JP2009261377A - Production method of ethanol - Google Patents

Production method of ethanol Download PDF

Info

Publication number
JP2009261377A
JP2009261377A JP2008118523A JP2008118523A JP2009261377A JP 2009261377 A JP2009261377 A JP 2009261377A JP 2008118523 A JP2008118523 A JP 2008118523A JP 2008118523 A JP2008118523 A JP 2008118523A JP 2009261377 A JP2009261377 A JP 2009261377A
Authority
JP
Japan
Prior art keywords
ethanol
fermentation
yeast
medium
baker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118523A
Other languages
Japanese (ja)
Other versions
JP2009261377A5 (en
JP5308708B2 (en
Inventor
Akio Wada
顕男 和田
Katsuyoshi Sako
勝善 迫
Koichi Takinami
弘一 滝波
Kazuo Tanabe
和男 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolog Recycling Japan Kk
Original Assignee
Ecolog Recycling Japan Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecolog Recycling Japan Kk filed Critical Ecolog Recycling Japan Kk
Priority to JP2008118523A priority Critical patent/JP5308708B2/en
Publication of JP2009261377A publication Critical patent/JP2009261377A/en
Publication of JP2009261377A5 publication Critical patent/JP2009261377A5/ja
Application granted granted Critical
Publication of JP5308708B2 publication Critical patent/JP5308708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce fermentation production time conventionally requiring several days, to be about 1 day by changing yeast cultivation in a step of ethanol fermentation production to another means, and to simplify the fermentation equipment at the same. <P>SOLUTION: Provided is a new ethanol fermentation method composed mainly of ethanol production step by purchasing a required amount of commercial baker's dry yeast on a requiring time without performing yeast cultivation itself. The baker's dry yeast and saccharine materials such as glucose are fed to an acidic electrolytic water without performing sterilization to prepare a fermentation medium and ethanol fermentation is performed under proliferation inhibition of various bacteria. In the new fermentation method, as a new elemental technology for achieving a high ethanol yield within a short time, an addition method of a polyoxyethylene sorbitan mono-fatty acid ester is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、グルコースなどの糖質原料を含む液体培地を用い、エタノール生成能を有する酵母サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)によるエタノール発酵を行ってエタノールを製造する方法に関するものである。   The present invention relates to a method for producing ethanol by using a liquid medium containing a saccharide raw material such as glucose and performing ethanol fermentation with Saccharomyces cerevisiae having ethanol-producing ability.

酵母によるエタノール発酵など、微生物を利用する多くの発酵工業では、まず実験室規模の容量の試験管、フラスコを使用して工業微生物の培養を開始する。その後順次大きな培養槽へ移して培養を続け、発酵槽(発酵容器)における発酵生産に必要な量の微生物菌体を得る。この工程では雑菌汚染を防ぐために、装置の殺菌をはじめ液体培地の加熱蒸煮或いは濾過除菌、さらに通気を行う場合のエアフィルタなどの装置設備が必要である。この工程で得られた充分量の微生物菌体を含む培養液は直ちに発酵生産の装置である発酵槽に導入され、目的生産物の生成が開始される。発酵槽には予め発酵原料を含む培地が入っているが、多くの発酵工業では雑菌汚染を防ぐために培地の加熱殺菌を行っている。このようにしてフラスコから始めた工業微生物の培養および目的生産物の発酵生産は、一連の工程として数日に亘って続けられる。   In many fermentation industries that utilize microorganisms, such as ethanol fermentation with yeast, the cultivation of industrial microorganisms is first started using laboratory-scale test tubes and flasks. Thereafter, the cells are sequentially transferred to a large culture tank, and the culture is continued to obtain an amount of microbial cells necessary for fermentation production in a fermenter (fermentation vessel). In this process, in order to prevent contamination with various bacteria, equipment such as an air filter for sterilizing the apparatus, heating and steaming or filtering sterilization of the liquid medium, and aeration is necessary. The culture solution containing a sufficient amount of microbial cells obtained in this step is immediately introduced into a fermenter, which is an apparatus for fermentation production, and production of a target product is started. The fermenter contains a medium containing fermentation raw materials in advance, but in many fermentation industries, the medium is heat sterilized to prevent contamination with various bacteria. The cultivation of industrial microorganisms starting from the flask in this way and the fermentative production of the target product are continued for several days as a series of steps.

エタノールを生産するための酵母の発酵技術も、上述のように酵母の培養からエタノールの発酵生産までの一連の工程が生産技術として確立されている。この数日に亘る全工程から酵母培養工程(通常、2日程度要する)とエタノール生成工程(通常、3〜5日程度要する)とを分離して、エタノール生成工程での効率を高めるために固定化酵母を用いる連続発酵技術が開発されている。固定化酵母は酵母培養液から分離した酵母菌体を含水ゲル中に包括させて固定化したものである。この方法によれば、エタノール生成工程の効率は高くなるものの、酵母を培養し、培養菌体を分離して固定化酵母とする新たな製造工程を設けなければならない。   As described above, a series of steps from yeast culture to ethanol fermentation production has been established as a production technology for yeast fermentation technology for producing ethanol. Fixed to increase the efficiency in the ethanol production process by separating the yeast culture process (usually it takes about 2 days) and the ethanol production process (usually about 3-5 days) from the entire process over several days. A continuous fermentation technique using a chemical yeast has been developed. The immobilized yeast is obtained by immobilizing yeast cells separated from the yeast culture solution in a water-containing gel. According to this method, although the efficiency of the ethanol production process is increased, a new production process for cultivating yeast and separating cultured cells to form immobilized yeast must be provided.

他方、清酒・焼酎・味噌・醤油などの酵母を用いる醸造工業では、固定化酵母ではなく乾燥酵母を使用する方法が試みられている。従来、試みられている方法に共通することは、前もって酵母の培養を行って乾燥酵母を製造しておくことが必要である。従って、酵母の培養工程と清酒・焼酎・味噌・醤油などを製造する工程とを分離し、それぞれ任意の日時に行うことは可能であるが、酵母培養液から酵母菌体を分離して乾燥するための新たな操作と工程を加えることが必要となるために省力化された方法ではない。   On the other hand, in the brewing industry using yeasts such as sake, shochu, miso, and soy sauce, methods using dry yeast instead of immobilized yeast have been attempted. In common with the methods that have been attempted in the past, it is necessary to cultivate yeast in advance to produce dry yeast. Therefore, it is possible to separate the yeast culturing process and the process of producing sake, shochu, miso, soy sauce, etc., each at any time, but isolate and dry the yeast cells from the yeast culture. Therefore, it is not a labor-saving method because it is necessary to add new operations and processes.

本発明は、上述したエタノール発酵の数日間に亘る酵母培養とエタノール生成の工程を完全に分離し、その上酵母培養を他の手段に置き換えることにより、エタノール生成工程を主体とした短時間の新しいエタノール発酵技術を開発することを課題としている。更に、エタノール生成工程に於いて雑菌の増殖による糖質原料の損失を防止すると共に、酵母によるエタノール生成量を高める新技術を考案し、エタノール発酵の全工程を1日程度に短縮した効率の良い発酵生産方式の開発を課題としている。   The present invention completely separates the above-described yeast culture and ethanol production steps over several days of ethanol fermentation, and replaces the yeast culture with other means, so that a short new time mainly composed of ethanol production steps can be obtained. The challenge is to develop ethanol fermentation technology. Furthermore, in the ethanol production process, the loss of carbohydrate raw materials due to the growth of various bacteria is prevented, and a new technology for increasing the amount of ethanol produced by yeast has been devised, and the whole process of ethanol fermentation has been shortened to about one day with high efficiency. The issue is the development of fermentation production methods.

本発明では、酵母培養工程を他の手段に置き換えること、エタノール発酵培地の加熱滅菌に替わる雑菌汚染防止方法、およびエタノール発酵の時間短縮と糖質原料からの高収率エタノール生成などの課題を解決するための手段として、以下に詳述するように、パン酵母ドライイースト、電解水培地、ポリオキシエチレン・ソルビタン・モノ脂肪酸エステルの添加、高温発酵などの技術要素を統合し、エタノールの新しい発酵生産方式を確立した。   The present invention solves problems such as replacing the yeast culture process with other means, a method for preventing contamination of bacteria that replaces the heat sterilization of the ethanol fermentation medium, and shortening the time for ethanol fermentation and producing high-yield ethanol from saccharide raw materials. As a means to achieve this, as detailed below, baker's yeast dry yeast, electrolyzed water medium, addition of polyoxyethylene / sorbitan / mono fatty acid ester, high temperature fermentation and other technological elements will be integrated into a new fermentation production of ethanol Established method.

酵母培養を他の手段に置き換えたエタノール発酵とは、自らは酵母の培養を行わずに市販のパン酵母ドライイーストを購入し、これを直接エタノール発酵培地(グルコースなどの糖質原料とエタノール生成を促進する副原料を含む液体培地)に投入して直ちにエタノールの生成を行う方式である。本発明者らは、大量に生産され販売されているパン酵母ドライイーストに着目してエタノール発酵を試みたところ、多くの市販パン酵母ドライイーストが高いエタノール生成能を有していることを見出した。その結果、エタノール発酵に必要な量の培養酵母を自家製造することなく、専門の酵母生産者から必要時に必要量のパン酵母ドライイーストを購入してエタノールの発酵生産を行うことが可能となった。これは従来のエタノール発酵工業には無かった新しい発想の製造方式である。   Ethanol fermentation, in which yeast culture is replaced with other means, purchases commercially available baker's yeast dry yeast without cultivating yeast, and directly uses this to produce ethanol raw materials such as glucose and other sugar raw materials. This is a system in which ethanol is produced immediately after being introduced into a liquid medium containing auxiliary raw materials to be promoted. The inventors of the present invention tried ethanol fermentation by paying attention to baker's yeast dry yeast produced and sold in large quantities, and found that many commercially available baker's yeast dry yeasts have high ethanol production ability. . As a result, it became possible to carry out the fermentation production of ethanol by purchasing the required amount of baker's yeast dry yeast from a specialized yeast producer as needed, without making homegrown yeast required for ethanol fermentation. . This is a new idea manufacturing method that was not found in the conventional ethanol fermentation industry.

従来のエタノール発酵の酵母培養液は、培地の殺菌を行ってから純粋培養の酵母を培養しているので、雑菌汚染は無いものと考えられる。しかし、市販のパン酵母ドライイーストは、その乾燥工程や包装の過程で雑菌が付着する可能性が高く、雑菌によるエタノール生成量低下の危険性は大きい。この付着雑菌を死滅させるために、パン酵母ドライイーストを加熱殺菌することはできない。本発明者らは、各種の殺菌方法を検討した結果、殺菌作用のある酸性電解水を用いることが最も有効な手段であることを見出した。酸性電解水の使用方法としては、エタノール発酵の培地用水を酸性電解水とし、これに全ての発酵原料とパン酵母ドライイーストを投入して直ちにエタノール生成を開始することが最も効果的な方法である。その結果、必然的にエタノール発酵培地の加熱滅菌は必要なくなり、加熱滅菌装置とそのエネルギー費用を無くすことが可能となる。   It is considered that the conventional ethanol fermentation yeast culture solution does not contaminate bacteria because the pure culture yeast is cultured after the medium is sterilized. However, commercially available baker's yeast dry yeast has a high possibility of adhering bacteria during the drying process and packaging process, and there is a great risk of a decrease in the amount of ethanol produced by the bacteria. In order to kill the adhering bacteria, baker's yeast dry yeast cannot be sterilized by heating. As a result of examining various sterilization methods, the present inventors have found that the use of acidic electrolyzed water having a bactericidal action is the most effective means. The most effective method of using acidic electrolyzed water is to use ethanol fermentation medium water as acidic electrolyzed water, and then add all fermentation raw materials and baker's yeast dry yeast to it and start ethanol production immediately. . As a result, sterilization of the ethanol fermentation medium is inevitably unnecessary, and the heat sterilization apparatus and its energy cost can be eliminated.

酸性電解水に殺菌作用のあることは既に知られており、医療機器や手の消毒,食品製造設備の殺菌などに広く使用されている。また、微生物利用産業においても,茸類栽培の固体培地の表面殺菌あるいは日本酒の酒質改良などに電解水を利用した報告はあるが、本発明に述べるように、エタノール発酵に必要な糖質原料と副原料及び乾燥酵母(パン酵母ドライイーストを含む)を酸性電解水に投入し、雑菌の増殖を抑制しながらエタノール発酵を行った例は知られていない。   It is already known that acidic electrolyzed water has a bactericidal action, and is widely used for sterilization of medical equipment, hand disinfection, food production equipment, and the like. In addition, in the microbe-utilizing industry, there have been reports of using electrolyzed water for surface sterilization of solid culture media for cultivating moss or for improving the quality of sake. However, as described in the present invention, carbohydrate raw materials necessary for ethanol fermentation are reported. In addition, there is no known example in which ethanol fermentation was carried out while charging the secondary raw materials and dry yeast (including baker's yeast dry yeast) into acidic electrolyzed water and suppressing the growth of miscellaneous bacteria.

電解水は表面張力低下作用を有することが報告されており、非イオン界面活性剤としてのポリオキシエチレン・ソルビタン・モノ脂肪酸エステルを共存させることによりその作用(表面張力低下作用)が高められる。この物理化学的作用下に於いては、酵母によるグルコースなど糖質原料の消費速度とエタノール発酵収率の両者を向上させることが可能となった。   Electrolyzed water has been reported to have a surface tension reducing action, and the action (surface tension reducing action) is enhanced by the coexistence of polyoxyethylene / sorbitan / mono fatty acid ester as a nonionic surfactant. Under this physicochemical action, it became possible to improve both the consumption rate of saccharide raw materials such as glucose by yeast and the ethanol fermentation yield.

本発明に於いて使用するエタノール発酵酵母としては、サッカロマイセス・セレビシエの乾燥菌体として大量に製造販売されている市販のパン酵母ドライイーストを購入して用いる。このため、エタノール生成能を有するサッカロマイセス・セレビシエの乾燥菌体を自ら製造する必要は無く、また乾燥酵母製造のための培養槽と加熱滅菌装置および遠心分離機と凍結乾燥機を設置する必要もない。   As the ethanol-fermenting yeast used in the present invention, commercially available baker's yeast dry yeast, which is produced and sold in large quantities as dry cells of Saccharomyces cerevisiae, is purchased and used. For this reason, it is not necessary to produce Saccharomyces cerevisiae dry cells having ethanol-producing ability, and it is not necessary to install a culture tank, a heat sterilizer, a centrifuge and a freeze dryer for producing dry yeast. .

本発明の方法に於いて必要な装置は、エタノール発酵容器としての発酵槽のみである。本発明者らは、パン酵母ドライイーストを用いてエタノール生成工程のみのエタノール発酵を行い、グルコースなどの糖質原料からのエタノール生成量として、理論収量に対して90%以上の収率を達成した。この新しい発酵方法では、従来のエタノール発酵に必要な酵母の生育を伴わないので、従来では発酵温度の上限温度が35℃程度であったものを発酵温度の上限温度が40〜50℃の高温域であってもエタノールの生成は可能である(以下に示す実施例1〜6では、発酵温度が50℃であるものが示されていないが、発明者らは、50℃の発酵温度でもエタノールの生成は可能であることを確認している)。なお、エタノールの製造方法に於いて、自家製造した乾燥酵母を用いることは技術的に可能であるが、市販のパン酵母ドライイーストよりも安価に製造しないかぎり経済的には好ましい方法ではない。   The only equipment required in the method of the present invention is a fermenter as an ethanol fermentation vessel. The present inventors performed ethanol fermentation only in the ethanol production process using baker's yeast dry yeast, and achieved a yield of 90% or more with respect to the theoretical yield as the amount of ethanol produced from a sugar raw material such as glucose. . In this new fermentation method, yeast growth necessary for conventional ethanol fermentation is not accompanied, so that the upper limit temperature of the fermentation temperature is about 35 ° C., and the upper limit temperature of the fermentation temperature is 40 to 50 ° C. However, ethanol production is possible (Examples 1 to 6 shown below do not show that the fermentation temperature is 50 ° C., but the inventors have not been able to produce ethanol even at a fermentation temperature of 50 ° C. It is confirmed that generation is possible). In addition, in the ethanol production method, it is technically possible to use home-made dry yeast, but this is not economically preferable unless it is produced at a lower cost than commercially available baker's yeast dry yeast.

本発明の液体培地(エタノール発酵培地)は、加熱滅菌しない無殺菌培地である。また、市販のパン酵母ドライイーストには雑菌が付着している。雑菌の増殖を抑制するために、培地用水として酸性電解水を使用する。酸性電解水の殺菌作用は、製造直後のものが最も活性が高いので、電解水生成装置はエタノール発酵槽(発酵容器)の近辺に設置して、必要な時に電解水の製造を行って使用することが最も効果的である。電解水製造装置としては、原水として水道水を給水する型式のものであれば,市販の装置をそのまま用いることが可能である(例えば,ホシザキ電機(株)製のHOX-40型電解水生成装置)。一般的に、電解水の活性は、そのpHを指標にして表示されており、pH7.0以下の酸性電解水が本発明のエタノール発酵に有効であるが、とりわけpH2.6〜pH3.2の範囲の酸性電解水が顕著な効果を発揮する。   The liquid medium (ethanol fermentation medium) of the present invention is a non-sterile medium that is not heat-sterilized. In addition, miscellaneous bacteria adhere to commercially available baker's yeast dry yeast. In order to suppress the growth of various bacteria, acidic electrolyzed water is used as the medium water. As for the bactericidal action of acidic electrolyzed water, the one immediately after production is the most active, so the electrolyzed water generator is installed near the ethanol fermenter (fermentation vessel), and the electrolyzed water is produced and used when necessary. Is most effective. As an electrolyzed water production apparatus, a commercially available apparatus can be used as it is if it is of a type that supplies tap water as raw water (for example, HOX-40 type electrolyzed water generating apparatus manufactured by Hoshizaki Electric Co., Ltd.). ). In general, the activity of electrolyzed water is indicated using the pH as an index, and acidic electrolyzed water having a pH of 7.0 or less is effective for the ethanol fermentation of the present invention. A range of acidic electrolyzed water exhibits significant effects.

以下に、前記電解水生成装置で新たに製造された酸性電解水の無殺菌培地における雑菌増殖抑制効果について説明する。酸性電解水(pH3.2)1Lに甘蔗糖蜜10gを溶解し、雑菌汚染を調べるための雑菌増殖培地を調製した。この培地を希苛性ソーダ溶液によってpH7.0に調整し、その100mlを滅菌しないままに500ml容のエルレンマイヤーフラスコに入れ、35℃で雑菌増殖のための震とう培養を行った。この雑菌増殖試験では、最初の試験として、エタノール発酵酵母であるサッカロマイセス・セレビシエの影響を排除するために、培地にパン酵母ドライイーストを投入しない条件で35℃の振とう培養を行った。比較として酸性電解水(pH3.2)の代わりに水道水とアルカリ性電解水(pH10.4)を用い、pH7.0の雑菌増殖培地を調製し、酸性電解水培地と同様に震とう培養を行った。酸性電解水培地、水道水培地およびアルカリ性電解水培地のそれぞれの培養6時間後の培養液をSCD寒天培地(日本製薬(株)製)に塗抹し35℃で24時間の静置培養を行った。培養後にSCD寒天培地に生育した生菌のコロニーを数えた。その結果を表1に示す。酸性電解水培地の雑菌増殖培養液のコロニー数は、比較の水道水培地とアルカリ性電解水培地のコロニー数より100分の1以下と少なく、無殺菌エタノール発酵培地における酸性電解水の雑菌増殖抑制作用が認められた。   Hereinafter, the effect of suppressing the growth of germs in the non-sterile medium of acidic electrolyzed water newly produced by the electrolyzed water generator will be described. 10 g of sweet potato molasses was dissolved in 1 L of acidic electrolyzed water (pH 3.2) to prepare a bacterial growth medium for examining bacterial contamination. This medium was adjusted to pH 7.0 with a dilute caustic soda solution, and 100 ml of the medium was put into a 500 ml Erlenmeyer flask without sterilization, and shake culture was performed at 35 ° C. for growth of various bacteria. In this miscellaneous growth test, as an initial test, in order to eliminate the influence of Saccharomyces cerevisiae, which is an ethanol-fermenting yeast, shaking culture at 35 ° C. was carried out under the condition that baker's yeast dry yeast was not added to the medium. For comparison, use tap water and alkaline electrolyzed water (pH 10.4) instead of acidic electrolyzed water (pH 3.2), prepare a pH 7.0 miscellaneous bacteria growth medium, and perform shaking culture in the same way as acidic electrolyzed water medium. It was. The culture solution of each of the acidic electrolyzed medium, tap water medium, and alkaline electrolyzed medium after 6 hours of culture was smeared on an SCD agar medium (manufactured by Nippon Pharmaceutical Co., Ltd.), and static culture was performed at 35 ° C. for 24 hours. . After the cultivation, colonies of viable bacteria that grew on the SCD agar medium were counted. The results are shown in Table 1. The number of colonies in the culture solution of acidic electrolysis water medium is less than 1/100 of the number of colonies in the comparative tap water medium and alkaline electrolysis water medium. Was recognized.

Figure 2009261377
Figure 2009261377

次に、サッカロマイセス・セレビシエが存在する条件下での酸性電解水(pH3.2)の雑菌増殖抑制効果を説明する。前記と同条件の無殺菌甘蔗糖蜜培地100mlを希塩酸にてpH4.2に調整してから500ml容のエルレンマイヤーフラスコに入れ、直ちにパン酵母ドライイースト0.1mgを直接投入して、35℃の震とう培養を行った。比較として酸性電解水の代わりに、水道水とアルカリ性電解水(pH10.6)を用いたpH4.2の甘蔗糖蜜培地を調製し、パン酵母ドライイースト0.1mgを直接投入して、酸性電解水培地と同様に震とう培養を行った。これら3種類の培養について、酵母投入直後の培養0時間と培養5時間後の培養液をSCD寒天培地に塗抹して35℃で24時間培養した後に、SCD寒天培地に生育した雑菌と酵母の生菌コロニー数を個別に数えた。その結果を表2に示す。   Next, the effect of inhibiting the growth of miscellaneous bacteria by acidic electrolyzed water (pH 3.2) in the presence of Saccharomyces cerevisiae will be described. 100 ml of non-sterilized sweet potato molasses medium under the same conditions as above is adjusted to pH 4.2 with dilute hydrochloric acid, and then placed in a 500 ml Erlenmeyer flask. Immediately add 0.1 mg of baker's yeast dry yeast directly, and shake at 35 ° C. Culture was performed. As a comparison, instead of acidic electrolyzed water, prepare a pH 4.2 sweet potato molasses medium using tap water and alkaline electrolyzed water (pH 10.6), and directly add 0.1 mg of baker's yeast dry yeast to the acidic electrolyzed water medium. In the same manner as above, shaking culture was performed. For these three types of culture, the culture solution of 0 hours and 5 hours after the start of yeast was smeared on the SCD agar medium and cultured at 35 ° C for 24 hours, and then the bacteria and yeast grown on the SCD agar medium were cultivated. The number of fungal colonies was counted individually. The results are shown in Table 2.

Figure 2009261377
Figure 2009261377

表2から明らかなように、パン酵母ドライイースト添加直後の培養開始時の培養液の雑菌コロニー数は、酸性電解水培地では検出されないのに対して、水道水培地とアルカリ性電解水培地では10個以上が検出された。このように、酵母サッカロマイセス・セレビシエが存在する無殺菌培地に於いても、酸性電解水の雑菌抑制効果は認められた。さらに、培養5時間後の雑菌コロニー数は、酸性電解水培地では全く検出されないのに対して、水道水培地とアルカリ性電解水培地では102個以上が検出された。5時間の雑菌増殖培養を行っても、酸性電解水は雑菌の抑制効果を示した。他方、サッカロマイセス・セレビシエのコロニー数は、酸性電解水培地および水道水培地とアルカリ性電解水培地の間に大差はなく、酵母添加直後の0時間培養液の酵母コロニー数は1.2×103〜1.9×103コロニーの範囲にあり、また5時間培養液の酵母コロニー数は2.5×103〜4.2×103コロニーの範囲に収まっていた。このことは、パン酵母ドライイーストが培地中に1mg/L以上の濃度で存在する場合には、酸性電解水はサッカロマイセス・セレビシエに対して阻害的な作用を及ぼさないという本発明に有利な結果を示している。 As is apparent from Table 2, the number of miscellaneous colonies in the culture solution at the start of culture immediately after addition of baker's yeast dry yeast was not detected in the acidic electrolyzed water medium, but 10 in the tap water medium and alkaline electrolyzed water medium. The above was detected. Thus, even in a non-sterile medium in which the yeast Saccharomyces cerevisiae is present, the effect of suppressing the contamination of acidic electrolyzed water was observed. Furthermore, bacteria colony count after 5 h culture, whereas not detected at all in an acidic electrolytic water medium, in tap water medium and alkaline electrolyzed water medium was detected 10 2 or more. The acidic electrolyzed water showed the effect of suppressing the germs even after 5 hours of germ growth culture. On the other hand, the number of colonies of Saccharomyces cerevisiae is not significantly different between the acidic electrolyzed water medium and the tap water medium and the alkaline electrolyzed water medium, and the number of yeast colonies in the 0-hour culture immediately after yeast addition is 1.2 × 10 3 to 1.9 × in the range of 10 3 colonies also yeast count colonies 5 hours cultures were within the range of 2.5 × 10 3 to 4.2 × 10 3 colony. This indicates that when baker's yeast dry yeast is present in the medium at a concentration of 1 mg / L or more, acidic electrolyzed water does not have an inhibitory effect on Saccharomyces cerevisiae. Show.

酸性電解水の無殺菌培地(液体培地)に投入するパン酵母ドライイーストは、粉末状のもの、微粒子状のもの、あるいは酸性電解水に懸濁したものの何れの形態のものでもよい。粉末状や微粒子状のパン酵母ドライイーストをエタノール発酵槽に直接投入する場合には、培養液を希釈させることなく高濃度の酵母を存在させることが可能である。この高濃度酵母のエタノール発酵では、著しい発酵時間の短縮が可能である。本発明の方法によれば、培養液に4.0g/L以上のパン酵母ドライイーストを投入し、後に述べるポリオキシエチレン・ソルビタン・モノ脂肪酸エステルの効果をも合わせて発酵時間を12時間以内に短縮することが可能であった。この短時間の工程でエタノールの発酵生産を行う場合には、夕方にエタノール発酵槽の運転を開始し、夜間は無人の自動運転を行い、翌朝に発酵を終了するという省力型の工程が可能となる。   The baker's yeast dry yeast put into the non-sterile medium (liquid medium) of acidic electrolyzed water may be in any form of powder, fine particles, or suspended in acidic electrolyzed water. When powdered or fine-grained baker's yeast dry yeast is directly fed into an ethanol fermentor, it is possible to allow a high concentration of yeast to exist without diluting the culture solution. In ethanol fermentation of this high-concentration yeast, the fermentation time can be significantly shortened. According to the method of the present invention, baker's yeast dry yeast of 4.0 g / L or more is added to the culture solution, and the fermentation time is shortened to 12 hours or less, together with the effects of polyoxyethylene / sorbitan / mono fatty acid ester described later. It was possible to do. When performing ethanol fermentation in this short process, it is possible to save labor by starting the ethanol fermenter in the evening, performing unattended automatic operation at night, and ending the fermentation the next morning. Become.

さらに、本発明では、エタノール発酵培地にポリオキシエチレン・ソルビタン・モノ脂肪酸エステルを添加する方法により、酵母によるグルコースの消費速度が向上し、合わせてエタノールの生成収率をも高めることが可能である。この効果は、分子構造としてポリオキシエチレン・ソルビタン
モノ脂肪酸エステルが効果を有し、分子内に長鎖脂肪酸のラウリン酸,パルミチン酸,ステアリン酸およびオレイン酸などを有する分子構造のものが顕著な効果を示した。
Furthermore, in the present invention, by the method of adding polyoxyethylene / sorbitan / mono fatty acid ester to the ethanol fermentation medium, the consumption rate of glucose by yeast can be improved, and the production yield of ethanol can also be increased. . This effect is effective with polyoxyethylene sorbitan monofatty acid ester as the molecular structure, and with a molecular structure with long chain fatty acids such as lauric acid, palmitic acid, stearic acid and oleic acid in the molecule. showed that.

以上述べた本発明の方法によれば、短時間で効率よくエタノール発酵液を製造することが可能である。液体培地の糖質原料の高糖濃度を実現するためには、発酵開始時の液体培地の糖質原料濃度を高めるだけでなく、発酵経過の途中にグルコースなどの糖質原料を添加することも有効な手段である。このような方法によって、発酵液中のエタノール濃度を飛躍的に高くすることが可能である。本発明では酵母としてパン酵母ドライイースト用い、70g/Lのエタノール発酵液が得られることを実証した。なお、以下に述べる実施例2〜6では、酸性電解水を用いた無殺菌のエタノール発酵培地にパン酵母ドライイーストを投入して実施したが、酸性電解水に、グルコースなどの糖質原料とエタノール生成を助ける副原料とパン酵母ドライイーストを投入して実施しても同様の効果が得られることを発明者らは確認している。   According to the method of the present invention described above, an ethanol fermentation broth can be efficiently produced in a short time. In order to realize a high sugar concentration of the sugar raw material of the liquid medium, not only the sugar raw material concentration of the liquid medium at the start of fermentation is increased, but also a sugar raw material such as glucose may be added during the fermentation process. It is an effective means. By such a method, the ethanol concentration in the fermentation broth can be dramatically increased. In the present invention, baker's yeast dry yeast was used as the yeast, and it was demonstrated that a 70 g / L ethanol fermentation broth was obtained. In Examples 2 to 6 described below, baker's yeast dry yeast was introduced into a non-sterile ethanol fermentation medium using acidic electrolyzed water. However, a sugar material such as glucose and ethanol were added to the acidic electrolyzed water. The inventors have confirmed that the same effect can be obtained even when the auxiliary material and baker's yeast dry yeast that assist in the production are added.

(実施例1)
エタノールの発酵原料として広く用いられている甘蔗糖蜜を10gおよび副原料としてのリン酸二水素カリウム0.1g、硫酸マグネシウム0.1g、リン酸水素カルシウム0.02gを水道水100mlに溶解してエタノール発酵培地(液体培地)を調製した。この液体培地を500ml容のエルレンマイヤーフラスコ(以下、単にフラスコという場合もある)に入れ、オートクレーブで120℃15分の加熱滅菌を行った。加熱滅菌後に冷却したフラスコに市販のパン酵母ドライイースト0.4gを投入し、培地をpH4.2に調整した。その後にフラスコの口をアルミフォイルで覆い、ロータリーシェイカーを使用して、40℃の発酵温度で70rpmの震とう培養を行った。発酵時間4時間で、酵母は原料甘蔗糖蜜の85%の糖を消費し、培地中に16.9g/Lのエタノールを生成した。次に、上と同じ組成のエタノール発酵培地100mlを500ml容のエルレンマイヤーフラスコに入れ、滅菌することなくパン酵母ドライイースト0.4gを投入した。フラスコ内の培地をpH4.2に調整してからフラスコの口をアルミフォイルで覆い、上と同様に40℃で発酵を行った。発酵時間4時間後のエタノール生成量は、培地中に14.9g/Lであった。
Example 1
Dissolve 10 g of sweet potato molasses widely used as a fermentation raw material for ethanol and 0.1 g of potassium dihydrogen phosphate, 0.1 g of magnesium sulfate, and 0.02 g of calcium hydrogen phosphate as auxiliary raw materials in 100 ml of tap water to dissolve the ethanol fermentation medium ( Liquid medium) was prepared. This liquid medium was placed in a 500 ml Erlenmeyer flask (hereinafter sometimes simply referred to as “flask”) and sterilized by heating at 120 ° C. for 15 minutes in an autoclave. 0.4 g of commercially available baker's yeast dry yeast was put into a flask cooled after heat sterilization, and the medium was adjusted to pH 4.2. Thereafter, the mouth of the flask was covered with aluminum foil, and shaking culture at 70 rpm was performed at a fermentation temperature of 40 ° C. using a rotary shaker. With a fermentation time of 4 hours, the yeast consumed 85% of the sugar from the raw sugar cane molasses and produced 16.9 g / L of ethanol in the medium. Next, 100 ml of ethanol fermentation medium having the same composition as above was placed in a 500 ml Erlenmeyer flask, and 0.4 g of baker's yeast dry yeast was added without sterilization. After adjusting the culture medium in the flask to pH 4.2, the mouth of the flask was covered with aluminum foil, and fermentation was performed at 40 ° C. in the same manner as above. The amount of ethanol produced after 4 hours of fermentation was 14.9 g / L in the medium.

(実施例2)
新たに生成したpH3.2の酸性電解水100mlに、糖質原料のグルコース5g、副原料としてリン酸二水素カリウム0.1g、硫酸マグネシウム0.1g、リン酸水素カルシウム0.02gを溶解して、無殺菌のエタノール発酵培地を調製した。この培地を500ml容のエルレンマイヤーフラスコに入れ、市販のパン酵母ドライイースト0.4gを投入してから培地をpH4.2に調整した。その後にフラスコの口をアルミフォイルで覆い、ロータリーシェイカーで70rpmの震とう培養を行った。発酵温度44℃の20時間発酵により全量のグルコースを消費し、エタノールの生成量は消費グルコースからの理論収量に対して93.4%であった。
(Example 2)
Dissolve non-sterile by dissolving 5g of glucose as a raw material, 0.1g of potassium dihydrogen phosphate, 0.1g of magnesium sulfate, and 0.02g of calcium hydrogen phosphate as auxiliary materials in 100ml of pH3.2 acidic electrolyzed water with a pH of 3.2 An ethanol fermentation medium was prepared. This medium was placed in a 500 ml Erlenmeyer flask, 0.4 g of commercially available baker's yeast dry yeast was added, and the medium was adjusted to pH 4.2. Thereafter, the mouth of the flask was covered with aluminum foil, and shaking culture at 70 rpm was performed on a rotary shaker. The whole amount of glucose was consumed by fermentation for 20 hours at a fermentation temperature of 44 ° C., and the amount of ethanol produced was 93.4% of the theoretical yield from the consumed glucose.

(実施例3)
上記実施例2と同様に調製した無殺菌のエタノール発酵培地100mlを500ml容のエルレンマイヤーフラスコに入れ、ポリオキシエチレン・ソルビタン・モノラウレイト0.4gを滅菌しないままに添加してからパン酵母ドライイースト0.4gを投入し、44℃の発酵温度で実施例2と同様にエタノール発酵を行った。18時間未満の発酵時間で、培地のグルコース全量を消費し、エタノール生成量は理論収量の96.9%であった。ポリオキシエチレン・ソルビタン・モノラウレイトはドライイーストに対して、グルコース消費を促進する作用とともにエタノール生成量を高める効果を示した。
(Example 3)
100 ml of a non-sterile ethanol fermentation medium prepared in the same manner as in Example 2 above was placed in a 500 ml Erlenmeyer flask, 0.4 g of polyoxyethylene sorbitan monolaurate was added without sterilization, and then baker's yeast dry yeast 0.4 g was added, and ethanol fermentation was performed in the same manner as in Example 2 at a fermentation temperature of 44 ° C. With a fermentation time of less than 18 hours, the entire glucose of the medium was consumed and the ethanol production was 96.9% of the theoretical yield. Polyoxyethylene sorbitan monolaurate showed an effect of increasing the amount of ethanol produced on dry yeast as well as promoting glucose consumption.

(実施例4)
上記実施例2と同様に調製した無殺菌のエタノール発酵培地100mlを500ml容のエルレンマイヤーフラスコに入れ、無殺菌のポリオキシエチレ・ンソルビタン・モノラウレイト0.4gを添加してからパン酵母ドライイースト0.6gを投入した。発酵温度を45℃に設定してエタノール発酵を行った。18時間未満の発酵時間で全量のグルコースを消費し、エタノール生成量は理論収量に対して96.8%であった。発酵18時間の発酵液をSCD寒天培地に塗抹し、35℃で3日間培養した結果、雑菌のコロニーは検出しなかった。酸性電解水培地に加えて45℃の高温エタノール発酵は雑菌の増殖抑制に対して有効であった。
Example 4
100 ml of a non-sterile ethanol fermentation medium prepared in the same manner as in Example 2 above was placed in a 500 ml Erlenmeyer flask, 0.4 g of non-sterile polyoxyethylene, sorbitan, monolaurate was added, and then baker's yeast dry yeast 0.6 g was added. The fermentation temperature was set to 45 ° C. and ethanol fermentation was performed. The total amount of glucose was consumed in fermentation time of less than 18 hours, and the ethanol production was 96.8% based on the theoretical yield. After 18 hours of fermentation broth was smeared on a SCD agar medium and cultured at 35 ° C. for 3 days, no colonies of various bacteria were detected. In addition to acidic electrolyzed medium, high-temperature ethanol fermentation at 45 ° C was effective in inhibiting the growth of various bacteria.

(実施例5)
3本の500ml容のエルレンマイヤーフラスコに、上記実施例2と同様に調製した無殺菌のエタノール発酵培地をそれぞれ入れ、次に記す3種類の無殺菌ポリオキシエチレ・ンソルビタン・モノ脂肪酸エステル0.4gを3本のフラスコにそれぞれ添加した。3種類のポリオキシエチレ・ンソルビタン・モノ脂肪酸エステルは、ポリオキシエチレン・ソルビタン・モノパルミテート、ポリオキシエチレン・ソルビタン・モノステアレート、ポリオキシエチレン・ソルビタン・モノオレートである。次に各フラスコにそれぞれ0.5gのパン酵母ドライイーストを投入して、40℃でエタノール発酵を行った。20時間未満の発酵時間で全量のグルコースを消費し、エタノール生成量の理論収量に対する割合は、ポリオキシエチレン・ソルビタン・モノパルミテート添加フラスコで89.4%、ポリオキシエチレン・ソルビタン・モノステアレート添加フラスコで89.1%、ポリオキシエチレン・ソルビタン・モノオレート添加フラスコで90.3%であった。
(Example 5)
Three 500 ml Erlenmeyer flasks were each filled with a non-sterile ethanol fermentation medium prepared in the same manner as in Example 2 above, and the following three types of non-sterile polyoxyethylene, sorbitan, mono fatty acid esters 0.4 g was added to each of the three flasks. The three types of polyoxyethylene, sorbitan, and mono fatty acid ester are polyoxyethylene, sorbitan, monopalmitate, polyoxyethylene, sorbitan, monostearate, and polyoxyethylene, sorbitan, monooleate. Next, 0.5 g of baker's yeast dry yeast was added to each flask, and ethanol fermentation was performed at 40 ° C. The total amount of glucose was consumed in fermentation time of less than 20 hours, and the ratio of ethanol production to the theoretical yield was 89.4% in the flask with polyoxyethylene sorbitan monopalmitate, flask with polyoxyethylene sorbitan monostearate 89.1% and 90.3% in the flask containing polyoxyethylene / sorbitan / monooleate.

(実施例6)
甘蔗糖蜜30gを新たに調製したpH3.2の酸性電解水100mlに溶解し、副原料は添加しないで高糖濃度の無殺菌エタノール発酵培地を調製した。この培地を500ml容のエルレンマイヤーフラスコに入れ、微粒子状パン酵母ドライイースト0.4gを投入してから培地をpH4.2に調整した。フラスコの口をアルミフォイルで覆い、40℃に設定したロータリーシェイカーで70rpmの震とう培養を行った。28時間未満の発酵時間内に培地中の糖を消費して発酵を終了し、発酵液中に68.2g/Lのエタノールを生成した。
(Example 6)
30 g of sweet potato molasses was dissolved in 100 ml of freshly prepared acidic electrolyzed water of pH 3.2, and a non-sterile ethanol fermentation medium with a high sugar concentration was prepared without adding auxiliary materials. The medium was placed in a 500 ml Erlenmeyer flask, 0.4 g of fine baker's yeast dry yeast was added, and the medium was adjusted to pH 4.2. The mouth of the flask was covered with aluminum foil, and shaking culture at 70 rpm was performed on a rotary shaker set at 40 ° C. The fermentation was terminated by consuming sugar in the medium within the fermentation time of less than 28 hours, and 68.2 g / L ethanol was produced in the fermentation broth.

(発明の効果)
本発明によるエタノールの製造方法では、市販のパン酵母ドライイーストを購入してエタノール発酵を行うので、酵母培養に関連する装置と工程は必要なくエタノール生成用の発酵装置のみでエタノールの発酵生産が可能である。このため、設備、投資の軽減による経済的メリットは大きい。また、乾燥酵母として大量に生産され、安価で市販されているパン酵母ドライイーストを使用できることは、いつでも必要な時に必要量を購入してエタノール発酵を開始することが可能であるとともに、多量のパン酵母ドライイーストを発酵培地に添加することにより、一日あるいは一晩程度の短時間で発酵を終了させることも可能である。さらに、酸性電解水と40℃以上の高温発酵の効果により、市販パン酵母ドライイーストと糖質原料および副原料に付着してエタノール発酵培地に持ち込まれる雑菌の増殖が抑制された。その結果、雑菌による糖質原料の損失は防止され、エタノール生成量が向上するとともに、滅菌装置と加熱冷却のエネルギー費を無くすことも可能である。またさらに、酸性電解水とポリオキシエチレン・ソルビタン・モノ脂肪酸エステルの界面活性作用によって、エタノール生成速度と生成収率の向上が達成された。これらの技術的効果と先に述べた設備投資軽減メリットにより、安価なエタノールの製造が期待できる。
(The invention's effect)
In the method for producing ethanol according to the present invention, since commercially available baker's yeast dry yeast is purchased and ethanol fermentation is performed, it is possible to fermentate ethanol using only a fermentation apparatus for ethanol production without the need for equipment and processes related to yeast culture. It is. For this reason, the economic merit by reduction of facilities and investment is great. In addition, the ability to use baker's yeast dry yeast, which is produced in large quantities as dry yeast and is commercially available at a low price, makes it possible to start ethanol fermentation by purchasing the required amount whenever necessary, By adding yeast dry yeast to the fermentation medium, the fermentation can be completed in a short time of about one day or overnight. Furthermore, the effects of acidic electrolyzed water and high-temperature fermentation at 40 ° C. or higher suppressed the growth of miscellaneous bacteria that were attached to the commercial baker's yeast dry yeast, saccharide raw materials, and auxiliary raw materials and brought into the ethanol fermentation medium. As a result, loss of carbohydrate raw materials due to various bacteria can be prevented, the amount of ethanol produced can be improved, and the energy costs of the sterilization apparatus and heating / cooling can be eliminated. Furthermore, the ethanol production rate and production yield were improved by the surface-active action of acidic electrolyzed water and polyoxyethylene / sorbitan / mono fatty acid ester. Due to these technical effects and the above-mentioned merits of reducing capital investment, it is possible to produce inexpensive ethanol.

Claims (5)

グルコースなどの糖質原料とエタノール生成を促進する副原料を含む液体培地にパン酵母ドライイーストを投入し、所定の発酵温度で発酵を行うエタノールの製造方法。   A method for producing ethanol in which baker's yeast dry yeast is introduced into a liquid medium containing a sugar raw material such as glucose and an auxiliary raw material that promotes ethanol production, and fermentation is performed at a predetermined fermentation temperature. 前記所定の発酵温度は、その上限温度が50℃であることを特徴とする請求項1に記載のエタノールの製造方法。   The method for producing ethanol according to claim 1, wherein the predetermined fermentation temperature has an upper limit temperature of 50 ° C. 前記液体培地は、滅菌されていないグルコースなどの糖質原料と副原料を酸性電解水に溶解することにより調製されていて、雑菌増殖が抑制されていることを特徴とする請求項1または2に記載のエタノールの製造方法。   The liquid medium is prepared by dissolving a saccharide raw material such as glucose and a secondary raw material in acidic electrolyzed water, and the growth of germs is suppressed. The manufacturing method of ethanol of description. 酸性電解水に、グルコースなどの糖質原料とエタノール生成を促進する副原料とパン酵母ドライイーストを投入して、液体培地を調製し、所定の発酵温度で発酵を行うエタノールの製造方法。   A method for producing ethanol in which a sugar raw material such as glucose, an auxiliary raw material that promotes ethanol production, and baker's yeast dry yeast are introduced into acidic electrolyzed water, a liquid medium is prepared, and fermentation is performed at a predetermined fermentation temperature. 前記液体培地には、滅菌されていないポリオキシエチレン・ソルビタン・モノ脂肪酸エステルが添加されていることを特徴とする請求項3または4に記載のエタノールの製造方法。   The method for producing ethanol according to claim 3 or 4, wherein unsterilized polyoxyethylene / sorbitan / mono fatty acid ester is added to the liquid medium.
JP2008118523A 2008-04-30 2008-04-30 Ethanol production method Active JP5308708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118523A JP5308708B2 (en) 2008-04-30 2008-04-30 Ethanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118523A JP5308708B2 (en) 2008-04-30 2008-04-30 Ethanol production method

Publications (3)

Publication Number Publication Date
JP2009261377A true JP2009261377A (en) 2009-11-12
JP2009261377A5 JP2009261377A5 (en) 2011-06-16
JP5308708B2 JP5308708B2 (en) 2013-10-09

Family

ID=41388039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118523A Active JP5308708B2 (en) 2008-04-30 2008-04-30 Ethanol production method

Country Status (1)

Country Link
JP (1) JP5308708B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179493A (en) * 1982-04-14 1983-10-20 Res Assoc Petroleum Alternat Dev<Rapad> Removal of contamination from immobilized yeast
JPS59173086A (en) * 1983-03-24 1984-09-29 Res Assoc Petroleum Alternat Dev<Rapad> Alcoholic fermentation process using immobilized yeast
JP2003135090A (en) * 2001-08-23 2003-05-13 National Institute Of Advanced Industrial & Technology Method for producing ethanol having high concentration by fermentation using pervaporation with silicalite membrane coated with silicone rubber and apparatus therefor
JP2006346203A (en) * 2005-06-16 2006-12-28 Permelec Electrode Ltd Method of sterilization and electrolyzed water spraying device
JP2007063259A (en) * 2005-08-04 2007-03-15 National Institute Of Advanced Industrial & Technology Method of producing high-concentration bioethanol by pervaporation separation process using silylated silicalite membrane
JP2007275262A (en) * 2006-04-05 2007-10-25 Cocoroca Corp Pitcher and electrolytic water producing apparatus using the same
JP2008074491A (en) * 2006-08-21 2008-04-03 Meiji Milk Prod Co Ltd Sterilization method for food container
WO2008047679A1 (en) * 2006-10-16 2008-04-24 National Institute Of Advanced Industrial Science And Technology Ethanol producing process and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179493A (en) * 1982-04-14 1983-10-20 Res Assoc Petroleum Alternat Dev<Rapad> Removal of contamination from immobilized yeast
JPS59173086A (en) * 1983-03-24 1984-09-29 Res Assoc Petroleum Alternat Dev<Rapad> Alcoholic fermentation process using immobilized yeast
JP2003135090A (en) * 2001-08-23 2003-05-13 National Institute Of Advanced Industrial & Technology Method for producing ethanol having high concentration by fermentation using pervaporation with silicalite membrane coated with silicone rubber and apparatus therefor
JP2006346203A (en) * 2005-06-16 2006-12-28 Permelec Electrode Ltd Method of sterilization and electrolyzed water spraying device
JP2007063259A (en) * 2005-08-04 2007-03-15 National Institute Of Advanced Industrial & Technology Method of producing high-concentration bioethanol by pervaporation separation process using silylated silicalite membrane
JP2007275262A (en) * 2006-04-05 2007-10-25 Cocoroca Corp Pitcher and electrolytic water producing apparatus using the same
JP2008074491A (en) * 2006-08-21 2008-04-03 Meiji Milk Prod Co Ltd Sterilization method for food container
WO2008047679A1 (en) * 2006-10-16 2008-04-24 National Institute Of Advanced Industrial Science And Technology Ethanol producing process and apparatus

Also Published As

Publication number Publication date
JP5308708B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
KR20190137060A (en) Preparation of (R) -3-hydroxybutyric acid or salts thereof by one-step fermentation
CN102174449A (en) Method for producing high-yield gamma-propalanine and application thereof
CN101914478B (en) Bacillus subtilis and application thereof
EP2678436B1 (en) Method for preventing bacterial infection in a fermentation process
WO2017016199A1 (en) Use of streptomyces psammoticus and method for producing vanillin
KR101740968B1 (en) Method for production of GABA with lactic acid bacteria through L-glutamic acid feeding
CN1670203A (en) Food grade xylanase and its production method
CN1107722C (en) Process for producing high activity cellulase by solid fermentation of steam puffed stalk
JP2013150599A (en) Fermentation method for coculturing antimicrobial substance-producing microorganism and fermentation microorganism
CN105543312A (en) Preparation method of microbial fermentation-based N-acetyle-D-glucosamine
KR102013010B1 (en) Strain producing turanose and uses thereof
CN101736043A (en) Method for producing calcium gluconate by fermenting Aspergillus niger
JP5308708B2 (en) Ethanol production method
US20230121767A1 (en) Use of by-products from the alcoholic beverage manufacturing industry
CN107523512B (en) High-spore-rate bacillus licheniformis fermentation method
CN102850210A (en) Method for purifying sodium citrate mother liquor
CN105112473A (en) Production process of fructo-oligosaccharide-neokestose
JP4436635B2 (en) Method for producing useful substance using useful substance producing bacteria producing bacteriocin
JP2004159612A (en) METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID
JP2009106278A (en) Method for manufacturing d-lactic acid by fermentation
JP5489474B2 (en) Method for sterilizing medium and producing 1-butanol by fermentation
JP4628123B2 (en) New gonococci and their uses
CN104877922A (en) Method for screening low-yield diacetyl beer yeast
US20100143506A1 (en) Apparatus and method for treatment of microorganisms during sugar production and sugar-based fermentation processes
EP4041904A1 (en) Two-step fermentation process for obtaining cellulose and gluconic acid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5308708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250