenol resins, water glass and the like.

なお非水溶性の添加物を加える場合にはエマルジョンにしたり、また粉体表面にコーティングしたりするのが好適であり、またスラリー製造工程として粉砕工程を含む場合には粉砕により分解する添加剤は粉砕工程後に加えるのが好適である。   In addition, when adding a water-insoluble additive, it is preferable to form an emulsion or coat the powder surface. When a slurry production process includes a grinding process, It is preferred to add it after the grinding step.

また鋳込成形は石膏型の毛管吸引力を利用した石膏鋳込成形と、スラリーに直接圧力をかける加圧鋳込成形のどちらも利用可能である。加圧鋳込成形の場合は適切な加圧力は0.1MPaから5MPaである。   For casting, both gypsum casting using a gypsum-type capillary suction force and pressure casting that directly applies pressure to the slurry can be used. In the case of pressure casting, an appropriate pressure is 0.1 MPa to 5 MPa.

成形工程においては高い充填率の成形体を製造することが重要である。これは成形体の空隙から炭素がシリコンと化合して炭化珪素に転換することによる体積膨張分を除いた部分にシリコンが埋められていくためである。即ち高充填の成形体から製造される反応焼結体はシリコンの含有量が小さいことになり、シリコンの含有量が小さい反応焼結体は高い比剛性率を期待することができる。   In the molding process, it is important to produce a compact with a high filling rate. This is because silicon is buried in the portion excluding the volume expansion due to the combination of carbon with silicon and conversion into silicon carbide from the voids of the molded body. That is, a reaction sintered body produced from a highly filled molded body has a small silicon content, and a reaction sintered body having a small silicon content can be expected to have a high specific rigidity.

好ましい成形体の充填率は60〜80%であり、さらに好ましくは65〜75%である。   The filling rate of a preferable molded body is 60 to 80%, more preferably 65 to 75%.

なお好ましい充填率に下限があるのは前述のように反応焼結体のシリコン含有量を小さくするためであるが、好ましい充填率に上限があるのはあまりにも高充填率の成形体はシリコンの含浸が難しいためである。ただし実際的にはそのような高充填率の成形体を工業的に製造することは難しいので下限のみを考慮すればよい。   The lower limit of the preferable filling rate is to reduce the silicon content of the reaction sintered body as described above. However, the upper limit of the preferable filling rate is that the molded body having an excessively high filling rate is not made of silicon. This is because impregnation is difficult. However, in practice, it is difficult to industrially produce a molded body having such a high filling rate, so only the lower limit needs to be considered.

なお上記の成形体の充填率とは、炭化硼素・炭化珪素・カーボンの各粉体の充填率であり、焼成工程により揮散する添加剤などの成分は除くものとする。したがってフェノール樹脂などの残炭分がある添加剤を用いる場合においてはその残炭分を充填率として加えることになる。具体的な測定・表示方法については、アルキメデス法により測定した成形体の充填率をF3とし、これから揮散分を除いた充填率をF3’として表示するものとし、好ましい成形体の充填率とはこのF3’の値を指すものとする。   Note that the filling rate of the above-mentioned compact is the filling rate of each powder of boron carbide, silicon carbide, and carbon, and excludes components such as additives that volatilize in the firing process. Therefore, in the case of using an additive having a residual carbon content such as a phenol resin, the residual carbon content is added as a filling rate. As for the specific measurement / display method, the filling rate of the molded body measured by the Archimedes method is indicated as F3, and the filling rate excluding the volatilized content is indicated as F3 ′. It shall refer to the value of F3 ′.

なお鋳込成形においてはスラリー中の粉体の体積充填率であるF1が小さいスラリーは型に吸い込まれる溶媒分が大きくなって工業的な生産が難しいため、F1は40%以上であることが好ましい。また通常の鋳込成形においては石膏鋳込成形よりも加圧鋳込成形の方がF3やF3‘は大きいが、本発明においては加圧鋳込成形と石膏鋳込成形でF3,F3’に大きな差はなく、多品種少量生産に適した石膏成形を好適に採用することができる。   In casting molding, a slurry having a small F1 which is the volume filling rate of powder in the slurry has a large solvent content sucked into the mold and is difficult to industrially produce. Therefore, F1 is preferably 40% or more. . In normal casting, F3 and F3 ′ are larger in pressure casting than in gypsum casting, but in the present invention, F3 and F3 ′ are obtained in pressure casting and gypsum casting. There is no big difference, and plaster molding suitable for high-mix low-volume production can be suitably employed.

なお本発明の一実施形態における複合材料の成形工程と反応焼結工程の間に、仮焼工程を設けることも可能である。   In addition, it is also possible to provide a calcination process between the formation process of the composite material and the reaction sintering process in one embodiment of the present invention.

成形体が小型・単純形状である場合にはこの仮焼工程は必要ではない場合もあるが、成形体が大型複雑形状になると成形体のハンドリング時の破損や反応焼結時のクラックの発生を防止するため、仮焼工程を設けることが好ましい。   This calcining process may not be necessary if the compact has a small and simple shape. However, if the compact has a large and complex shape, it may cause damage during handling or cracking during reaction sintering. In order to prevent this, it is preferable to provide a calcination step.

仮焼温度として好ましい温度は1000〜2000℃であり、1000℃より低温だと仮焼の効果が期待できず、2000℃より高温にすると焼結がはじまることによりワークが収縮し、本複合材料の製造工程の特徴である焼成収縮がほぼ0であるニアネットシェイプ製造プロセスとしての利点が損なわれる恐れがある。また仮焼工程における好ましい焼成雰囲気は非酸化性雰囲気である。   A preferable temperature as the calcining temperature is 1000 to 2000 ° C., and if the temperature is lower than 1000 ° C., the effect of the calcining cannot be expected. There is a possibility that the advantage as a near net shape manufacturing process in which the firing shrinkage, which is a characteristic of the manufacturing process, is almost zero may be impaired. A preferable firing atmosphere in the calcination step is a non-oxidizing atmosphere.

なおこの仮焼工程は通常は成形体の脱脂工程を兼ねて行われるが、炉の汚染が懸念される場合においては仮焼工程の前に脱脂工程を別に設けてもよい。   In addition, although this calcining process is normally performed also as the degreasing | defatting process of a molded object, when contamination of a furnace is concerned, you may provide a degreasing process separately before a calcining process.

また仮焼工程なしで脱脂工程のみを設けてもよい。その場合にはバインダー分が分解・除去されるのに必要な脱脂温度を採用すればよい。   Moreover, you may provide only a degreasing process without a calcination process. In that case, a degreasing temperature necessary for decomposing and removing the binder may be adopted.

続いてのシリコン含浸反応焼結工程での好ましい反応焼結温度はシリコンの融点から1800℃である。ワークが大きく複雑形状になるほどシリコンの含浸が難しくなるため反応焼結温度は高く、また最高温度にキープする時間は長くする必要があるが、炭素が炭化珪素に転換する反応焼結が完全に進行しシリコンが完全に含浸してポアがなくなる範囲内で、なるべく反応焼結温度は低く、最高温度キープ時間も短いことが好ましい。   The preferred reaction sintering temperature in the subsequent silicon impregnation reaction sintering step is 1800 ° C. from the melting point of silicon. The larger the workpiece, the more complex the shape, the more difficult it is to impregnate silicon, so the reaction sintering temperature is high, and it is necessary to increase the time for keeping the maximum temperature, but the reaction sintering where carbon is converted to silicon carbide is completely advanced. However, it is preferable that the reaction sintering temperature is as low as possible and the maximum temperature keeping time is short as long as silicon is completely impregnated and pores are eliminated.

なお、シリコンの融点は1414℃であるので1430℃以上の反応焼結温度が通常は必要であるが、シリコンに不純物を加えて融点を下げれば、1350℃程度までは反応焼結温度を低下させることも可能である。   Since the melting point of silicon is 1414 ° C., a reaction sintering temperature of 1430 ° C. or higher is usually necessary. However, if impurities are added to silicon to lower the melting point, the reaction sintering temperature is lowered to about 1350 ° C. It is also possible.

以上述べたように、本発明の一実施形態における複合材料は、成形体中の炭素分がシリコンと反応して炭化珪素となって膨張し、またその空隙をシリコンが埋めていくため、成形体の原料の調合比と成形体の充填率F3’の測定により、反応焼結体の組成比は明らかになる。   As described above, the composite material according to one embodiment of the present invention has a molded body in which the carbon content in the molded body reacts with silicon to expand into silicon carbide, and silicon fills the voids. The composition ratio of the reaction sintered body is clarified by measuring the blending ratio of the raw materials and the filling factor F3 ′ of the compact.

また後述する実施例で示す反応焼結体の微構造観察において、反応焼結体を構成する要素である粗粒炭化硼素と粗粒炭化珪素と微粒炭化珪素とそれら粒子の隙間を埋めていくシリコンを識別し、その面積比を10画面以上で平均して体積比を求めたところ、それぞれの成分の体積比は調合比から計算される値と一致していた。   In addition, in the microstructure observation of the reaction sintered body shown in the examples described later, coarse boron carbide, coarse silicon carbide, fine silicon carbide, and silicon that fills the gaps between the particles, which are the elements constituting the reaction sintered body The area ratio was averaged over 10 screens to determine the volume ratio, and the volume ratio of each component was consistent with the value calculated from the blending ratio.

なお、後述する微構造の写真である図3の黒い部分が炭化硼素または炭化珪素の粒子、白い部分がシリコンであるため、粒子とシリコンの識別、粗粒と微粒の識別は容易である。また粗粒炭化珪素と粗粒炭化硼素の識別においてはSEM・EPMA分析により容易に識別することが可能である。   In addition, since the black part of FIG. 3 which is a photograph of the microstructure to be described later is a boron carbide or silicon carbide particle and the white part is silicon, it is easy to identify the particle and silicon, and the coarse and fine particles. In addition, coarse silicon carbide and coarse boron carbide can be easily identified by SEM / EPMA analysis.

以上のように、本発明の一実施形態における複合材料の構成比を実現するための原料の構成比については目的とする複合材料の構成比と成形体の充填率から自明に計算可能であるが、好ましい各原料の調合比は炭化硼素10〜90重量部、初期投入炭化珪素90〜10重量部の計100重量部に対して炭素源を0〜45重量部である。   As described above, the composition ratio of the raw materials for realizing the composition ratio of the composite material in one embodiment of the present invention can be calculated from the composition ratio of the target composite material and the filling ratio of the molded body. The preferable mixing ratio of each raw material is 0 to 45 parts by weight of the carbon source with respect to 100 parts by weight in total of 10 to 90 parts by weight of boron carbide and 90 to 10 parts by weight of initially charged silicon carbide.

なお、ここでいう炭素源は炭素に換算しての重量部であり、カーボン粉末を用いる場合は調合重量そのものであり、残炭分がある添加剤を利用する場合には調合重量にその残炭率を乗じた値である。   The carbon source here means parts by weight in terms of carbon. When carbon powder is used, it is the blended weight itself, and when an additive with a residual carbon content is used, the residual carbon is added to the blended weight. It is the value multiplied by the rate.

炭化硼素・炭化珪素の各成分が、好ましい組成範囲から外れた場合に生じる不具合については、前述の複合材料の構成成分である炭化硼素・炭化珪素の各成分が好ましい範囲から外れた場合に生じる不具合と同様である。   About the trouble that occurs when each component of boron carbide and silicon carbide is out of the preferred composition range, the trouble that occurs when each component of boron carbide and silicon carbide that is a component of the composite material is out of the preferred range. It is the same.

炭素は0重量部でもかまわないが、その場合には炭素がシリコンと反応して膨張する反応を利用できなくなるため、成形体の空隙を完全にシリコンで埋めることが困難になり、ポアが残存する危険性がある。また炭素分があまりにも多すぎるとその膨張反応によって反応焼結体にクラックが発生する危険性がある。   Carbon may be 0 part by weight, but in this case, since the reaction of carbon reacting with silicon and expanding is not available, it becomes difficult to completely fill the voids of the molded body with silicon, and pores remain. There is a risk. Moreover, when there is too much carbon content, there exists a danger that a crack will generate | occur | produce in the reaction sintered compact by the expansion reaction.

そのため、さらに好ましい炭素源の調合割合は、炭化硼素と初期投入炭化珪素の合計100重量部に対して10〜40重量部である。また反応焼結に必要な好ましいシリコン量は炭素分を炭化珪素に転換させさらに空隙を埋め尽くすのに必要なシリコン量の105〜200%、さらに好ましくは110〜150%であり、成形体の大きさ形状により適宜調整する。   Therefore, a more preferable blending ratio of the carbon source is 10 to 40 parts by weight with respect to 100 parts by weight of the total of boron carbide and initially charged silicon carbide. Further, the preferable silicon amount necessary for the reactive sintering is 105 to 200%, more preferably 110 to 150% of the silicon amount necessary for converting the carbon content into silicon carbide and filling the voids. Adjust according to the shape.

本発明の一実施形態における複合材料の好ましい比剛性率は130GPa以上であり、さらに好ましくは140GPa以上である。   The preferable specific rigidity of the composite material in one embodiment of the present invention is 130 GPa or more, and more preferably 140 GPa or more.

本発明の目的のひとつは高比剛性の複合材料を提供することであるから、比剛性率の好ましい上限はないが、現実的には200GPa以上の比剛性率を持つ複合材料を作ることは困難であり、また優れた研削性を維持しながら高比剛性を達成するためには170GPa程度がその上限となる。   One of the objects of the present invention is to provide a composite material having a high specific rigidity, so that there is no preferable upper limit of the specific rigidity, but in reality, it is difficult to make a composite material having a specific rigidity of 200 GPa or more. In order to achieve high specific rigidity while maintaining excellent grindability, the upper limit is about 170 GPa.

本発明の一実施形態における複合材料は高比剛性が要求され、また精密な研削が必要とされる製品や大型複雑形状のため研削コストが大きい製品に好適に応用される。特に好適な製品への応用例は半導体・液晶製造装置部材である。その中でも特に好適な製品への応用例は露光装置用部材であり、サセプタ・ステージなどのウェハー支持部材、レチクルステージなどの光学系支持部材として用いることにより、露光装置の位置決め精度を向上させまた、位置決め時間を短縮することにより装置のスループットを向上させることができる。
(実施例)
The composite material according to one embodiment of the present invention is preferably applied to a product that requires high specific rigidity and requires precise grinding, and a product having a large grinding cost due to a large complex shape. A particularly suitable product application is a semiconductor / liquid crystal manufacturing apparatus member. Among them, an application example to a particularly suitable product is a member for an exposure apparatus. By using it as a wafer support member such as a susceptor stage and an optical system support member such as a reticle stage, the positioning accuracy of the exposure apparatus is improved. The throughput of the apparatus can be improved by shortening the positioning time.
(Example)

以下、本発明の一実施の形態について表、図を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to tables and drawings.

表1に、以下に示す実施例及び比較例の一覧を示す。   Table 1 shows a list of examples and comparative examples shown below.

なお、それぞれの調合例におけるスラリー濃度は表1のF1により表示されている。またそれぞれの調合例におけるバインダーの添加量は表1のF3’とF3の差により表示されている。またそれぞれの反応焼結体は、表面の余剰シリコンを除去した後にテストピースを切り出し、表面を研磨した後に、アルキメデス法により比重、共振法によりヤング率を測定し比剛性を算出した。   The slurry concentration in each preparation example is indicated by F1 in Table 1. Further, the amount of binder added in each formulation example is indicated by the difference between F3 'and F3 in Table 1. In addition, after removing excess silicon on the surface of each reaction sintered body, a test piece was cut out, and after polishing the surface, specific gravity was measured by Archimedes method and Young's modulus was measured by resonance method to calculate specific stiffness.

また、表面加工を施したものを動力計(キスラー社製 型番9256C2)の上に設置しφ10mmのコアドリル(♯60、旭ダイヤモンド工業製)にて回転数100m/min(3200rpm)、送り速度2mm/min、ステップ量0.2mmにて深さ4mmの孔加工を行い、加工抵抗力の測定、孔周りのチッピングの状態を確認した。被削性の評価は、加工抵抗の最大値が2000N以上の場合を×、1500−2000Nの場合を△、1500N未満のものを○として評価した。   In addition, the surface-finished product is placed on a dynamometer (model number 9256C2 manufactured by Kistler), and rotated at a rotational speed of 100 m / min (3200 rpm) with a φ10 mm core drill (# 60, manufactured by Asahi Diamond Industrial Co., Ltd.). A hole with a depth of 4 mm was drilled at a step amount of 0.2 mm, and the resistance of the machining was measured and the state of chipping around the hole was confirmed. For the evaluation of machinability, the case where the maximum value of the machining resistance was 2000N or more was evaluated as x, the case of 1500-2000N as Δ, and the case of less than 1500N as ◯.

ただし最大抵抗値が△または×であっても、加工抵抗が短時間で低下し、その低い値で安定したものはその低い値で評価した。また、加工抵抗が○または△であっても、加工時に加工が原因であると推測されるクラックが発生するものと、工具破損が発生するものは×とした。   However, even when the maximum resistance value was Δ or ×, the machining resistance decreased in a short time, and those that were stable at the low value were evaluated at the low value. Moreover, even if the machining resistance was ◯ or Δ, the case where cracks presumed to be caused by machining during machining and the case where tool breakage occurred were rated as x.

またチッピングの状態の評価は孔の外周の欠けが0.3mm未満で○、0.3mm以上〜0.5mm未満で△、0.5mm以上で×とした。また微構造の観察は、焼成体を適当な大きさに切り出し表面を1μmの砥粒にてラップ加工を行い、光学顕微鏡にて2800倍に設定し観察した。   The evaluation of the chipping state was ○ when the outer peripheral chip of the hole was less than 0.3 mm, Δ when 0.3 mm or more and less than 0.5 mm, and x when 0.5 mm or more. In addition, the microstructure was observed by cutting the fired body into an appropriate size, lapping the surface with 1 μm abrasive grains, and setting it to 2800 times with an optical microscope.

図1に本発明実施にあたり使用した平均粒径50μmの粗粒炭化硼素、平均粒径65μmの粗粒炭化珪素、平均粒径0.6μm微粒炭化珪素の粒度分布測定結果を示す。粒度分布測定は、レーザー粒度分析器(日機装製MT3000)にて行い、上記の平均粒径は体積平均径を指している。   FIG. 1 shows the particle size distribution measurement results of coarse boron carbide having an average particle diameter of 50 μm, coarse silicon carbide having an average particle diameter of 65 μm, and fine silicon carbide having an average particle diameter of 0.6 μm used in the practice of the present invention. The particle size distribution is measured by a laser particle size analyzer (MT3000 manufactured by Nikkiso), and the above average particle size indicates the volume average particle size.

図1に見られるように粗粒分は実質的にほとんど10μm以下の粒子を含んでおらず、微粒分は実質的にほとんど10μm以上の粗粒分を含んでいない。   As can be seen in FIG. 1, the coarse fraction is substantially free of particles of 10 μm or less, and the fine fraction is substantially free of coarse particles of 10 μm or more.

図2に仮焼、反応焼結のヒートカーブを示したグラフを示す。   FIG. 2 shows a graph showing the heat curves of calcination and reaction sintering.

図3に実施例2の反応焼結体の微構造の光学顕微鏡像を示す。前述のように10μm以上の粗粒と10μm以下の微粒の識別は容易であった。   FIG. 3 shows an optical microscope image of the microstructure of the reaction sintered body of Example 2. As described above, it was easy to distinguish between coarse particles of 10 μm or more and fine particles of 10 μm or less.

(実施例1〜3)
平均粒径が0.6μmの炭化珪素粉末30重量部と平均粒径が50μmの炭化硼素粉末70重量部、平均粒径が55nmのカーボンブラック粉末10〜30重量部を炭化珪素粉末、炭化硼素粉末、カーボンブラック粉末に対して0.1〜1重量部の分散剤を添加した純水中に入れ分散させ、アンモニア水等でpHを8〜9.5に調整して500CP未満の低粘度のスラリーを作製した。このスラリーをポットミル等で数時間混合した後バインダーを炭化珪素粉末、炭化硼素粉末、カーボン粉末に対して1〜2重量部添加し混合、その後脱泡し石膏板の上に内径80mmのアクリルパイプを置きスラリーを鋳込み、厚み10mm程度の成形体を作製した。成形体は自然乾燥、100〜150℃の乾燥の後、1×10−4〜1×10−3torrの減圧下において温度600℃で2h保持し脱脂を行い、温度1700℃で1h保持することで仮焼を行う。仮焼を行った後、温度1470℃に加熱し30min保持し、成形体中に溶融したシリコンを含浸させることにより反応焼結体を製造した。なお、実施例1〜3はカーボン粉末の添加量がそれぞれ10、20、30重量部である。
(Examples 1-3)
30 parts by weight of silicon carbide powder having an average particle diameter of 0.6 μm, 70 parts by weight of boron carbide powder having an average particle diameter of 50 μm, and 10 to 30 parts by weight of carbon black powder having an average particle diameter of 55 nm are obtained. A slurry having a low viscosity of less than 500 CP by adding and dispersing in pure water to which 0.1 to 1 part by weight of a dispersant is added to the carbon black powder and adjusting the pH to 8 to 9.5 with aqueous ammonia or the like. Was made. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried, dried at 100 to 150 ° C., degreased by holding at a temperature of 600 ° C. for 2 hours under a reduced pressure of 1 × 10 −4 to 1 × 10 −3 torr, and held at a temperature of 1700 ° C. for 1 hour. Perform calcination. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body. In Examples 1 to 3, the amount of carbon powder added is 10, 20, and 30 parts by weight, respectively.

(実施例4)
平均粒径が0.6μmの炭化珪素粉末20重量部、平均粒径が65μmの炭化珪素粉末
30重量部と平均粒径が50μmの炭化硼素粉末50重量部、平均粒径が55nmのカー
ボンブラック粉末30重量部を炭化珪素粉末、炭化硼素粉末、カーボンブラック粉末に対
して0.1〜1重量部の分散剤を添加した純水中に入れ分散させ、アンモニア水等でpH
を8〜9.5に調整して500CP未満の低粘度のスラリーを作製した。このスラリーを
ポットミル等で数時間混合した後バインダーを炭化珪素粉末、炭化硼素粉末、カーボン粉
末に対して1〜2重量部添加し混合、その後脱泡し石膏板の上に内径80mmのアクリル
パイプを置きスラリーを鋳込み、厚み10mm程度の成形体を作製した。成形体は自然乾
燥、100〜150℃の乾燥の後、1×10−4〜1×10−3torrの減圧下におい
て温度600℃で2h保持し脱脂を行い、温度1700℃で1h保持することで仮焼を行
う。仮焼を行った後、温度1470℃に加熱し30min保持し、成形体中に溶融したシ
リコンを含浸させることにより反応焼結体を製造した。
Example 4
20 parts by weight of silicon carbide powder having an average particle size of 0.6 μm, 30 parts by weight of silicon carbide powder having an average particle size of 65 μm, 50 parts by weight of boron carbide powder having an average particle size of 50 μm, and carbon black powder having an average particle size of 55 nm 30 parts by weight is dispersed in pure water to which 0.1 to 1 part by weight of a dispersant is added with respect to silicon carbide powder, boron carbide powder, and carbon black powder, and pH is adjusted with ammonia water or the like.
Was adjusted to 8 to 9.5 to prepare a low viscosity slurry of less than 500 CP. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried, dried at 100 to 150 ° C., degreased by holding at a temperature of 600 ° C. for 2 hours under a reduced pressure of 1 × 10 −4 to 1 × 10 −3 torr, and held at a temperature of 1700 ° C. for 1 hour. Perform calcination. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body.

(実施例5)
平均粒径が0.6μmの炭化珪素粉末25重量部、平均粒径が65μmの炭化珪素粉末
25重量部と平均粒径が50μmの炭化硼素粉末50重量部、平均粒径が55nmのカー
ボンブラック粉末10重量部を炭化珪素粉末、炭化硼素粉末、カーボンブラック粉末に対
して0.1〜1重量部の分散剤を添加した純水中に入れ分散させ、アンモニア水等でpH
を8〜9.5に調整して500cp未満の低粘度のスラリーを作製した。このスラリーを
ポットミル等で数時間混合した後バインダーを炭化珪素粉末、炭化硼素粉末、カーボン粉
末に対して1〜2重量部添加し混合、その後脱泡し石膏板の上に内径80mmのアクリル
パイプを置きスラリーを鋳込み、厚み10mm程度の成形体を作製した。成形体は自然乾
燥、100〜150℃の乾燥の後、1×10−4〜1×10−3torrの減圧下におい
て温度600℃で2h保持し脱脂を行い、温度1700℃で1h保持することで仮焼を行
う。仮焼を行った後、温度1470℃に加熱し30min保持し、成形体中に溶融したシ
リコンを含浸させることにより反応焼結体を製造した。
(Example 5)
25 parts by weight of silicon carbide powder having an average particle size of 0.6 μm, 25 parts by weight of silicon carbide powder having an average particle size of 65 μm, 50 parts by weight of boron carbide powder having an average particle size of 50 μm, and carbon black powder having an average particle size of 55 nm 10 parts by weight is dispersed in pure water to which 0.1 to 1 part by weight of a dispersant is added with respect to silicon carbide powder, boron carbide powder and carbon black powder, and pH is adjusted with ammonia water or the like.
Was adjusted to 8 to 9.5 to prepare a low-viscosity slurry of less than 500 cp. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried, dried at 100 to 150 ° C., degreased by holding at a temperature of 600 ° C. for 2 hours under a reduced pressure of 1 × 10 −4 to 1 × 10 −3 torr, and held at a temperature of 1700 ° C. for 1 hour. Perform calcination. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body.

(実施例6)
平均粒径が0.6μmの炭化珪素粉末25重量部、平均粒径が65μmの炭化珪素粉末2
5重量部と平均粒径が50μmの炭化硼素粉末50重量部、平均粒径が55nmのカーボ
ンブラック粉末20重量部を炭化珪素粉末、炭化硼素粉末、カーボンブラック粉末に対し
て0.1〜1重量部の分散剤を添加した純水中に入れ分散させ、アンモニア水等でpHを
8〜9.5に調整して500cp未満の低粘度のスラリーを作製した。このスラリーをポ
ットミル等で数時間混合した後バインダーを炭化珪素粉末、炭化硼素粉末、カーボン粉末
に対して1〜2重量部添加し混合、その後脱泡し石膏板の上に内径80mmのアクリルパ
イプを置きスラリーを鋳込み、厚み10mm程度の成形体を作製した。成形体は自然乾燥
、100〜150℃の乾燥の後、1×10−4〜1×10−3torrの減圧下において
温度600℃で2h保持し脱脂を行い、温度1700℃で1h保持することで仮焼を行う
。仮焼を行った後、温度1470℃に加熱し30min保持し、成形体中に溶融したシリ
コンを含浸させることにより反応焼結体を製造した。
(Example 6)
25 parts by weight of silicon carbide powder having an average particle size of 0.6 μm, silicon carbide powder 2 having an average particle size of 65 μm
5 parts by weight, 50 parts by weight of boron carbide powder having an average particle diameter of 50 μm, and 20 parts by weight of carbon black powder having an average particle diameter of 55 nm are 0.1 to 1 weight with respect to silicon carbide powder, boron carbide powder and carbon black powder. The mixture was dispersed in pure water to which part of the dispersant was added, and the pH was adjusted to 8 to 9.5 with aqueous ammonia or the like to prepare a low-viscosity slurry of less than 500 cp. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried, dried at 100 to 150 ° C., degreased by holding at a temperature of 600 ° C. for 2 hours under a reduced pressure of 1 × 10 −4 to 1 × 10 −3 torr, and held at a temperature of 1700 ° C. for 1 hour. Perform calcination. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body.

(実施例7)
平均粒径が0.6μmの炭化珪素粉末50重量部と平均粒径が50μmの炭化硼素粉末
50重量部を炭化珪素、炭化硼素粉末に対して0.1〜1重量部の分散剤を添加した純水
中に入れ分散させ、アンモニア水等でpHを8〜9.5に調整して500cp未満の低粘
度のスラリーを作製した。このスラリーをポットミル等で数時間混合した後バインダーを
炭化珪素粉末、炭化硼素粉末、カーボン粉末に対して1〜2重量部添加し混合、その後脱
泡し石膏板の上に内径80mmのアクリルパイプを置きスラリーを鋳込み、厚み10mm
程度の成形体を作製した。成形体は自然乾燥、100〜150℃の乾燥の後、1×10−
4〜1×10−3torrの減圧下において温度600℃で2h保持し脱脂を行い、温度
1700℃で1h保持することで仮焼を行う。仮焼を行った後、温度1470℃に加熱し
30min保持し、成形体中に溶融したシリコンを含浸させることにより反応焼結体を製
造した。
(Example 7)
50 parts by weight of silicon carbide powder having an average particle diameter of 0.6 μm and 50 parts by weight of boron carbide powder having an average particle diameter of 50 μm were added with 0.1 to 1 part by weight of a dispersant relative to silicon carbide and boron carbide powder. The slurry was placed in pure water and dispersed, and the pH was adjusted to 8 to 9.5 with ammonia water or the like to prepare a low viscosity slurry of less than 500 cp. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. Casting slurry, thickness 10mm
A molded body of a degree was produced. The molded body is naturally dried and dried at 100 to 150 ° C., then 1 × 10 −
Under reduced pressure of 4 to 1 × 10 −3 torr, degreasing is performed by holding at a temperature of 600 ° C. for 2 hours and holding at a temperature of 1700 ° C. for 1 hour to perform calcination. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body.

(実施例8)
平均粒径が0.6μmの炭化珪素粉末80重量部と平均粒径が50μmの炭化硼素粉末
20重量部と平均粒径が55nmのカーボンブラック粉末10重量部を炭化珪素粉末、炭
化硼素粉末、カーボンブラック粉末に対して0.1〜1重量部の分散剤を添加した純水中
に入れ分散させ、アンモニア水等でpHを8〜9.5に調整して500cp未満の低粘度
のスラリーを作製した。このスラリーをポットミル等で数時間混合した後バインダーを炭
化珪素粉末、炭化硼素粉末、カーボン粉末に対して1〜2重量部添加し混合、その後脱泡
し石膏板の上に内径80mmのアクリルパイプを置きスラリーを鋳込み、厚み10mm程
度の成形体を作製した。成形体は自然乾燥、100〜150℃の乾燥の後、1×10−4
〜1×10−3torrの減圧下において温度600℃で2h保持し脱脂を行い、温度1
700℃で1h保持することで仮焼を行う。仮焼を行った後、温度1470℃に加熱し3
0min保持し、成形体中に溶融したシリコンを含浸させることにより反応焼結体を製造
した。
(Example 8)
80 parts by weight of silicon carbide powder having an average particle diameter of 0.6 μm, 20 parts by weight of boron carbide powder having an average particle diameter of 50 μm, and 10 parts by weight of carbon black powder having an average particle diameter of 55 nm are obtained by silicon carbide powder, boron carbide powder, carbon Disperse in pure water with 0.1 to 1 part by weight of dispersant added to black powder, adjust pH to 8 to 9.5 with aqueous ammonia, etc. to produce low viscosity slurry of less than 500 cp. did. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried and dried at 100 to 150 ° C., then 1 × 10 −4
Degrease by holding at 600 ° C. for 2 hours under reduced pressure of ˜1 × 10 −3 torr, temperature 1
Calcination is performed by holding at 700 ° C. for 1 h. After calcination, heat to 1470 ° C and
A reaction sintered body was manufactured by impregnating molten silicon in the molded body for 0 min.

(比較例1)
平均粒径が0.6μmの炭化珪素粉末30重量部と平均粒径が50μmの炭化硼素粉末
70重量部を炭化珪素粉末、炭化硼素粉末に対して0.1〜1重量部の分散剤を添加した
純水中に入れ分散させ、アンモニア水等でpHを8〜9.5に調整して500cp未満の
低粘度のスラリーを作製した。このスラリーをポットミル等で数時間混合した後バインダ
ーを炭化珪素粉末、炭化硼素粉末に対して1〜2重量部添加し混合、その後脱泡し石膏板
の上に内径80mmのアクリルパイプを置きスラリーを鋳込み、厚み10mm程度の成形
体を作製した。成形体は自然乾燥、100〜150℃の乾燥の後、1×10−4〜1×1
0−3torrの減圧下において温度600℃で2h保持し脱脂を行い、温度1700℃
で1h保持することで仮焼を行う。仮焼を行った後、温度1470℃に加熱し30min
保持し、成形体中に溶融したシリコンを含浸させることにより反応焼結体を製造した。
(Comparative Example 1)
30 parts by weight of silicon carbide powder with an average particle size of 0.6 μm and 70 parts by weight of boron carbide powder with an average particle size of 50 μm are added to silicon carbide powder, and 0.1 to 1 part by weight of a dispersant is added to the boron carbide powder. The slurry was placed in pure water and dispersed, and the pH was adjusted to 8 to 9.5 with ammonia water or the like to prepare a low viscosity slurry of less than 500 cp. After mixing this slurry for several hours in a pot mill or the like, add 1-2 parts by weight of binder to silicon carbide powder and boron carbide powder, mix, and then defoam and place an acrylic pipe with an inner diameter of 80 mm on the gypsum plate to prepare the slurry. Casting and the molded object about 10 mm thick were produced. The molded body is naturally dried and dried at 100 to 150 ° C., then 1 × 10 −4 to 1 × 1
Degrease by holding at 600 ° C. for 2 hours under reduced pressure of 0-3 torr, temperature 1700 ° C.
Is calcined by holding for 1 h. After calcination, heat to 1470 ° C for 30 min
A reaction sintered body was produced by holding and impregnating molten silicon in the molded body.

(比較例2)
平均粒径が0.6μmの炭化珪素粉末50重量部と平均粒径が50μmの炭化硼素粉末
50重量部、平均粒径55nmのカーボン粉末50重量部を炭化珪素粉末、炭化硼素粉末
、カーボンブラック粉末に対して0.1〜1重量部の分散剤を添加した純水中に入れ分散
させ、アンモニア水等でpHを8〜9.5に調整して500cp未満の低粘度のスラリー
を作製した。このスラリーをポットミル等で数時間混合した後バインダーを炭化珪素粉末
、炭化硼素粉末、カーボン粉末に対して1〜2重量部添加し混合、その後脱泡し石膏板の
上に内径80nmのアクリルパイプを置きスラリーを鋳込み、厚み10mm程度の成形体
を作製した。成形体は自然乾燥、100〜150℃の乾燥の後、1×10−4〜1×10
−3torrの減圧下において温度600℃で2h保持し脱脂を行い、温度1700℃で
1h保持することで仮焼を行う。仮焼を行った後、温度1470℃に加熱し30min保
持し、成形体中に溶融したシリコンを含浸させることにより反応焼結体を製造した。
(Comparative Example 2)
50 parts by weight of silicon carbide powder with an average particle size of 0.6 μm, 50 parts by weight of boron carbide powder with an average particle size of 50 μm, and 50 parts by weight of carbon powder with an average particle size of 55 nm are silicon carbide powder, boron carbide powder, carbon black powder The mixture was dispersed in pure water to which 0.1 to 1 part by weight of a dispersant was added, and the pH was adjusted to 8 to 9.5 with aqueous ammonia or the like to prepare a low viscosity slurry of less than 500 cp. After mixing this slurry with a pot mill or the like for several hours, add 1 to 2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming to place an acrylic pipe with an inner diameter of 80 nm on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried and dried at 100 to 150 ° C., then 1 × 10 −4 to 1 × 10
Degreasing is performed by holding at 600 ° C. for 2 hours under a reduced pressure of −3 torr, and calcining is performed by holding at 1700 ° C. for 1 hour. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body.

(比較例3)
平均粒径が0.6μmの炭化珪素粉末80重量部と平均粒径が4μmの炭化硼素粉末2
0重量部、平均粒径が55nmのカーボン粉末50重量部を炭化珪素粉末、炭化硼素粉末
、カーボンブラック粉末に対して0.1〜1重量部の分散剤を添加した純水中に入れ分散
させ、アンモニア水等でpHを8〜9.5に調整して500cp未満の低粘度のスラリー
を作製した。このスラリーをポットミル等で数時間混合した後バインダーを炭化珪素粉末
、炭化硼素粉末、カーボン粉末に対して1〜2重量部添加し混合、その後脱泡し石膏板の
上に内径80mmのアクリルパイプを置きスラリーを鋳込み、厚み10mm程度の成形体
を作製した。成形体は自然乾燥、100〜150℃の乾燥の後、1×10−4〜1×10
−3torrの減圧下において温度600℃で2h保持し脱脂を行い、温度1700℃で
1h保持することで仮焼を行う。仮焼を行った後、温度1470℃に加熱し30min保
持し、成形体中に溶融したシリコンを含浸させることにより反応焼結体を製造した。
(Comparative Example 3)
80 parts by weight of silicon carbide powder having an average particle size of 0.6 μm and boron carbide powder 2 having an average particle size of 4 μm
0 parts by weight and 50 parts by weight of carbon powder having an average particle size of 55 nm are dispersed in pure water to which 0.1 to 1 part by weight of a dispersant is added to silicon carbide powder, boron carbide powder, and carbon black powder. Then, the pH was adjusted to 8 to 9.5 with aqueous ammonia or the like to prepare a low viscosity slurry of less than 500 cp. After mixing this slurry with a pot mill or the like for several hours, add 1-2 parts by weight of binder to silicon carbide powder, boron carbide powder, carbon powder, and then defoaming, and then an acrylic pipe with an inner diameter of 80 mm is placed on the gypsum plate. The placed slurry was cast to produce a molded body having a thickness of about 10 mm. The molded body is naturally dried and dried at 100 to 150 ° C., then 1 × 10 −4 to 1 × 10
Degreasing is performed by holding at 600 ° C. for 2 hours under a reduced pressure of −3 torr, and calcining is performed by holding at 1700 ° C. for 1 hour. After calcination, the reaction sintered body was manufactured by heating to a temperature of 1470 ° C. and holding for 30 minutes, and impregnating molten silicon into the molded body.

実施例1〜8においては比剛性率が130GPa以上でかつ研削抵抗が小さくチッピングも生じにくいために研削加工性に優れた複合材料を製造することができた。   In Examples 1 to 8, since the specific rigidity was 130 GPa or more, the grinding resistance was small, and chipping was difficult to occur, a composite material excellent in grinding workability could be manufactured.

比較例1においては研削抵抗が大きくチッピングも生じやすいため研削加工性が劣っていた。   In Comparative Example 1, since the grinding resistance was large and chipping was likely to occur, the grindability was inferior.

比較例2においては複合材料に細かなクラックが発生し比剛性が低下すると共に研削時にチッピングが発生しやすかった。   In Comparative Example 2, fine cracks were generated in the composite material, the specific rigidity was lowered, and chipping was likely to occur during grinding.

比較例3においては、複合材料の比剛性率は小さく、また研削時にチッピングで欠けやすかった。   In Comparative Example 3, the specific rigidity of the composite material was small, and chipping was easy to occur during grinding.

Figure 2009263206
Figure 2009263206


本発明の一実施形態によれば、高比剛性にして研削性の優れた複合材料、及びその製造方法を提供することにより、半導体・液晶製造装置などに求められる高比剛性で、高寸法精度が要求され、また大型複雑形状である部材に応用することが可能となった。   According to an embodiment of the present invention, by providing a composite material having high specific rigidity and excellent grindability, and a method for manufacturing the same, high specific rigidity required for semiconductor / liquid crystal manufacturing apparatuses and the like and high dimensional accuracy are provided. Therefore, it can be applied to a member having a large complex shape.

Claims (3)

炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30であり、炭化硼素と炭化珪素の10μm以上の粒子が10〜50体積部であることを特徴とする複合材料。 Mainly composed of boron carbide X volume part, silicon carbide Y volume part, silicon Z volume part, 10 <X <60, 20 <Y <70, 5 <Z <30, and 10 μm or more of boron carbide and silicon carbide. A composite material, wherein the particles are 10 to 50 parts by volume. 炭化硼素、炭化珪素、炭素源を主成分とする原料を成形して成形体を製造する成形工程と、該成形体に溶融シリコンを含浸させることにより炭素を炭化珪素に転換させる反応焼結工程を備えたことを特徴とする、炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30であり、炭化硼素と炭化珪素の10μm以上の粒子が10〜50体積部であることを特徴とする複合材料の製造方法。 A molding process for producing a molded body by molding a raw material mainly composed of boron carbide, silicon carbide and a carbon source, and a reactive sintering process for converting carbon into silicon carbide by impregnating the molded body with molten silicon. The main component is X part by volume of boron carbide, Y part by volume of silicon carbide, and Z part by volume of silicon Z, and 10 <X <60, 20 <Y <70, and 5 <Z <30. A method for producing a composite material, wherein 10 to 50 parts by volume of boron and silicon carbide particles having a size of 10 μm or more are contained. 炭化硼素、炭化珪素、炭素源を主成分とする原料を成形した成形体に、溶融シリコンを含浸させることにより炭素を炭化珪素に転換させる反応焼結工程を備えたことを特徴とする、炭化硼素X体積部、炭化珪素Y体積部、シリコンZ体積部を主成分とし、10<X<60、20<Y<70、5<Z<30であり、炭化硼素と炭化珪素の10μm以上の粒子が10〜50体積部であることを特徴とする複合材料の製造方法。 A boron carbide characterized by comprising a reactive sintering step in which carbon is converted to silicon carbide by impregnating molten silicon into a molded body obtained by molding a raw material mainly composed of boron carbide, silicon carbide, and a carbon source. X volume part, silicon carbide Y volume part, silicon Z volume part are the main components, 10 <X <60, 20 <Y <70, 5 <Z <30, and particles of 10 μm or more of boron carbide and silicon carbide are included. The manufacturing method of the composite material characterized by being 10-50 volume parts.
JP2009022433A 2008-04-04 2009-02-03 Boron carbide-silicon carbide-silicon composite material and its producing method Pending JP2009263206A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009022433A JP2009263206A (en) 2008-04-04 2009-02-03 Boron carbide-silicon carbide-silicon composite material and its producing method
CN2009801101986A CN101977875B (en) 2008-04-04 2009-04-02 Composite material and method for producing the same
EP09727004A EP2289860A4 (en) 2008-04-04 2009-04-02 Composite material and method for producing the same
KR1020107023758A KR101190561B1 (en) 2008-04-04 2009-04-02 Composite material and method for producing the same
PCT/JP2009/056884 WO2009123282A1 (en) 2008-04-04 2009-04-02 Composite material and method for producing the same
US12/384,481 US7833921B2 (en) 2008-04-04 2009-04-03 Composite material and method of manufacturing the same
TW098111217A TW201004894A (en) 2008-04-04 2009-04-03 Composite material and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008097997 2008-04-04
JP2009022433A JP2009263206A (en) 2008-04-04 2009-02-03 Boron carbide-silicon carbide-silicon composite material and its producing method

Publications (1)

Publication Number Publication Date
JP2009263206A true JP2009263206A (en) 2009-11-12

Family

ID=41389541

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009022433A Pending JP2009263206A (en) 2008-04-04 2009-02-03 Boron carbide-silicon carbide-silicon composite material and its producing method
JP2009022432A Pending JP2009263205A (en) 2008-04-04 2009-02-03 Method for producing boron carbide-silicon carbide-silicon composite material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009022432A Pending JP2009263205A (en) 2008-04-04 2009-02-03 Method for producing boron carbide-silicon carbide-silicon composite material

Country Status (1)

Country Link
JP (2) JP2009263206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010669A (en) * 2011-06-29 2013-01-17 Nihon Ceratec Co Ltd Method for producing composite material
JP2015179834A (en) * 2014-02-28 2015-10-08 信越半導体株式会社 Method for manufacturing susceptor for holding wafer, and susceptor for holding wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841392B2 (en) * 2011-09-30 2016-01-13 日本ファインセラミックス株式会社 Manufacturing method of composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010669A (en) * 2011-06-29 2013-01-17 Nihon Ceratec Co Ltd Method for producing composite material
JP2015179834A (en) * 2014-02-28 2015-10-08 信越半導体株式会社 Method for manufacturing susceptor for holding wafer, and susceptor for holding wafer

Also Published As

Publication number Publication date
JP2009263205A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
WO2009123282A1 (en) Composite material and method for producing the same
US8568650B2 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
JP2007063122A (en) Substrate for semiconductor device
WO2012060442A1 (en) High rigidity ceramic material and method for producing same
JP4232852B1 (en) Boron carbide / silicon carbide / silicon composite material and manufacturing method thereof
JP2010195668A (en) Boron carbide silicon carbide silicon composite material
JP2009263206A (en) Boron carbide-silicon carbide-silicon composite material and its producing method
WO2009123283A1 (en) Boron carbide/silicon carbide/silicon composite material
JP5681481B2 (en) Dense-porous joint
JP2010202488A (en) Boron carbide/silicon carbide/silicon complex material
JP5115898B2 (en) Mobile device composed of highly rigid material
KR102306963B1 (en) Ceramic part and method of forming same
JP2010195669A (en) Boron carbide, silicon carbide, and silicon composite material
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP6072557B2 (en) Glass molding material
JP2008273753A (en) Boron carbide-based sintered compact and protective member
JP2008297134A (en) Boron carbide based sintered compact and protective member
JP2008273752A (en) Boron carbide-based sintered compact and protective member
JP2003201178A (en) Method of producing carbide sintered compact and carbide sintered compact
JP2008297135A (en) Boron carbide based sintered compact, its manufacturing method and protective member
JP2007022914A (en) Method for manufacturing silicon/silicon carbide composite material
JPH07291722A (en) Production of ceramics sintered compact
JP2024515855A (en) Dense sintered silicon carbide material with very low electrical resistivity
JP2007055897A (en) Silicon/silicon carbide composite material