JP2009261116A - Piezoelectric actuator and adjusting method of piezoelectric actuator - Google Patents

Piezoelectric actuator and adjusting method of piezoelectric actuator Download PDF

Info

Publication number
JP2009261116A
JP2009261116A JP2008106438A JP2008106438A JP2009261116A JP 2009261116 A JP2009261116 A JP 2009261116A JP 2008106438 A JP2008106438 A JP 2008106438A JP 2008106438 A JP2008106438 A JP 2008106438A JP 2009261116 A JP2009261116 A JP 2009261116A
Authority
JP
Japan
Prior art keywords
piezoelectric element
piezoelectric
piezoelectric actuator
laser beam
moving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008106438A
Other languages
Japanese (ja)
Inventor
Kazuhiro Shibatani
一弘 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008106438A priority Critical patent/JP2009261116A/en
Publication of JP2009261116A publication Critical patent/JP2009261116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric actuator suppressed in the variation of drive speed. <P>SOLUTION: By irradiating a piezoelectric element 3 of the piezoelectric actuator 1 which includes the piezoelectric element 3, a drive shaft 4 fixed to the piezoelectric element 3 at its one end, and a moving member 5 friction-engaged with the drive shaft 4 with a laser beam L, the piezoelectric element 3 is partially heated, or more preferably, heated to a Curie temperature or higher until the drive speed of the piezoelectric actuator 1 reaches desired speed, and a polarization rate of the piezoelectric element 3 is lowered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧電アクチュエータおよび圧電アクチュエータの調整方法に関する。   The present invention relates to a piezoelectric actuator and a method for adjusting a piezoelectric actuator.

例えば、特許文献1には、圧電素子を駆動源とし、圧電素子の伸縮により駆動軸を振動させ、駆動軸に摩擦係合する移動部材をすべり変位させる圧電アクチュエータが記載されている。このような圧電アクチュエータでは、圧電素子の伸縮特性のバラツキや圧電素子と駆動軸との傾き等よって、その駆動量(駆動速度)に誤差が発生する。   For example, Patent Document 1 describes a piezoelectric actuator that uses a piezoelectric element as a drive source, vibrates a drive shaft by expansion and contraction of the piezoelectric element, and slides and displaces a moving member that frictionally engages the drive shaft. In such a piezoelectric actuator, an error occurs in the driving amount (driving speed) due to variations in expansion / contraction characteristics of the piezoelectric element, inclination of the piezoelectric element and the driving shaft, and the like.

圧電素子は、例えば特許文献2に記載されているように、圧電材料の層を積層して製造され得る。圧電材料の組成やその層の厚みを厳密に均一にすることは困難であり、製造される圧電素子の伸縮特性には、ある程度のバラツキが存在する。   The piezoelectric element can be manufactured by laminating layers of piezoelectric material as described in Patent Document 2, for example. It is difficult to make the composition of the piezoelectric material and the thickness of the layer strictly uniform, and there is some variation in the expansion / contraction characteristics of the manufactured piezoelectric element.

圧電アクチュエータには、小型化と共に高精度化の要求が大きく、性能のバラツキによる駆動速度のバラツキが問題視される。圧電アクチュエータを高精度化するために、製造時に装置毎の駆動量を確認し、駆動電圧等を変更して駆動量が一定になるように調整する場合がある。しかしながら、このような調整を可能とするためには、駆動回路の構成が複雑になったり、調整値を記憶するメモリが必要になったりするという問題がある。
特開2001−103772号公報 特開2003−69100号公報
Piezoelectric actuators are required to be highly accurate along with miniaturization, and variations in driving speed due to variations in performance are regarded as problems. In order to increase the accuracy of the piezoelectric actuator, there is a case where the drive amount for each apparatus is confirmed at the time of manufacture, and the drive voltage is changed to adjust the drive amount to be constant. However, in order to enable such adjustment, there is a problem that the configuration of the drive circuit becomes complicated and a memory for storing the adjustment value becomes necessary.
JP 2001-103772 A JP 2003-69100 A

前記問題点に鑑みて、本発明は、駆動速度のバラツキの小さい圧電アクチュエータを提供することを課題とする。   In view of the above problems, it is an object of the present invention to provide a piezoelectric actuator with small variation in driving speed.

前記課題を解決するために、本発明による圧電アクチュエータは、圧電素子と、前記圧電素子に一端が固定された駆動軸と、前記駆動軸に摩擦係合する移動部材とを含み、前記圧電素子は、部分的に加熱されて、分極率が低下しているものとする。   In order to solve the above problems, a piezoelectric actuator according to the present invention includes a piezoelectric element, a drive shaft having one end fixed to the piezoelectric element, and a moving member that frictionally engages the drive shaft. It is assumed that the polarizability is lowered due to partial heating.

この構成によれば、圧電素子を部分的に加熱して、部分的に圧電特性を緩和することによって、圧電アクチュエータの駆動速度が所望の速度に低下するまで、圧電素子の伸縮量を低下させ、駆動速度のバラツキを小さくした、高精度の圧電アクチュエータを提供できる。   According to this configuration, by partially heating the piezoelectric element and partially relaxing the piezoelectric characteristics, the expansion / contraction amount of the piezoelectric element is reduced until the driving speed of the piezoelectric actuator is reduced to a desired speed, It is possible to provide a high-accuracy piezoelectric actuator with reduced variation in driving speed.

また、本発明による圧電アクチュエータの調整方法は、圧電素子と、前記圧電素子に一端が固定された駆動軸と、前記駆動軸に摩擦係合する移動部材とを含む圧電アクチュエータの調整方法であって、前記圧電素子を部分的に加熱して、分極率を低下させることによって、前記圧電素子の伸縮量を低下させ、前記移動部材の移動速度を低下させる方法とする。   A method for adjusting a piezoelectric actuator according to the present invention is a method for adjusting a piezoelectric actuator comprising a piezoelectric element, a drive shaft having one end fixed to the piezoelectric element, and a moving member frictionally engaged with the drive shaft. In this method, the piezoelectric element is partially heated to reduce the polarizability, thereby reducing the expansion / contraction amount of the piezoelectric element and reducing the moving speed of the moving member.

この方法によれば、圧電素子を部分的に加熱して、圧電特性を部分的に緩和することによって、圧電アクチュエータの駆動速度が所望の速度に低下するまで、圧電素子の伸縮量を低下させられる。これによって、駆動速度のバラツキが小さい高精度の圧電アクチュエータを提供できる。   According to this method, by partially heating the piezoelectric element and partially relaxing the piezoelectric characteristics, the expansion / contraction amount of the piezoelectric element can be reduced until the driving speed of the piezoelectric actuator is reduced to a desired speed. . As a result, it is possible to provide a highly accurate piezoelectric actuator with small variations in driving speed.

また、本発明の圧電アクチュエータの調整方法において、前記圧電素子の部分的加熱は、前記圧電素子の圧電材料のキュリー温度以上になるまで行ってもよい。   In the method for adjusting a piezoelectric actuator of the present invention, the partial heating of the piezoelectric element may be performed until the temperature becomes equal to or higher than the Curie temperature of the piezoelectric material of the piezoelectric element.

この方法によれば、キュリー温度以上に加熱された部分は、分極が消失し、圧電特性が失われる。このため、圧電アクチュエータの駆動速度を十分に低下させることができる。   According to this method, the polarization is lost in the portion heated to the Curie temperature or higher, and the piezoelectric characteristics are lost. For this reason, the driving speed of the piezoelectric actuator can be sufficiently reduced.

また、本発明の圧電アクチュエータの調整方法において、前記圧電素子の部分的加熱は、レーザ光線を照射して行ってもよい。   In the method for adjusting a piezoelectric actuator of the present invention, the partial heating of the piezoelectric element may be performed by irradiating a laser beam.

この方法によれば、レーザ光線のスポット径を小さくすることで、圧電特性を緩和する範囲を精度よくコントロールすることができる。これによって、圧電アクチュエータの駆動速度を所望の速度に調整することができる。   According to this method, the range in which the piezoelectric characteristics are relaxed can be accurately controlled by reducing the spot diameter of the laser beam. Thereby, the driving speed of the piezoelectric actuator can be adjusted to a desired speed.

また、本発明の圧電アクチュエータの調整方法において、レーザ光線の照射は、前記移動部材の移動速度に応じて、前記レーザ光線の照射時間を変更してもよい。   In the method for adjusting a piezoelectric actuator of the present invention, the laser beam irradiation may be performed by changing the laser beam irradiation time in accordance with the moving speed of the moving member.

この方法によれば、圧電素子内の熱伝導によって、時間と共にレーザ光線が直接照射されている部分から周囲へと分極率が低下する範囲が徐々に拡がってゆくので、時間を調節することで、圧電特性を喪失する範囲を制御できる。これによって、圧電アクチュエータの駆動速度を所望の速度に調整することができる。   According to this method, the range in which the polarizability decreases gradually from the portion directly irradiated with the laser beam over time due to heat conduction in the piezoelectric element, so by adjusting the time, The range in which the piezoelectric property is lost can be controlled. Thereby, the driving speed of the piezoelectric actuator can be adjusted to a desired speed.

また、本発明の圧電アクチュエータの調整方法において、レーザ光線の照射は、前記移動部材の移動速度に応じて、場所を変えて行う前記レーザ光線の所定の出力で所定時間の照射の回数を変更してもよい。   Further, in the method for adjusting a piezoelectric actuator of the present invention, the number of times of irradiation for a predetermined time is changed with a predetermined output of the laser beam that is irradiated at different locations according to the moving speed of the moving member. May be.

この方法によれば、圧電素子の圧電特性の低下は、レーザ光線の照射回数に比例する。このため、圧電素子の伸縮力の低下度合いを制御するのが容易であり、圧電アクチュエータの精密な調整ができる。   According to this method, the decrease in the piezoelectric characteristics of the piezoelectric element is proportional to the number of times of laser beam irradiation. For this reason, it is easy to control the degree of decrease in the stretching force of the piezoelectric element, and precise adjustment of the piezoelectric actuator can be performed.

また、本発明の圧電アクチュエータの調整方法において、レーザ光線の照射は、前記圧電素子に駆動電圧を印加して前記移動部材を移動させて前記移動部材の移動速度を計測しながら、前記移動部材の移動速度が所定の値以下になるまで行ってもよい。   In the method for adjusting a piezoelectric actuator of the present invention, laser beam irradiation may be performed by applying a driving voltage to the piezoelectric element and moving the moving member to measure the moving speed of the moving member. You may carry out until a moving speed becomes below a predetermined value.

この方法によれば、実際の駆動速度を計測するので、圧電アクチュエータの駆動速度を精密に調整できる。   According to this method, since the actual driving speed is measured, the driving speed of the piezoelectric actuator can be precisely adjusted.

以上のように、本発明によれば、圧電アクチュエータの圧電素子を部分的に加熱して圧電特性を消失させ、圧電素子の伸縮力を低減させることによって圧電アクチュエータの駆動速度を所望の速度まで低下させることができる。   As described above, according to the present invention, the piezoelectric element of the piezoelectric actuator is partially heated to eliminate the piezoelectric characteristics, and the piezoelectric actuator drive speed is reduced to a desired speed by reducing the stretching force of the piezoelectric element. Can be made.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1に、本発明にかかる圧電アクチュエータ1の調整の様子を示す。圧電アクチュエータ1は、錘2と、錘2に一端が固定された圧電素子3と、圧電素子3の他端に一端が固定された駆動軸4と、駆動軸4に摩擦係合する移動部材5とからなる。圧電アクチュエータ1は、駆動電圧が印加されると圧電素子3が伸縮して駆動軸4を振動させる。移動体5は、駆動軸4が緩慢に移動すると駆動軸4と共に移動し、駆動軸4が急峻に移動すると駆動軸4上ですべり変位する。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows how the piezoelectric actuator 1 according to the present invention is adjusted. The piezoelectric actuator 1 includes a weight 2, a piezoelectric element 3 having one end fixed to the weight 2, a drive shaft 4 having one end fixed to the other end of the piezoelectric element 3, and a moving member 5 that frictionally engages the drive shaft 4. It consists of. When a driving voltage is applied to the piezoelectric actuator 1, the piezoelectric element 3 expands and contracts to vibrate the driving shaft 4. The moving body 5 moves together with the drive shaft 4 when the drive shaft 4 moves slowly, and slides on the drive shaft 4 when the drive shaft 4 moves steeply.

この圧電アクチュエータ1の駆動速度、つまり、移動部材5の移動速度は、例えば、レーザ変位計6によって計測される。また、例えば、赤外線レーザ装置7は、圧電素子3の圧電材料の表面に、例えばスポット径が100μmのレーザ光線Lを照射することができる。レーザ光線Lの出力は、圧電素子3の圧電材料や電極などが蒸発したりして形状を破壊されない程度に調整されている。   The driving speed of the piezoelectric actuator 1, that is, the moving speed of the moving member 5 is measured by a laser displacement meter 6, for example. Further, for example, the infrared laser device 7 can irradiate the surface of the piezoelectric material of the piezoelectric element 3 with a laser beam L having a spot diameter of 100 μm, for example. The output of the laser beam L is adjusted to such an extent that the piezoelectric material and electrodes of the piezoelectric element 3 are not evaporated and the shape is not destroyed.

図2に、レーザ光線Lが照射されている圧電素子3を示す。レーザ光線Lは、圧電素子3の表面を加熱するが、その熱は圧電素子の内部およびその周囲に熱伝導によって拡散する。これにより、例えば1秒間レーザ光線Lを照射した場合、図中にハッチングした部分の圧電材料は、キュリー温度(例えば320℃)を超えて分極が失われ、この部分の圧電特性が喪失する。また、レーザ光線Lを照射する時間を長くすると、圧電特性が喪失する範囲は拡大してゆく(図には、2秒から5秒の場合の圧電特性の喪失範囲を二点鎖線で示す)。尚、圧電材料は、キュリー温度を超えなくても、キュリー温度に近付くと分極率が低下するので、実際には、分極している範囲と分極していない範囲とを図示するように明確に区分することはできない。   FIG. 2 shows the piezoelectric element 3 irradiated with the laser beam L. The laser beam L heats the surface of the piezoelectric element 3, but the heat is diffused by heat conduction in and around the piezoelectric element. Thereby, for example, when the laser beam L is irradiated for 1 second, the piezoelectric material in the hatched portion in the drawing loses the polarization exceeding the Curie temperature (for example, 320 ° C.), and the piezoelectric characteristics in this portion are lost. Further, when the time for irradiating the laser beam L is lengthened, the range in which the piezoelectric characteristics are lost increases (in the drawing, the range in which the piezoelectric characteristics are lost in the case of 2 to 5 seconds is indicated by a two-dot chain line). In addition, even if the piezoelectric material does not exceed the Curie temperature, the polarizability decreases as the temperature approaches the Curie temperature. In practice, the polarization range and the non-polarization range are clearly distinguished as shown in the figure. I can't do it.

このようにして、部分的に分極が解消され、全体として分極率が低下した圧電素子3は、一定の駆動電圧に対する全体の伸縮率が低下し、これによって駆動される圧電アクチュエータ1の駆動速度(移動部材5の移動速度)もこれに略比例して低下する。   In this way, the piezoelectric element 3 whose polarization is partially eliminated and whose polarizability is reduced as a whole has a reduced overall expansion / contraction ratio with respect to a constant drive voltage, and the driving speed (piezoelectric actuator 1 driven thereby) The moving speed of the moving member 5 also decreases substantially proportionally.

本実施形態では、圧電素子に所定波形の駆動電圧を印加して移動部材5を移動させ、レーザ変位計6によって移動部材5の移動速度を計測しながら、赤外線レーザ装置7によって圧電素子3にレーザ光線Lを照射して、圧電素子3の分極率を低下させる。そして、移動部材5の移動速度が所望の速度まで低下した時点で、レーザ光線Lの照射を終了する。これによって、圧電アクチュエータ1の駆動速度を、所望の速度に調整する(低下させる)ことができ、駆動速度のバラツキを小さくできる。   In the present embodiment, a driving voltage having a predetermined waveform is applied to the piezoelectric element to move the moving member 5, and the laser displacement meter 6 measures the moving speed of the moving member 5, while the infrared laser device 7 applies laser to the piezoelectric element 3. Irradiation with the light beam L reduces the polarizability of the piezoelectric element 3. Then, when the moving speed of the moving member 5 decreases to a desired speed, the irradiation of the laser beam L is finished. As a result, the driving speed of the piezoelectric actuator 1 can be adjusted (reduced) to a desired speed, and variations in driving speed can be reduced.

例えば、□0.9mm×L1.6mmの圧電素子3を有する平均駆動速度12mm/sの圧電アクチュエータ1において、圧電素子3の半径0.15mmの範囲がキュリー温度に到達した場合、圧電アクチュエータ1は、駆動速度が0.1〜0.2mm/s程度低下する。また、圧電素子3の半径0.45mmの範囲がキュリー温度に到達した場合、圧電アクチュエータ1は、駆動速度が3〜4mm/s程度低下する。   For example, in the piezoelectric actuator 1 having an average driving speed of 12 mm / s having the piezoelectric element 3 of □ 0.9 mm × L1.6 mm, when the range of the radius 0.15 mm of the piezoelectric element 3 reaches the Curie temperature, The driving speed is reduced by about 0.1 to 0.2 mm / s. Further, when the range of the radius 0.45 mm of the piezoelectric element 3 reaches the Curie temperature, the driving speed of the piezoelectric actuator 1 is reduced by about 3 to 4 mm / s.

尚、圧電アクチュエータの駆動軸4の振動は、両端に質量を有するばねの運動として解析できるが、圧電素子3の分極が消失した部分は、駆動電圧によって伸縮しないので、単なる錘とみなすことができる。ここで、振動のロバスト性を考慮すると、圧電素子3の錘2に近い部分(錘2を有していない圧電アクチュエータでは、圧電素子3の駆動軸4に近い部分)を加熱して分極率を低下させる方がよい。   The vibration of the drive shaft 4 of the piezoelectric actuator can be analyzed as the motion of a spring having mass at both ends. However, the portion where the polarization of the piezoelectric element 3 disappears does not expand or contract by the drive voltage, and can be regarded as a simple weight. . Here, in consideration of the robustness of vibration, the portion close to the weight 2 of the piezoelectric element 3 (or the portion close to the drive shaft 4 of the piezoelectric element 3 in a piezoelectric actuator not having the weight 2) is heated to increase the polarizability. It is better to reduce.

また、レーザ光線Lを1箇所に照射するだけでは、いくら照射時間を長くしても、所望の速度まで圧電アクチュエータ1の駆動速度を低下させられない場合が有り得る。そのような場合は、レーザ光線Lを照射する場所を(例えば圧電素子3の反対側の面や側面に)移動して、さらに、圧電素子3の分極率を低下させてもよい。   In addition, by simply irradiating the laser beam L to one place, there is a possibility that the driving speed of the piezoelectric actuator 1 cannot be reduced to a desired speed no matter how long the irradiation time is increased. In such a case, the place where the laser beam L is irradiated may be moved (for example, to the opposite surface or side surface of the piezoelectric element 3) to further reduce the polarizability of the piezoelectric element 3.

また、圧電素子3の伸縮に歪みが発生しないように、圧電素子3の中心軸について略対称になるよう複数箇所に同時にレーザ光線を照射、例えば、図3に示すように、圧電素子3の上面および下面の中央にそれぞれレーザ光線L,L’を照射するようにしてもよい。   Further, in order to prevent distortion in expansion and contraction of the piezoelectric element 3, laser beams are simultaneously irradiated to a plurality of locations so as to be substantially symmetrical with respect to the central axis of the piezoelectric element 3, for example, as shown in FIG. Further, the center of the lower surface may be irradiated with laser beams L and L ′, respectively.

また、本発明によれば、図4に示すように、圧電素子3にレーザ光線Lを一定時間(例えば1秒)だけ照射し、移動部材5の移動速度が所望の速度に低下するまで、場所を変えながら一定時間のレーザ光線Lの照射を繰り返してもよい。また、このとき、図示するように、レーザ光線Lの照射位置を、圧電素子3の一端から走査するように、縦横に所定ピッチで移動させてもよい。   Further, according to the present invention, as shown in FIG. 4, the piezoelectric element 3 is irradiated with the laser beam L for a certain time (for example, 1 second) until the moving speed of the moving member 5 decreases to a desired speed. The irradiation of the laser beam L for a certain time may be repeated while changing. At this time, as shown in the drawing, the irradiation position of the laser beam L may be moved at a predetermined pitch vertically and horizontally so as to scan from one end of the piezoelectric element 3.

このように、レーザ光線Lの照射の照射時間を一定にすれば、圧電素子3の圧電特性の低下の度合いが、レーザ光線Lの照射回数に略比例する。このため、場所を変えて一定時間のレーザ光線Lの照射を行う場合、アチュエータ1の調整量(駆動速度の低下量)の予測が容易である。よって、初期状態のアチュエータ1の駆動速度を測定して、目標速度との差に比例してレーザ光線Lの照射回数を決定するようにしてもよい。   As described above, if the irradiation time of the laser beam L is constant, the degree of decrease in the piezoelectric characteristics of the piezoelectric element 3 is approximately proportional to the number of times of irradiation of the laser beam L. For this reason, when performing irradiation of the laser beam L for a fixed time from different locations, it is easy to predict the adjustment amount of the actuator 1 (the amount of decrease in driving speed). Therefore, the driving speed of the actuator 1 in the initial state may be measured, and the number of times of irradiation with the laser beam L may be determined in proportion to the difference from the target speed.

また、レーザ光線Lの照射は、図5に示すように、圧電素子3の全周にわたって移動させて行ってもよく、また、図6に示すように、圧電素子3の中心軸Cについて略対称になるように、例えば、上面と底面の対称位置に、交互に、レーザ光線Lを照射するなどしてもよい。   Further, the irradiation of the laser beam L may be performed by moving the entire circumference of the piezoelectric element 3 as shown in FIG. 5, and is substantially symmetrical with respect to the central axis C of the piezoelectric element 3 as shown in FIG. For example, the laser beam L may be alternately applied to the symmetrical positions of the top surface and the bottom surface.

以上の実施形態では、赤外線レーザ装置7によって圧電素子3を部分的に加熱したが、他のエネルギ線を使用してもよく、微細な加熱体を接触させるなど、他の加熱手段を用いてもよい。   In the above embodiment, the piezoelectric element 3 is partially heated by the infrared laser device 7, but other energy rays may be used, or other heating means such as contacting a fine heating body may be used. Good.

本発明の実施形態の圧電アクチュエータの調整の様子を示す概略図。Schematic which shows the mode of adjustment of the piezoelectric actuator of embodiment of this invention. 図1の調整による圧電アクチュエータの圧電素子の分極率の低下を示す部分切断斜視図。FIG. 2 is a partially cut perspective view showing a decrease in the polarizability of the piezoelectric element of the piezoelectric actuator by the adjustment of FIG. 1. 図2の代案の調整による圧電アクチュエータの圧電素子の分極率の低下を示す部分切断斜視図。FIG. 3 is a partially cut perspective view showing a decrease in the polarizability of the piezoelectric element of the piezoelectric actuator by adjusting the alternative of FIG. 2. 図2の異なる代案の調整による圧電アクチュエータの圧電素子の分極率の低下を示す部分切断斜視図。FIG. 3 is a partially cut perspective view showing a decrease in polarizability of a piezoelectric element of a piezoelectric actuator by adjusting different alternatives in FIG. 2. 図2のさらに異なる代案の調整による圧電アクチュエータの圧電素子の分極率の低下を示す部分切断斜視図。FIG. 4 is a partially cut perspective view showing a decrease in the polarizability of the piezoelectric element of the piezoelectric actuator by adjusting another alternative of FIG. 2. 図2のまたさらに異なる代案の調整による圧電アクチュエータの圧電素子の分極率の低下を示す部分切断斜視図。FIG. 3 is a partially cut perspective view showing a decrease in the polarizability of a piezoelectric element of a piezoelectric actuator by adjusting another alternative of FIG. 2.

符号の説明Explanation of symbols

1…圧電アクチュエータ
2…錘
3…圧電素子
4…駆動軸
5…移動部材
6…レーザ変位計
7…赤外線レーザ装置
L…レーザ光線
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric actuator 2 ... Weight 3 ... Piezoelectric element 4 ... Drive shaft 5 ... Moving member 6 ... Laser displacement meter 7 ... Infrared laser device L ... Laser beam

Claims (7)

圧電素子と、前記圧電素子に一端が固定された駆動軸と、前記駆動軸に摩擦係合する移動部材とを含み、
前記圧電素子は、部分的に加熱されて、分極率が低下していることを特徴とする圧電アクチュエータ。
A piezoelectric element, a drive shaft having one end fixed to the piezoelectric element, and a moving member that frictionally engages the drive shaft,
The piezoelectric actuator according to claim 1, wherein the piezoelectric element is partially heated to reduce a polarizability.
圧電素子と、前記圧電素子に一端が固定された駆動軸と、前記駆動軸に摩擦係合する移動部材とを含む圧電アクチュエータの駆動速度の調整方法であって、
前記圧電素子を部分的に加熱して、分極率を低下させることによって、前記圧電素子の伸縮量を低下させ、前記移動部材の移動速度を低下させることを特徴とする圧電アクチュエータの調整方法。
A method for adjusting a drive speed of a piezoelectric actuator, comprising: a piezoelectric element; a drive shaft having one end fixed to the piezoelectric element; and a moving member frictionally engaged with the drive shaft,
A method for adjusting a piezoelectric actuator, comprising: partially heating the piezoelectric element to reduce a polarizability, thereby reducing an expansion / contraction amount of the piezoelectric element and reducing a moving speed of the moving member.
前記圧電素子の部分的加熱は、前記圧電素子の圧電材料のキュリー温度以上になるまで行うことを特徴とする請求項2に記載の圧電アクチュエータの調整方法。   The method for adjusting a piezoelectric actuator according to claim 2, wherein the partial heating of the piezoelectric element is performed until the temperature exceeds a Curie temperature of the piezoelectric material of the piezoelectric element. 前記圧電素子の部分的加熱は、レーザ光線を照射して行うことを特徴とする請求項2または3に記載の圧電アクチュエータの調整方法。   4. The method for adjusting a piezoelectric actuator according to claim 2, wherein the partial heating of the piezoelectric element is performed by irradiating a laser beam. レーザ光線の照射は、前記移動部材の移動速度に応じて、前記レーザ光線の照射時間を変更することを特徴とする請求項4に記載の圧電アクチュエータの調整方法。   5. The method of adjusting a piezoelectric actuator according to claim 4, wherein the laser beam irradiation is performed by changing an irradiation time of the laser beam in accordance with a moving speed of the moving member. レーザ光線の照射は、所定の出力で所定時間の照射を場所を変えて行い、前記移動部材の移動速度に応じて、前記レーザ光線の照射の回数を変更することを特徴とする請求項4に記載の圧電アクチュエータの調整方法。   5. The laser beam irradiation according to claim 4, wherein the laser beam irradiation is performed at a predetermined output for a predetermined time at a different location, and the number of times of the laser beam irradiation is changed according to a moving speed of the moving member. The adjustment method of the piezoelectric actuator of description. レーザ光線の照射は、前記圧電素子に駆動電圧を印加して前記移動部材を移動させて前記移動部材の移動速度を計測しながら、前記移動部材の移動速度が所定の値以下になるまで行うことを特徴とする請求項4または5に記載の圧電アクチュエータの調整方法。   The laser beam irradiation is performed until the moving speed of the moving member falls below a predetermined value while applying the driving voltage to the piezoelectric element and moving the moving member to measure the moving speed of the moving member. The method for adjusting a piezoelectric actuator according to claim 4 or 5.
JP2008106438A 2008-04-16 2008-04-16 Piezoelectric actuator and adjusting method of piezoelectric actuator Pending JP2009261116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106438A JP2009261116A (en) 2008-04-16 2008-04-16 Piezoelectric actuator and adjusting method of piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106438A JP2009261116A (en) 2008-04-16 2008-04-16 Piezoelectric actuator and adjusting method of piezoelectric actuator

Publications (1)

Publication Number Publication Date
JP2009261116A true JP2009261116A (en) 2009-11-05

Family

ID=41387816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106438A Pending JP2009261116A (en) 2008-04-16 2008-04-16 Piezoelectric actuator and adjusting method of piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP2009261116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128114A (en) * 2012-12-26 2014-07-07 Canon Inc Piezoelectric element and stator for vibration wave motor
CN104993737A (en) * 2015-04-28 2015-10-21 北京航空航天大学 Bidirectional energy collection apparatus based on flow-induced vibration
JP2018173305A (en) * 2017-03-31 2018-11-08 ロボセンサー技研株式会社 Tactile sensor
JP2018173292A (en) * 2017-03-31 2018-11-08 ロボセンサー技研株式会社 Bag-like tactile sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128114A (en) * 2012-12-26 2014-07-07 Canon Inc Piezoelectric element and stator for vibration wave motor
US9893269B2 (en) 2012-12-26 2018-02-13 Canon Kabushiki Kaisha Piezoelectric element, stator for oscillatory wave motor, oscillatory wave motor, driving control system, optical apparatus, and method for making stator for oscillatory wave motor
CN104993737A (en) * 2015-04-28 2015-10-21 北京航空航天大学 Bidirectional energy collection apparatus based on flow-induced vibration
JP2018173305A (en) * 2017-03-31 2018-11-08 ロボセンサー技研株式会社 Tactile sensor
JP2018173292A (en) * 2017-03-31 2018-11-08 ロボセンサー技研株式会社 Bag-like tactile sensor

Similar Documents

Publication Publication Date Title
JP5002559B2 (en) Measuring scale forming device
KR102213679B1 (en) Laser cutting system and method of laser cutting
JP6159317B2 (en) Apparatus and method for writing a pattern in a substrate
JP2009261116A (en) Piezoelectric actuator and adjusting method of piezoelectric actuator
EP3399543B1 (en) Laser annealing device and annealing method therefor
RU2006147226A (en) METHOD AND DEVICE FOR MANUFACTURING THREE-DIMENSIONAL OBJECT
JP6497849B2 (en) Imprint apparatus and article manufacturing method
JPWO2017209277A1 (en) Laser output controller using optical attenuator with variable attenuation
US11474439B2 (en) Exposure apparatus, exposure method, and method of manufacturing article
JP2008055436A (en) Laser beam irradiation device
TWM556644U (en) Laser scribing apparatus
JPWO2015052877A1 (en) Nail molding apparatus and nail molding method
WO2020009079A1 (en) Laser machining device
JP4884850B2 (en) Interference measurement device
JP6313190B2 (en) Dynamic adjustable focus for LED writing bar using piezoelectric stack
JP5460934B1 (en) Curvature control device and laser processing machine
Lee et al. Temperature‐Responsive Ultrasonic‐Wave Engineering Using Thermoresponsive Polymers
JP2016092309A (en) Optical device, projection optical system, exposure device, and manufacturing method of article
KR101028598B1 (en) Laser irradiation device
JP2008212941A (en) Laser beam machining apparatus and its control method
JP2006084495A (en) Variable focal optical apparatus
JP2009222573A (en) Distance measuring apparatus
KR102095216B1 (en) Apparatus and Method for Forming Fiber Bragg Grating on A Large Diameter Optical Fiber
RU185040U1 (en) DIVISION MACHINE OF PENDULUM TYPE FOR FORMATION OF HATCH STRUCTURES ON CONVEX CYLINDRICAL SURFACES
JP2006344274A (en) Optical head