JP2009257823A - Ultrasonic three-dimensional distance measurement apparatus and ultrasonic three-dimensional distance measurement method - Google Patents

Ultrasonic three-dimensional distance measurement apparatus and ultrasonic three-dimensional distance measurement method Download PDF

Info

Publication number
JP2009257823A
JP2009257823A JP2008104593A JP2008104593A JP2009257823A JP 2009257823 A JP2009257823 A JP 2009257823A JP 2008104593 A JP2008104593 A JP 2008104593A JP 2008104593 A JP2008104593 A JP 2008104593A JP 2009257823 A JP2009257823 A JP 2009257823A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
dimensional distance
delay
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008104593A
Other languages
Japanese (ja)
Other versions
JP5102091B2 (en
Inventor
Masatoshi Shimizu
雅年 清水
Hideo Furuhashi
秀夫 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nagoya Denki Educational Foundation
Original Assignee
Kansai Electric Power Co Inc
Nagoya Denki Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nagoya Denki Educational Foundation filed Critical Kansai Electric Power Co Inc
Priority to JP2008104593A priority Critical patent/JP5102091B2/en
Publication of JP2009257823A publication Critical patent/JP2009257823A/en
Application granted granted Critical
Publication of JP5102091B2 publication Critical patent/JP5102091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic three-dimensional distance measurement apparatus and an ultrasonic three-dimensional distance measurement method for accurately measuring a three-dimensional position and a three-dimensional shape of an object without threshold determination. <P>SOLUTION: The ultrasonic three-dimensional distance measurement apparatus for measuring the three-dimensional position and the three-dimensional shape of the object comprises: an ultrasonic transmitting element for transmitting ultrasonic waves; a plurality of ultrasonic receiving elements 1; an amplification means 2; an A-D conversion means 3; a direct wave removing means 4; a signal strength changing means 5; a noise removing means 6; a delay means 7; a multiplication means 8; and a three-dimensional position calculating means 9 as main components. The signal strength changing means 5 performs half-wave rectification processing of a fourth received signal S4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超音波三次元距離計測装置及び超音波三次元距離計測方法に関する。   The present invention relates to an ultrasonic three-dimensional distance measuring device and an ultrasonic three-dimensional distance measuring method.

従来から、超音波送信素子から送信した超音波が対象物に反射して生成する反射波を超音波受信素子により受信し、得られた受信信号に基づいて対象物までの距離を測る計測技術が知られている。   Conventionally, there has been a measurement technique in which a reflected wave generated by reflection of an ultrasonic wave transmitted from an ultrasonic transmission element on an object is received by the ultrasonic wave reception element, and a distance to the object is measured based on the obtained reception signal. Are known.

また、対象物からの反射波を複数の超音波受信素子により受信し、各超音波受信素子で得られた受信信号に対して、所定の処理を行なうことにより反射波の入射角度を検出する技術が知られている(特許文献1,2参照)。ここで、所定の処理とは、遅延加算において、遅延時間を変化させることである。遅延加算とは、各超音波受信素子で得られた信号に対して、所定の時間を遅延させた後に加算することである。この遅延させる所定の時間のことを遅延時間という。遅延時間は、検出すべき反射波の入射角度(以下、偏向角と記す)と、超音波受信素子の中心間距離により算出されるものであり、超音波受信素子の中心間距離は固定なので、遅延時間は偏向角に依存する。遅延時間を変化させ、遅延加算後にピークが得られた場合、その遅延時間に対応する偏向角が反射波の入射角、即ち対象物の方向である。遅延加算における加算の代わりに乗算を行なう場合もある(以下、この処理を遅延乗算と記す)。   Also, a technique for detecting an incident angle of a reflected wave by receiving a reflected wave from an object by a plurality of ultrasonic receiving elements and performing predetermined processing on a reception signal obtained by each ultrasonic receiving element. Is known (see Patent Documents 1 and 2). Here, the predetermined process is to change the delay time in the delay addition. The delay addition is to add after delaying a predetermined time to the signal obtained by each ultrasonic receiving element. This predetermined time to delay is called delay time. The delay time is calculated by the incident angle of the reflected wave to be detected (hereinafter referred to as a deflection angle) and the distance between the centers of the ultrasonic receiving elements, and the distance between the centers of the ultrasonic receiving elements is fixed. The delay time depends on the deflection angle. When the delay time is changed and a peak is obtained after delay addition, the deflection angle corresponding to the delay time is the incident angle of the reflected wave, that is, the direction of the object. In some cases, multiplication is performed instead of addition in delay addition (hereinafter, this processing is referred to as delay multiplication).

この所定の処理により、走査方向に沿った反射波の入射角度の情報を得ることを、以下、「電子的走査」と呼ぶことにする。すなわち、「電子的走査」とは、遅延乗算又は遅延加算において遅延時間を変化させることにより走査方向に沿った反射波の入射角度の情報を得ることを意味する(以下、同じ)。   Obtaining information of the incident angle of the reflected wave along the scanning direction by this predetermined processing is hereinafter referred to as “electronic scanning”. That is, “electronic scanning” means obtaining information on the incident angle of the reflected wave along the scanning direction by changing the delay time in delay multiplication or delay addition (hereinafter the same).

電子的走査を一方向に行なえば、一次元的な反射波の入射角度の情報を得ることができる。そのため、互いに異なる方向、例えば互いに直角な方向に電子的走査を行なえば、2次元的な反射波の入射角度の情報を得ることができる。これらの入射角度情報に対象物までの距離情報を加えることにより、超音波を反射した対象物の3次元的位置と3次元的形状を計測できる。このような計測のことを以下、超音波三次元距離計測と記す。
特開2002−156451号公報 特開2007−121045号公報
If electronic scanning is performed in one direction, information on the incident angle of a one-dimensional reflected wave can be obtained. Therefore, if electronic scanning is performed in different directions, for example, directions perpendicular to each other, information on the incident angle of the two-dimensional reflected wave can be obtained. By adding the distance information to the object to the incident angle information, the three-dimensional position and the three-dimensional shape of the object reflecting the ultrasonic wave can be measured. Such measurement is hereinafter referred to as ultrasonic three-dimensional distance measurement.
JP 2002-156451 A JP 2007-121045 A

ところで、遅延加算のみ又は遅延乗算のみを用いた電子的走査について、指向性は良好ではない。例えば、超音波受信素子1を、中心間距離を超音波の反射波の波長λの半分λ/2で、図13(A)に示すような6×6の格子状に配列していると仮定する。図13(A)の左右方向がX、上下方向をY、紙面に垂直な方向をZ方向とし、正の向きがそれぞれ右、上、紙面の裏から表への向きとする。反射波はXZ平面に沿っていると仮定し、同図(B)に示すようにXZ平面において反射波(同図(B)における矢印)の入射角をαとする。XZ平面において電気的走査における遅延時間を決定する検出すべき反射波の入射角(偏向角)をθとする。入射角α、偏向角θとも、反射波がX軸の正側から入射する場合を正とし、反射波がX軸の負側から入射する場合を負とする。   By the way, directivity is not good for electronic scanning using only delay addition or delay multiplication. For example, it is assumed that the ultrasonic receiving elements 1 are arranged in a 6 × 6 lattice pattern as shown in FIG. 13A with the center-to-center distance being half λ / 2 of the wavelength λ of the reflected wave of the ultrasonic wave. To do. In FIG. 13A, the left-right direction is X, the up-down direction is Y, the direction perpendicular to the paper surface is the Z direction, and the positive direction is the right, top, and back to front surface. It is assumed that the reflected wave is along the XZ plane, and the incident angle of the reflected wave (arrow in FIG. 5B) on the XZ plane is α as shown in FIG. Let θ be the incident angle (deflection angle) of the reflected wave to be detected that determines the delay time in electrical scanning in the XZ plane. Both the incident angle α and the deflection angle θ are positive when the reflected wave is incident from the positive side of the X axis, and negative when the reflected wave is incident from the negative side of the X axis.

反射波の入射角α=0°の場合に、X軸方向に(XZ平面に沿って)電子的走査を行なった場合のシミュレーションによる結果を図14に示す。電子的走査に遅延加算を使用した場合が同図(A)であり、遅延乗算を使用した場合が同図(B)である。遅延加算、遅延乗算のいずれを使用した場合にも0°以外の偏向角θの範囲でピークが出現している。これらの0°以外の偏向角θでのピークを検出した場合、実際にはその偏向角θ方向からは反射波が入射していないにも関わらず、その偏向角θ方向から反射波が入射したという誤った計測結果が得られてしまう。このような事態を防止するために、遅延加算を使用した場合には、ピークの検出の際に、閾値で判定すること等が行なわれている。しかし、閾値判定を行なう場合には、閾値を高く設定すると実在する対象物からのピークを検出できない恐れや、逆に低く設定すると上記のような実在する対象物に由来しないピークを検出してしまう恐れがある。一方、遅延乗算を用いた場合は、指向性が良好でないため、そのままでは超音波三次元距離計測には適用できなかった。   FIG. 14 shows a result of simulation when electronic scanning is performed in the X-axis direction (along the XZ plane) when the incident angle α of the reflected wave is 0 °. The case where delay addition is used for electronic scanning is shown in FIG. 5A, and the case where delay multiplication is used is shown in FIG. When either delay addition or delay multiplication is used, a peak appears in the range of the deflection angle θ other than 0 °. When a peak at a deflection angle θ other than 0 ° is detected, a reflected wave is actually incident from the deflection angle θ direction although no reflected wave is incident from the deflection angle θ direction. The wrong measurement result is obtained. In order to prevent such a situation, when delay addition is used, determination using a threshold value or the like is performed when a peak is detected. However, when threshold determination is performed, if the threshold value is set high, the peak from the actual object may not be detected. Conversely, if the threshold value is set low, the peak not derived from the actual object as described above is detected. There is a fear. On the other hand, when delay multiplication is used, directivity is not good, and as such, it cannot be applied to ultrasonic three-dimensional distance measurement.

そこで、本発明は、上記事情に鑑み、閾値判定を行なわずに正確に対象物の3次元的位置と3次元的形状を計測することが可能な超音波三次元距離計測装置及び超音波三次元距離計測方法を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention provides an ultrasonic three-dimensional distance measuring device and an ultrasonic three-dimensional that can accurately measure a three-dimensional position and a three-dimensional shape of an object without performing threshold determination. It is an object to provide a distance measurement method.

前記課題を解決するため請求項1の発明は、超音波を送信する超音波送信素子と、前記超音波が対象物に反射して生成する反射波を受信する複数の超音波受信素子とを備え、前記超音波受信素子で得られた受信信号に基づいて前記対象物の空間形状を計測する超音波三次元距離計測装置において、前記受信信号を遅延させて遅延信号を生成する遅延手段と、前記遅延信号を乗算する乗算手段と、前記受信信号又は遅延信号の信号強度を所定値未満の部分で0にする信号強度変更手段とを有することを特徴とする。   In order to solve the above-mentioned problem, the invention of claim 1 includes an ultrasonic transmission element that transmits ultrasonic waves, and a plurality of ultrasonic reception elements that receive reflected waves generated by reflecting the ultrasonic waves on an object. In the ultrasonic three-dimensional distance measuring device that measures the spatial shape of the object based on the received signal obtained by the ultrasonic receiving element, a delay unit that delays the received signal to generate a delayed signal; and Multiplying means for multiplying a delayed signal and signal strength changing means for setting the signal strength of the received signal or delayed signal to 0 in a portion less than a predetermined value.

ここで、空間形状とは、3次元的位置及び3次元的形状を意味する(以下、同じ)。   Here, the spatial shape means a three-dimensional position and a three-dimensional shape (hereinafter the same).

また、「信号強度を所定値未満の部分で0にする」の「0」とは、厳密な0だけでなく、対象物に由来する信号強度等を考慮して実質的に0とみなせる大きさも含む。   In addition, “0” in “set the signal intensity to 0 at a portion less than a predetermined value” is not only a strict 0, but also a size that can be regarded as substantially 0 in consideration of a signal intensity derived from an object. Including.

請求項1の発明によれば、超音波三次元距離計測装置の指向性が向上するため、閾値判定を行なわずに正確に対象物の空間形状を計測することができる(詳細は、[発明を実施するための最良の形態]参照)。   According to the first aspect of the invention, since the directivity of the ultrasonic three-dimensional distance measuring device is improved, the spatial shape of the object can be accurately measured without performing threshold determination (for details, see [Invention BEST MODES FOR IMPLEMENTING]).

請求項2の発明は、請求項1の発明において、前記所定値を0としたものである。   According to a second aspect of the present invention, in the first aspect of the invention, the predetermined value is zero.

ここで、「所定値を0とした」の「0」とは、厳密な0だけでなく、対象物に由来する信号強度等を考慮して実質的に0とみなせる大きさも含む。   Here, “0” of “predetermined value is set to 0” includes not only exact 0 but also a size that can be regarded as substantially 0 in consideration of signal intensity and the like derived from an object.

請求項2の発明によれば、所定値が正の場合より、信号強度を所定値未満の部分で0にされる前の受信信号又は遅延信号の情報が多く残るため、計測の精度を向上することができると共に、所定値が負の場合より、超音波三次元距離計測装置の指向性を向上させることができる(詳細は、[発明を実施するための最良の形態]参照)。   According to the second aspect of the present invention, since the information of the received signal or the delayed signal before the signal intensity is reduced to 0 in the portion less than the predetermined value remains more than when the predetermined value is positive, the measurement accuracy is improved. In addition, the directivity of the ultrasonic three-dimensional distance measuring device can be improved as compared with the case where the predetermined value is negative (for details, refer to [Best Mode for Carrying Out the Invention]).

前記課題を解決するため請求項3の発明は、超音波を送信する超音波送信素子と、前記超音波が対象物に反射して生成する反射波を受信する複数の超音波受信素子とを備え、前記超音波受信素子で得られた受信信号に基づいて前記対象物の空間形状を計測する超音波三次元距離計測方法において、前記受信信号を遅延させて遅延信号を生成する遅延工程と、前記遅延信号を乗算する乗算工程と、前記受信信号又は遅延信号の信号強度を所定値未満の部分で0にする信号強度変更工程とを有することを特徴とする。   In order to solve the above-mentioned problems, the invention of claim 3 includes an ultrasonic transmission element that transmits ultrasonic waves, and a plurality of ultrasonic reception elements that receive reflected waves generated by reflecting the ultrasonic waves on an object. In the ultrasonic three-dimensional distance measuring method for measuring the spatial shape of the object based on the received signal obtained by the ultrasonic receiving element, the delay step of generating a delayed signal by delaying the received signal; A multiplication step of multiplying the delay signal and a signal strength changing step of setting the signal strength of the received signal or the delay signal to 0 in a portion less than a predetermined value are characterized.

ここで、「信号強度を所定値未満の部分で0にする」の「0」とは、厳密な0だけでなく、対象物に由来する信号強度等を考慮して実質的に0とみなせる大きさも含む。   Here, “0” in “set the signal strength to 0 at a portion less than a predetermined value” is not only a strict 0 but also a size that can be regarded as substantially 0 in consideration of the signal strength derived from the object. Also including.

請求項3の発明によれば、超音波三次元距離計測方法において指向性が向上するため、閾値判定を行なわずに正確に対象物の空間形状を計測することができる(詳細は、[発明を実施するための最良の形態]参照)。   According to the invention of claim 3, since directivity is improved in the ultrasonic three-dimensional distance measurement method, it is possible to accurately measure the spatial shape of the object without performing threshold determination (for details, see [Invention BEST MODES FOR IMPLEMENTING]).

請求項4の発明は、請求項3の発明において、前記所定値を0としたものである。   According to a fourth aspect of the invention, in the third aspect of the invention, the predetermined value is zero.

ここで、「所定値を0とした」の「0」とは、厳密な0だけでなく、対象物に由来する信号強度等を考慮して実質的に0とみなせる大きさも含む。   Here, “0” of “predetermined value is set to 0” includes not only exact 0 but also a size that can be regarded as substantially 0 in consideration of signal intensity and the like derived from an object.

請求項4の発明によれば、所定値が正の場合より、信号強度を所定値未満の部分で0にされる前の受信信号又は遅延信号の情報が多く残るため、計測の精度を向上することができると共に、所定値が負の場合より、超音波三次元距離計測方法の指向性を向上させることができる(詳細は、[発明を実施するための最良の形態]参照)。   According to the invention of claim 4, since the information of the received signal or the delayed signal before the signal intensity is reduced to 0 in the portion less than the predetermined value remains more than when the predetermined value is positive, the measurement accuracy is improved. In addition, the directivity of the ultrasonic three-dimensional distance measurement method can be improved as compared with the case where the predetermined value is negative (for details, refer to [Best Mode for Carrying Out the Invention]).

本発明によれば、閾値判定を行なわずに正確に対象物の3次元的位置と3次元的形状を計測することが可能な超音波三次元距離計測装置及び超音波三次元距離計測方法を提供することができる。   According to the present invention, an ultrasonic three-dimensional distance measuring device and an ultrasonic three-dimensional distance measuring method capable of accurately measuring a three-dimensional position and a three-dimensional shape of an object without performing threshold determination are provided. can do.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明の実施形態に係る超音波三次元距離計測装置の主要な構成及び信号の流れを模式的に示したものである。   FIG. 1 schematically shows the main configuration and signal flow of an ultrasonic three-dimensional distance measuring apparatus according to an embodiment of the present invention.

超音波三次元距離計測装置は、超音波送信素子(図示省略)、超音波受信素子1、増幅手段2、AD変換手段3、直接波消去手段4、信号強度変更手段5、ノイズ消去手段6、遅延手段7、乗算手段8及び三次元的位置算出手段9から主要な構成要素とする。超音波受信素子1、増幅手段2、AD変換手段3、直接波消去手段4、信号強度変更手段5、ノイズ消去手段6、遅延手段7はそれぞれが1つずつで1セットになっており、このセットが超音波受信素子1の数と同数設置されている。   The ultrasonic three-dimensional distance measuring apparatus includes an ultrasonic transmitting element (not shown), an ultrasonic receiving element 1, an amplifying means 2, an AD converting means 3, a direct wave erasing means 4, a signal intensity changing means 5, a noise erasing means 6, The delay unit 7, the multiplication unit 8, and the three-dimensional position calculation unit 9 are the main components. The ultrasonic receiving element 1, the amplifying means 2, the AD converting means 3, the direct wave erasing means 4, the signal intensity changing means 5, the noise erasing means 6, and the delay means 7 are each in one set. The number of sets is the same as the number of ultrasonic receiving elements 1.

本実施形態では、直接波消去手段4、信号強度変更手段5、ノイズ消去手段6、遅延手段7、乗算手段8及び三次元的位置算出手段9は、ソフトウェアにより構成しているが、これに限定されるものでなく、例えば直接波消去手段4、信号強度変更手段5、ノイズ消去手段6、遅延手段7、乗算手段8は回路で構成してもよい。   In the present embodiment, the direct wave canceling unit 4, the signal strength changing unit 5, the noise canceling unit 6, the delay unit 7, the multiplying unit 8 and the three-dimensional position calculating unit 9 are configured by software, but the present invention is not limited thereto. For example, the direct wave canceling unit 4, the signal strength changing unit 5, the noise canceling unit 6, the delay unit 7 and the multiplying unit 8 may be constituted by circuits.

超音波送信素子は、例えば周波数40kHzの超音波を送信する。超音波受信素子1は、この超音波が対象物に反射して生成する反射波を受信し、該反射波に基づき、第1受信信号S1(電気信号)を生成する。増幅手段2は、第1受信信号S1を増幅し、第2受信信号S2を生成する。AD変換手段3は、第2受信信号S2をAD変換し、デジタル信号である第3受信信号S3を生成する。直接波消去手段4は、所定時刻以前の第3受信信号S3の信号強度を0にした第4受信信号S4を生成する。   The ultrasonic transmission element transmits an ultrasonic wave having a frequency of 40 kHz, for example. The ultrasonic receiving element 1 receives a reflected wave generated by reflecting the ultrasonic wave on an object, and generates a first reception signal S1 (electric signal) based on the reflected wave. The amplifying unit 2 amplifies the first reception signal S1 and generates a second reception signal S2. The AD conversion means 3 performs AD conversion on the second reception signal S2 to generate a third reception signal S3 that is a digital signal. The direct wave canceling unit 4 generates a fourth reception signal S4 in which the signal intensity of the third reception signal S3 before the predetermined time is zero.

直接波とは、超音波送信素子から送信された超音波が直接(反射せずに)超音波受信素子1に到達したものである。従って、対象物の空間形状の情報には無関係であり不要なため、対応する信号部分を消去(信号強度を0)するのである。本実施形態では超音波送信素子は超音波受信素子1の近くに配置していることを前提としており、反射波より早く直接波が超音波受信素子1に受信されるので、このことを考慮して、所定時刻以前の第3受信信号S3の信号強度を0とする。なお、他の方法(例えば方向)で直接波を区別する場合等、必ずしも直接波消去手段4は必要でなく、また、必ずしも超音波送信素子は超音波受信素子1の近くに配置される必要はない。   The direct wave is a wave in which the ultrasonic wave transmitted from the ultrasonic transmitting element reaches the ultrasonic receiving element 1 directly (without being reflected). Therefore, since it is irrelevant and unnecessary for the information on the spatial shape of the object, the corresponding signal portion is deleted (the signal intensity is 0). In the present embodiment, it is assumed that the ultrasonic transmission element is arranged near the ultrasonic reception element 1, and the direct wave is received by the ultrasonic reception element 1 earlier than the reflected wave. Thus, the signal strength of the third reception signal S3 before the predetermined time is set to zero. Note that the direct wave canceling means 4 is not necessarily required when direct waves are distinguished by other methods (for example, directions), and the ultrasonic transmission element is not necessarily disposed near the ultrasonic reception element 1. Absent.

信号強度変更手段5は、第4受信信号S4の信号強度を所定値未満、本実施形態では0未満の部分で0にした第5受信信号S5を生成する。この処理は、図2(A)に例示した信号を図2(B)の信号に変化させるものであり、所謂「半波整流」と呼ばれる処理である。   The signal strength changing unit 5 generates a fifth received signal S5 in which the signal strength of the fourth received signal S4 is less than a predetermined value, which is 0 in the present embodiment. This process changes the signal illustrated in FIG. 2A to the signal of FIG. 2B, and is a process called “half-wave rectification”.

ノイズ消去手段6は、第5受信信号S5の信号強度を所定の正の値以下の部分で0とした第6受信信号S6を生成する。これは、所謂ノイズを除去する処理である。従って、所定の正の値は、ノイズの大きさを考慮して決定すればよい。遅延手段7は、一つの第6受信信号S6について所定の異なる遅延時間遅らせた遅延信号S7を複数生成する。乗算手段8は、複数の遅延手段7からの同一の偏向角に対応する遅延信号S7を乗算して乗算信号S8を生成する。三次元的位置算出手段9は乗算信号S8に出現するピークに基づいて三次元的位置を算出する。   The noise elimination unit 6 generates a sixth reception signal S6 in which the signal intensity of the fifth reception signal S5 is 0 in a portion that is equal to or less than a predetermined positive value. This is so-called noise removal processing. Therefore, the predetermined positive value may be determined in consideration of the magnitude of noise. The delay means 7 generates a plurality of delay signals S7 obtained by delaying one sixth reception signal S6 by a predetermined different delay time. The multiplication means 8 multiplies the delay signal S7 corresponding to the same deflection angle from the plurality of delay means 7 to generate a multiplication signal S8. The three-dimensional position calculation means 9 calculates a three-dimensional position based on the peak appearing in the multiplication signal S8.

以上が、本発明の実施形態に係る超音波三次元距離計測装置の主要な構成であるが、本実施形態では、この主要な構成に、三次元的位置算出手段9が算出した三次元的位置に基づいて、モニター等の画像表示手段に空間形状情報を表示する画像化手段を加えた。この画像化手段は、画像表示手段にXYZ座標空間を表示し、そこに乗算信号S8に出現したピークに対応する三次元的位置を点で表示するものである。これにより、対象物の空間形状が画像表示手段に表示されたことになり、本発明の実施形態に係る超音波三次元距離計測装置による計測結果が得られたことになる。   The above is the main configuration of the ultrasonic three-dimensional distance measuring apparatus according to the embodiment of the present invention. In the present embodiment, the three-dimensional position calculated by the three-dimensional position calculation means 9 is added to this main configuration. Based on the above, an imaging means for displaying spatial shape information was added to an image display means such as a monitor. This imaging means displays an XYZ coordinate space on the image display means and displays a three-dimensional position corresponding to the peak appearing in the multiplication signal S8 as a point. Thereby, the spatial shape of the object is displayed on the image display means, and the measurement result by the ultrasonic three-dimensional distance measuring device according to the embodiment of the present invention is obtained.

本実施形態では、画像表示手段に、XYZ座標空間を表示して、乗算信号S8に出現したピークに対応する三次元的位置を点で表示したが、これに限定されるものではない。例えば、画像表示手段に単に数値を表示するだけでもよいし、対象物の方向を画像表示手段上の位置に対応させ、対象物までの距離を画像表示手段上の濃淡で示す等の方法もある(例えば、特開2005−49303号公報記載の方法)。また、画像表示手段や画像化手段だけでなく、空間形状情報より特定領域で物体(例えば、侵入者)の存在を判定し、存在の判定結果が「存在有り」の場合に、ブザーなどの報知手段を作動させる判定手段も加えることができる。   In the present embodiment, the XYZ coordinate space is displayed on the image display means, and the three-dimensional position corresponding to the peak that appears in the multiplication signal S8 is displayed as a point. However, the present invention is not limited to this. For example, the numerical value may be simply displayed on the image display means, or the direction of the object is made to correspond to the position on the image display means, and the distance to the object is indicated by shading on the image display means. (For example, the method of Unexamined-Japanese-Patent No. 2005-49303). In addition to image display means and imaging means, the presence of an object (for example, an intruder) is determined in a specific area based on spatial shape information, and a buzzer is notified when the presence determination result is “existence”. Determination means for activating the means can also be added.

本実施形態では、増幅手段2、AD変換手段3、直接波消去手段4、ノイズ消去手段6を有しているが、これらの手段は必ずしも必要ではない。また、信号強度変更手段5は、第4受信信号S4を処理しているが、第4受信信号S4ではなく、第1〜3,6受信信号S1〜3,6又は遅延信号S7のいずれか1つを処理するようにしてもよい。   In this embodiment, the amplifier 2, the AD converter 3, the direct wave canceling unit 4, and the noise canceling unit 6 are provided, but these units are not necessarily required. Further, the signal strength changing means 5 processes the fourth received signal S4, but it is not the fourth received signal S4 but any one of the first to third and sixth received signals S1 to 3, 6 or the delay signal S7. One may be processed.

本願発明の作用を説明するために、図13(A)に示す配列の超音波受信素子1、信号強度変更手段5、遅延手段7、乗算手段8で超音波三次元距離計測装置を構成した場合の、指向性のシミュレーション結果を図3に示す。図3(A)は、反射波の入射角α=0°の場合に電子的走査した場合の結果である。偏向角θ=0°の位置のみに鋭いピークが出現しており、指向性が良好といえる。すなわち、入射角α=0°の反射波が入射した場合に、偏向角θ=0°の場合のみピークが検出されるので、正しい計測結果が得られる。更に図3(B)は、反射波の入射角αが0°以外の場合に電子的走査した場合の結果であり、C1,C2,C3,C4のそれぞれが反射波の入射角α=20°,40°,60°,80°の場合である。入射角α=20°の場合には偏向角θ=20°のみに、入射角α=40°の場合には偏向角θ=40°のみに鋭いピークが出現しており、指向性が良好といえる。   In order to explain the operation of the present invention, a case where an ultrasonic three-dimensional distance measuring device is constituted by the ultrasonic receiving elements 1, the signal intensity changing means 5, the delay means 7, and the multiplying means 8 having the arrangement shown in FIG. The directivity simulation results are shown in FIG. FIG. 3A shows the result of electronic scanning when the incident angle α of the reflected wave is 0 °. A sharp peak appears only at the position where the deflection angle θ = 0 °, and the directivity is good. That is, when a reflected wave with an incident angle α = 0 ° is incident, a peak is detected only when the deflection angle θ = 0 °, and therefore a correct measurement result can be obtained. Further, FIG. 3B shows the result of electronic scanning when the incident angle α of the reflected wave is other than 0 °, and each of C1, C2, C3, and C4 has an incident angle α = 20 ° of the reflected wave. , 40 °, 60 °, and 80 °. A sharp peak appears only at the deflection angle θ = 20 ° when the incident angle α = 20 °, and only at the deflection angle θ = 40 ° when the incident angle α = 40 °. I can say that.

次に、信号強度変更手段5の作用を説明する。まず、比較のために、従来の遅延加算処理を行なうために図13の座標系でX方向に中心間距離λ/2で配列した4つの超音波受信素子1、遅延手段7、加算処理を行なう加算手段で超音波三次元距離計測装置を構成した場合の信号のシミュレーション結果を図4に示す。反射波がXZ平面に沿って入射すると仮定し、反射波の入射角α、偏向角θの定義も図13(B)と同様とする。反射波の入射角α=0°で、偏向角θ=60°の場合に受信信号を遅延手段7により遅延した遅延信号を図4(A)に、遅延信号を加算手段により加算した遅延加算信号を図4(B)に示す。図4(B)に示されるように、入射角α=0°であるのにも関わらず、偏向角θ=60°の場合にも遅延加算信号は、振幅(ピーク)を有する。即ち、指向性が良好でない。   Next, the operation of the signal strength changing means 5 will be described. First, for comparison, in order to perform the conventional delay addition process, four ultrasonic receiving elements 1 arranged in the X direction with a center-to-center distance λ / 2 in the coordinate system of FIG. FIG. 4 shows a simulation result of the signal when the ultrasonic three-dimensional distance measuring device is configured by the adding means. It is assumed that the reflected wave is incident along the XZ plane, and the definitions of the incident angle α and the deflection angle θ of the reflected wave are the same as those in FIG. FIG. 4A shows a delay signal obtained by delaying the reception signal by the delay means 7 when the incident angle α = 0 ° of the reflected wave and the deflection angle θ = 60 °, and a delay addition signal obtained by adding the delay signal by the addition means. Is shown in FIG. As shown in FIG. 4B, the delayed addition signal has an amplitude (peak) even when the deflection angle θ = 60 °, even though the incident angle α = 0 °. That is, directivity is not good.

これに対し、図13の座標系でX方向に中心間距離λ/2で配列した4つの超音波受信素子1、信号強度変更手段5、遅延手段7、乗算手段8で超音波三次元距離計測装置を構成した場合の信号のシミュレーション結果を図5に示す。反射波がXZ平面に沿って入射すると仮定し、反射波の入射角α、偏向角θの定義も図13(B)と同様とする。入射角α=0°で、偏向角θ=60°の場合に受信信号を信号強度変更手段5により半波整流した信号を遅延手段7により遅延した遅延信号を図5(A)に、遅延信号を乗算手段8により乗算した遅延乗算信号を図5(B)に示す。図5(B)に示されるように、入射角α=0°であるのに対して、偏向角θ=60°の場合に遅延乗算信号は、振幅(ピーク)を有さない、即ち強度0であり、指向性が良好である。これは、ある時刻において乗算される遅延信号のうち1つでも強度が0であれば、その乗算結果は0になるからである。すなわち、信号強度変更手段5により受信信号を半波整流したことにより遅延信号に強度が0の部分が多くなったためである。   On the other hand, the ultrasonic three-dimensional distance measurement is performed by the four ultrasonic receiving elements 1, the signal intensity changing means 5, the delay means 7, and the multiplying means 8 that are arranged in the X direction in the coordinate system of FIG. FIG. 5 shows the simulation results of signals when the apparatus is configured. It is assumed that the reflected wave is incident along the XZ plane, and the definitions of the incident angle α and the deflection angle θ of the reflected wave are the same as those in FIG. When the incident angle α = 0 ° and the deflection angle θ = 60 °, a delayed signal obtained by delaying the signal obtained by half-wave rectifying the received signal by the signal strength changing means 5 by the delay means 7 is shown in FIG. FIG. 5B shows a delayed multiplication signal obtained by multiplying the signal by the multiplication means 8. As shown in FIG. 5B, when the incident angle α = 0 °, the delayed multiplication signal has no amplitude (peak) when the deflection angle θ = 60 °, that is, the intensity is 0. And directivity is good. This is because even if one of the delayed signals multiplied at a certain time has a strength of 0, the multiplication result becomes 0. That is, because the received signal is half-wave rectified by the signal strength changing means 5, the portion of the delayed signal having a strength of 0 has increased.

この原理より、信号強度変更手段5による信号処理は、上記の半波整流に限定されず、「信号の信号強度を所定値未満の部分で強度を0にする」ものであればよいことが分かる。例えば、図6(A)に例示する最大振幅がa(>0)である信号の信号強度を所定値b未満の部分で0にし同図(B)に示す信号を生成するものでもよい。この場合に所定値bは例えば、ノイズの大きさを考慮して設定すれば、ノイズを除去することができる。この信号処理は、上記実施形態において信号強度変更手段5とノイズ消去手段6の信号処理を1度に行なうことに相当する。また、所定値b=0の場合が上記実施形態の信号強度変更手段5による信号処理の半波整流である。   Based on this principle, it is understood that the signal processing by the signal strength changing means 5 is not limited to the half-wave rectification described above, but may be anything that “makes the signal strength of the signal less than a predetermined value zero”. . For example, the signal shown in FIG. 6B may be generated by setting the signal intensity of the signal having the maximum amplitude a (> 0) illustrated in FIG. 6A to 0 in a portion less than the predetermined value b. In this case, for example, if the predetermined value b is set in consideration of the magnitude of noise, the noise can be removed. This signal processing corresponds to performing signal processing of the signal intensity changing unit 5 and the noise erasing unit 6 at a time in the above embodiment. The case where the predetermined value b = 0 is half-wave rectification of signal processing by the signal intensity changing means 5 of the above embodiment.

また、図6(A)に例示する信号の信号強度を所定値b未満の部分で0にすると共に、ピーク強度をaとしたまま所定値b以上の部分の両端を強度0になるようにし同図(C)に示す信号を生成するものでもよい。さらに、図6(A)に例示する信号の信号強度を所定値b未満の部分で0にすると共に、信号強度を所定値b以上の部分で所定値b減算し同図(D)に示す信号を生成するものであってもよい。   In addition, the signal intensity of the signal illustrated in FIG. 6A is set to 0 at a portion less than the predetermined value b, and the both ends of the portion at the predetermined value b or more are set to 0 with the peak intensity being a. The signal shown in FIG. (C) may be generated. Further, the signal strength of the signal illustrated in FIG. 6A is set to 0 in a portion less than the predetermined value b, and the signal strength is subtracted by a predetermined value b in a portion greater than the predetermined value b and the signal shown in FIG. May be generated.

図6は、所定値b>0の場合を示している。この場合には、同図(B)〜(D)に示す信号は、半波整流した信号より信号強度0の部分が多いため、同図(A)に示す信号に対して、半波整流した信号より信号が有する情報が減少する(例えば、対象物からの弱い反射波に基づく弱い信号が信号強度変更手段により信号強度0となることがある)。このため、半波整流した場合より所定値b>0の場合は、測定の精度が落ちる。逆に図6において、所定値b<0であってもよい。この場合には、同図(B)〜(D)に示す信号は、半波整流した信号より信号強度0の部分が少ないため、同図(A)に示す信号に対して、半波整流した信号より信号が有する情報が増大する。しかし、半波整流した信号より信号強度0の部分が少ないため、遅延乗算した場合に、反射波が入射していない偏向角θのときも信号強度が0にならない場合が増加する。即ち、半波整流した信号を遅延乗算する場合より指向性が悪くなる。   FIG. 6 shows a case where the predetermined value b> 0. In this case, since the signal shown in FIGS. 7B to 7D has more signal intensity 0 than the half-wave rectified signal, the signal shown in FIG. The signal has less information than the signal (for example, a weak signal based on a weak reflected wave from the object may have a signal strength of 0 by the signal strength changing means). For this reason, when the predetermined value b> 0, compared to the case of half-wave rectification, the measurement accuracy is lowered. Conversely, in FIG. 6, the predetermined value b <0 may be satisfied. In this case, since the signal shown in FIGS. 5B to 5D has less signal intensity 0 than the half-wave rectified signal, the signal shown in FIG. The information contained in the signal is greater than the signal. However, since the portion of the signal intensity 0 is smaller than that of the half-wave rectified signal, the case where the signal intensity does not become 0 also increases at the deflection angle θ where the reflected wave is not incident when the delay multiplication is performed. That is, the directivity is worse than when delay-multiplying the half-wave rectified signal.

図7に、上記の実施形態の超音波三次元距離計測装置を用いた計測実験の様子を模式的に示す。ただし、配列した超音波受信素子1(10)以外の装置は、省略している。超音波受信素子1は矩形状で32個使用し、図8に示すように配列した。超音波送信素子は1個使用し、超音波受信素子1の下方に配置した。   FIG. 7 schematically shows a state of a measurement experiment using the ultrasonic three-dimensional distance measuring apparatus of the above embodiment. However, devices other than the arranged ultrasonic receiving elements 1 (10) are omitted. Thirty-two ultrasonic receiving elements 1 were used in a rectangular shape and arranged as shown in FIG. One ultrasonic transmitting element was used and arranged below the ultrasonic receiving element 1.

超音波受信素子1の前方に、同じ大きさの2つの風船B1,B2を固定配置した。座標系はXYZ座標系で方向は図7に示した通りで、原点は超音波受信素子1の配列10の中心である。風船の位置は風船の中心を基準にして、風船B1が原点からβ=−20°、γ=−40°の方向、70cm先であり、風船B2が原点からβ=0°、γ=0°の方向、120cm先である。ここで、βは、原点から風船の中心への向かうベクトルをYZ平面に投影した場合にZ軸となす角度であり、その正負は風船の中心のY座標値の正負と同じとしている。γは、原点から風船の中心への向かうベクトルをXZ平面に投影した場合にZ軸となす角度であり、その正負は風船の中心のX座標値の正負と同じとしている。風船B1,B2の直径は30cmである。   Two balloons B1 and B2 having the same size are fixedly arranged in front of the ultrasonic receiving element 1. The coordinate system is an XYZ coordinate system, the direction is as shown in FIG. 7, and the origin is the center of the array 10 of the ultrasonic receiving elements 1. The position of the balloon is relative to the center of the balloon, the balloon B1 is in the direction of β = −20 ° and γ = −40 ° from the origin, 70 cm away, and the balloon B2 is β = 0 °, γ = 0 ° from the origin. Direction, 120 cm away. Here, β is an angle with the Z axis when a vector from the origin to the center of the balloon is projected onto the YZ plane, and its positive / negative is the same as the positive / negative of the Y coordinate value of the center of the balloon. γ is an angle formed with the Z axis when a vector from the origin to the center of the balloon is projected onto the XZ plane, and its positive / negative is the same as the positive / negative of the X coordinate value of the center of the balloon. Balloons B1 and B2 have a diameter of 30 cm.

比較のために、本計測実験について従来の遅延加算処理を行なった信号を図9に示す。これは、図1に示した構成の上記実施形態において、信号強度変更手段5を使用せず、乗算手段8の代わりに加算処理を行なう加算手段を使用した場合に、加算手段により加算処理された後の信号である。同図(A)が風船B1の存在する方向(β=−20°、γ=−40°)の場合であり、同図(B)が風船B1、B2が存在しない方向(β=12°、γ=−48°)の場合である。同図(A)の場合には風船B1の反射波に由来するピークP1が大きく出現している。一方、同図(B)の場合には、風船が存在しないにも関わらず、複数のピークが出現している。   For comparison, FIG. 9 shows a signal obtained by performing a conventional delay addition process for this measurement experiment. In the above-described embodiment having the configuration shown in FIG. 1, the addition processing is performed by the addition means when the signal strength changing means 5 is not used and the addition means for performing addition processing is used instead of the multiplication means 8. It is a later signal. FIG. 6A shows the case where the balloon B1 exists (β = −20 °, γ = −40 °), and FIG. 5B shows the direction where the balloons B1 and B2 do not exist (β = 12 °, In this case, γ = −48 °. In the case of FIG. 5A, the peak P1 derived from the reflected wave of the balloon B1 appears greatly. On the other hand, in the case of FIG. 5B, a plurality of peaks appear despite the absence of balloons.

本計測実験について従来の遅延加算処理を行なった信号に出現したピークに対応する三次元的位置をXYZ座標空間上に点で示したものが図10である。同図(A)が三次元的位置を算出する際に対象とするピークの検出を、閾値を低く(閾値500)して閾値判定した場合であり、同図(B)が三次元的位置を算出する際に対象とするピークの検出を、閾値を高く(閾値1500)して閾値判定した場合である。同図(A)では、風船B1,B2以外に対象物は存在しないにも関わらず、多数の像が出現している。同図(B)では、風船B1に相当する像しか出現していない。このように、従来の遅延加算処理信号に基づき三次元的位置を算出する方法では、三次元的位置を算出する際に対象とするピークの検出の閾値判定における閾値により結果が大きく異なる。   FIG. 10 shows the three-dimensional position corresponding to the peak appearing in the signal subjected to the conventional delay addition process for this measurement experiment as a point on the XYZ coordinate space. FIG. 6A shows a case where the detection of a target peak when calculating a three-dimensional position is performed by determining the threshold value by lowering the threshold value (threshold value 500). FIG. This is a case where the detection of the target peak at the time of calculation is performed with a threshold value increased (threshold 1500). In FIG. 9A, a large number of images appear even though there are no objects other than the balloons B1 and B2. In FIG. 5B, only an image corresponding to the balloon B1 appears. As described above, in the conventional method of calculating the three-dimensional position based on the delayed addition processing signal, the result greatly differs depending on the threshold value in the threshold determination for detecting the target peak when calculating the three-dimensional position.

これに対して、本計測実験についての本願の図1に示した構成の上記実施形態(信号強度変更手段5による処理は半波整流)における乗算信号S8を図11に示す。同図(A)が風船B1の存在する方向(β=−20°、γ=−40°)の場合であり、同図(B)が風船B1、B2が存在しない方向(β=12°、γ=−48°)の場合である。同図(A)の場合には風船B1の反射波に由来するピークP2のみが出現している。一方、同図(B)の場合には、ピークが出現していない。すなわち、実際の対象物の有無に対応した結果になっている。   On the other hand, FIG. 11 shows a multiplication signal S8 in the above-described embodiment (processing by the signal intensity changing means 5 is half-wave rectification) having the configuration shown in FIG. FIG. 6A shows the case where the balloon B1 exists (β = −20 °, γ = −40 °), and FIG. 5B shows the direction where the balloons B1 and B2 do not exist (β = 12 °, In this case, γ = −48 °. In the case of FIG. 9A, only the peak P2 derived from the reflected wave of the balloon B1 appears. On the other hand, no peak appears in the case of FIG. That is, the result corresponds to the presence or absence of an actual object.

本計測実験についての本願の図1に示した構成の上記実施形態(信号強度変更手段5による処理は半波整流)における乗算信号S8に出現したピークに対応する三次元的位置をXYZ座標空間上に示したものが図12である。三次元的位置を算出する際に対象とするピークの検出について、閾値判定は行なっていない。同図では、風船B1,B2に相当する像以外はほとんど出現していない(同図右上の像は壁に由来するものである)。このように、本願の乗算信号S8に基づき三次元的位置を算出する方法では、三次元的位置を算出する際に対象とするピークの検出に閾値判定を行なわない場合でも、正確な三次元的位置が得られ、もって正確な対象物の空間形状情報が得られる。すなわち、本願の超音波三次元距離計測装置(方法)によれば、閾値判定を行なわずに正確に対象物の空間形状を計測することが可能である。   The three-dimensional position corresponding to the peak that appears in the multiplication signal S8 in the above-described embodiment (processing by the signal intensity changing means 5 is half-wave rectification) of the configuration shown in FIG. This is shown in FIG. Threshold determination is not performed for detection of a target peak when calculating a three-dimensional position. In the figure, the images other than the images corresponding to the balloons B1 and B2 hardly appear (the image on the upper right in the figure is derived from the wall). As described above, in the method of calculating the three-dimensional position based on the multiplication signal S8 of the present application, even when threshold determination is not performed for detection of a target peak when calculating the three-dimensional position, an accurate three-dimensional position is obtained. A position is obtained, and thus accurate spatial shape information of the object is obtained. That is, according to the ultrasonic three-dimensional distance measuring apparatus (method) of the present application, it is possible to accurately measure the spatial shape of an object without performing threshold determination.

以上、本発明の実施形態及び実施例について説明したが、本発明はこれらに限定されること無く、本発明の技術的思想の範囲内であれば、種々の変形が可能である。   As mentioned above, although embodiment and Example of this invention were described, this invention is not limited to these, A various deformation | transformation is possible if it is in the range of the technical idea of this invention.

本発明の実施形態に係る超音波三次元距離計測装置の主要な構成及び信号の流れを模式的に示す図である。It is a figure which shows typically the main structure and signal flow of the ultrasonic three-dimensional distance measuring device which concerns on embodiment of this invention. 本発明の実施形態に係る信号強度変更手段による半波整流処理前後の信号を模式的に示す図で、(A)が処理前の信号、(B)が処理後の信号についてのものである。It is a figure which shows typically the signal before and behind the half wave rectification process by the signal strength change means which concerns on embodiment of this invention, (A) is a signal before a process, (B) is a signal after a process. 本発明の実施形態に係る超音波三次元距離計測装置の反射波に対する指向性を示す図で、(A)が入射角α=0°の反射波、(B)が入射角α=20,40,60,80°の反射波の場合である。It is a figure which shows the directivity with respect to the reflected wave of the ultrasonic three-dimensional distance measuring device which concerns on embodiment of this invention, (A) is the reflected wave of incident angle (alpha) = 0 degree, (B) is incident angle (alpha) = 20,40. , 60, and 80 ° reflected waves. 従来の遅延加算処理を行なった場合の信号を示す図で、(A)が遅延処理後、加算処理前の信号で、(B)が遅延加算処理後の信号である。It is a figure which shows the signal at the time of performing the conventional delay addition process, (A) is a signal before an addition process after a delay process, (B) is a signal after a delay addition process. 本発明の実施形態に係る半波整流処理と遅延乗算処理を行なった場合の信号を示す図で、(A)が半波整流,遅延処理後、乗算処理前の信号で、(B)が半波整流,遅延乗算処理後の信号である。FIG. 6 is a diagram illustrating signals when half-wave rectification processing and delay multiplication processing are performed according to an embodiment of the present invention, where (A) is a signal after half-wave rectification and delay processing and before multiplication processing; The signal after wave rectification and delay multiplication processing. 本発明の別の実施形態に係る信号強度変更手段による処理前後の信号を模式的に示す図で、(A)が処理前の信号、(B),(C),(D)が処理後の信号についてのものである。It is a figure which shows typically the signal before and behind the process by the signal strength change means which concerns on another embodiment of this invention, (A) is the signal before a process, (B), (C), (D) is after a process. It is about the signal. 本発明の実施例に係る超音波三次元距離計測装置を用いた計測実験の様子を模式的に示す図である。It is a figure which shows typically the mode of the measurement experiment using the ultrasonic three-dimensional distance measuring device which concerns on the Example of this invention. 本発明の実施例に係る超音波受信素子の配列を示す図である。It is a figure which shows the arrangement | sequence of the ultrasonic receiving element which concerns on the Example of this invention. 従来の遅延加算処理後の信号を示す図で、(A)が対象物の存在する方向の場合、(B)が対象物の存在しない方向の場合である。It is a figure which shows the signal after the conventional delay addition process, and (A) is a case where a target object exists, (B) is a case where a target object does not exist. 従来の遅延加算処理を用いた計測結果を示す図で、(A)が閾値の低い場合、(B)が閾値の高い場合である。It is a figure which shows the measurement result using the conventional delay addition process, and (A) is a case where a threshold value is low, (B) is a case where a threshold value is high. 本発明の実施例に係る遅延乗算処理後の信号を示す図で、(A)が対象物の存在する方向の場合、(B)が対象物の存在しない方向の場合である。It is a figure which shows the signal after the delay multiplication process which concerns on the Example of this invention, (A) is a case where a target object exists, (B) is a case where a target object does not exist. 本発明の実施例に係る半波整流,遅延乗算処理を用いた計測結果を示す図である。It is a figure which shows the measurement result using the half wave rectification and the delay multiplication process which concern on the Example of this invention. 超音波受信素子の配置の一例であり、(A)が正面図、(B)が側面図である。It is an example of arrangement | positioning of an ultrasonic receiving element, (A) is a front view, (B) is a side view. 反射波の入射角α=0°の場合に、X軸方向に(XZ平面に沿って)電子的走査を行なった場合の結果を示す図であり、(A)が遅延加算を使用した場合、(B)が遅延乗算を使用した場合を示す。It is a figure which shows the result at the time of performing electronic scanning in the X-axis direction (along the XZ plane) when the incident angle α of the reflected wave is 0 °, and when (A) uses delay addition, (B) shows a case where delay multiplication is used.

符号の説明Explanation of symbols

1 超音波受信素子
5 信号強度変更手段
7 遅延手段
8 乗算手段
b 所定値
S1〜6 第1〜6受信信号
S7 遅延信号
DESCRIPTION OF SYMBOLS 1 Ultrasonic receiving element 5 Signal intensity | strength change means 7 Delay means 8 Multiplication means b Predetermined value S1-6 1st-6th received signal S7 Delay signal

Claims (4)

超音波を送信する超音波送信素子と、前記超音波が対象物に反射して生成する反射波を受信する複数の超音波受信素子とを備え、前記超音波受信素子で得られた受信信号に基づいて前記対象物の空間形状を計測する超音波三次元距離計測装置において、
前記受信信号を遅延させて遅延信号を生成する遅延手段と、前記遅延信号を乗算する乗算手段と、前記受信信号又は遅延信号の信号強度を所定値未満の部分で0にする信号強度変更手段とを有することを特徴とする超音波三次元距離計測装置。
An ultrasonic transmission element that transmits ultrasonic waves and a plurality of ultrasonic reception elements that receive reflected waves generated by reflection of the ultrasonic waves on an object, and a reception signal obtained by the ultrasonic reception element In the ultrasonic three-dimensional distance measuring device that measures the spatial shape of the object based on
Delay means for delaying the received signal to generate a delayed signal; multiplying means for multiplying the delayed signal; signal strength changing means for setting the signal strength of the received signal or the delayed signal to 0 in a portion less than a predetermined value; An ultrasonic three-dimensional distance measuring device characterized by comprising:
前記所定値を0とした請求項1に記載の超音波三次元距離計測装置。   The ultrasonic three-dimensional distance measuring apparatus according to claim 1, wherein the predetermined value is zero. 超音波を送信する超音波送信素子と、前記超音波が対象物に反射して生成する反射波を受信する複数の超音波受信素子とを備え、前記超音波受信素子で得られた受信信号に基づいて前記対象物の空間形状を計測する超音波三次元距離計測方法において、
前記受信信号を遅延させて遅延信号を生成する遅延工程と、前記遅延信号を乗算する乗算工程と、前記受信信号又は遅延信号の信号強度を所定値未満の部分で0にする信号強度変更工程とを有することを特徴とする超音波三次元距離計測方法。
An ultrasonic transmission element that transmits ultrasonic waves and a plurality of ultrasonic reception elements that receive reflected waves generated by reflection of the ultrasonic waves on an object, and a reception signal obtained by the ultrasonic reception element In the ultrasonic three-dimensional distance measurement method for measuring the spatial shape of the object based on
A delay step of delaying the received signal to generate a delayed signal; a multiplying step of multiplying the delayed signal; and a signal strength changing step of setting the signal strength of the received signal or the delayed signal to 0 in a portion less than a predetermined value; An ultrasonic three-dimensional distance measuring method characterized by comprising:
前記所定値を0とした請求項3に記載の超音波三次元距離計測方法。   The ultrasonic three-dimensional distance measuring method according to claim 3, wherein the predetermined value is zero.
JP2008104593A 2008-04-14 2008-04-14 Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method Expired - Fee Related JP5102091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104593A JP5102091B2 (en) 2008-04-14 2008-04-14 Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104593A JP5102091B2 (en) 2008-04-14 2008-04-14 Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method

Publications (2)

Publication Number Publication Date
JP2009257823A true JP2009257823A (en) 2009-11-05
JP5102091B2 JP5102091B2 (en) 2012-12-19

Family

ID=41385440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104593A Expired - Fee Related JP5102091B2 (en) 2008-04-14 2008-04-14 Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method

Country Status (1)

Country Link
JP (1) JP5102091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577788A (en) * 2023-07-12 2023-08-11 南方电网数字电网研究院有限公司 Power transmission line foreign matter intrusion monitoring method, device and computer equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438161A (en) * 1977-08-31 1979-03-22 Agency Of Ind Science & Technol Erasing method of side lobes in high directivity sound receiver
JPS5524688A (en) * 1978-08-11 1980-02-21 Furuno Electric Co Ltd Directional beam generator
JPH0739000A (en) * 1992-12-05 1995-02-07 Kazumoto Suzuki Selective extract method for sound wave in optional direction
JPH07146355A (en) * 1993-11-22 1995-06-06 Matsushita Electric Ind Co Ltd Ultrasonic-wave receiver
JPH07159520A (en) * 1993-12-13 1995-06-23 Kaijo Corp Ultrasonic wave receiving device
JPH11160429A (en) * 1997-11-27 1999-06-18 Matsushita Electric Works Ltd Ultrasonic sensor
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor
JP2008157812A (en) * 2006-12-25 2008-07-10 Kansai Electric Power Co Inc:The Ultrasonic imaging method and ultrasonic imaging device
JP2009075086A (en) * 2007-08-28 2009-04-09 Nagoya Electrical Educational Foundation Ultrasonic three-dimensional distance measuring device, and ultrasonic three-dimensional distance measuring method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438161A (en) * 1977-08-31 1979-03-22 Agency Of Ind Science & Technol Erasing method of side lobes in high directivity sound receiver
JPS5524688A (en) * 1978-08-11 1980-02-21 Furuno Electric Co Ltd Directional beam generator
JPH0739000A (en) * 1992-12-05 1995-02-07 Kazumoto Suzuki Selective extract method for sound wave in optional direction
JPH07146355A (en) * 1993-11-22 1995-06-06 Matsushita Electric Ind Co Ltd Ultrasonic-wave receiver
JPH07159520A (en) * 1993-12-13 1995-06-23 Kaijo Corp Ultrasonic wave receiving device
JPH11160429A (en) * 1997-11-27 1999-06-18 Matsushita Electric Works Ltd Ultrasonic sensor
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor
JP2008157812A (en) * 2006-12-25 2008-07-10 Kansai Electric Power Co Inc:The Ultrasonic imaging method and ultrasonic imaging device
JP2009075086A (en) * 2007-08-28 2009-04-09 Nagoya Electrical Educational Foundation Ultrasonic three-dimensional distance measuring device, and ultrasonic three-dimensional distance measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577788A (en) * 2023-07-12 2023-08-11 南方电网数字电网研究院有限公司 Power transmission line foreign matter intrusion monitoring method, device and computer equipment
CN116577788B (en) * 2023-07-12 2024-01-23 南方电网数字电网研究院有限公司 Power transmission line foreign matter intrusion monitoring method, device and computer equipment

Also Published As

Publication number Publication date
JP5102091B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP6393442B2 (en) Ultrasonic source orientation locating device and overlay image analysis method
JP4634336B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6806250B2 (en) Positioning device, position measuring method and program
CN110118822B (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
WO2009119539A1 (en) Ultrasonic flaw detection method and device
JP6384340B2 (en) Ultrasonic diagnostic equipment
JP2011203037A (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
WO2019127621A1 (en) Ultrasonic imaging method, system and device
JP5787471B2 (en) Ultrasonic inspection equipment
JP2006058278A (en) Elastic wave generation position calculation device and method
JP5102091B2 (en) Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method
JP2008107122A (en) Ultrasonic array sensor system and delay addition processing method
JP5235028B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2007085866A (en) Object detection device
JP2008070325A (en) Method and apparatus for ultrasonic flaw detection, and steel product
JP5829008B2 (en) Ultrasonic diagnostic equipment
CN114787655A (en) Target point position detection system and method, programmable circuit and storage medium
JP4038463B2 (en) Ultrasonic flaw detection image display method and apparatus
KR20120043512A (en) Imaging Sonar with Two Arrays of Transducers with Position Offset
JP2005148013A (en) Radar device
JP6829801B2 (en) Ultrasonic array sensor system
JP2008203047A (en) Apparatus for measuring electric field near radiation of linear array antenna, and method therefor
WO2022059090A1 (en) Radar device, imaging method, and imaging program
JP4955381B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
US20230266277A1 (en) Sound inspection apparatus and sound inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees