JP2008074491A - Sterilization method for food container - Google Patents

Sterilization method for food container Download PDF

Info

Publication number
JP2008074491A
JP2008074491A JP2007212371A JP2007212371A JP2008074491A JP 2008074491 A JP2008074491 A JP 2008074491A JP 2007212371 A JP2007212371 A JP 2007212371A JP 2007212371 A JP2007212371 A JP 2007212371A JP 2008074491 A JP2008074491 A JP 2008074491A
Authority
JP
Japan
Prior art keywords
water
sterilization
washing
aqueous solution
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007212371A
Other languages
Japanese (ja)
Other versions
JP5415681B2 (en
Inventor
Hideaki Uekado
英明 上門
Takashi Tanaka
孝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP2007212371A priority Critical patent/JP5415681B2/en
Publication of JP2008074491A publication Critical patent/JP2008074491A/en
Application granted granted Critical
Publication of JP5415681B2 publication Critical patent/JP5415681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to sterilize a bacteria spore attached to a food container with a low-concentration medicine. <P>SOLUTION: Prior to sterilization with water containing hypochlorous acid, it is brought into contact with an alkaline water solution. An fine acid electrolyzed water which has established available chlorine concentration as the range of 1-50 ppm or a sodium hypochlorite water solution which has established the available chlorine concentration as the range of 1-50 ppm is used for the water containing the hypochlorous acid, and an NaOH water solution of which the pH is 11-14 and of which the water temperature has established as 50-80 °C is used for the alkaline water solution. This kind of method is suitable for a bottle-washing process and capable of reducing water consumption sharply since an exiting apparatus can be almost utilized as it is. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガラス瓶やペットボトル、プラスチック容器などの食品容器の殺菌方法に関する。   The present invention relates to a method for sterilizing food containers such as glass bottles, PET bottles, and plastic containers.

食品容器は、収容する食品が腐敗しないよう、食品の収容に先立って殺菌処理が行われることが多い。その際、収容する食品が静菌効果のある低酸性食品であれば、耐熱性の低いカビ、酵母を殺菌すればよく、熱水などで加熱殺菌すれば済む。しかし、多くの食品が該当する中性食品は静菌効果がなく、極めて耐性の強い芽胞を形成する芽胞形成細菌(芽胞菌)までも殺菌する必要がある。例えば、食中毒性の芽胞菌であるセレウス菌(Bacillus cereus)は、10℃以下の低温でも増殖する菌株が存在し、市乳などのチルド流通食品でも殺菌を要するし、他の芽胞と異なり、芽胞の胞子殻のさらに外側に、薬効の障壁になっていると推測される外皮(エキソスポリウム、exosporium)までも備えている。そのため、芽胞に対しては、加熱殺菌だけでは十分な殺菌効果が得られず、例えば、塩素系殺菌剤や過酢酸系殺菌剤、オゾン水などの薬剤殺菌の併用によって殺菌効果の向上が図られている。それでも、殺菌条件は過度(高濃度)にならざるを得ず、それに伴って様々な問題が生じている。例えば、過酢酸系殺菌剤は、食品添加物としては認可されていないため、殺菌処理後は多量の水でリンスする必要があって極めて不経済であるし、オゾン水も、有害なオゾンガスが発生するため、その処理が難しい、などである。   Food containers are often sterilized prior to food storage so that the food to be stored does not spoil. At that time, if the food to be stored is a low acid food having a bacteriostatic effect, fungi and yeast having low heat resistance may be sterilized, and heat sterilization may be performed with hot water or the like. However, neutral foods to which many foods are applicable have no bacteriostatic effect, and it is necessary to sterilize even spore-forming bacteria (spore bacteria) that form extremely resistant spores. For example, Bacillus cereus, which is a food-toxic spore bacteria, has a strain that grows even at a low temperature of 10 ° C. or lower, and sterilized foods such as city milk require sterilization. Unlike other spores, On the outer side of the spore shell, there is even an outer skin (exosporium) that is thought to be a medicinal barrier. For this reason, sufficient sterilization effect cannot be obtained for spores only by heat sterilization. For example, the sterilization effect can be improved by combined use of chemical sterilization agents such as chlorine-based, peracetic acid-based and ozone water. ing. Nevertheless, the sterilization conditions must be excessive (high concentration), and various problems have arisen accordingly. For example, peracetic acid-based disinfectants are not approved as food additives, so after sterilization treatment, it is necessary to rinse with a large amount of water, which is extremely uneconomical, and ozone water also generates harmful ozone gas. Therefore, the processing is difficult.

塩素系殺菌剤として一般的な次亜塩素酸ナトリウムの水溶液(塩素水)も同様であり、実用的な殺菌効果が得られる濃度(例えば50〜200ppm)で使用すると強い塩素臭が残存し、この塩素臭を除去するために多量の水でのリンス処理が必要となっている。有機物と反応して生じる塩素化合物(クロラミン)等の異臭の発生や、発ガン物質であるトリハロメタンの生成の問題もある。   The same is true for an aqueous solution of sodium hypochlorite (chlorine water) that is common as a chlorine-based disinfectant, and a strong chlorine odor remains when used at a concentration (for example, 50 to 200 ppm) at which a practical disinfectant effect can be obtained. In order to remove the chlorine odor, a rinsing treatment with a large amount of water is required. There are also problems of generation of off-flavors such as chlorine compounds (chloramines) produced by reaction with organic substances and generation of trihalomethane, which is a carcinogen.

ところで最近では、塩素水に代わる殺菌手段として電解水が注目されている。電解水とは、例えば、塩酸や食塩などを添加した水を電気分解して得られる機能水のことをいい、強酸性電解水や微酸性電解水(弱酸性電解水)などがある。これらの有効成分は、いずれも次亜塩素酸ナトリウム水溶液と同様、殺菌作用の主体は次亜塩素酸であると考えられている。pHの違いにより、次亜塩素酸ナトリウム水溶液に比べて有効塩素濃度が低くても優れた殺菌効果が発揮されるのである。   By the way, recently, electrolyzed water has attracted attention as a sterilizing means replacing chlorine water. The electrolyzed water refers to, for example, functional water obtained by electrolyzing water to which hydrochloric acid, sodium chloride or the like is added, and includes strongly acidic electrolyzed water and slightly acidic electrolyzed water (weakly acidic electrolyzed water). These active ingredients are considered to be hypochlorous acid as the main component of the bactericidal action, as is the case with the sodium hypochlorite aqueous solution. Due to the difference in pH, even if the effective chlorine concentration is lower than that of the sodium hypochlorite aqueous solution, an excellent bactericidal effect is exhibited.

電解水を利用した殺菌方法も提案されている(特許文献1〜3)。例えば、特許文献1は、電解酸性水と紫外線とを併用している。特許文献2には、香辛料等の表面に付着した芽胞菌を対象とし、酸性電解水での殺菌処理に先立って芽胞を発芽させることにより、殺菌効果を向上させる殺菌方法が開示されている。特許文献3では、酢酸で卵殻を洗浄した後、弱酸性電解水で殺菌する鶏卵の洗浄殺菌方法が開示されている。   A sterilization method using electrolyzed water has also been proposed (Patent Documents 1 to 3). For example, Patent Document 1 uses electrolytic acid water and ultraviolet rays in combination. Patent Document 2 discloses a sterilization method for improving the sterilization effect by germinating spores prior to sterilization treatment with acidic electrolyzed water, targeting spore bacteria attached to the surface of spices and the like. Patent Document 3 discloses a method for washing and sterilizing chicken eggs in which eggshells are washed with acetic acid and then sterilized with weakly acidic electrolyzed water.

特開平9−154924号公報JP-A-9-154924 特開2003−61610号公報JP 2003-61610 A 特開2005−27609号公報JP 2005-27609 A

しかし、特許文献1にある紫外線は、微生物に直接照射しないと殺菌効果が得られないという大きな問題があり、特許文献2の方法では、発芽しなかった芽胞は殺菌できないため、確実性に欠ける。特許文献3の方法では、セレウス菌を含む芽胞を対象としているが、芽胞を殺菌するためには最低150ppm以上の有効塩素濃度が必要としている。   However, the ultraviolet rays in Patent Document 1 have a big problem that the bactericidal effect cannot be obtained unless the microorganisms are directly irradiated, and the method of Patent Document 2 lacks certainty because spores that have not germinated cannot be sterilized. In the method of Patent Document 3, a spore containing Bacillus cereus is targeted, but in order to sterilize the spore, an effective chlorine concentration of at least 150 ppm is required.

色々と検討されてはいるものの、結局のところ耐性の強い芽胞を効果的に殺菌できる殺菌手段は確立されていなかった。   Although various investigations have been made, after all, no sterilization means that can effectively sterilize highly resistant spores have been established.

すなわち、本発明の目的は、問題を生じない適度な薬剤濃度でありながら、芽胞菌を効果的に殺菌できる食品容器の殺菌方法を提供することにある。本発明の目的は、電解水あるいは塩素水を効率よく利用して、殺菌困難なセレウス菌をも効果的に殺菌できる食品容器の殺菌方法を提供することにある。本発明の目的は、既存の製造設備がそのまま利用でき、実用性に富む食品容器の殺菌方法を提供することにある。   That is, an object of the present invention is to provide a food container sterilization method capable of effectively sterilizing spore bacteria while having an appropriate drug concentration that does not cause a problem. An object of the present invention is to provide a method for sterilizing a food container that can effectively sterilize Bacillus cereus which is difficult to sterilize by efficiently using electrolyzed water or chlorinated water. An object of the present invention is to provide a food container sterilization method that can use existing manufacturing equipment as it is and is highly practical.

本発明者らは、芽胞の胞子を構成する主成分はタンパク質であることに着目し、その表面構造を変質させれば芽胞に対する薬効、すなわち、殺菌効果を向上させることができると考え、所定の処理条件を組み合わせたところ優れた殺菌効果が得られることを見出し、本発明を完成するに至ったものである。本発明の食品容器の殺菌方法は、食品容器をアルカリ性水溶液に接触させる殺菌前工程と、前記アルカリ性水溶液に接触させた食品容器を次亜塩素酸含有水で殺菌する殺菌工程とを備えることを特徴とする。ここで、次亜塩素酸含有水とは、次亜塩素酸を有効成分とする水溶液を意味し、次亜塩素酸ナトリウム水溶液や、次亜塩素酸を有効成分とする各種電解水を含む概念である。アルカリ性水溶液とは、NaOHやKOHなどの強アルカリ性を示す水溶液を意味する。   The present inventors pay attention to the fact that the main component constituting the spores of the spore is a protein, and it is thought that if the surface structure is altered, the medicinal effect on the spore, that is, the bactericidal effect can be improved. The present inventors have found that an excellent bactericidal effect can be obtained by combining processing conditions, and have completed the present invention. The method for sterilizing a food container according to the present invention comprises a pre-sterilization step of bringing a food container into contact with an alkaline aqueous solution, and a sterilization step of sterilizing the food container brought into contact with the alkaline aqueous solution with hypochlorous acid-containing water. And Here, hypochlorous acid-containing water means an aqueous solution containing hypochlorous acid as an active ingredient, and a concept including an aqueous solution of sodium hypochlorite and various electrolyzed waters containing hypochlorous acid as an active ingredient. is there. The alkaline aqueous solution means an aqueous solution showing strong alkalinity such as NaOH and KOH.

アルカリ性水溶液にNaOH水溶液(水酸化ナトリウム水溶液)を使用し、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定することができる。pHを11以上としたのは、酵素の失活が認められ、タンパク質の変性に効果的だからである。水温を50℃以上としたのは、加熱によるタンパク質の変性作用が得られてより効果的であり、芽胞以外の細菌細胞やカビ・酵母を殺菌することができるからである。80℃以下としたのは、食品容器自体に損傷を与えるおそれがあり、熱効率が悪いからである。   NaOH aqueous solution (sodium hydroxide aqueous solution) is used for alkaline aqueous solution, pH can be set in the range of 11-14, and the water temperature can be set in the range of 50-80 degreeC. The reason why the pH was set to 11 or more is that deactivation of the enzyme was observed and it was effective for protein denaturation. The reason why the water temperature is set to 50 ° C. or higher is that a protein denaturation action by heating is obtained, which is more effective, and bacterial cells other than spores, molds and yeasts can be sterilized. The reason why the temperature is set to 80 ° C. or lower is that the food container itself may be damaged and the heat efficiency is poor.

詳しくは、次亜塩素酸含有水に微酸性電解水を使用し、pHが4〜7の範囲で、有効塩素濃度が1〜50ppmの範囲に設定することができる。あるいは、次亜塩素酸含有水に次亜塩素酸ナトリウム水溶液を使用し、pHが6.5〜9の範囲で、有効塩素濃度が1〜50ppmの範囲に設定することができる。好ましくは、微酸性電解水および次亜塩素酸ナトリウム水溶液のいずれの場合も、有効塩素濃度が5〜20ppmの範囲に設定する。1ppmを下回ると、実用的な次亜塩素酸による殺菌効果が得られないからであり、50ppmを上回ると、塩素臭の残存等の問題が発生するからである。なお、微酸性電解水のpHを4〜7とし、次亜塩素酸ナトリウム水溶液のpHを6.5〜9としたのは、この範囲で次亜塩素酸が安定し、高い殺菌効果が得られることが解っているからである。   Specifically, slightly acidic electrolyzed water is used as hypochlorous acid-containing water, and the pH can be set in the range of 4 to 7 and the effective chlorine concentration can be set in the range of 1 to 50 ppm. Alternatively, a sodium hypochlorite aqueous solution can be used for the hypochlorous acid-containing water, and the pH can be set in the range of 6.5 to 9 and the effective chlorine concentration can be set in the range of 1 to 50 ppm. Preferably, in both cases of slightly acidic electrolyzed water and aqueous sodium hypochlorite solution, the effective chlorine concentration is set in the range of 5 to 20 ppm. This is because when the concentration is less than 1 ppm, a practical bactericidal effect by hypochlorous acid cannot be obtained, and when it exceeds 50 ppm, problems such as residual chlorine odor occur. In addition, the pH of the slightly acidic electrolyzed water is 4-7 and the pH of the sodium hypochlorite aqueous solution is 6.5-9. Hypochlorous acid is stable in this range, and a high bactericidal effect is obtained. This is because it is understood.

また、本発明の食品容器の殺菌方法は、図13に示す瓶の洗瓶工程に適用し、洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶を水でリンスするリンス工程と、リンスした瓶をアルカリ性水溶液に接触させる殺菌前工程と、アルカリ性水溶液に接触させた瓶を微酸性電解水で殺菌する殺菌工程とを備える殺菌方法とすることができる。なお、ここでいう瓶は、ガラス瓶に限らず、ペットボトルなどのプラスチック製のボトル、金属缶、紙製容器(ラミネート加工)なども含む概念である。   Moreover, the food container sterilization method of the present invention was applied to the bottle washing step shown in FIG. 13, and the washing step for washing the bottle with washing water, the rinsing step for rinsing the washed bottle with water, and the rinsing A sterilization method comprising a pre-sterilization step in which a bottle is brought into contact with an alkaline aqueous solution and a sterilization step in which the bottle brought into contact with the alkaline aqueous solution is sterilized with slightly acidic electrolyzed water. Here, the term “bottle” is not limited to a glass bottle, but is a concept including a plastic bottle such as a plastic bottle, a metal can, a paper container (lamination processing), and the like.

さらには、洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶を水でリンスするリンス工程と、リンスした瓶を微酸性電解水で殺菌する殺菌工程とを備え、洗浄工程で使用する洗浄水をアルカリ性水溶液とし、洗浄工程が殺菌前工程を兼ねるようにしてもよい。   Further, the cleaning process includes a cleaning process for cleaning the bottle with cleaning water, a rinsing process for rinsing the cleaned bottle with water, and a sterilization process for sterilizing the rinsed bottle with slightly acidic electrolyzed water. May be an alkaline aqueous solution, and the washing step may also serve as a pre-sterilization step.

洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶をリンスするリンス工程とを備え、洗浄工程で使用する洗浄水をアルカリ性水溶液とし、リンス工程で使用する水を微酸性電解水として、洗浄工程が殺菌前工程を、リンス工程が殺菌工程をそれぞれ兼ねるようにしてもよい。   The washing process includes a washing process for washing the bottle with washing water and a rinsing process for rinsing the washed bottle. The washing water used in the washing process is an alkaline aqueous solution, and the water used in the rinsing process is used as slightly acidic electrolyzed water. May be a pre-sterilization step, and the rinse step may also be a sterilization step.

アルカリ性水溶液にNaOH水溶液を使用し、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定することができる。また、微酸性電解水は、pHが4〜7の範囲で、有効塩素濃度が1〜50ppmの範囲に設定することができる。   NaOH aqueous solution is used for alkaline aqueous solution, pH can be set in the range of 11-14, and water temperature can be set in the range of 50-80 degreeC. Further, the slightly acidic electrolyzed water can be set to a pH of 4 to 7 and an effective chlorine concentration of 1 to 50 ppm.

また、本発明の食品の殺菌方法は、図13に示す瓶の洗瓶工程に適用し、洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶を水でリンスするリンス工程と、リンスした瓶をアルカリ性水溶液に接触させる殺菌前工程と、アルカリ性水溶液に接触させた瓶を次亜塩素酸ナトリウム水溶液で殺菌する殺菌工程とを備える殺菌方法とすることができる。   Further, the food sterilization method of the present invention is applied to the bottle washing step shown in FIG. 13, a washing step for washing the bottle with washing water, a rinsing step for rinsing the washed bottle with water, and a rinsed bottle It can be set as the sterilization method provided with the pre-sterilization process made to contact alkaline aqueous solution, and the sterilization process which sterilizes the bottle contacted with alkaline aqueous solution with sodium hypochlorite aqueous solution.

さらには、洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶を水でリンスするリンス工程と、リンスした瓶を次亜塩素酸ナトリウム水溶液で殺菌する殺菌工程とを備え、洗浄工程で使用する洗浄水をアルカリ性水溶液とし、洗浄工程が殺菌前工程を兼ねるようにしてもよい。   Further, the cleaning process includes a cleaning process for cleaning the bottle with cleaning water, a rinsing process for rinsing the cleaned bottle with water, and a sterilization process for sterilizing the rinsed bottle with an aqueous sodium hypochlorite solution. The washing water may be an alkaline aqueous solution, and the washing step may also serve as a pre-sterilization step.

洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶をリンスするリンス工程とを備え、洗浄工程で使用する洗浄水をアルカリ性水溶液とし、リンス工程で使用する水を次亜塩素酸ナトリウム水溶液として、洗浄工程が殺菌前工程を、リンス工程が殺菌工程をそれぞれ兼ねるようにしてもよい。   A washing process for washing the bottle with washing water and a rinsing process for rinsing the washed bottle, the washing water used in the washing process as an alkaline aqueous solution, and the water used in the rinsing process as a sodium hypochlorite aqueous solution, The washing process may also serve as the pre-sterilization process, and the rinse process may serve as the sterilization process.

アルカリ性水溶液にNaOH水溶液を使用し、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定することができる。また、次亜塩素酸ナトリウム水溶液は、pHが6.5〜9の範囲で、有効塩素濃度が1〜50ppmの範囲に設定することができる。   NaOH aqueous solution is used for alkaline aqueous solution, pH can be set in the range of 11-14, and water temperature can be set in the range of 50-80 degreeC. In addition, the aqueous sodium hypochlorite solution can be set to a pH of 6.5 to 9 and an effective chlorine concentration of 1 to 50 ppm.

次亜塩素酸含有水による殺菌に先立って、アルカリ性水溶液に接触させる殺菌前処理を行うことにより、次亜塩素酸含有水単独、あるいはアルカリ性水溶液単独で得られる殺菌効果を遥かに超える、優れた殺菌効果を得ることができた。その機構については検証できていないが、殺菌に先立って芽胞をアルカリ性水溶液に接触させることで、芽胞の胞子殻、あるいは外皮の表面構造が変質し、芽胞の次亜塩素酸に対する薬剤耐性を著しく低下させることが可能になっているものと推測される。   Prior to sterilization with hypochlorous acid-containing water, excellent sterilization far exceeds the sterilization effect obtained with hypochlorous acid-containing water alone or alkaline aqueous solution alone by performing pre-sterilization treatment in contact with alkaline aqueous solution The effect was able to be acquired. Although the mechanism has not been verified, contacting the spore with an alkaline aqueous solution prior to sterilization alters the surface structure of the spore spore shell or coat and significantly reduces the drug resistance to hypochlorous acid of the spore. It is assumed that it is possible to make it.

アルカリ性水溶液に、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定されているNaOH水溶液を用いると、有機物系の汚れを効果的に除去して、カビ・酵母や一般細菌などを確実に殺菌できるうえ、効率よく芽胞の胞子殻、外皮を変質させることができる。使用するNaOHは、安価で、食品製造設備で汎用されている薬剤である点でも有利である。   When an aqueous NaOH solution having a pH of 11 to 14 and a water temperature of 50 to 80 ° C. is used as the alkaline aqueous solution, the organic soil is effectively removed, and mold, yeast and general bacteria are removed. Can be surely sterilized, and can efficiently alter the spore shell and coat of the spore. The NaOH to be used is advantageous in that it is an inexpensive chemical that is widely used in food production facilities.

次亜塩素酸含有水として、pHが4〜7の範囲で、有効塩素濃度が1〜50ppmの範囲に設定された微酸性電解水、あるいはpHが6.5〜9の範囲で、有効塩素濃度が1〜50ppmの範囲に設定された低濃度の次亜塩素酸ナトリウム水溶液を用いる。これにより、従来は、ほとんど殺菌効果が得られなかった低い有効塩素濃度であるにもかかわらず、芽胞を効果的に殺菌することができ、塩素臭などの異臭や、トリハロメタンの問題を一挙に解決することができる。   As hypochlorous acid-containing water, slightly acidic electrolyzed water whose pH is in the range of 4-7 and effective chlorine concentration is set in the range of 1-50 ppm, or in the range of pH 6.5-9, effective chlorine concentration Is a low-concentration sodium hypochlorite aqueous solution set in the range of 1 to 50 ppm. This makes it possible to effectively sterilize spores despite the low effective chlorine concentration, which has hardly achieved a bactericidal effect in the past, and solves the problems of odors such as chlorine odor and trihalomethane at once. can do.

食品容器が瓶であり、洗浄水で瓶を洗浄する洗浄工程と、洗浄した瓶を水でリンスするリンス工程と、リンスした瓶をアルカリ性水溶液に接触させる殺菌前工程と、アルカリ性水溶液に接触させた瓶を微酸性電解水あるいは低濃度の次亜塩素酸ナトリウム水溶液で殺菌する殺菌工程とを含む殺菌方法によれば、従来一般に利用されている一連の洗瓶設備をそのまま使用することができる。すなわち、従来の洗瓶工程における高濃度の次亜塩素酸ナトリウム水溶液による殺菌工程等に換えて本発明の殺菌方法を適用するだけで済む。   The food container is a bottle, the washing step for washing the bottle with washing water, the rinsing step for rinsing the washed bottle with water, the pre-sterilization step for bringing the rinsed bottle into contact with the alkaline aqueous solution, and the contact with the alkaline aqueous solution According to the sterilization method including the sterilization step of sterilizing the bottle with slightly acidic electrolyzed water or a low-concentration sodium hypochlorite aqueous solution, a series of conventionally used washing bottle facilities can be used as they are. That is, it is only necessary to apply the sterilization method of the present invention in place of the sterilization process with a high concentration sodium hypochlorite aqueous solution in the conventional washing bottle process.

洗浄工程で使用される洗浄水をアルカリ性水溶液にして、洗浄工程が殺菌前工程を兼ねるようにすれば、工程を簡略化できるうえ、使用する薬剤や水量を大幅に減少させることができ、生産性を向上させることができる。   If the washing water used in the washing process is made into an alkaline aqueous solution so that the washing process also serves as a pre-sterilization process, the process can be simplified and the amount of chemicals and water used can be greatly reduced. Can be improved.

さらに、リンス工程で使用される水を微酸性電解水あるいは低濃度の次亜塩素酸ナトリウム水溶液に換えて、リンス工程が殺菌工程を兼ねるようにすれば、よりいっそう工程が簡略化でき、使用する設備や水量を画期的に減少させることができ、生産性を格段に向上させることができる。   Furthermore, if the water used in the rinsing process is replaced with slightly acidic electrolyzed water or a low-concentration sodium hypochlorite aqueous solution so that the rinsing process also serves as a sterilization process, the process can be further simplified and used. Equipment and water volume can be dramatically reduced, and productivity can be significantly improved.

(第1の実施の形態)
以下、図面を参照しつつ本発明の第1の実施の形態について説明する。まず、本実施の形態に係る殺菌方法の条件及びその効果を試験結果に基づいて具体的に説明する。試験では、ガラス容器を使用し、調整した芽胞液を本実施の形態に係る殺菌方法で処理して処理後の残存数(生残芽胞数)について調べた。
(First embodiment)
The first embodiment of the present invention will be described below with reference to the drawings. First, conditions and effects of the sterilization method according to the present embodiment will be specifically described based on test results. In the test, a glass container was used, and the prepared spore solution was treated by the sterilization method according to the present embodiment, and the number of remaining after treatment (number of surviving spores) was examined.

{芽胞液の調整}
試験には、セレウス菌(Bacillus cereus B-164、乳由来)の芽胞を用いた。セレウス菌は、Ca(0.1%)−SMA培地で30℃、1週間培養した。得られたセレウス菌のコロニーを滅菌生理食塩水に懸濁させた。懸濁液は、遠心分離(3000rpm、15分)を3回、繰り返して洗浄した後、80℃で10分加熱して栄養細胞だけを殺菌し、これを芽胞液として試験に供した。なお、得られた芽胞液(原液)の芽胞濃度は、約10の8乗cfu/mlであった。菌数(芽胞数)の計測は、標準寒天培地による30℃、48時間培養での混釈法による(cfu/ml)。
{Adjustment of spore fluid}
In the test, spores of Bacillus cereus B-164 (derived from milk) were used. Bacillus cereus was cultured in Ca (0.1%)-SMA medium at 30 ° C. for 1 week. The obtained colonies of Bacillus cereus were suspended in sterile physiological saline. The suspension was washed repeatedly by centrifugation (3000 rpm, 15 minutes) three times, then heated at 80 ° C. for 10 minutes to sterilize only vegetative cells, and this was used as a spore solution for the test. In addition, the spore concentration of the obtained spore fluid (stock solution) was about 10 8 cfu / ml. The number of bacteria (spore number) was measured by the pour method (cfu / ml) in a standard agar medium and cultured at 30 ° C. for 48 hours.

{アルカリ性水溶液}
浄水にNaOH(水酸化ナトリウム)を溶解して1(w/vol)%濃度に調整したNaOH水溶液をアルカリ性水溶液とした。このアルカリ性水溶液のpHは、13.5であった。
{Alkaline aqueous solution}
An aqueous NaOH solution adjusted to a concentration of 1 (w / vol)% by dissolving NaOH (sodium hydroxide) in purified water was used as an alkaline aqueous solution. The pH of this alkaline aqueous solution was 13.5.

{次亜塩素酸含有水}
既存の無隔膜型の電解水製造装置を用いて製造した微酸性電解水を使用した。この種の電解水製造装置としては、例えば、「ハイクロソフト水生成装置(Well CLEAN−TE NDX−65KM−H、株式会社オーク製)」、「除菌洗浄水生成装置(ACDION250、日本アクア販売株式会社製)」、「微酸性電解水生成装置(ピュアスター Mp−240E、森永乳業株式会社製)」を挙げることができる。製造装置から得られた微酸性電解水(原液)は、有効塩素濃度が約60ppm、pHが6.7であった。この微酸性電解水(原液)を滅菌水で希釈して所定の有効塩素濃度(1、5、10、20ppm)に調整したものを試験に供した。希釈後の各微酸性電解水(試験液)のpHは、6.7〜6.8の範囲にあり、ほとんど変化はなかった。なお、有効塩素濃度が1ppmの微酸性電解水については、有効塩素濃度をDPD法によって測定した。また、その他の有効塩素濃度の微酸性電解水については、有効塩素濃度をヨードメトリー法によって測定した。
{Hypochlorous acid-containing water}
Slightly acidic electrolyzed water produced using an existing membrane-type electrolyzed water production apparatus was used. Examples of this type of electrolyzed water production apparatus include “Hycrosoft Water Generator (Well CLEAN-TE NDX-65KM-H, manufactured by Oak Co., Ltd.)”, “Sterilized Washing Water Generator (ACDION250, Nippon Aqua Sales Co., Ltd.) And "Slightly acidic electrolyzed water generator (Purestar Mp-240E, manufactured by Morinaga Milk Industry Co., Ltd.)". The slightly acidic electrolyzed water (stock solution) obtained from the production apparatus had an effective chlorine concentration of about 60 ppm and a pH of 6.7. This slightly acidic electrolyzed water (stock solution) diluted with sterilized water and adjusted to a predetermined effective chlorine concentration (1, 5, 10, 20 ppm) was subjected to the test. The pH of each slightly acidic electrolyzed water (test solution) after dilution was in the range of 6.7 to 6.8, and there was almost no change. In addition, about the slightly acidic electrolyzed water whose effective chlorine concentration is 1 ppm, the effective chlorine concentration was measured by DPD method. Moreover, about the slightly acidic electrolyzed water of other effective chlorine concentration, the effective chlorine concentration was measured by the iodometry method.

{殺菌前工程}
希釈瓶に入れたアルカリ性水溶液10mlを75℃の恒温水槽に入れ、スターラーで攪拌しながら75℃に安定させた後、そこに芽胞液(原液)0.1mlを接種し、保持した。芽胞液を接種してからの経過時間(処理時間)が8.5分となった後、芽胞液(原液)を接種したアルカリ性水溶液10mlを、直ちに氷冷した40mlの0.2Mリン酸緩衝液(pHが6.4)に添加して急冷するとともに、pHを中和させ、アルカリ処理芽胞液を得た。
{Pre-sterilization process}
10 ml of an alkaline aqueous solution placed in a dilution bottle was placed in a 75 ° C. constant temperature water bath and stabilized at 75 ° C. while stirring with a stirrer, and then 0.1 ml of a spore solution (stock solution) was inoculated therein and retained. After the elapsed time (treatment time) after inoculation of the spore fluid was 8.5 minutes, 10 ml of the alkaline aqueous solution inoculated with the spore fluid (stock solution) was immediately ice-cooled with 40 ml of 0.2 M phosphate buffer. While adding (pH 6.4) and quenching, the pH was neutralized to obtain an alkali-treated spore solution.

{殺菌工程}
1、5、10、20ppmの各有効塩素濃度に調整した各微酸性電解水100mlの入った滅菌瓶を20℃の恒温水槽に入れ、スターラーで攪拌しながら20℃に安定させた。安定後、先のアルカリ処理芽胞液1mlを各滅菌瓶に添加した。次いで所定時間(反応時間)経過ごとに、各滅菌瓶から1mlをピペットで取り出し、氷冷した0.1Nチオ硫酸ナトリウム溶液4mlの入った試験管に直ちに添加・攪拌することにより、次亜塩素酸を中和させて殺菌処理芽胞液を得た。各殺菌処理芽胞液について、残存菌数(生残芽胞数)の計測を行った(試験A)。微酸性電解水単独での殺菌効果を計測するために、本試験と同時に、殺菌前工程を行っていない芽胞液についても同様の処理を行った(対照A)。
{Sterilization process}
A sterilized bottle containing 100 ml of each slightly acidic electrolyzed water adjusted to each effective chlorine concentration of 1, 5, 10, and 20 ppm was placed in a constant temperature water bath at 20 ° C. and stabilized at 20 ° C. while stirring with a stirrer. After stabilization, 1 ml of the previous alkali-treated spore solution was added to each sterilized bottle. Then, after each predetermined time (reaction time), 1 ml from each sterilization bottle is removed with a pipette, and immediately added to and stirred in a test tube containing 4 ml of ice-cooled 0.1N sodium thiosulfate solution. Was neutralized to obtain a sterilized spore solution. About each sterilization processing spore liquid, the number of residual bacteria (survival spore number) was measured (test A). In order to measure the bactericidal effect of the slightly acidic electrolyzed water alone, the same treatment was carried out on the spore liquid not subjected to the pre-sterilization step simultaneously with this test (Control A).

(アルカリ性水溶液単独での殺菌効果)本試験に先立って、殺菌前工程単独での芽胞の殺菌効果について確認した結果を図1のグラフに示す。先のアルカリ処理芽胞液について、処理前後での菌数(芽胞数)を繰り返し計測し、その計測結果を比較したものである(N数=6)。グラフより明らかなように、その殺菌効果は、0.5D〜0.9Dであり、1D以下の殺菌効果しか認められなかった。なお、ここでいう「D」とは、殺菌効果を表したものであり、1ml当たりの菌数を常用対数で表し(LOG値)、その処理前の菌数(LOG値)から処理後の菌数(LOG値)を減算した値を示している。   (Bactericidal effect of alkaline aqueous solution alone) Prior to this test, the results of confirming the sterilizing effect of the spore in the pre-sterilization step alone are shown in the graph of FIG. About the previous alkali-treated spore solution, the number of bacteria (number of spores) before and after the treatment was repeatedly measured, and the measurement results were compared (N number = 6). As is clear from the graph, the bactericidal effect was 0.5D to 0.9D, and only a bactericidal effect of 1D or less was observed. In addition, "D" here represents the bactericidal effect, and represents the number of bacteria per ml as a common logarithm (LOG value), and the number of bacteria before the treatment (LOG value). A value obtained by subtracting a number (LOG value) is shown.

(試験条件下での殺菌効果)上述した各試験条件で得られた試験結果を次の表1及び図2〜図6に示す。図2〜図5の縦軸は残存菌数(生残芽胞数)(LOG値)を示し、横軸は反応時間(分)を示している。対照Aとして行った殺菌前工程のない条件下(微酸性電解水単独)では、いずれの有効塩素濃度においても、ほとんど殺菌効果は得られなかった。それに対して、本実施の形態に係る方法(試験A)によれば、1ppm以上で殺菌効果が認められ、とくに5ppm以上では、図6に示すように、5分以内で検出限界以下の2.6D以上の優れた殺菌効果が認められた。すなわち、微酸性電解水による殺菌に先立って、アルカリ性水溶液に接触させる殺菌前処理を行うことにより、微酸性電解水単独、あるいはアルカリ性水溶液単独で得られる殺菌効果を遥かに超える、優れた殺菌効果を得ることができた。その機構については検証できていないが、殺菌に先立って芽胞を強アルカリ性の水溶液に接触させることで、芽胞の胞子殻、あるいは外皮の表面構造が溶解等されて変質し、芽胞の次亜塩素酸に対する薬剤耐性を著しく低下させることが可能になっているものと推測される。   (Bactericidal effect under test conditions) The test results obtained under the test conditions described above are shown in Table 1 and FIGS. The vertical axis in FIGS. 2 to 5 represents the number of remaining bacteria (number of surviving spores) (LOG value), and the horizontal axis represents the reaction time (minutes). Under conditions without the pre-sterilization step performed as Control A (slightly acidic electrolyzed water alone), almost no bactericidal effect was obtained at any effective chlorine concentration. On the other hand, according to the method (test A) according to the present embodiment, a bactericidal effect is observed at 1 ppm or more, and particularly at 5 ppm or more, as shown in FIG. An excellent bactericidal effect of 6D or more was observed. In other words, prior to sterilization with slightly acidic electrolyzed water, by performing a sterilization pretreatment in contact with an alkaline aqueous solution, an excellent sterilizing effect far exceeding the sterilizing effect obtained with the slightly acidic electrolyzed water alone or the alkaline aqueous solution alone is achieved. I was able to get it. Although the mechanism has not been verified yet, the spore shell or outer surface structure of the spore is dissolved and altered by bringing the spore into contact with a strong alkaline aqueous solution prior to sterilization, resulting in hypochlorous acid in the spore. It is presumed that it is possible to remarkably reduce the drug resistance against.

Figure 2008074491
Figure 2008074491

(殺菌前工程における処理時間の影響)次に、殺菌前工程における処理時間の長さが微酸性電解水の殺菌効果に与える影響を確認した。殺菌前工程において、処理時間を0.5、1、2、3、4、5、6、7、8.5分としたアルカリ処理芽胞液を得た。各処理時間に設定したアルカリ処理芽胞液に対して上述の殺菌工程を行い、残存菌数(生残芽胞数)を計測した(試験B)。ただし、殺菌工程において、有効塩素濃度5ppmの微酸性電解水を使用し、反応時間を5分とした。また、処理時間の長さがアルカリ性水溶液単独での殺菌効果に与える影響を確認するために、殺菌前工程の処理前後での菌数(芽胞数)を計測した(対照B)。   (Influence of treatment time in pre-sterilization process) Next, the influence of the length of the treatment time in the pre-sterilization process on the sterilization effect of slightly acidic electrolyzed water was confirmed. In the pre-sterilization step, an alkali-treated spore solution with treatment times of 0.5, 1, 2, 3, 4, 5, 6, 7, and 8.5 minutes was obtained. The above-mentioned sterilization process was performed on the alkali-treated spore solution set for each treatment time, and the number of remaining bacteria (number of surviving spore) was measured (Test B). However, in the sterilization process, slightly acidic electrolyzed water having an effective chlorine concentration of 5 ppm was used, and the reaction time was 5 minutes. Moreover, in order to confirm the influence which the length of processing time has on the bactericidal effect by alkaline aqueous solution single, the number of bacteria (spore number) before and behind the process of the pre-sterilization process was measured (control B).

各処理時間における微酸性電解水の殺菌効果を表2に示す。表2より明らかなように、アルカリ性水溶液単独(対照B)では、処理時間の長さに関係なく殺菌効果が0.5D以下である。一方、試験Bでは、処理時間が1分から1D以上の殺菌効果が認められ、6分でほぼ最大(3.1D)となった。つまり、芽胞を強アルカリ性の水溶液に接触させる時間が長いほど、微酸性電解水の殺菌効果が増大することを確認できた。   Table 2 shows the bactericidal effect of slightly acidic electrolyzed water in each treatment time. As is clear from Table 2, the alkaline aqueous solution alone (Control B) has a bactericidal effect of 0.5 D or less regardless of the length of the treatment time. On the other hand, in the test B, the bactericidal effect of 1 to 1D or more was recognized for the treatment time, which was almost the maximum (3.1D) in 6 minutes. That is, it was confirmed that the longer the time for which the spore was brought into contact with the strongly alkaline aqueous solution, the greater the bactericidal effect of the slightly acidic electrolyzed water.

Figure 2008074491
Figure 2008074491

(その他の試験条件の影響)他の薬剤を含むアルカリ性水溶液を殺菌前工程に使用した場合における、本実施の形態に係る殺菌方法の効果に与える影響ついて確認した。すなわち、殺菌前工程において、アルカリ性水溶液として1(w/vol)%濃度に調整したエクリン110号(理工協産株式会社製)水溶液を用いた。なお、1%濃度のエクリン110号水溶液のpHは、13.5であった。1%濃度のエクリン110号水溶液を用いたアルカリ処理芽胞液に対して、上述の殺菌工程を行い、残存菌数(生残芽胞数)を調べた。この結果、1%濃度のエクリン110号水溶液を用いた場合であっても、試験Aと同様の殺菌効果が得られた。このことから、アルカリ性水溶液には、NaOH単独の水溶液だけでなく、他の薬剤を含む水溶液も殺菌前工程に使用できることを確認できた。   (Influence of other test conditions) The influence on the effect of the sterilization method according to the present embodiment when an alkaline aqueous solution containing other chemicals was used in the pre-sterilization process was confirmed. That is, in the pre-sterilization step, an Ecline 110 (Riko Kyosan Co., Ltd.) aqueous solution adjusted to a concentration of 1 (w / vol)% was used as the alkaline aqueous solution. In addition, pH of 1% concentration Ecrine No. 110 aqueous solution was 13.5. The above-mentioned sterilization step was performed on the alkali-treated spore solution using 1% concentration of Ecline No. 110 aqueous solution, and the number of remaining bacteria (number of surviving spores) was examined. As a result, the same bactericidal effect as Test A was obtained even when 1% concentration of Ecline No. 110 aqueous solution was used. From this, it was confirmed that not only an aqueous solution of NaOH alone but also an aqueous solution containing other chemicals can be used for the pre-sterilization step as the alkaline aqueous solution.

また、芽胞の表皮構造の違いが本実施の形態に係る殺菌方法の効果に与える影響について確認した。すなわち、芽胞菌の一種であるBacillus subtilis(B-162、乳由来)およびBacillus licheniformis(No.33、ヨーグルト由来)の各芽胞を用いて、セレウス菌の芽胞液と同様に調整した芽胞液を、上述の殺菌方法で処理して、各芽胞液における残存菌数(生残芽胞数)を調べた。その結果、試験Aと同様の殺菌効果が得られた。なお、セレウス菌は、エキソスポリウムと呼ばれる表皮構造を有し、Bacillus subtilisおよびBacillus licheniformisはエキソスポリウムを有しない。このことから、本実施の形態に係る殺菌方法は、芽胞の表皮構造に関係なく、幅広い芽胞に対して優れた殺菌効果が得られることを確認できた。   Moreover, it confirmed about the influence which the difference in the epidermis structure of a spore exerts on the effect of the sterilization method which concerns on this Embodiment. That is, using each spore of Bacillus subtilis (B-162, derived from milk) and Bacillus licheniformis (No. 33, derived from yogurt), which is a kind of spore fungus, a spore solution prepared in the same manner as the spore solution of Bacillus cereus, It processed by the above-mentioned sterilization method, and the number of residual bacteria (number of living residual spores) in each spore liquid was investigated. As a result, the same bactericidal effect as test A was obtained. In addition, Bacillus subtilis and Bacillus licheniformis do not have exosporium, and Bacillus subtilis and Bacillus licheniformis have an epidermis structure called exosporium. From this, it was confirmed that the sterilization method according to the present embodiment can provide an excellent sterilization effect on a wide range of spores regardless of the epidermis structure of the spores.

(第2の実施の形態)
次に、本発明の第2の実施の形態に係る殺菌方法の条件およびその効果を試験結果に基づいて、上記第1の実施の形態と異なる点を中心に説明する。なお、本実施の形態に係る殺菌方法が上記第1の実施の形態に係る殺菌方法と異なる点は、微酸性電解水に換えて低濃度塩素水を使用する点である。低濃度塩素水とは、有効塩素濃度が1〜50ppmの次亜塩素酸ナトリウム水溶液のことをいう。
(Second Embodiment)
Next, conditions and effects of the sterilization method according to the second embodiment of the present invention will be described based on the test results, focusing on differences from the first embodiment. The sterilization method according to the present embodiment is different from the sterilization method according to the first embodiment in that low-concentration chlorine water is used instead of slightly acidic electrolyzed water. Low concentration chlorine water means an aqueous sodium hypochlorite solution having an effective chlorine concentration of 1 to 50 ppm.

{次亜塩素酸含有水}
有効塩素濃度が7〜8(w/vol)%の次亜塩素酸ナトリウム水溶液(原液)を滅菌水で希釈して、所定の有効塩素濃度(1、5、10、20ppm)に調整したものを、低濃度塩素水として試験に供した。各有効塩素濃度に調整した低濃度塩素水(試験液)のpHは、6.7〜8.9の範囲であった。なお、低濃度塩素水(試験液)における次亜塩素酸ナトリウムの濃度は、有効塩素濃度と一致する。また、有効塩素濃度が1ppmの低濃度塩素水については、有効塩素濃度をDPD法によって測定した。また、その他の有効塩素濃度の低濃度塩素水については、有効塩素濃度をヨードメトリー法によって測定した。
{Hypochlorous acid-containing water}
A sodium hypochlorite aqueous solution (stock solution) having an effective chlorine concentration of 7 to 8 (w / vol)% diluted with sterilized water and adjusted to a predetermined effective chlorine concentration (1, 5, 10, 20 ppm) The test was conducted as low-concentration chlorine water. The pH of the low-concentration chlorine water (test solution) adjusted to each effective chlorine concentration was in the range of 6.7 to 8.9. Note that the concentration of sodium hypochlorite in the low-concentration chlorine water (test solution) coincides with the effective chlorine concentration. Moreover, about the low concentration chlorine water whose effective chlorine concentration is 1 ppm, the effective chlorine concentration was measured by DPD method. For other low-concentration chlorine water having an effective chlorine concentration, the effective chlorine concentration was measured by an iodometry method.

{殺菌工程}
上記実施の形態に記述した殺菌工程において、微酸性電解水に換えて、1、5、10、20ppmの各有効塩素濃度に調整した低濃度塩素水(試験液)を用いた。これにより、各有効塩素濃度に調整した低濃度塩素水を用いた殺菌処理芽胞液を得た。各殺菌処理芽胞液について、残存菌数(生残芽胞数)を計測した(試験C)。また、試験Cと同時に、低濃度塩素水単独での殺菌効果を計測した。すなわち、各有効塩素濃度に調整した低濃度塩素水を用いて、殺菌前工程を行っていない芽胞液についても上記実施の形態に記述した殺菌工程と同様の処理を行った(対照C)。
{Sterilization process}
In the sterilization step described in the above embodiment, low-concentration chlorine water (test solution) adjusted to each effective chlorine concentration of 1, 5, 10, 20 ppm was used instead of the slightly acidic electrolyzed water. Thereby, the bactericidal treatment spore liquid using the low concentration chlorine water adjusted to each effective chlorine concentration was obtained. For each sterilized spore solution, the number of remaining bacteria (number of surviving spores) was measured (Test C). Simultaneously with test C, the bactericidal effect of low-concentration chlorine water alone was measured. That is, using the low-concentration chlorine water adjusted to each effective chlorine concentration, the same treatment as the sterilization step described in the above embodiment was performed on the spore liquid that had not been subjected to the pre-sterilization step (Control C).

(試験条件下での殺菌効果)上述した各試験条件で得られた試験結果を次の表3及び図7〜図11に示す。図7〜図10の縦軸は残存菌数(生残芽胞数)(LOG値)を示し、横軸は反応時間(分)を示している。対照Cとして行った殺菌前工程のない条件下(低濃度塩素水単独)では、いずれの有効塩素濃度においても、ほとんど殺菌効果は得られなかった。それに対して、本実施の形態に係る殺菌方法(試験C)によれば、1ppm以上で殺菌効果が認められ、とくに5ppm以上では、図11に示すように、反応時間が2分以内で、検出限界以下の2.5D以上の優れた殺菌効果が認められた。つまり、殺菌処理に低濃度塩素水を用いる試験Cの殺菌効果は、殺菌処理に微酸性電解水を用いる試験Aの殺菌効果より優れていることを確認できた。   (Bactericidal effect under test conditions) The test results obtained under the test conditions described above are shown in Table 3 and FIGS. The vertical axis | shaft of FIGS. 7-10 has shown the number of residual bacteria (survival spore number) (LOG value), and the horizontal axis has shown reaction time (minute). Under the conditions without the pre-sterilization step performed as Control C (low concentration chlorine water alone), almost no bactericidal effect was obtained at any effective chlorine concentration. On the other hand, according to the sterilization method according to the present embodiment (Test C), the sterilization effect is recognized at 1 ppm or more, and particularly at 5 ppm or more, the reaction time is within 2 minutes as shown in FIG. An excellent bactericidal effect of 2.5D or less below the limit was observed. That is, it was confirmed that the sterilizing effect of test C using low-concentration chlorine water for sterilization treatment was superior to the sterilizing effect of test A using slightly acidic electrolyzed water for sterilization treatment.

本実施の形態に係る殺菌方法は、低濃度塩素水による殺菌に先立って、アルカリ性水溶液に接触させる殺菌前処理を行う。これにより、低濃度塩素水単独では殺菌効果を得ることができない芽胞に対しても、上記第1の実施の形態に係る殺菌方法の殺菌効果を超える、優れた殺菌効果を得ることができる。その機構は、上記第1の実施の形態1と同様であるものと推測される。   The sterilization method according to the present embodiment performs a sterilization pretreatment in contact with an alkaline aqueous solution prior to sterilization with low-concentration chlorine water. Thereby, the outstanding bactericidal effect beyond the bactericidal effect of the sterilization method which concerns on the said 1st Embodiment can be acquired also with respect to the spore which cannot obtain a bactericidal effect only by low concentration chlorine water. The mechanism is assumed to be the same as that of the first embodiment.

Figure 2008074491
Figure 2008074491

次に、本発明を具体的な生産工程に適用した実施例を示す。上記実施の形態に係る殺菌方法は、例えば、リサイクル利用される市乳などのガラス瓶を対象とした洗瓶工程に好適である。この種のガラス瓶は、リサイクルの過程でセレウス菌に汚染されて、耐性の強いセレウス菌などの芽胞が付着している場合があり、これによる食中毒を確実に防止することが、安全衛生上極めて重要な課題となっているからである。   Next, the Example which applied this invention to the specific production process is shown. The sterilization method according to the above embodiment is suitable for a bottle washing process for glass bottles such as municipal milk that is recycled. This type of glass bottle may be contaminated with Bacillus cereus during the recycling process and adhere to highly resistant Bacillus cereus and other spores. It is extremely important for safety and health to prevent food poisoning due to this. This is because it is a difficult task.

例えば図12は、その洗瓶設備を示したものであり、洗浄薬剤を含む洗浄水を貯留した複数の洗浄水槽1(ここでは4槽)と、浄水を貯留したリンス水槽2(ここでは1槽)と、浄水で噴霧洗浄を行うリンス装置3と、各洗浄水槽1、リンス水槽2、リンス装置3の順に連続して処理できるようにガラス瓶を搬送する搬送装置4とを備えている。図示しないが、洗浄水槽1およびリンス水槽2には、貯留した洗浄水やリンス水を加熱する加熱設備や水質を維持するための循環ろ過設備なども併設されている。   For example, FIG. 12 shows the washing bottle equipment, and a plurality of washing water tanks 1 (here, 4 tanks) storing washing water containing a cleaning chemical and a rinse water tank 2 (here, 1 tank) storing purified water. ), And a rinsing device 3 that performs spray cleaning with purified water, and a conveying device 4 that conveys the glass bottle so that each washing water tank 1, the rinsing water tank 2, and the rinsing device 3 can be successively processed in this order. Although not shown, the washing water tank 1 and the rinsing water tank 2 are also provided with heating equipment for heating the stored washing water and rinsing water, circulation filtration equipment for maintaining water quality, and the like.

ガラス瓶は、搬送装置4によって図12中の矢印の方向に搬送されて、各洗浄水槽1の洗浄水中に連続的に浸漬処理されることにより、回収したガラス瓶に付着した異物や汚れが徐々に除去されていく(洗浄工程)。次いで、リンス水槽2の浄水中に浸漬処理し、リンス装置3でガラス瓶の内部および外部を噴霧洗浄することにより、ガラス瓶に付着した洗浄水は浄水で洗い流される(リンス工程)。洗浄工程では、浸漬処理以外に洗浄水を噴霧する洗浄水噴霧処理を行う場合もある。一連の洗浄工程に要する時間は8分〜10分程度である。   The glass bottle is transported in the direction of the arrow in FIG. 12 by the transport device 4 and continuously immersed in the cleaning water of each cleaning water tank 1 to gradually remove foreign matter and dirt attached to the recovered glass bottle. (Cleaning process). Next, by immersing in clean water in the rinse water tank 2 and spray-cleaning the inside and outside of the glass bottle with the rinse device 3, the wash water adhering to the glass bottle is washed away with clean water (rinse process). In the cleaning process, there may be a cleaning water spray process in which cleaning water is sprayed in addition to the immersion process. The time required for the series of washing steps is about 8 to 10 minutes.

次いで、先の洗瓶設備と同様の設備を用いて殺菌が行われる。洗瓶されたガラス瓶は、そのまま連続して200ppmなどの高濃度の次亜塩素酸ナトリウム水溶液(高濃度塩素水)で殺菌する殺菌工程と、高濃度塩素水を洗い流すリンス工程とが行われる。その一連の洗瓶工程のフローを図13に示す。この洗瓶工程に上記実施の形態に係る殺菌方法を適用するのである。   Next, sterilization is performed using equipment similar to the previous washing bottle equipment. The washed glass bottle is continuously subjected to a sterilization process in which it is sterilized with a high-concentration sodium hypochlorite aqueous solution (high-concentration chlorine water) such as 200 ppm and a rinsing process in which the high-concentration chlorine water is washed away. The flow of the series of washing bottle processes is shown in FIG. The sterilization method according to the above embodiment is applied to this washing bottle process.

(実施例1)
まず、図13に示す従来法の洗瓶工程に上記第1の実施の形態に係る殺菌方法を適用した例を説明する。すなわち、図13の(a)に示すように、高濃度塩素水による殺菌工程およびその後のリンス工程を、上記第1の実施の形態に係る所定のアルカリ水溶液による殺菌前工程および微酸性電解水による殺菌工程に置き換える。例えば、図12に示す洗瓶設備を用いて殺菌を行う場合、洗浄水槽1に貯留した洗浄水に換えて上記第1の実施の形態に係る所定のアルカリ水溶液を使用し、リンス水槽2に貯留した浄水およびリンス装置3で噴霧する浄水に換えて上記第1の実施の形態に係る所定の微酸性電解水を使用する。
(Example 1)
First, an example in which the sterilization method according to the first embodiment is applied to the conventional bottle washing process shown in FIG. That is, as shown in FIG. 13 (a), the sterilization step with high-concentration chlorine water and the subsequent rinsing step are performed by the pre-sterilization step with the predetermined alkaline aqueous solution and the slightly acidic electrolyzed water according to the first embodiment. Replace with sterilization process. For example, when sterilization is performed using the washing bottle facility shown in FIG. 12, the predetermined alkaline aqueous solution according to the first embodiment is used in place of the washing water stored in the washing water tank 1 and stored in the rinse water tank 2. The predetermined slightly acidic electrolyzed water according to the first embodiment is used instead of the purified water sprayed with the purified water and the rinse device 3.

具体的には、リンス工程でリンスしたガラス瓶を、pHが11〜14、水温が50〜80℃の範囲に設定されたNaOH水溶液が貯留された洗浄水槽1に5分〜10分間、浸漬処理する(殺菌前工程)。NaOHは安価な強アルカリ薬剤であり、食品製造設備で汎用されているため、アルカリ性水溶液に好適である。ここでpHを11以上としたのは、これ以上であると酵素の失活が認められ、タンパク質の変性にも効果的だからである。50℃以上の水温であれば、加熱によるタンパク質の変性作用が得られてより効果的であり、芽胞以外の細菌細胞やカビ・酵母を殺菌することができる。しかし、80℃を超えると、ガラス瓶自体に損傷を与えるおそれがあり、熱効率も悪くなるため、80℃以下に設定するのが好ましい。   Specifically, the glass bottle rinsed in the rinsing process is immersed in a washing water tank 1 in which an aqueous NaOH solution having a pH of 11 to 14 and a water temperature of 50 to 80 ° C. is stored for 5 to 10 minutes. (Pre-sterilization process). NaOH is an inexpensive strong alkaline agent and is widely used in food production facilities and is therefore suitable for an alkaline aqueous solution. The reason why the pH is 11 or more is that if it is more than this, inactivation of the enzyme is recognized and it is effective for denaturation of the protein. If the water temperature is 50 ° C. or higher, the protein denaturation action by heating is obtained, which is more effective, and bacteria cells other than spores, molds and yeasts can be sterilized. However, if it exceeds 80 ° C., the glass bottle itself may be damaged, and the thermal efficiency is also deteriorated. Therefore, the temperature is preferably set to 80 ° C. or lower.

続いて、NaOH水溶液で処理したガラス瓶を、pHが4〜7、有効塩素濃度が1〜50ppmの範囲に設定された微酸性電解水が貯留されたリンス水槽2に浸漬し、リンス装置3で微酸性電解水を噴霧洗浄することにより殺菌処理する(殺菌工程)。有効塩素濃度は高い方が好ましいが、50ppmを上回ると、塩素臭の残存等の問題が発生するため、50ppm以下に設定した。かかる条件であれば、塩素臭などの異臭や、トリハロメタンの問題も一挙に解決することができ、芽胞を効果的に殺菌することができる。とくに、有効塩素濃度を5〜20ppmの範囲に設定すれば、耐性の強いセレウス菌の芽胞でも、5分以内の短い時間で確実に2.6D以上の殺菌効果を得ることができる。なお、残存塩素を完全に除去するために、殺菌工程の最後に浄水によるリンス工程を設けてあってもよい。ただし、この場合でも、多量のリンス水は不要となるはずである。なお、微酸性電解水の水温は常温でよく、20℃程度に設定しておけばよい。   Subsequently, the glass bottle treated with the NaOH aqueous solution is immersed in a rinse water tank 2 in which slightly acidic electrolyzed water having a pH of 4 to 7 and an effective chlorine concentration of 1 to 50 ppm is stored. It is sterilized by spraying acidic electrolyzed water (sterilization process). A higher effective chlorine concentration is preferable, but if it exceeds 50 ppm, problems such as residual chlorine odor occur, so it was set to 50 ppm or less. Under such conditions, the problem of off-flavor such as chlorine odor and trihalomethane can be solved at once, and spores can be effectively sterilized. In particular, if the effective chlorine concentration is set in the range of 5 to 20 ppm, even a highly resistant Bacillus cereus spore can reliably obtain a bactericidal effect of 2.6D or more in a short time of 5 minutes or less. In order to completely remove residual chlorine, a rinsing process with purified water may be provided at the end of the sterilization process. However, even in this case, a large amount of rinsing water should be unnecessary. The water temperature of the slightly acidic electrolyzed water may be room temperature and may be set to about 20 ° C.

図13の(b)及び(c)は、別の適用例を示したものである。そこでは、洗瓶工程にさらに上記第1の実施の形態に係る殺菌方法を組み入れて、一連の工程を大幅に簡略化できるようにした。   FIGS. 13B and 13C show another application example. There, the sterilization method according to the first embodiment is further incorporated into the washing bottle process so that the series of processes can be greatly simplified.

図13の(b)では、洗浄工程で使用する洗浄水に換えてアルカリ水溶液を用いることにより、洗浄工程が図13(a)に示す殺菌前工程を兼用するようにした。   In FIG. 13B, the alkaline aqueous solution is used instead of the washing water used in the washing step, so that the washing step also serves as the pre-sterilization step shown in FIG.

具体的には、図12に示す洗瓶設備であれば、各洗浄水槽1に貯留する洗浄水に換えて、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定されたNaOH水溶液を使用すればよい。そうすることで、例えば図12に示す洗瓶設備を殺菌に使用していた場合であれば、殺菌前工程に用いていた洗浄水槽1をなくすことができ、洗浄工程から殺菌工程に至る一連の洗瓶工程を簡略化できるうえ、使用する薬剤や水量を大幅に減少させることができる。   Specifically, in the case of the washing bottle facility shown in FIG. 12, instead of the washing water stored in each washing water tank 1, the pH is set in the range of 11 to 14 and the water temperature is set in the range of 50 to 80 ° C. An aqueous NaOH solution may be used. By doing so, for example, if the washing bottle facility shown in FIG. 12 is used for sterilization, the washing water tank 1 used in the pre-sterilization process can be eliminated, and a series of processes from the cleaning process to the sterilization process can be eliminated. The washing bottle process can be simplified and the amount of chemicals and water used can be greatly reduced.

図13の(c)では、先の洗浄工程と図13(a)に示す殺菌前工程とを兼用することに加えて、リンス工程で使用する浄水に換えて所定の微酸性電解水を用いることにより、リンス工程も図13(a)に示す殺菌工程を兼用するようにして、一つの洗瓶設備だけで殺菌処理までも行えるようにした。   In (c) of FIG. 13, in addition to combining the previous washing step and the pre-sterilization step shown in FIG. 13 (a), a predetermined slightly acidic electrolyzed water is used in place of the purified water used in the rinsing step. Accordingly, the rinsing process is also used as the sterilization process shown in FIG. 13A, so that the sterilization process can be performed with only one washing bottle facility.

具体的には、図12に示す洗瓶設備において、各洗浄水槽1に貯留する洗浄水に換えて、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定されたNaOH水溶液を使用するとともに、リンス水槽2に貯留する浄水およびリンス装置3で噴霧する浄水に換えて、pHが4〜7、有効塩素濃度が1〜50ppmの範囲に設定された微酸性電解水を使用する。そうすることで、殺菌に使用していた設備が不要となって一連の洗瓶工程を大幅に簡略化できる。使用する水量も画期的に減少させることができ、生産性を格段に向上する。   Specifically, in the washing bottle facility shown in FIG. 12, an aqueous NaOH solution having a pH of 11 to 14 and a water temperature of 50 to 80 ° C. instead of the washing water stored in each washing water tank 1. In addition to the purified water stored in the rinsing water tank 2 and the purified water sprayed by the rinsing device 3, slightly acidic electrolyzed water having a pH of 4 to 7 and an effective chlorine concentration of 1 to 50 ppm is used. . By doing so, the equipment used for sterilization becomes unnecessary, and a series of washing bottle processes can be greatly simplified. The amount of water used can also be dramatically reduced, greatly improving productivity.

(実施例2)
次に、図13に示す従来法の洗瓶工程に上記第2の実施の形態に係る殺菌方法を適用した例を説明する。以下、実施例1と異なる点を中心に説明し、実施例1と同じ点についてはその説明を省略する。
(Example 2)
Next, an example in which the sterilization method according to the second embodiment is applied to the conventional bottle washing process shown in FIG. The following description will focus on the differences from the first embodiment, and the description of the same points as in the first embodiment will be omitted.

具体的には、図13(a)に示す殺菌工程において、微酸性電解水に換えてpHが6.5〜9.0、有効塩素濃度が1〜50ppmの範囲に設定された低濃度塩素水を用いる。すなわち、NaOH水溶液を用いて殺菌前工程の処理が行われたガラス瓶を、低濃度塩素水が貯留されたリンス水槽2に浸漬し、リンス装置3で低濃度塩素水を噴霧洗浄することにより殺菌処理する(殺菌工程)。なお、低濃度塩素水の水温は常温でよく、20℃程度に設定しておけばよい。   Specifically, in the sterilization step shown in FIG. 13 (a), low-concentration chlorine water having a pH of 6.5 to 9.0 and an effective chlorine concentration of 1 to 50 ppm in place of the slightly acidic electrolyzed water. Is used. That is, a glass bottle that has been subjected to a pre-sterilization process using an aqueous NaOH solution is immersed in a rinsing water tank 2 in which low-concentration chlorine water is stored, and sterilization treatment is performed by spraying low-concentration chlorine water with a rinse device 3. (Sterilization process). In addition, the water temperature of low concentration chlorine water may be normal temperature, and should just set to about 20 degreeC.

このとき、低濃度塩素水を使用した殺菌工程の後に行われるリンス工程を省略することができるため、使用する水量を減少させることができる。ただし、微酸性電解水と同様に、塩素臭の残存等を考慮して、低濃度塩素水の有効塩素濃度を50ppm以下に設定した。かかる条件であれば、塩素臭などの異臭や、トリハロメタンの問題も一挙に解決することができ、セレウス菌などの芽胞を効果的に殺菌することができる。とくに、低濃度塩素水の有効塩素濃度を5〜20ppmの範囲に設定すれば、耐性の強いセレウス菌などの芽胞でも、2分以内の短い時間で確実に2.5D以上の殺菌効果を得ることができる。   At this time, since the rinse process performed after the sterilization process using low concentration chlorine water can be omitted, the amount of water to be used can be reduced. However, as with the slightly acidic electrolyzed water, the effective chlorine concentration of the low-concentration chlorine water was set to 50 ppm or less in consideration of the residual chlorine odor and the like. Under such conditions, it is possible to solve problems of off-flavor such as chlorine odor and trihalomethane at once, and spores such as Bacillus cereus can be effectively sterilized. In particular, if the effective chlorine concentration of low-concentration chlorine water is set in the range of 5 to 20 ppm, even a highly resistant spore such as Bacillus cereus can reliably obtain a bactericidal effect of 2.5D or more in a short time of 2 minutes or less. Can do.

なお、上記実施例と同様に、残存塩素を完全に除去するために、殺菌工程の最後に浄水によるリンス工程を設けてもよい。この場合であっても、高濃度塩素水を用いる場合よりも多量のリンス水は不要となるはずである。   As in the above embodiment, a rinsing process with purified water may be provided at the end of the sterilization process in order to completely remove residual chlorine. Even in this case, a larger amount of rinsing water should be unnecessary than when high-concentration chlorine water is used.

また、上記実施例で説明した図13の(b)及び(c)に示す適用例に対して、微酸性電解水に換えて低濃度塩素水を用いることができる。図13(b)及び(c)に示す適用例に対しても、残存塩素を完全に除去するためのリンス工程を設けてもよい。   Further, in contrast to the application examples shown in FIGS. 13B and 13C described in the above embodiment, low-concentration chlorine water can be used instead of the slightly acidic electrolyzed water. Also for the application examples shown in FIGS. 13B and 13C, a rinsing step for completely removing residual chlorine may be provided.

なお、実施例1および実施例2において、アルカリ性水溶液は、NaOH単独の水溶液だけでなく、その他の薬剤を含む水溶液(例えば、エクリン110号水溶液など)であってもよい。   In Example 1 and Example 2, the alkaline aqueous solution may be not only an aqueous solution of NaOH alone but also an aqueous solution containing other chemicals (for example, Ecrine No. 110 aqueous solution).

第1の実施の形態に係る殺菌方法における殺菌前工程単独での殺菌効果を示すグラフである。It is a graph which shows the sterilization effect in the process before sterilization alone in the sterilization method concerning a 1st embodiment. 第1の実施の形態に係る殺菌方法の試験結果(有効塩素濃度1ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 1 ppm) of the sterilization method concerning a 1st embodiment. 第1の実施の形態に係る殺菌方法の試験結果(有効塩素濃度5ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 5 ppm) of the sterilization method concerning a 1st embodiment. 第1の実施の形態に係る殺菌方法の試験結果(有効塩素濃度10ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 10 ppm) of the sterilization method concerning a 1st embodiment. 第1の実施の形態に係る殺菌方法の試験結果(有効塩素濃度20ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 20 ppm) of the sterilization method concerning a 1st embodiment. 第1の実施の形態に係る殺菌方法における、反応時間と5〜20ppmの各有効塩素濃度における殺菌効果との関係を示すグラフである。It is a graph which shows the relationship between the reaction time in the sterilization method which concerns on 1st Embodiment, and the sterilization effect in each effective chlorine density | concentration of 5-20 ppm. 第2の実施の形態に係る殺菌方法の試験結果(有効塩素濃度1ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 1 ppm) of the sterilization method concerning a 2nd embodiment. 第2の実施の形態に係る殺菌方法の試験結果(有効塩素濃度5ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 5 ppm) of the sterilization method concerning a 2nd embodiment. 第2の実施の形態に係る殺菌方法の試験結果(有効塩素濃度10ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 10 ppm) of the sterilization method concerning a 2nd embodiment. 第2の実施の形態に係る殺菌方法の試験結果(有効塩素濃度20ppm)を示すグラフである。It is a graph which shows the test result (effective chlorine concentration of 20 ppm) of the sterilization method concerning a 2nd embodiment. 第2の実施の形態に係る殺菌方法における、反応時間と5〜20ppmの各有効塩素濃度における殺菌効果との関係を示すグラフである。It is a graph which shows the relationship between the reaction time and the bactericidal effect in each effective chlorine density | concentration of 5-20 ppm in the sterilization method which concerns on 2nd Embodiment. 洗瓶設備の概念図である。It is a conceptual diagram of a washing bottle equipment. 具体的な殺菌方法を説明するための工程フロー図である。It is a process flow figure for explaining a concrete sterilization method.

符号の説明Explanation of symbols

1 洗浄水槽
2 リンス水槽
3 リンス装置
4 搬送装置
1 Washing water tank 2 Rinse water tank 3 Rinse device 4 Conveying device

Claims (14)

食品容器をアルカリ性水溶液に接触させる殺菌前工程と、
前記アルカリ性水溶液に接触させた食品容器を次亜塩素酸含有水で殺菌する殺菌工程と、
を備えることを特徴とする食品容器の殺菌方法。
A pre-sterilization step of contacting the food container with an alkaline aqueous solution;
A sterilization step of sterilizing the food container in contact with the alkaline aqueous solution with hypochlorous acid-containing water;
A food container sterilization method comprising:
請求項1に記載の食品容器の殺菌方法において、
前記アルカリ性水溶液は、NaOH水溶液であり、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定されていることを特徴とする食品容器の殺菌方法。
In the food container sterilization method according to claim 1,
The said alkaline aqueous solution is NaOH aqueous solution, pH is the range of 11-14, The water temperature is set to the range of 50-80 degreeC, The sterilization method of the food container characterized by the above-mentioned.
請求項1または請求項2に記載の食品容器の殺菌方法において、
前記次亜塩素酸含有水は、微酸性電解水であり、pHが4〜7の範囲で、有効塩素濃度が1〜50ppmの範囲に設定されていることを特徴とする食品容器の殺菌方法。
In the sterilization method of the food container according to claim 1 or 2,
The method for sterilizing a food container, wherein the hypochlorous acid-containing water is slightly acidic electrolyzed water, and has a pH in the range of 4 to 7 and an effective chlorine concentration in the range of 1 to 50 ppm.
請求項1または請求項2に記載の食品容器の殺菌方法において、
前記次亜塩素酸含有水は、次亜塩素酸ナトリウム水溶液であり、pHが6.5〜9の範囲で、有効塩素濃度が1〜50ppmの範囲に設定されていることを特徴とする食品容器の殺菌方法。
In the sterilization method of the food container according to claim 1 or 2,
The hypochlorous acid-containing water is a sodium hypochlorite aqueous solution, having a pH of 6.5 to 9 and an effective chlorine concentration of 1 to 50 ppm. Sterilization method.
洗浄水で瓶を洗浄する洗浄工程と、
洗浄した瓶を水でリンスするリンス工程と、
リンスした瓶をアルカリ性水溶液に接触させる殺菌前工程と、
前記アルカリ性水溶液に接触させた瓶を微酸性電解水で殺菌する殺菌工程と、
を備えることを特徴とする食品容器の殺菌方法。
A washing step of washing the bottle with washing water;
A rinsing step of rinsing the washed bottle with water;
A pre-sterilization step of bringing the rinsed bottle into contact with an alkaline aqueous solution;
A sterilization step of sterilizing the bottle in contact with the alkaline aqueous solution with slightly acidic electrolyzed water;
A food container sterilization method comprising:
洗浄水で瓶を洗浄する洗浄工程と、
洗浄した瓶を水でリンスするリンス工程と、
リンスした瓶を微酸性電解水で殺菌する殺菌工程と、
を備え、
前記洗浄工程で使用される洗浄水が、アルカリ性水溶液であって、前記洗浄工程が殺菌前工程を兼ねていることを特徴とする食品容器の殺菌方法。
A washing step of washing the bottle with washing water;
A rinsing step of rinsing the washed bottle with water;
A sterilization step of sterilizing the rinsed bottle with slightly acidic electrolyzed water;
With
The washing water used in the washing step is an alkaline aqueous solution, and the washing step also serves as a pre-sterilization step.
洗浄水で瓶を洗浄する洗浄工程と、
洗浄した瓶をリンスするリンス工程と、
を備え、
前記洗浄工程で使用される洗浄水がアルカリ性水溶液であり、前記リンス工程で使用される水が微酸性電解水であって、前記洗浄工程が殺菌前工程を、前記リンス工程が殺菌工程をそれぞれ兼ねていることを特徴とする食品容器の殺菌方法。
A washing step of washing the bottle with washing water;
A rinsing process for rinsing the washed bottle;
With
The washing water used in the washing step is an alkaline aqueous solution, the water used in the rinsing step is slightly acidic electrolyzed water, the washing step serves as a pre-sterilization step, and the rinsing step serves as a sterilization step. A method for sterilizing a food container.
請求項5ないし請求項7のいずれかに記載の食品容器の殺菌方法において、
前記アルカリ性水溶液は、NaOH水溶液であり、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定されていることを特徴とする食品容器の殺菌方法。
In the method for sterilizing a food container according to any one of claims 5 to 7,
The said alkaline aqueous solution is NaOH aqueous solution, pH is the range of 11-14, The water temperature is set to the range of 50-80 degreeC, The sterilization method of the food container characterized by the above-mentioned.
請求項5ないし請求項7のいずれかに記載の食品容器の殺菌方法において、
前記微酸性電解水は、pHが4〜7の範囲で、有効塩素濃度が1〜50ppmの範囲に設定されていることを特徴とする食品容器の殺菌方法。
In the method for sterilizing a food container according to any one of claims 5 to 7,
The method for sterilizing a food container, wherein the slightly acidic electrolyzed water has a pH of 4 to 7 and an effective chlorine concentration of 1 to 50 ppm.
洗浄水で瓶を洗浄する洗浄工程と、
洗浄した瓶を水でリンスするリンス工程と、
リンスした瓶をアルカリ性水溶液に接触させる殺菌前工程と、
前記アルカリ性水溶液に接触させた瓶を次亜塩素酸ナトリウム水溶液で殺菌する殺菌工程と、
を備えることを特徴とする食品容器の殺菌方法。
A washing step of washing the bottle with washing water;
A rinsing step of rinsing the washed bottle with water;
A pre-sterilization step of bringing the rinsed bottle into contact with an alkaline aqueous solution;
A sterilization step of sterilizing the bottle in contact with the alkaline aqueous solution with an aqueous sodium hypochlorite solution;
A food container sterilization method comprising:
洗浄水で瓶を洗浄する洗浄工程と、
洗浄した瓶を水でリンスするリンス工程と、
リンスした瓶を次亜塩素酸ナトリウム水溶液で殺菌する殺菌工程と、
を備え、
前記洗浄工程で使用される洗浄水が、アルカリ性水溶液であって、前記洗浄工程が殺菌前工程を兼ねていることを特徴とする食品容器の殺菌方法。
A washing step of washing the bottle with washing water;
A rinsing step of rinsing the washed bottle with water;
A sterilization step of sterilizing the rinsed bottle with a sodium hypochlorite aqueous solution;
With
The washing water used in the washing step is an alkaline aqueous solution, and the washing step also serves as a pre-sterilization step.
洗浄水で瓶を洗浄する洗浄工程と、
洗浄した瓶をリンスするリンス工程と、
を備え、
前記洗浄工程で使用される洗浄水がアルカリ性水溶液であり、前記リンス工程で使用される水が次亜塩素酸ナトリウム水溶液であって、前記洗浄工程が殺菌前工程を、前記リンス工程が殺菌工程をそれぞれ兼ねていることを特徴とする食品容器の殺菌方法。
A washing step of washing the bottle with washing water;
A rinsing process for rinsing the washed bottle;
With
The washing water used in the washing step is an alkaline aqueous solution, the water used in the rinsing step is a sodium hypochlorite aqueous solution, the washing step is a pre-sterilization step, and the rinsing step is a sterilization step. A method for sterilizing food containers, which also serves as both.
請求項10ないし請求項12のいずれかに記載の食品容器の殺菌方法において、
前記アルカリ性水溶液が、NaOH水溶液であり、pHが11〜14の範囲で、水温が50〜80℃の範囲に設定されていることを特徴とする食品容器の殺菌方法。
The method for sterilizing a food container according to any one of claims 10 to 12,
The said alkaline aqueous solution is NaOH aqueous solution, pH is the range of 11-14, and the water temperature is set to the range of 50-80 degreeC, The sterilization method of the food container characterized by the above-mentioned.
請求項10ないし請求項12のいずれかに記載の食品容器の殺菌方法において、
次亜塩素酸ナトリウム水溶液は、pHが6.5〜9の範囲で、有効塩素濃度が1〜50ppmの範囲に設定されていることを特徴とする食品容器の殺菌方法。
The method for sterilizing a food container according to any one of claims 10 to 12,
The aqueous sodium hypochlorite aqueous solution has a pH of 6.5 to 9 and an effective chlorine concentration of 1 to 50 ppm.
JP2007212371A 2006-08-21 2007-08-16 Food container sterilization method Active JP5415681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212371A JP5415681B2 (en) 2006-08-21 2007-08-16 Food container sterilization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006223830 2006-08-21
JP2006223830 2006-08-21
JP2007212371A JP5415681B2 (en) 2006-08-21 2007-08-16 Food container sterilization method

Publications (2)

Publication Number Publication Date
JP2008074491A true JP2008074491A (en) 2008-04-03
JP5415681B2 JP5415681B2 (en) 2014-02-12

Family

ID=39346963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212371A Active JP5415681B2 (en) 2006-08-21 2007-08-16 Food container sterilization method

Country Status (1)

Country Link
JP (1) JP5415681B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261377A (en) * 2008-04-30 2009-11-12 Ecolog Recycling Japan:Kk Production method of ethanol
JP2011255917A (en) * 2010-06-08 2011-12-22 Daiwa Can Co Ltd Method for sterilizing container for aseptic filling
US8562796B2 (en) 2010-06-30 2013-10-22 Ecolab Usa Inc. Control system and method of use for controlling concentrations of electrolyzed water in CIP applications
CN107854706A (en) * 2017-06-30 2018-03-30 沪东中华造船(集团)有限公司 A kind of method for the sterilization cleaning of stainless steel chemical tanker drinking water tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327670A (en) * 1996-01-22 1997-12-22 Omuko:Kk Method and apparatus for cleaning and sterilizing tableware
WO2001021002A1 (en) * 1999-09-22 2001-03-29 Mayekawa Mfg. Co., Ltd. Poultry processing method and system
JP2004223367A (en) * 2003-01-21 2004-08-12 Gunze Ltd Bottle washing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327670A (en) * 1996-01-22 1997-12-22 Omuko:Kk Method and apparatus for cleaning and sterilizing tableware
WO2001021002A1 (en) * 1999-09-22 2001-03-29 Mayekawa Mfg. Co., Ltd. Poultry processing method and system
JP2004223367A (en) * 2003-01-21 2004-08-12 Gunze Ltd Bottle washing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261377A (en) * 2008-04-30 2009-11-12 Ecolog Recycling Japan:Kk Production method of ethanol
JP2011255917A (en) * 2010-06-08 2011-12-22 Daiwa Can Co Ltd Method for sterilizing container for aseptic filling
US8562796B2 (en) 2010-06-30 2013-10-22 Ecolab Usa Inc. Control system and method of use for controlling concentrations of electrolyzed water in CIP applications
CN107854706A (en) * 2017-06-30 2018-03-30 沪东中华造船(集团)有限公司 A kind of method for the sterilization cleaning of stainless steel chemical tanker drinking water tank

Also Published As

Publication number Publication date
JP5415681B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
Wirtanen et al. Disinfection in food processing–efficacy testing of disinfectants
JP5077230B2 (en) Disinfectant and disinfecting method in aseptic filling
EP2065342B1 (en) Method of sterilization and sterilizer apparatus
JP2001514932A (en) Sterilizer using catholyte and anolyte solutions produced by electrolysis of water
JP2002512875A (en) Production of active chlorine from sodium chloride in water in the presence of biological load
JP2010189034A (en) Method of sterilizing chamber of aseptic filling machine
JP5415681B2 (en) Food container sterilization method
JP2007209859A (en) Wastewater treatment method and wastewater treatment equipment of medical purpose cleaning and sterilizing device
US20150238646A1 (en) Method for cleaning, disinfecting and/or sterilising packaging means and/or components in container treatment systems
Ueda et al. Susceptibility of biofilm Escherichia coli, Salmonella enteritidis and Staphylococcus aureus to detergents and sanitizers
EP2456722B1 (en) Water decontamination system
Stoica Sustainable sanitation in the food industry
Tango et al. Application of electrolyzed water on environment sterilization
IL123089A (en) Method for sanitizing udders and milking units
Chmielewski et al. Inactivation of Listeria monocytogenes biofilms using chemical sanitizers and heat
JP2001179194A (en) Process and equipment for cleaning liquid beverage/food conveying path
JP2006014688A (en) Method for washing and sterilizing eggshell and apparatus for washing and sterilizing eggshell
JP4963055B2 (en) Disinfectant composition
CN107413716A (en) To the method for food contacting surface decontamination, cleaning and sterilization
TWI675619B (en) CIP cleaning and disinfection method for pasture equipment
JP4013667B2 (en) Container cleaning equipment
JPH07155770A (en) Infection preventing method, device therefor and production of sterilized drinking water and sterilized air-conditioning cooling water utilizing the device
JPH10323385A (en) Sterilizing method for vessel
JP2011255917A (en) Method for sterilizing container for aseptic filling
JP2001502998A (en) Use of aqueous chlorite solution for disinfection in the food industry.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130117

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5415681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350