JP2006084495A - Variable focal optical apparatus - Google Patents

Variable focal optical apparatus Download PDF

Info

Publication number
JP2006084495A
JP2006084495A JP2004266267A JP2004266267A JP2006084495A JP 2006084495 A JP2006084495 A JP 2006084495A JP 2004266267 A JP2004266267 A JP 2004266267A JP 2004266267 A JP2004266267 A JP 2004266267A JP 2006084495 A JP2006084495 A JP 2006084495A
Authority
JP
Japan
Prior art keywords
optical
control
unit
movable
movable part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004266267A
Other languages
Japanese (ja)
Other versions
JP4476080B2 (en
Inventor
Yuzuru Ueda
譲 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2004266267A priority Critical patent/JP4476080B2/en
Publication of JP2006084495A publication Critical patent/JP2006084495A/en
Application granted granted Critical
Publication of JP4476080B2 publication Critical patent/JP4476080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable focal optical apparatus in which a focal position of a light beam with which an object to be irradiated is irradiated can be made adjustable without installing an optical component by making the focal distance of the optical means of an optical scanner variable. <P>SOLUTION: The variable focal optical apparatus is constituted in such a way that in a movable part 13 journaled by a fixed part 11 via torsion bars 12, 12, an optical means 14 comprising a reflection mirror or a lens and a driving coil 15 serving also as a heater coil are disposed, the driving coil 15 is provided with an optical scanner 3 on which a static magnetic field is exerted by static magnetic field generating means 17A, 17B, superposed on a driving current, a heater current for heating the movable part is supplied controllably to the driving coil 15, so that the deformation of the movable part 13 is controlled and the focal distance of the optical means 14 is made variable. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固定部に梁部を介して可動可能に支持された可動部に固定した光学手段の焦点距離を可変できる可変焦点型光学装置に関する。   The present invention relates to a variable focus optical device capable of changing a focal length of an optical means fixed to a movable part movably supported by a fixed part via a beam part.

従来、固定部に梁部を介して可動可能に支持された可動部に光学手段を設け、可動部を介して光学手段を可動させることにより、例えば光走査するような光学装置として、例えば半導体製造技術を利用して製造するプレーナ型光学装置があり、光学手段として反射ミラーを用いる光反射型と光学手段としてレンズを用いる光透過型がある。   Conventionally, as an optical device that performs optical scanning, for example, semiconductor manufacturing, by providing an optical means in a movable part that is movably supported by a fixed part via a beam part, and moving the optical means through the movable part There are planar optical devices manufactured using technology, and there are a light reflection type using a reflection mirror as an optical means and a light transmission type using a lens as an optical means.

光反射型の一例としては、例えば、固定部に、梁部を介して回動可能に可動部を軸支し、可動部に設けた駆動コイルと、この駆動コイルに静磁界を作用する静磁界発生手段とで可動部の駆動手段を構成し、通電により駆動コイルに発生する磁界と静磁界との相互作用により発生するローレンツ力を利用して可動部を梁部を中心として回動することにより、反射ミラーを回動させ光ビームを偏向するものがある(例えば、特許文献1参照)。   As an example of the light reflection type, for example, a movable part is pivotally supported on a fixed part via a beam part, a driving coil provided on the movable part, and a static magnetic field that applies a static magnetic field to the driving coil. The driving means of the movable part is constituted by the generating means, and the movable part is rotated around the beam part by utilizing the Lorentz force generated by the interaction between the magnetic field generated in the driving coil by energization and the static magnetic field. In some cases, the reflection mirror is rotated to deflect the light beam (see, for example, Patent Document 1).

また、光透過型の一例としては、例えば、可動部をH状の梁部で支持し、梁部を可動電極とし、梁部の回りに固定電極を配置し、梁部(可動電極)と固定電極との間に静電引力を発生させ、可動部を介してレンズを変位させることにより、レンズの屈折作用を利用してレンズを透過する光ビームを偏向するものがある(例えば、非特許文献1参照)。
特許第2722314号公報 猿田訓彦,藤田博之, 年吉 洋 「SOI基板によるマイクロレンズ光スキャナの製作」電気学会E部門論文誌,2003年7月,第123巻7号, pp. 231-236
As an example of the light transmission type, for example, the movable part is supported by an H-shaped beam part, the beam part is a movable electrode, a fixed electrode is arranged around the beam part, and the beam part (movable electrode) is fixed. There is an apparatus that deflects a light beam transmitted through a lens by using a refractive action of the lens by generating an electrostatic attraction between the electrode and displacing the lens via a movable part (for example, non-patent document). 1).
Japanese Patent No. 2722314 Norihiko Saruta, Hiroyuki Fujita, Hiroshi Toshiyoshi "Manufacture of microlens optical scanners using SOI substrates" IEEJ Transactions, 2003, Vol. 123, No. 7, pp. 231-236

ところで、光スキャナや光ディスク装置等の光学機器においては、光学手段で反射又は屈折された光ビームの焦点位置を光軸方向に調整して所定の位置に合わせる必要がある。しかし、従来のこの種の光学装置には、反射ミラーやレンズの焦点距離(曲率半径)を可変できるものはなかった。このため、この種の光学装置を光スキャナや光ディスク装置等の光学機器に実装する場合、従来では、光ビームの焦点位置が適切な位置となるよう、光ビームの光路にコリメータレンズ、集光レンズ、或いは、f−θレンズ等の光学部品を設ける必要があった。   By the way, in an optical apparatus such as an optical scanner or an optical disk device, it is necessary to adjust the focal position of the light beam reflected or refracted by the optical means to the predetermined position by adjusting in the optical axis direction. However, none of the conventional optical devices of this type can change the focal length (curvature radius) of the reflecting mirror or the lens. For this reason, when this type of optical device is mounted on an optical apparatus such as an optical scanner or an optical disk device, conventionally, a collimator lens and a condenser lens are provided in the optical path of the light beam so that the focal position of the light beam is an appropriate position. Alternatively, it is necessary to provide an optical component such as an f-θ lens.

本発明は前記問題点に着目してなされたもので、光学手段からの光ビームの焦点位置を光学部品を設けることなく調整可能とした可変焦点型光学装置を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a variable focus optical device that can adjust the focal position of a light beam from an optical means without providing an optical component.

このため、請求項1の発明の可変焦点型光学装置は、固定部に梁部を介して可動可能に支持された可動部と、該可動部を駆動する駆動手段と、前記可動部に固定され入射する光ビームを屈折又は反射する光学手段と、該光学手段の焦点距離を可変制御する制御手段とを備えて構成した。
かかる構成では、駆動手段で可動部を固定部に対して可動して光学手段を駆動しつつ、制御手段により光学手段の焦点距離を可変できるようになる。
For this reason, the variable focus optical device according to the first aspect of the present invention is fixed to the movable portion, a movable portion that is movably supported by the fixed portion via the beam portion, driving means for driving the movable portion, and the movable portion. An optical means for refracting or reflecting an incident light beam and a control means for variably controlling the focal length of the optical means are provided.
In such a configuration, the focal length of the optical unit can be varied by the control unit while the movable unit is moved relative to the fixed unit by the driving unit to drive the optical unit.

制御手段は、請求項2のように、前記光学手段の変形量を制御して前記光学手段の曲率半径を可変制御する構成とするとよい。
具体的には、請求項3のように、前記制御手段は、前記可動部を加熱制御して当該可動部と共に変形する前記光学手段の変形量を制御する構成とする。この場合、請求項4のように、可動部にヒータを設けて可動部を加熱制御する構成としてもよく、請求項6のように、可動部にレーザ光を照射して可動部を加熱制御する構成としてもよい。
The control means may be configured to variably control the radius of curvature of the optical means by controlling the deformation amount of the optical means, as in claim 2.
Specifically, as in claim 3, the control means is configured to control the amount of deformation of the optical means that deforms together with the movable part by controlling the heating of the movable part. In this case, as described in claim 4, a heater may be provided in the movable part to control the heating of the movable part. As in claim 6, the movable part is irradiated with laser light to control the heating of the movable part. It is good also as a structure.

請求項4の構成においては、請求項5のように、前記駆動手段が、前記可動部に敷設されて通電により磁界を発生する駆動コイルと、前記梁部の軸方向と平行な可動部対辺部に位置する駆動コイル部分に対して静磁界を作用する静磁界発生手段とを備え、前記可動部対辺部に位置する駆動コイル部分に発生する磁界と前記静磁界との相互作用により前記可動部対辺部に電磁力を作用させる構成であるとき、前記駆動コイルが前記ヒータを兼ねる構成とするとよい。   According to a fourth aspect of the present invention, as in the fifth aspect, the driving means includes a driving coil that is laid on the movable portion and generates a magnetic field when energized, and a movable portion opposite side portion parallel to the axial direction of the beam portion. Static magnetic field generating means for applying a static magnetic field to the drive coil portion located at the movable portion, and the opposite side of the movable portion by the interaction between the magnetic field generated at the drive coil portion located at the opposite side of the movable portion and the static magnetic field When the electromagnetic force is applied to the part, the drive coil may serve as the heater.

請求項7の発明では、前記可動部に形状記憶金属を設け、該形状記憶金属を加熱する構成とした。
また、制御手段は、請求項8のように、圧電体により前記光学手段の変形量を制御する構成とするとよい。
In the invention of claim 7, a shape memory metal is provided on the movable part, and the shape memory metal is heated.
Further, the control means may be configured to control the deformation amount of the optical means by a piezoelectric body as in the eighth aspect.

請求項9の発明では、前記制御手段は、前記焦点距離の目標値を入力する入力部と、前記光学手段の各焦点距離に対応する光学手段の変形制御量データを予め記憶する記憶部と、該記憶部の記憶データに基づいて入力された前記目標値に対応する変形制御量を決定して光学手段を変形制御する制御部とを備える構成とした。   In the invention of claim 9, the control means inputs an input unit for inputting the target value of the focal length, a storage unit for storing in advance deformation control amount data of the optical means corresponding to each focal length of the optical means, And a control unit that determines a deformation control amount corresponding to the target value input based on the storage data of the storage unit and controls the deformation of the optical means.

この場合、請求項10のように、前記光学手段の実際の焦点距離を検出する検出手段を設け、前記制御部は、前記検出手段の検出値と前記目標値とを比較して前記検出値が前記目標値と一致するように前記変形制御量をフィードバック制御する構成とするとよい。   In this case, as in claim 10, there is provided detection means for detecting an actual focal length of the optical means, and the control unit compares the detection value of the detection means with the target value to obtain the detection value. The deformation control amount may be feedback-controlled so as to coincide with the target value.

以上説明したように本発明の可変焦点型光学装置によれば、光学手段の曲率半径を可変制御して焦点距離を可変できるよう構成したので、例えば光学機器に実装した場合に光ビームの焦点位置が所定位置となるよう光学装置自体で調整でき、焦点位置調整用レンズ等を別途設ける必要がなくなる。従って、光学機器の部品点数の削減や構成の簡素化を図ることができると共に、設計の自由度を高めることができる。   As described above, according to the variable focus optical device of the present invention, since the focal length can be varied by variably controlling the radius of curvature of the optical means, the focal position of the light beam when mounted on an optical device, for example. Can be adjusted by the optical device itself so as to be in a predetermined position, and there is no need to separately provide a focus position adjusting lens. Therefore, it is possible to reduce the number of parts of the optical device and simplify the configuration, and to increase the degree of design freedom.

以下、本発明の実施形態を図面に基づいて説明する。
図1に、本発明に係る可変焦点型光学装置の第1実施形態の構成図を示し、図2に第1実施形態の要部である光走査部の平面図を示す。
図1において、本実施形態の可変焦点型光学装置は、発光部1と、発光制御部2と、光走査部3と、入力部4と、駆動制御部5と、データ記憶部6と、を備えて構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration diagram of a first embodiment of a variable focus optical device according to the present invention, and FIG. 2 shows a plan view of an optical scanning unit which is a main part of the first embodiment.
In FIG. 1, the variable focus optical device of this embodiment includes a light emitting unit 1, a light emission control unit 2, an optical scanning unit 3, an input unit 4, a drive control unit 5, and a data storage unit 6. It is prepared for.

前記発光部1は、光走査部3に光ビームを発射するもので、例えばレーザ光を発光するレーザ光源等、光を発光できるものであればどのような光源でもよい。
前記発光制御部2は、発光部1を駆動制御するもので、後述する光走査部3の走査角度に合わせて発光部1の発光タイミングを制御する。具体的には、例えば、発光制御部2は、駆動制御部5から送信される後述の可動部駆動電流値と可動部13の走査角度との対応データを格納したメモリを備え、入力した可動部駆動電流値から可動部13の走査角度をメモリから読込み、予め設定した走査角度範囲で発光部1に所定間隔で発光指令を送信する。
The light emitting unit 1 emits a light beam to the optical scanning unit 3, and may be any light source as long as it can emit light, such as a laser light source that emits laser light.
The light emission control unit 2 drives and controls the light emitting unit 1 and controls the light emission timing of the light emitting unit 1 in accordance with the scanning angle of the optical scanning unit 3 described later. Specifically, for example, the light emission control unit 2 includes a memory that stores correspondence data between a later-described movable unit drive current value transmitted from the drive control unit 5 and a scanning angle of the movable unit 13, and the movable unit that has been input The scanning angle of the movable unit 13 is read from the memory from the drive current value, and a light emission command is transmitted to the light emitting unit 1 at a predetermined interval within a preset scanning angle range.

前記光走査部3は、発光部1から発射された光ビームを走査するもので、例えば半導体マイクロマシン技術を応用して製造されるプレーナ型アクチュエータを用いる。図2に本実施形態の光走査部3の平面図を示し説明する。   The optical scanning unit 3 scans the light beam emitted from the light emitting unit 1 and uses, for example, a planar actuator manufactured by applying semiconductor micromachine technology. FIG. 2 is a plan view of the optical scanning unit 3 according to the present embodiment.

図2において、本実施形態の光走査部3は、枠状の固定部11に、梁部としての一対のトーションバー12,12を介して可動部13が可動可能に軸支される。これら固定部11、トーションバー12,12及び可動部13は、例えばシリコン基板をエッチングして一体的に形成される。可動部13の表面には、その中央部に光学手段14が設けられ、周縁部に光学手段14を囲むようにして光学手段14の変形量を制御してその曲率半径を可変制御すべく可動部13を加熱するヒータを兼ねる駆動コイル15が設けられる。駆動コイル15は、トーションバー部分を介して固定部11側に引き出されて電極端子16A,16Bに接続して加熱電流及び駆動電流が供給される。尚、駆動コイルとは別に加熱用ヒータコイルを可動部13に設けるようにしてもよい。また、固定部11の外側に、トーションバー12,12の軸方向と平行な可動部対辺部の駆動コイル部分に静磁界を作用する一対の静磁界発生手段17A,17Bが、可動部13を挟んで互いに反対磁極を対向させて配置される。静磁界発生手段17A,17Bは、永久磁石でも電磁石でもよい。   In FIG. 2, in the optical scanning unit 3 of the present embodiment, a movable unit 13 is pivotally supported by a frame-shaped fixed unit 11 via a pair of torsion bars 12 and 12 as beam units. The fixed portion 11, the torsion bars 12, 12 and the movable portion 13 are integrally formed by etching a silicon substrate, for example. On the surface of the movable portion 13, an optical means 14 is provided at the center, and the movable portion 13 is controlled so as to variably control its curvature radius by controlling the deformation amount of the optical means 14 so as to surround the optical means 14 at the peripheral portion. A drive coil 15 also serving as a heater for heating is provided. The drive coil 15 is pulled out to the fixed portion 11 side through the torsion bar portion and connected to the electrode terminals 16A and 16B to be supplied with a heating current and a drive current. In addition, you may make it provide the heater coil for heating in the movable part 13 separately from a drive coil. In addition, a pair of static magnetic field generating means 17A and 17B that apply a static magnetic field to the drive coil portion on the opposite side of the movable portion parallel to the axial direction of the torsion bars 12 and 12 sandwich the movable portion 13 outside the fixed portion 11. Are arranged with the opposite magnetic poles facing each other. The static magnetic field generating means 17A and 17B may be permanent magnets or electromagnets.

ここで、前記光学手段14は、発光部1から発射される光ビームを反射する反射ミラーでもよく、前記光ビームを透過屈折するレンズでもよい。反射ミラーの場合は、アルミニウムや金等を可動部13上に蒸着して形成する。また、レンズの場合は、個別に加工したものを可動部13に貫通孔を形成して取付けるようにしてもよく、可動部13に透明樹脂を滴下して表面張力により可動部13上に形成するようにしてもよい。レンズの材料としては熱や外圧により変形可能な材料、例えば高分子材料やシリコン等を用いる。尚、光学手段14としてレンズを利用した場合は、光ビームの走査側と反対側に発光部1を配置することになるので、通常は可動部13のレンズ取付け部に光ビーム通過用の貫通孔を設ける必要があるが、可動部13が光ビームの透過可能な材質である場合には貫通孔を設ける必要はない。   Here, the optical unit 14 may be a reflection mirror that reflects the light beam emitted from the light emitting unit 1 or a lens that transmits and refracts the light beam. In the case of a reflection mirror, aluminum, gold, or the like is formed on the movable portion 13 by vapor deposition. In the case of a lens, a separately processed lens may be attached to the movable portion 13 by forming a through hole. The transparent resin is dropped on the movable portion 13 and formed on the movable portion 13 by surface tension. You may do it. As the lens material, a material that can be deformed by heat or external pressure, such as a polymer material or silicon, is used. When a lens is used as the optical means 14, the light emitting portion 1 is disposed on the side opposite to the light beam scanning side, so that a light beam passing through hole is usually provided in the lens mounting portion of the movable portion 13. However, when the movable portion 13 is made of a material that can transmit a light beam, it is not necessary to provide a through hole.

この光走査部3の駆動原理は例えば特許第2722314号等で詳述されており、ここでは簡単に説明する。
可動部13上の駆動コイル15に電流を流すと磁界が発生し、この磁界と静磁界発生手段17A,17Bによる静磁界との相互作用によりローレンツ力が発生し、トーションバー12,12の軸方向と平行な可動部対辺部に互いに逆方向の回転力が発生し、トーションバー12,12のばね力と発生した回転力とが釣合う位置まで可動部13は回動する。駆動コイル15に交流電流を流せば可動部13を介して光学手段14が揺動し、発光部1から照射された光ビームを走査できる。発生する回転力は、駆動コイル15に流す電流値に比例するので、駆動コイル15の電流値を制御することで可動部13の揺動角度(光ビームの走査角度)を制御できる。ここで、駆動コイル15と静磁界発生手段17A,17Bで駆動手段を構成する。
The driving principle of the optical scanning unit 3 is described in detail in, for example, Japanese Patent No. 2722314, and will be briefly described here.
When a current is passed through the drive coil 15 on the movable portion 13, a magnetic field is generated, and a Lorentz force is generated by the interaction between this magnetic field and the static magnetic field generated by the static magnetic field generating means 17A, 17B, and the axial direction of the torsion bars 12, 12 Rotating forces in opposite directions are generated on the opposite sides of the movable part parallel to the movable part 13, and the movable part 13 rotates to a position where the spring force of the torsion bars 12, 12 and the generated rotational force are balanced. When an alternating current is passed through the drive coil 15, the optical means 14 swings through the movable part 13, and the light beam emitted from the light emitting part 1 can be scanned. Since the generated rotational force is proportional to the current value flowing through the drive coil 15, the swing angle (light beam scanning angle) of the movable portion 13 can be controlled by controlling the current value of the drive coil 15. Here, a drive means is comprised by the drive coil 15 and the static magnetic field generation means 17A, 17B.

前記入力部4は、光学手段14の焦点距離の目標値を入力するものであり、光ビームの照射対象物までの距離が固定値で変化しないような場合は手動で目標値を入力する、例えばキーボード等を用いることができる。また、光ビームの照射対象物までの距離が常時変化するような場合は対象物までの距離検出が可能な測距装置を用いてその検出値を目標値として入力するようにすればよい。   The input unit 4 inputs a target value of the focal length of the optical means 14, and manually inputs the target value when the distance to the irradiation target of the light beam does not change at a fixed value. A keyboard or the like can be used. If the distance to the object irradiated with the light beam changes constantly, the detected value may be input as a target value using a distance measuring device capable of detecting the distance to the object.

前記駆動制御部5は、光走査部3の駆動及び光学手段14の焦点距離を可変制御すべく可動部13を加熱制御するものであり、駆動コイル15に供給する可動部駆動用交流電流を制御すると共に、入力部4から入力される目標値とデータ記憶部6の記憶データとに基づいて前記交流電流に重畳する可動部加熱用の直流電流を供給制御し光学手段14の変形量を制御して曲率半径を可変制御しその焦点距離を目標値に制御する。また、光走査部3は、前述したように可動部13の回転力が駆動コイル15に供給する駆動電流に比例し、前記駆動電流値から可動部13の走査位置(走査角度)が分かるので、駆動制御部5は、前記駆動電流値を発光部1の発光タイミング制御用信号として発光制御部2に送信する。尚、光走査部3の走査角度を、例えば可動部裏面側にミラーを設けてその反射光を受光素子アレイ等で受光しその受光位置から検出するような走査角度検出装置を、駆動制御部5とは別に設け、この走査角度検出装置で走査角度を直接検出しその検出値を発光タイミング制御用信号として発光制御部2に送信するようにしてもよい。この場合、発光制御部2において、前述した可動部駆動電流値と可動部13の走査角度との対応データを格納したメモリは不要である。   The drive control unit 5 controls the heating of the movable unit 13 so as to variably control the drive of the optical scanning unit 3 and the focal length of the optical means 14, and controls the AC current for driving the movable unit supplied to the drive coil 15. At the same time, based on the target value input from the input unit 4 and the data stored in the data storage unit 6, the DC current for heating the movable part superimposed on the AC current is controlled to control the deformation amount of the optical means 14. The radius of curvature is variably controlled, and the focal length is controlled to a target value. Further, as described above, in the optical scanning unit 3, the rotational force of the movable unit 13 is proportional to the drive current supplied to the drive coil 15, and the scanning position (scanning angle) of the movable unit 13 is known from the drive current value. The drive control unit 5 transmits the drive current value to the light emission control unit 2 as a light emission timing control signal for the light emission unit 1. The drive control unit 5 is a scanning angle detection device that detects the scanning angle of the optical scanning unit 3 by, for example, providing a mirror on the back side of the movable unit and receiving the reflected light by a light receiving element array or the like. Alternatively, the scanning angle detector may directly detect the scanning angle and transmit the detected value to the light emission control unit 2 as a light emission timing control signal. In this case, the light emission control unit 2 does not need a memory that stores the correspondence data between the movable part drive current value and the scanning angle of the movable part 13 described above.

前記データ記憶部6は、予め実験等で計測した、光学手段14の各焦点距離に対応する光学手段14の変形制御量データを予め記憶する記憶部であり、具体的には、光学手段14の各焦点距離に対応する光学手段14の変形制御量データとして可動部加熱用の前記直流電流値データが、各焦点距離データと対応付けられて記憶されている。   The data storage unit 6 is a storage unit that preliminarily stores deformation control amount data of the optical unit 14 corresponding to each focal length of the optical unit 14 measured in advance through experiments or the like. The DC current value data for heating the movable part is stored in association with each focal length data as deformation control amount data of the optical means 14 corresponding to each focal length.

次に、本実施形態の可変焦点型光学装置の動作を説明する。
光走査部3の可動部13の振れ角制御は、従来と同様であり、駆動制御部5から駆動コイル15に交流電流を供給制御して可動部13を共振駆動する。発光制御部2は、駆動制御部5から送信される前記交流電流値に基づいてメモリから可動部13の走査角度を読取り、予め設定された走査角度範囲で発光部1に発光指令を間欠的に出力する。発光部1は、前記発光指令の入力毎に光ビームを発光する。これにより、光走査部3の可動部13の揺動動作により光ビームが所定の走査範囲で走査される。
Next, the operation of the variable focus optical device of this embodiment will be described.
The swing angle control of the movable unit 13 of the optical scanning unit 3 is the same as in the prior art. The light emission control unit 2 reads the scanning angle of the movable unit 13 from the memory based on the alternating current value transmitted from the drive control unit 5 and intermittently issues a light emission command to the light emitting unit 1 within a preset scanning angle range. Output. The light emitting unit 1 emits a light beam every time the light emission command is input. Thereby, the light beam is scanned in a predetermined scanning range by the swinging operation of the movable portion 13 of the optical scanning portion 3.

次に、図3のフローチャートを参照して本発明の特徴である光学手段14の焦点距離制御動作を説明する。
ステップ1(図中S1で示し、以下同様とする)では、入力部4で焦点距離の目標値データを入力する。例えば、可動部13の走査角度とその時の焦点距離値を目標値データとして入力する。
ステップ2では、ステップ1で入力された目標値データの各焦点距離値に対応するヒータ電流値(直流電流値)を、駆動制御部5はデータ記憶部6から読み出し、各走査角度と対応付けて記憶する。
ステップ3では、駆動制御部5は、予め記憶してある駆動電流値と走査角度の対応データに基づいて駆動電流値から走査角度を読み出し、当該読み出した走査角度に対応する直流電流値を、ステップ2で読み出し記憶したヒータ電流値と走査角度との対応データから読み出し、当該読み出した直流電流値を可動部駆動用の交流電流に重畳して駆動コイル15に供給して可動部13を加熱制御する。駆動コイルとヒータコイルが別々の場合は、それぞれのコイルに駆動電流と加熱電流を供給すればよいことは言うまでもない。
Next, the focal length control operation of the optical means 14 which is a feature of the present invention will be described with reference to the flowchart of FIG.
In step 1 (indicated by S1 in the figure, the same applies hereinafter), target value data of the focal length is input by the input unit 4. For example, the scanning angle of the movable unit 13 and the focal length value at that time are input as target value data.
In step 2, the heater control value (DC current value) corresponding to each focal length value of the target value data input in step 1 is read from the data storage unit 6 by the drive control unit 5 and associated with each scanning angle. Remember.
In step 3, the drive control unit 5 reads the scan angle from the drive current value based on the correspondence data between the drive current value and the scan angle stored in advance, and the DC current value corresponding to the read scan angle 2 is read from the correspondence data between the heater current value read and stored in step 2 and the scanning angle, and the read direct current value is superimposed on the alternating current for driving the movable portion and supplied to the drive coil 15 to control the heating of the movable portion 13. . Needless to say, when the drive coil and the heater coil are separate, a drive current and a heating current may be supplied to each coil.

これにより、可動部13が供給されるヒータ電流量に応じて変形する。例えば、光学手段14が反射ミラーの場合は、図4のように可動部13が変形してその反り量が変化し反射ミラー14の曲率半径が変化し、その焦点位置Fが変化する。また、光学手段14がレンズの場合は、図5のように可動部13の変形によりレンズ14が変形してレンズ14の曲率半径が変化し、その焦点位置Fが変化する。   Thereby, the movable part 13 is deformed according to the amount of heater current supplied. For example, when the optical means 14 is a reflection mirror, the movable portion 13 is deformed as shown in FIG. 4 and the amount of warpage thereof changes, the radius of curvature of the reflection mirror 14 changes, and the focal position F changes. Further, when the optical means 14 is a lens, the lens 14 is deformed by the deformation of the movable portion 13 as shown in FIG. 5, the radius of curvature of the lens 14 is changed, and the focal position F is changed.

かかる構成によれば、光走査部3の光学手段14の焦点距離を可変制御できるので、レンズ等の光学部品を介在させることなく、光走査部3を介して照射される光ビームの焦点位置を所定位置に合わせることができる。従って、光学機器の部品点数を削減でき、構成を簡素化できる。また、本実施形態のような駆動コイルと静磁界発生手段により電磁力を利用して可動部13を駆動する電磁駆動タイプの光走査部3の場合は、駆動コイル15をヒータコイルとして兼用できる利点がある。   According to this configuration, since the focal length of the optical means 14 of the optical scanning unit 3 can be variably controlled, the focal position of the light beam irradiated through the optical scanning unit 3 can be controlled without interposing optical components such as lenses. It can be adjusted to a predetermined position. Therefore, the number of parts of the optical device can be reduced, and the configuration can be simplified. Further, in the case of the electromagnetic driving type optical scanning unit 3 that drives the movable unit 13 using electromagnetic force by the driving coil and the static magnetic field generating means as in this embodiment, the driving coil 15 can be used as a heater coil. There is.

次に、本発明の第2実施形態を説明する。
図6に第2実施形態の構成図を示す。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
第2実施形態は、光学手段14の焦点距離をフィードバック制御する構成であり、第1実施形態の構成に、光学手段14の実際の焦点距離を検出する焦点距離検出手段7を付加して構成される。
Next, a second embodiment of the present invention will be described.
FIG. 6 shows a configuration diagram of the second embodiment. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
The second embodiment is configured to feedback control the focal length of the optical means 14, and is configured by adding a focal length detection means 7 for detecting the actual focal length of the optical means 14 to the configuration of the first embodiment. The

光学手段14の焦点距離は、可動部13の変形量で決まる。従って、可動部13を加熱して変形させる構成では光学手段14の焦点距離は可動部13の温度に関連するので、前記焦点距離検出手段7として例えば温度センサを用い、可動部13の温度を検出することにより光学手段14の焦点距離を検出することができる。本実施形態では、温度センサを可動部13に取付けて実際の焦点距離を検出するものとする。この場合、本実施形態では、例えば温度センサの検出温度を焦点距離に換算するため、可動部温度と焦点距離との対応関係を予め実験等で求め、可動部温度と焦点距離との対応データを、例えばデータ記憶部6に記憶させておき、温度センサからの検出値に基づいてデータ記憶部6から焦点距離値を読み出すようにする。   The focal length of the optical means 14 is determined by the deformation amount of the movable portion 13. Accordingly, in the configuration in which the movable portion 13 is heated and deformed, the focal length of the optical means 14 is related to the temperature of the movable portion 13, and therefore, for example, a temperature sensor is used as the focal length detection means 7 to detect the temperature of the movable portion 13. By doing so, the focal length of the optical means 14 can be detected. In this embodiment, a temperature sensor is attached to the movable part 13 and an actual focal length is detected. In this case, in this embodiment, for example, in order to convert the detection temperature of the temperature sensor into a focal length, a correspondence relationship between the movable portion temperature and the focal length is obtained in advance through experiments or the like, and correspondence data between the movable portion temperature and the focal length is obtained. For example, it is stored in the data storage unit 6 and the focal length value is read from the data storage unit 6 based on the detection value from the temperature sensor.

次に、図7のフローチャートを参照して第2実施形態の焦点距離制御動作を説明する。尚、可動部13の振れ角制御は第1実施形態と同様であるので説明を省略する。
ステップ11〜13の動作は図3のステップ1〜3と同様である。
ステップ14では、温度センサ(焦点距離検出手段7)の検出値を入力し、入力した検出値に対応する焦点距離値Bをデータ記憶部6から読み出す。
Next, the focal length control operation of the second embodiment will be described with reference to the flowchart of FIG. Note that the swing angle control of the movable portion 13 is the same as that in the first embodiment, and a description thereof will be omitted.
The operations in steps 11 to 13 are the same as those in steps 1 to 3 in FIG.
In step 14, the detection value of the temperature sensor (focal length detection means 7) is input, and the focal length value B corresponding to the input detection value is read from the data storage unit 6.

ステップ15では、目標とする焦点距離値Aとステップ14で求めた実際の焦点距離値Bを比較する。そして、A=Bであればそのときのヒータ電流値を維持する。A<Bであればステップ16に進み、可動部13の変形量を大きくして焦点距離を短くすべくヒータ電流を増大制御する。例えば、現在のヒータ電流値から予め設定した所定値づつヒータ電流をA=Bとなるまで増大補正する。一方、A>Bであればステップ17に進み、可動部13の変形量を小さくして焦点距離を長くすべくヒータ電流を減少制御する。例えば、現在のヒータ電流値から予め設定した所定値づつヒータ電流をA=Bとなるまで減少補正する。   In step 15, the target focal length value A is compared with the actual focal length value B obtained in step 14. If A = B, the heater current value at that time is maintained. If A <B, the process proceeds to step 16, and the heater current is increased and controlled to increase the deformation amount of the movable portion 13 and shorten the focal length. For example, the heater current is increased and corrected by a predetermined value set in advance from the current heater current value until A = B. On the other hand, if A> B, the process proceeds to step 17, and the heater current is decreased and controlled to reduce the deformation amount of the movable portion 13 and increase the focal length. For example, the heater current is decreased and corrected by a predetermined value set in advance from the current heater current value until A = B.

かかる第2実施形態の構成によれば、実際の焦点距離を検出して目標の焦点距離値となるようヒータ電流をフィードバック制御するので、焦点距離の制御精度を向上できる。   According to the configuration of the second embodiment, since the heater current is feedback-controlled so that the actual focal length is detected and the target focal length value is obtained, the control accuracy of the focal length can be improved.

尚、光走査部3の構成は、上述した実施形態に限定されない。例えば、図8(A)に示すように、可動部13表面に矩形状の形状記憶合金21を設け、形状記憶合金21上にヒータコイル兼用の駆動コイル15を設ける構成でもよい。また、図8(B)に示すように十字状に形状記憶合金21を設け、可動部13の加熱源としてヒータコイルに代えてレーザ光を形状記憶合金21部分に照射して可動部13を加熱変形させるよう構成してもよい。このように、形状記憶合意金21を加熱して可動部13を変形させる構成とすれば、形状記憶合金21の変形が可動部13の変形を助長するので、可動部13を変形し易くなる利点がある。   In addition, the structure of the optical scanning part 3 is not limited to embodiment mentioned above. For example, as shown in FIG. 8A, a configuration may be adopted in which a rectangular shape memory alloy 21 is provided on the surface of the movable portion 13 and a drive coil 15 also serving as a heater coil is provided on the shape memory alloy 21. Further, as shown in FIG. 8B, a shape memory alloy 21 is provided in a cross shape, and the movable portion 13 is heated by irradiating the portion of the shape memory alloy 21 with a laser beam instead of the heater coil as a heating source of the movable portion 13. You may comprise so that it may deform | transform. In this way, if the shape memory agreement 21 is heated to deform the movable portion 13, the deformation of the shape memory alloy 21 promotes the deformation of the movable portion 13, so that the movable portion 13 can be easily deformed. There is.

可動部13の加熱は、ヒータコイルに限定されず、上述したレーザ光を利用してもよい。この場合、走査用の光ビームと加熱用レーザ光が干渉しないよう、加熱用レーザ光を可動部13の裏面側から可動部13に照射するとよく、可動部13がシリコンの場合は加熱用レーザ光の波長としてシリコンを透過しない波長を選択する。光学手段14がレンズの場合は加熱用レーザ光がレンズを透過しないように斜め方向から可動部13に照射するとよい。   The heating of the movable portion 13 is not limited to the heater coil, and the above-described laser beam may be used. In this case, the laser beam for heating may be irradiated from the back side of the movable part 13 to the movable part 13 so that the scanning light beam and the laser beam for heating do not interfere. When the movable part 13 is silicon, the laser beam for heating is used. A wavelength that does not transmit through silicon is selected as the wavelength of. When the optical means 14 is a lens, it is preferable to irradiate the movable portion 13 from an oblique direction so that the heating laser beam does not pass through the lens.

また、可動部13を変形させる方法としては、熱の他、圧電体を可動部13に設け、圧電体に印加する電圧を可変制御することにより、可動部13の変形量を制御する構成でもよい。この場合、焦点距離制御用の変形制御量データは印加電圧値となる。
尚、圧電体で可動部13を変形させる構成の場合、上述した第2実施形態の焦点距離検出手段7として温度センサは使用できないので、例えば可動部13の歪みを感知する圧電センサを可動部13に設け、圧電センサの出力を焦点距離検出値として利用する構成とするとよい。
Further, as a method of deforming the movable portion 13, in addition to heat, a piezoelectric body may be provided on the movable portion 13, and the amount of deformation of the movable portion 13 may be controlled by variably controlling the voltage applied to the piezoelectric body. . In this case, the deformation control amount data for controlling the focal length is an applied voltage value.
In the case of a configuration in which the movable portion 13 is deformed by a piezoelectric body, a temperature sensor cannot be used as the focal length detection means 7 of the second embodiment described above. Therefore, for example, a piezoelectric sensor that senses distortion of the movable portion 13 is used as the movable portion 13. The output of the piezoelectric sensor may be used as a focal length detection value.

また、光走査部3の可動部13の駆動方式は、上記実施形態で示した電磁駆動タイプに限らず、静電引力を利用した静電タイプ、圧電素子を利用した圧電タイプ等、どのような駆動タイプでもよい。また、図9に示すように、例えば可動部13に駆動コイル15を設けた電磁駆動タイプにおいて、可動部13の裏面側に一対の可動電極31A,31B(図中破線で示す)を設け、この可動電極31A,31Bに対向して可動部13下方の固定部に固定電極(図示せず)を配置して、電磁駆動と静電駆動を併用する構成としてもよい。   In addition, the driving method of the movable unit 13 of the optical scanning unit 3 is not limited to the electromagnetic driving type shown in the above embodiment, but any type such as an electrostatic type using electrostatic attraction, a piezoelectric type using a piezoelectric element, etc. A drive type may be used. Also, as shown in FIG. 9, for example, in the electromagnetic drive type in which the drive coil 15 is provided in the movable part 13, a pair of movable electrodes 31A and 31B (shown by broken lines in the figure) are provided on the back side of the movable part 13, It is good also as a structure which arrange | positions a fixed electrode (not shown) in the fixed part below movable part 13 facing movable electrode 31A, 31B, and uses electromagnetic drive and electrostatic drive together.

本発明に係る可変焦点型光学装置の第1実施形態を示す構成図1 is a configuration diagram showing a first embodiment of a variable focus optical device according to the present invention. 光走査部の変面図Variation of the optical scanning section 第1実施形態の加熱制御動作を示すフローチャートThe flowchart which shows the heating control operation | movement of 1st Embodiment. 反射ミラーの場合の焦点距離変化状態の説明図Explanatory drawing of focal length change state in case of reflection mirror レンズの場合の焦点距離変化状態の説明図Explanatory drawing of changing focal length in the case of lens 本発明の第2実施形態を示す構成図The block diagram which shows 2nd Embodiment of this invention 第1実施形態の加熱制御動作を示すフローチャートThe flowchart which shows the heating control operation | movement of 1st Embodiment. 光走査部の別の構成例を示す要部平面図Main part plan view showing another configuration example of the optical scanning unit 光走査部の可動部の別の駆動形態例を示す要部平面図The principal part top view which shows another example of a drive form of the movable part of an optical scanning part

符号の説明Explanation of symbols

1 発光部
2 発光制御部
3 光走査部
4 入力部
5 駆動制御部
6 データ記憶部
7 焦点距離検出手段
11 固定部
12,12 トーションバー
13 可動部
14 光学手段
15 駆動コイル(ヒータコイル)
17A,17B 静磁界発生手段
DESCRIPTION OF SYMBOLS 1 Light emission part 2 Light emission control part 3 Optical scanning part 4 Input part 5 Drive control part 6 Data storage part 7 Focal length detection means 11 Fixed part 12,12 Torsion bar 13 Movable part 14 Optical means 15 Drive coil (heater coil)
17A, 17B Static magnetic field generating means

Claims (10)

固定部に梁部を介して可動可能に支持された可動部と、該可動部を駆動する駆動手段と、
前記可動部に固定され入射する光ビームを屈折又は反射する光学手段と、該光学手段の焦点距離を可変制御する制御手段とを備えて構成したことを特徴とする可変焦点型光学装置。
A movable part movably supported by the fixed part via the beam part, and a driving means for driving the movable part,
A variable focus optical apparatus comprising: an optical unit that refracts or reflects an incident light beam fixed to the movable portion; and a control unit that variably controls a focal length of the optical unit.
前記制御手段は、前記光学手段の変形量を制御して前記光学手段の曲率半径を可変制御する構成である請求項1に記載の可変焦点型光学装置。   2. The variable focus optical device according to claim 1, wherein the control unit is configured to variably control a curvature radius of the optical unit by controlling a deformation amount of the optical unit. 前記制御手段は、前記可動部を加熱制御して当該可動部と共に変形する前記光学手段の変形量を制御する構成である請求項2に記載の可変焦点型光学装置。   3. The variable focus optical device according to claim 2, wherein the control means is configured to control the amount of deformation of the optical means that deforms together with the movable part by heating the movable part. 前記制御手段は、可動部にヒータを設けて可動部を加熱制御する構成である請求項3に記載の可変焦点型光学装置。   4. The variable focus optical device according to claim 3, wherein the control means is configured to provide a heater in the movable part to control the heating of the movable part. 前記駆動手段が、前記可動部に敷設されて通電により磁界を発生する駆動コイルと、前記梁部の軸方向と平行な可動部対辺部に位置する駆動コイル部分に対して静磁界を作用する静磁界発生手段とを備え、前記可動部対辺部に位置する駆動コイル部分に発生する磁界と前記静磁界との相互作用により前記可動部対辺部に電磁力を作用させる構成であるとき、前記駆動コイルが前記ヒータを兼ねる構成とした請求項4に記載の可変焦点型光学装置。   The driving means lays on the movable portion and generates a magnetic field by energization, and a static magnetic field that acts on a portion of the driving coil located on the opposite side of the movable portion parallel to the axial direction of the beam portion. The drive coil having a magnetic field generating means, wherein an electromagnetic force is applied to the opposite side portion of the movable portion by the interaction between the magnetic field generated in the drive coil portion located on the opposite side portion of the movable portion and the static magnetic field. The variable-focus optical device according to claim 4, wherein the variable-focus optical device also serves as the heater. 前記制御手段は、可動部にレーザ光を照射して可動部を加熱制御する構成である請求項3に記載の可変焦点型光学装置。   The variable focus optical device according to claim 3, wherein the control unit is configured to control the heating of the movable part by irradiating the movable part with laser light. 前記可動部に形状記憶金属を設け、該形状記憶金属を加熱する構成である請求項3〜6のいずれか1つに記載の可変焦点型光学装置。   The variable focus optical device according to claim 3, wherein a shape memory metal is provided on the movable portion, and the shape memory metal is heated. 前記制御手段は、圧電体により前記光学手段の変形量を制御する構成である請求項2に記載の可変焦点型光学装置。   The variable focus optical apparatus according to claim 2, wherein the control unit is configured to control a deformation amount of the optical unit by a piezoelectric body. 前記制御手段は、前記焦点距離の目標値を入力する入力部と、前記光学手段の各焦点距離に対応する光学手段の変形制御量データを予め記憶する記憶部と、該記憶部の記憶データに基づいて入力された前記目標値に対応する変形制御量を決定して光学手段を変形制御する制御部とを備える構成である請求項1〜8のいずれか1つに記載の可変焦点型光学装置。   The control means includes an input section for inputting a target value of the focal length, a storage section for storing in advance deformation control amount data of the optical means corresponding to each focal length of the optical means, and stored data in the storage section. The variable focus optical device according to claim 1, further comprising: a control unit that determines a deformation control amount corresponding to the target value input based on the control unit and controls the deformation of the optical unit. . 前記光学手段の実際の焦点距離を検出する検出手段を設け、前記制御部は、前記検出手段の検出値と前記目標値とを比較して前記検出値が前記目標値と一致するように前記変形制御量をフィードバック制御する構成である請求項9に記載の可変焦点型光学装置。   Detection means for detecting an actual focal length of the optical means is provided, and the control unit compares the detection value of the detection means with the target value so that the detection value matches the target value. The variable focus optical device according to claim 9, wherein the control amount is feedback-controlled.
JP2004266267A 2004-09-14 2004-09-14 Variable focus optical device Expired - Fee Related JP4476080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266267A JP4476080B2 (en) 2004-09-14 2004-09-14 Variable focus optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266267A JP4476080B2 (en) 2004-09-14 2004-09-14 Variable focus optical device

Publications (2)

Publication Number Publication Date
JP2006084495A true JP2006084495A (en) 2006-03-30
JP4476080B2 JP4476080B2 (en) 2010-06-09

Family

ID=36163093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266267A Expired - Fee Related JP4476080B2 (en) 2004-09-14 2004-09-14 Variable focus optical device

Country Status (1)

Country Link
JP (1) JP4476080B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085605A (en) * 2012-10-26 2014-05-12 Hitachi Media Electoronics Co Ltd Laser beam display device and mirror control method therefor
JP2014235260A (en) * 2013-05-31 2014-12-15 株式会社デンソー Optical scanner
WO2015179375A1 (en) * 2014-05-20 2015-11-26 Saikou Optics Incorporated High speed variable focal field lens assembly and related methods
JPWO2013161271A1 (en) * 2012-04-23 2015-12-21 キヤノン電子株式会社 Optical scanning device and image reading device
JP2016045321A (en) * 2014-08-21 2016-04-04 株式会社デンソー Optical scanner
JP2016121905A (en) * 2014-12-24 2016-07-07 大陽日酸株式会社 Multiple reflection container
JP2016212221A (en) * 2015-05-07 2016-12-15 株式会社デンソー Optical scanner
JP2017032714A (en) * 2015-07-30 2017-02-09 株式会社デンソー Optical scanner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013161271A1 (en) * 2012-04-23 2015-12-21 キヤノン電子株式会社 Optical scanning device and image reading device
US9664899B2 (en) 2012-04-23 2017-05-30 Canon Denshi Kabushiki Kaisha Optical scanning device and image reading system
JP2014085605A (en) * 2012-10-26 2014-05-12 Hitachi Media Electoronics Co Ltd Laser beam display device and mirror control method therefor
JP2014235260A (en) * 2013-05-31 2014-12-15 株式会社デンソー Optical scanner
WO2015179375A1 (en) * 2014-05-20 2015-11-26 Saikou Optics Incorporated High speed variable focal field lens assembly and related methods
US10444491B2 (en) 2014-05-20 2019-10-15 Saikou Optics Incorporated High speed variable focal field lens assembly and related methods
US11586033B2 (en) 2014-05-20 2023-02-21 Saikou Optics Incorporated High speed variable focal field lens assembly and related methods
JP2016045321A (en) * 2014-08-21 2016-04-04 株式会社デンソー Optical scanner
JP2016121905A (en) * 2014-12-24 2016-07-07 大陽日酸株式会社 Multiple reflection container
JP2016212221A (en) * 2015-05-07 2016-12-15 株式会社デンソー Optical scanner
JP2017032714A (en) * 2015-07-30 2017-02-09 株式会社デンソー Optical scanner

Also Published As

Publication number Publication date
JP4476080B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
US7298390B2 (en) Optical scanning device for scanning a laser beam on an image bearing member
US9753125B2 (en) Distance measuring apparatus using laser light
US9664899B2 (en) Optical scanning device and image reading system
JP2003161900A (en) Optical switch having converging optical element
JP3543473B2 (en) Optical scanning device
JP2008170565A (en) Oscillating body apparatus and image forming apparatus using the same
JP5950884B2 (en) Optical scanning method and optical scanning device
US7436566B2 (en) Oscillating device, optical deflector and method of controlling the same
JP4476080B2 (en) Variable focus optical device
JP2007152766A (en) Scanning exposure device
JP2002517777A (en) Method and apparatus for controlling the focus of a read / write head used in an optical scanner
JP2022097530A (en) Methods for manufacturing ranging device and scanning device
JP2012118125A (en) Optical scanning apparatus and driving method thereof
JP2005257811A (en) Optical scanner, method for driving the same and optical scanner driver
JP2007171930A (en) Oscillating device, optical deflector and method of controlling the same
JP4151358B2 (en) Optical scanning device
JP2006072251A (en) Planar type actuator
JP2013195479A (en) Optical deflector, optical scanning device, image formation device and image projection device
JP2006107584A (en) Optical element and light spot position adjustment method
JP2018005201A (en) Actuator device and actuator system
JP2019003002A (en) Variable focus type optical scanner
JP2962439B2 (en) Beam irradiation reader
JPS627018A (en) Reflection type condensing device
Koay Development and Analysis of Linear Resonant Scanner with Torsional Mechanism
JP2010054651A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Ref document number: 4476080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees