JP4955381B2 - Ultrasonic imaging method and ultrasonic imaging apparatus - Google Patents

Ultrasonic imaging method and ultrasonic imaging apparatus Download PDF

Info

Publication number
JP4955381B2
JP4955381B2 JP2006348269A JP2006348269A JP4955381B2 JP 4955381 B2 JP4955381 B2 JP 4955381B2 JP 2006348269 A JP2006348269 A JP 2006348269A JP 2006348269 A JP2006348269 A JP 2006348269A JP 4955381 B2 JP4955381 B2 JP 4955381B2
Authority
JP
Japan
Prior art keywords
waveform
ultrasonic
received
nth
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006348269A
Other languages
Japanese (ja)
Other versions
JP2008157812A (en
Inventor
雅年 清水
秀夫 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2006348269A priority Critical patent/JP4955381B2/en
Publication of JP2008157812A publication Critical patent/JP2008157812A/en
Application granted granted Critical
Publication of JP4955381B2 publication Critical patent/JP4955381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、超音波画像化方法及び超音波画像化装置に関する。   The present invention relates to an ultrasonic imaging method and an ultrasonic imaging apparatus.

従来から、超音波発信素子から発射した超音波を対象物に当てて反射させ、この反射波を超音波受信素子により受信し、送受波時間と音速により対象物までの距離を測る計測技術が知られている。   Conventionally, measurement technology is known in which ultrasonic waves emitted from an ultrasonic transmitter are applied to an object and reflected, the reflected waves are received by the ultrasonic receiver, and the distance to the object is measured by the transmission / reception time and speed of sound. It has been.

また、対象物からの反射波を複数の超音波受信素子を配列してなる超音波アレイセンサにより受信し、各超音波受信素子で得られた信号に対して、所定の演算処理をすることにより所定の方向の反射波を選択的に認識する技術が知られている(特許文献1参照)。ここで、「所定の演算処理」とは、各超音波受信素子で得られた信号に対して、反射波の入射角度と超音波受信素子の位置関係に対応した時間を遅延させた後に加算することである。これにより、対象物からの反射波の方位を走査することが可能になる。この電子的走査により、超音波を反射した物体の3次元的位置と3次元的形状の情報を取得できる。この情報から超音波を反射した物体の3次元的位置と3次元的形状を画像化することが出来る。   In addition, the reflected wave from the object is received by an ultrasonic array sensor formed by arranging a plurality of ultrasonic receiving elements, and a predetermined calculation process is performed on a signal obtained by each ultrasonic receiving element. A technique for selectively recognizing a reflected wave in a predetermined direction is known (see Patent Document 1). Here, “predetermined arithmetic processing” is performed after delaying a time corresponding to the incident angle of the reflected wave and the positional relationship between the ultrasonic wave receiving elements with respect to the signals obtained by the ultrasonic wave receiving elements. That is. Thereby, it is possible to scan the direction of the reflected wave from the object. By this electronic scanning, information on the three-dimensional position and the three-dimensional shape of the object reflecting the ultrasonic wave can be acquired. From this information, the three-dimensional position and three-dimensional shape of the object reflecting the ultrasonic wave can be imaged.

ところで、超音波受信素子で得られる信号の強度は、超音波を反射した物体までの距離、超音波受信素子の指向性、超音波を反射した物体の反射率、超音波を反射する物体への超音波の入射角に依存して大きく変化する。そのため、超音波受信素子で得られた信号に対して遅延加算や遅延乗算を行なうと、信号強度の小さい信号と大きい信号の信号強度差が開き過ぎ、ノイズ信号との関係から閾値設定による信号認識では、信号強度の大きい信号しか認識できない。すなわち、信号強度の小さい信号に対応する物体の認識ができない。   By the way, the intensity of the signal obtained by the ultrasonic receiving element is determined by the distance to the object reflecting the ultrasonic wave, the directivity of the ultrasonic receiving element, the reflectance of the object reflecting the ultrasonic wave, and the object reflecting the ultrasonic wave. It varies greatly depending on the incident angle of ultrasonic waves. Therefore, if delay addition or delay multiplication is performed on the signal obtained by the ultrasonic receiving element, the signal strength difference between the signal having a small signal strength and the signal having a large signal is excessively widened, and signal recognition is performed by setting a threshold from the relationship with the noise signal. Then, only signals with high signal strength can be recognized. That is, an object corresponding to a signal having a low signal intensity cannot be recognized.

この問題に対して、特許文献2には、超音波受信素子で得られた信号に対して上記の遅延加算を行ない、この結果得られた信号の強度を方位ごとに示し、更にこの方向ごとの信号強度に対して、信号強度のピーク位置の方位を求め、これに基づいて距離画像を生成する方法が記載されている。この特許文献2の方法によれば、超音波受信素子で得られた信号の強度が弱い場合であっても、物体の存在を認識することができる。
特開2002−156451号公報 特開2006−105647号公報
In order to solve this problem, Patent Document 2 performs the above delay addition on the signal obtained by the ultrasonic receiving element, shows the intensity of the signal obtained as a result for each direction, and further, for each direction. A method is described in which the azimuth of the peak position of the signal intensity is obtained with respect to the signal intensity, and a distance image is generated based on this. According to the method of Patent Document 2, the presence of an object can be recognized even when the intensity of a signal obtained by an ultrasonic receiving element is weak.
JP 2002-156451 A JP 2006-105647 A

しかし、この方法では、物体の存在自身は認識可能であるが、当該物体の三次元的広がりまでは認識することはできない。   However, with this method, the presence of the object itself can be recognized, but the three-dimensional extent of the object cannot be recognized.

そこで、本発明の課題は、超音波受信素子で得られた信号の強度が弱い場合であっても、超音波を反射した物体の3次元的位置と3次元的形状を画像化する方法及び画像化する装置を提供することである。   Accordingly, an object of the present invention is to provide a method and an image for imaging a three-dimensional position and a three-dimensional shape of an object that has reflected ultrasonic waves, even when the intensity of a signal obtained by the ultrasonic receiving element is weak. It is to provide a device for converting.

ここで、空間形状とは、3次元的位置及び3次元的形状を意味する。   Here, the spatial shape means a three-dimensional position and a three-dimensional shape.

請求項1の発明は、超音波発信素子から発射した超音波を対象物に当てて反射させ、この反射波を複数の超音波受信素子を配列してなる超音波アレイセンサにより受信し、各受信素子で得られた信号強度と送受波時間との関係に基づいて前記対象物の空間形状を画像化する超音波画像化方法において、各受信素子で得られる信号強度の受信波形から、(a)各受信素子ごとで信号強度が最大値となる第n位置を演算する工程、(b)前記第n位置の直前・直後の信号強度が減少から増大に転ずる一対の極小点を演算する工程、(c)前記一対の極小点間の受信波形を第n波形として記憶手段に記憶させる工程、(d)前記(c)工程で記憶させていない受信波形に対して、前記工程(a)から(c)を(N−1)回繰り返して前記記憶手段に第1波形から第N波形までを記憶させる工程、(e)前記記憶手段に記憶させた各受信素子ごとの第1波形から第N波形までに基づいて前記対象物の空間形状を画像化することを特徴とする。 According to the first aspect of the present invention, the ultrasonic wave emitted from the ultrasonic wave transmitting element is applied to the object and reflected, and the reflected wave is received by an ultrasonic array sensor in which a plurality of ultrasonic wave receiving elements are arranged. In the ultrasonic imaging method for imaging the spatial shape of the object based on the relationship between the signal intensity obtained by the element and the transmission / reception time, from the received waveform of the signal intensity obtained by each receiving element, (a) (B) calculating a pair of local minimum points at which the signal intensity immediately before and immediately after the n-th position starts from decreasing to increasing; c) a step of storing the received waveform between the pair of minimum points in the storage means as an nth waveform; (d) for the received waveform not stored in the step (c) from the steps (a) to (c); ) Is repeated (N-1) times in the storage means. A step of storing from the first waveform to the Nth waveform, (e) imaging the spatial shape of the object based on the first waveform to the Nth waveform for each receiving element stored in the storage means. Features.

ここで、nは整数であって、1からNまで順番に増やすものとする。nを増やすのは、前記工程(d)において、前記工程(a)から(c)を繰り返す時である。   Here, n is an integer, and is increased from 1 to N in order. n is increased when the steps (a) to (c) are repeated in the step (d).

請求項1の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、信号強度の小さいものでも認識できるため、信号強度の小さい受信波形の物体でも、認識して、その受信波形に基づいて、空間形状を画像化することが出来る。 According to the first aspect of the present invention, it is possible to recognize even a signal waveform having a low signal strength among the received waveforms having a signal strength obtained by the ultrasonic receiving element. The spatial shape can be imaged based on the received waveform.

請求項2の発明は、信号強度に関する所定の閾値以上の前記工程(c)の受信波形の数に対応して前記Nの値を設定することを特徴とする。 The invention of claim 2 is characterized in that the value of N is set corresponding to the number of received waveforms in the step (c) that are equal to or greater than a predetermined threshold relating to signal strength.

請求項2の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、所定の閾値以上の波形だけを認識する。そのため、所定の閾値より小さな波形に含まれるノイズ(物体に反射した超音波に基づかない波形)に基づいて、実際には存在しない物体の空間形状を画像化することを防止出来る。 According to the second aspect of the present invention, only the waveform having a predetermined threshold value or more is recognized among the reception waveforms of the signal intensity obtained by the ultrasonic receiving element. Therefore, it is possible to prevent imaging of a spatial shape of an object that does not actually exist based on noise included in a waveform smaller than a predetermined threshold (a waveform that is not based on ultrasonic waves reflected on the object).

請求項3の発明は、各受信素子の前記第1波形から第N波形までの最大値が等しくなるように補正し、前記記憶手段に記憶させる工程を有することを特徴とする。 According to a third aspect of the present invention, there is provided a step of correcting the maximum values from the first waveform to the Nth waveform of each receiving element to be equal to each other and storing them in the storage means.

請求項3の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、信号強度の小さい受信波形の最大値を信号強度の大きい受信波形の最大値と同じ信号強度になるように補正できる。そのため、信号強度の小さい受信波形の物体に対しても、遅延加算や遅延乗算後に信号強度の大きい受信波形と同等の信号強度の信号が得られ、これに基づいて、空間形状を画像化することが出来る。 According to the third aspect of the present invention, the maximum value of the received waveform having a low signal strength among the received waveforms of the signal strength obtained by the ultrasonic receiving element has the same signal strength as the maximum value of the received waveform having a high signal strength. Can be corrected as follows. Therefore, a signal with the same signal strength as that of a received waveform with a high signal strength can be obtained after delay addition or delay multiplication even for an object with a received waveform with a low signal strength. Based on this, a spatial shape can be imaged. I can do it.

請求項4の発明は、前記記憶手段に記憶させる受信波形に外乱波形が入らないように請求項1の繰り返し回数を制限することを特徴とする。 The invention of claim 4 is characterized in that the number of repetitions of claim 1 is limited so that a disturbance waveform does not enter the received waveform stored in the storage means.

ここで、外乱波形とはいわゆるノイズと呼ばれるもので、物体に反射した超音波に基づかない波形のことである。   Here, the disturbance waveform is a so-called noise and is a waveform that is not based on the ultrasonic wave reflected on the object.

請求項4の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、外乱波形を認識しないので、外乱波形に基づく実際には存在しない物体の空間形状を画像化することを防止できる。 According to the invention of claim 4 , since the disturbance waveform is not recognized among the reception waveforms of the signal intensity obtained by the ultrasonic receiving element, the spatial shape of the object that does not actually exist based on the disturbance waveform is imaged. Can be prevented.

請求項5の発明は、超音波発信素子から発射した超音波を対象物に当てて反射させ、この反射波を複数の超音波受信素子を配列してなる超音波アレイセンサにより受信し、各受信素子で得られた信号強度と送受波時間との関係に基づいて前記対象物の空間形状を画像化する超音波画像化装置において、各受信素子で得られる信号強度の受信波形から、各受信素子ごとで信号強度が最大値となる第n位置を演算する第1演算手段と、前記第n位置の直前・直後の信号強度が減少から増大に転ずる一対の極小点を演算する第2演算手段と、前記一対の極小点間の受信波形を第n波形として記憶する記憶手段と前記第n波形を前記記憶手段に記憶させる第1制御手段と、前記(c)工程で記憶させていない受信波形に対して、前記工程(a)から(c)を(N−1)回繰り返して前記記憶手段に第1波形から第N波形までを記憶させる第二制御手段と、前記記憶手段に記憶させた各受信素子ごとの第1波形から第N波形までに基づいて前記対象物の空間形状を画像化する画像化手段を具備することを特徴とする。 In the invention of claim 5, the ultrasonic wave emitted from the ultrasonic wave transmitting element is applied to the object and reflected, and the reflected wave is received by an ultrasonic array sensor formed by arranging a plurality of ultrasonic wave receiving elements. In the ultrasonic imaging apparatus that images the spatial shape of the object based on the relationship between the signal intensity obtained by the element and the transmission / reception time, each receiving element is obtained from the received waveform of the signal intensity obtained by each receiving element. First calculating means for calculating the n-th position where the signal intensity becomes the maximum value every time, and second calculating means for calculating a pair of minimum points at which the signal intensity immediately before and after the n-th position turns from decreasing to increasing, Storage means for storing the received waveform between the pair of local minimum points as an nth waveform, first control means for storing the nth waveform in the storage means, and a received waveform not stored in the step (c). In contrast, from step (a) above ( ) Is repeated (N-1) times to store the first waveform to the Nth waveform in the storage device, and the first waveform to the Nth waveform for each receiving element stored in the storage device. An imaging means for imaging the spatial shape of the object based on the above is provided.

ここで、nは整数であって、1からNまで順番に増やすものとする。nを増やすのは、前記工程(d)において、前記工程(a)から(c)を繰り返す時である。   Here, n is an integer, and is increased from 1 to N in order. n is increased when the steps (a) to (c) are repeated in the step (d).

請求項5の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、信号強度の小さいものでも認識できるため、信号強度の小さい受信波形の物体でも、認識して、その受信波形に基づいて、空間形状を画像化することが出来る。 According to the fifth aspect of the present invention, since a signal waveform having a low signal strength can be recognized among reception waveforms having a signal strength obtained by the ultrasonic wave receiving element, an object having a reception waveform having a low signal strength is also recognized. The spatial shape can be imaged based on the received waveform.

請求項6の発明は、信号強度に関する所定の閾値以上の前記工程(c)の受信波形の数に対応して前記Nの値を設定する第3制御手段を有することを特徴とする。 The invention according to claim 6 is characterized by comprising third control means for setting the value of N corresponding to the number of received waveforms in the step (c) that are equal to or greater than a predetermined threshold relating to signal strength.

請求項6の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、所定の閾値以上の波形だけを認識する。そのため、所定の閾値より小さな波形に含まれるノイズ(物体に反射した超音波に基づかない波形)に基づいて、実際には存在しない物体の空間形状を画像化することを防止出来る。 According to the sixth aspect of the present invention, only a waveform having a signal intensity equal to or higher than a predetermined threshold is recognized among the received waveforms of the signal intensity obtained by the ultrasonic receiving element. Therefore, it is possible to prevent imaging of a spatial shape of an object that does not actually exist based on noise included in a waveform smaller than a predetermined threshold (a waveform that is not based on ultrasonic waves reflected on the object).

請求項7の発明は、各受信素子の前記第1波形から第N波形までの最大値が等しくなるように補正する補正手段と前記補正手段により補正された前記第1波形から第N波形を前記記憶手段に記憶させる第4制御手段を有することを特徴とする。 The invention according to claim 7 corrects the N-th waveform from the first waveform corrected by the correcting means and the correcting means for correcting the maximum values from the first waveform to the N-th waveform of each receiving element to be equal. It has 4th control means memorize | stored in a memory | storage means, It is characterized by the above-mentioned.

請求項7の発明によれば、超音波受信素子により得られた信号強度の受信波形のうち、信号強度の小さい受信波形の最大値を信号強度の大きい受信波形の最大値と同じ信号強度になるように補正できる。そのため、信号強度の小さい受信波形の物体に対しても、遅延加算や遅延乗算後に信号強度の大きい受信波形と同等の大きさの波形が得られ、これに基づいて、空間形状を画像化することが出来る。 According to the seventh aspect of the present invention, the maximum value of the received waveform having a low signal strength among the received waveforms of the signal strength obtained by the ultrasonic receiving element has the same signal strength as the maximum value of the received waveform having a high signal strength. Can be corrected as follows. Therefore, even for an object with a received waveform with low signal strength, a waveform with the same size as the received waveform with high signal strength can be obtained after delay addition or delay multiplication, and based on this, the spatial shape can be imaged. I can do it.

本発明によれば、超音波受信素子で得られた信号の強度が弱い場合であっても、対象物から反射した波形として検出するようにしているので、対象物の反射率等の違いに影響されることなく、対象物の空間形状を画像化することができる。   According to the present invention, even when the intensity of the signal obtained by the ultrasonic receiving element is weak, the waveform reflected from the object is detected, so that the difference in the reflectance of the object is affected. Without being done, the spatial shape of the object can be imaged.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は、対象物体から反射した超音波を超音波受信素子により受信した時に得られる信号の波形の1例を模式的に示したものである。図2は、本発明に係る超音波画像化方法の手順をフローチャートで示したものである。以下、図1の受信波形を参照しながら、図2のフローチャートに従って、超音波受信素子により受信した時に得られる信号を画像化する方法を説明する。   FIG. 1 schematically shows an example of a waveform of a signal obtained when ultrasonic waves reflected from a target object are received by an ultrasonic receiving element. FIG. 2 is a flowchart showing the procedure of the ultrasonic imaging method according to the present invention. Hereinafter, a method of imaging a signal obtained when received by an ultrasonic wave receiving element will be described with reference to the reception waveform of FIG. 1 according to the flowchart of FIG.

まず、画像化方法が開始する。ステップS1で、記憶手段の内容をリセット(初期化)する。ステップS2で、超音波受信素子により得られた受信波形をAD変換手段によりデジタルデータに変換して記憶手段に記憶する。そしてステップS3で変数nを1にする。変数nは整数であり、ステップS2で記憶手段に記憶された受信波形を分けたものに名前を付け識別するために使用する。   First, the imaging method starts. In step S1, the contents of the storage means are reset (initialized). In step S2, the received waveform obtained by the ultrasonic receiving element is converted into digital data by the AD conversion means and stored in the storage means. In step S3, the variable n is set to 1. The variable n is an integer, and is used to name and identify the divided received waveforms stored in the storage means in step S2.

そして、ステップS4で、記憶手段にステップS2で記憶した受信波形以外の波形情報が記憶されているか判定する。NO(記憶手段にステップS2で記憶した受信波形以外の波形情報が記憶されていない)の場合には、ステップS5に進む。YES(記憶手段にステップS2で記憶した受信波形以外の波形情報が記憶されている)の場合には、ステップS12に進む。始め(n=1の場合)は、ステップS1で記憶手段の内容をリセット(初期化)したので、ステップS2で記憶手段に記憶された受信波形以外には、記憶手段に波形情報は存在しない(ステップS4での判定がNOになる)ので、ステップS5に進む。   In step S4, it is determined whether waveform information other than the received waveform stored in step S2 is stored in the storage unit. If NO (no waveform information other than the received waveform stored in step S2 is stored in the storage means), the process proceeds to step S5. If YES (the waveform information other than the received waveform stored in step S2 is stored in the storage means), the process proceeds to step S12. At the beginning (when n = 1), since the contents of the storage means are reset (initialized) in step S1, there is no waveform information in the storage means other than the received waveform stored in the storage means in step S2 ( Since the determination in step S4 is NO), the process proceeds to step S5.

ステップS5では、記憶手段に記憶されている受信波形の中で、信号強度が最大になる第n位置Pn(図1では、n=1の時はP1)を演算により検出する。   In step S5, the nth position Pn (P1 when n = 1 in FIG. 1) where the signal intensity is maximum is detected by calculation in the received waveform stored in the storage means.

次に、ステップS6で、第n位置Pnの信号強度が、所定の閾値以上であるかを判定する。YES(第n位置Pnの信号強度が、所定の閾値以上である)の場合は、ステップS7に進む。NO(第n位置Pnの信号強度が、所定の閾値以上でない)場合はステップS13に進む。ここでは、YES(第n位置Pnの信号強度が、所定の閾値以上である)の場合として、ステップS7に進む。   Next, in step S6, it is determined whether the signal intensity at the nth position Pn is greater than or equal to a predetermined threshold value. If YES (the signal intensity at the nth position Pn is greater than or equal to a predetermined threshold value), the process proceeds to step S7. If NO (the signal intensity at the nth position Pn is not equal to or greater than the predetermined threshold value), the process proceeds to step S13. Here, as YES (the signal intensity at the n-th position Pn is greater than or equal to a predetermined threshold value), the process proceeds to step S7.

ステップS7では、第n位置Pnから時間的に直後の、信号強度が減少から増大に転ずる極小点Pan(図1では、n=1の時はPa1)を演算により検出する。ただし、信号強度が減少から増大に転ずる極小点が検出されず、測定終了時間の位置を検出した場合は、測定終了時間の位置をPanとする。   In step S7, a local minimum point Pan (in FIG. 1, Pa1 when n = 1 in FIG. 1) immediately after time from the n-th position Pn is detected by calculation. However, when the minimum point where the signal intensity changes from decreasing to increasing is not detected and the position of the measurement end time is detected, the position of the measurement end time is set to Pan.

そして、ステップS8で、第n位置Pnから時間的に直前の、信号強度が減少から増大に転ずる極小点Pbnを演算により検出する。ただし、信号強度が減少から増大に転ずる極小点が検出されず、測定開始時間の位置を検出した場合は、測定開始時間の位置をPbn(図1では、n=1の時はPb1)とする。   In step S8, the local minimum point Pbn from the decrease in the signal intensity immediately before the nth position Pn is detected by calculation. However, when the minimum point where the signal intensity changes from decreasing to increasing is not detected and the position of the measurement start time is detected, the position of the measurement start time is Pbn (in FIG. 1, Pb1 when n = 1). .

そして、ステップS9で、極小点Panと極小点Pbnとの間の範囲Rn(図1では、n=1の時はR1で示した範囲)の受信波形を第n波形Wn(図1では、n=1の時はW1)として記憶手段に記憶させる。ここで第n波形Wnは、一つの物体から反射した超音波に基づく波形とみなされるべきものである。ステップS6における所定の閾値は、このステップS9で外乱波形を記憶手段に記憶させることがない値に設定している。   In step S9, the received waveform in the range Rn (the range indicated by R1 when n = 1 in FIG. 1) between the minimum point Pan and the minimum point Pbn is changed to the nth waveform Wn (n in FIG. 1). When = 1, it is stored in the storage means as W1). Here, the nth waveform Wn should be regarded as a waveform based on the ultrasonic wave reflected from one object. The predetermined threshold value in step S6 is set to a value that does not cause the disturbance waveform to be stored in the storage means in step S9.

そして、ステップS10では、第n波形Wnの最大信号強度An(第n位置Pnの信号強度)が「1」になるように、第n波形Wnを補正し、第n補正波形Wrnを生成し、これを記憶手段に記憶する(図1では、n=1の時は、最大信号強度A1、第1波形W1を補正して生成した波形は、破線で示した第1補正波形Wr1)。ここで、第n波形Wnの最大信号強度Anが「1」になるように、第n波形Wnを補正するということは、第n波形Wnの全ての信号強度を、1/An倍にすることを意味する。   In step S10, the nth waveform Wn is corrected so that the maximum signal intensity An (the signal intensity at the nth position Pn) of the nth waveform Wn is “1”, and an nth corrected waveform Wrn is generated. This is stored in the storage means (in FIG. 1, when n = 1, the waveform generated by correcting the maximum signal intensity A1 and the first waveform W1 is the first correction waveform Wr1 indicated by a broken line). Here, correcting the n-th waveform Wn so that the maximum signal intensity An of the n-th waveform Wn is “1” means that all signal intensities of the n-th waveform Wn are 1 / An times. Means.

そして、ステップS11で、nをn+1にする(nの値を1増加する)。そして、ステップS4に戻る。ここで、nが2以上の場合には、ステップS9で第n波形Wnが記憶手段に記憶されている。そのため、ステップS4における記憶手段にステップS2で記憶した受信波形以外の波形情報が記憶されているかの判定は、YES(記憶手段にステップS2で記憶した受信波形以外の波形情報が記憶されている)の場合になり、ステップS12に進む。   In step S11, n is set to n + 1 (the value of n is increased by 1). Then, the process returns to step S4. If n is 2 or more, the nth waveform Wn is stored in the storage means in step S9. Therefore, it is determined whether or not waveform information other than the received waveform stored in step S2 is stored in the storage unit in step S4 (YES (waveform information other than the received waveform stored in step S2 is stored in the storage unit)). The process proceeds to step S12.

ステップS12では、ステップS1で記憶手段に記憶されている受信波形からステップS9で記憶手段に記憶された波形(第1〜(n-1)波形W1〜W(n−1))を除去する。そして、ステップS5に進む。   In step S12, the waveforms (first to (n-1) waveforms W1 to W (n-1)) stored in the storage unit in step S9 are removed from the reception waveform stored in the storage unit in step S1. Then, the process proceeds to step S5.

ただし、nが2以上の場合には、ステップS5で第n位置Pnを演算検出する対象である記憶手段に記憶された受信波形は、ステップS12の処理を行なっているため、最初にステップS2で記憶された受信波形ではない。すなわち、ステップS2で記憶された受信波形からステップS9で記憶手段に記憶された波形(第1〜(n-1)波形W1〜W(n−1))以外の部分である。図1では、n=2の時には、全体の受信波形の中で、R1の範囲の第1波形W1以外の部分である   However, if n is 2 or more, the received waveform stored in the storage means that is the target for calculating and detecting the nth position Pn in step S5 is processed in step S12. It is not a stored received waveform. That is, it is a part other than the waveforms (first to (n-1) waveforms W1 to W (n-1)) stored in the storage means in step S9 from the received waveform stored in step S2. In FIG. 1, when n = 2, it is a portion other than the first waveform W1 in the range of R1 in the entire received waveform.

そして、演算検出された第n位置Pn(図1では、n=2の時はP2)の信号強度が、所定の閾値以上であれば、ステップS6での判定がYESとなり、再びステップS7〜S10の処理を行なう。図1では、n=2の時には、第2位置P2、極小点Pa2、極小点Pb2を検出する。そしてR2で示す範囲(極小点Pa2と極小点Pb2の間の範囲)の第2波形W2を記憶手段に記憶した後、第2波形W2の最大信号強度A2(第2位置P2の信号強度)が「1」になるように第2波形W2を補正し第2補正波形Wr2を生成し、記憶手段に記憶する。すなわち、ステップS6で第n位置Pnの信号強度が、所定の閾値以上でなくなるまで、すなわち、所定の閾値未満となるまでステップS4、S12、S5〜S11の処理を繰り返すことになる。   If the signal intensity at the calculated and detected nth position Pn (in FIG. 1, P2 when n = 2) is equal to or greater than a predetermined threshold, the determination in step S6 is YES, and steps S7 to S10 are performed again. Perform the following process. In FIG. 1, when n = 2, the second position P2, the minimum point Pa2, and the minimum point Pb2 are detected. Then, after storing the second waveform W2 in the range indicated by R2 (the range between the minimum point Pa2 and the minimum point Pb2) in the storage unit, the maximum signal intensity A2 (signal intensity at the second position P2) of the second waveform W2 is obtained. The second waveform W2 is corrected to be “1” to generate a second corrected waveform Wr2, which is stored in the storage means. That is, the processes in steps S4, S12, and S5 to S11 are repeated until the signal intensity at the nth position Pn is not greater than or equal to a predetermined threshold value in step S6, that is, until it is less than the predetermined threshold value.

ステップS6で、第n位置Pnの信号強度が、所定の閾値未満になった場合はステップS13に進む。   In step S6, if the signal intensity at the nth position Pn becomes less than a predetermined threshold value, the process proceeds to step S13.

ステップ13で、Nをn−1にする。そして、ステップS14に進む。ステップS14では、各受信素子についてステップS10において補正・生成し、記憶手段に記憶した第1〜N補正波形Wr1〜WrNに基づき、対象物の空間形状を演算し、画像化を行なう。補正波形に基づき、対象物の方位を求める演算には遅延乗算を用いる。遅延乗算とは、特許文献1の段落0002〜0007に記載の遅延加算の説明において、遅延波形に対して加算ではなく乗算を行なうものである。ただし、特許文献1での説明では回路を使用して遅延加算を行なっているが、本実施形態ではプログラム的に遅延乗算を行なう。また、遅延乗算後の信号に基づき対象物までの距離を算出する方法は、遅延加算後の信号に基づき対象物までの距離を算出する方法(特許文献1参照)と同様である。得られた対象物の空間形状の情報に基づいて、対象物の空間形状の画像化を行なう方法としては、既存の技術(例えば、特開2005−49303号公報に記載の画像化方法)を用いる。画像化を行なった後、処理を終了する。   In step 13, N is set to n-1. Then, the process proceeds to step S14. In step S14, the spatial shape of the object is calculated and imaged based on the first to N correction waveforms Wr1 to WrN corrected and generated in step S10 for each receiving element and stored in the storage means. Delay multiplication is used for the calculation for obtaining the orientation of the object based on the correction waveform. Delay multiplication refers to performing multiplication instead of addition on a delay waveform in the description of delay addition described in paragraphs 0002 to 0007 of Patent Document 1. However, in the description in Patent Document 1, delay addition is performed using a circuit, but in this embodiment, delay multiplication is performed programmatically. The method for calculating the distance to the object based on the signal after the delay multiplication is the same as the method for calculating the distance to the object based on the signal after the delay addition (see Patent Document 1). An existing technique (for example, the imaging method described in Japanese Patent Laid-Open No. 2005-49303) is used as a method for imaging the spatial shape of the target object based on the obtained spatial shape information of the target object. . After imaging, the process ends.

補正波形の最大値は、強い受信信号の物体の補正波形の最大値と同じ「1」になっている。そのため、補正波形を用いて遅延乗算を行なうと、弱い受信信号の物体であっても、遅延乗算後には強い受信信号の物体と同等の強度の信号が得られる。そのため、この信号に基づいて対象物の空間形状の画像を得ることができる。   The maximum value of the correction waveform is “1”, which is the same as the maximum value of the correction waveform of the object having a strong received signal. Therefore, when delay multiplication is performed using the correction waveform, even a weak received signal object can be obtained with a signal having the same strength as the strong received signal object after delay multiplication. Therefore, an image of the spatial shape of the object can be obtained based on this signal.

図3に、超音波アレイセンサ1の1例を、模式的に示す。図3に示す超音波アレイセンサ1は、基板2と超音波発信素子3と8個の超音波受信素子4から構成されている。基板2、超音波発信素子3及び超音波受信素子4は既存のものを使用すればよい。   FIG. 3 schematically shows an example of the ultrasonic array sensor 1. An ultrasonic array sensor 1 shown in FIG. 3 includes a substrate 2, an ultrasonic transmission element 3, and eight ultrasonic reception elements 4. As the substrate 2, the ultrasonic transmission element 3, and the ultrasonic reception element 4, existing ones may be used.

図4に、超音波画像化装置の構成を模式的に示す。超音波画像化装置は、超音波アレイセンサ1、AD変換手段5、演算手段6、記憶手段7、制御手段8、補正手段9、画像化手段10および画像表示手段11で構成されている。超音波アレイセンサ1については上述の通りである。AD変換手段5は、超音波アレイセンサ1で受信された受信信号をデジタルデータに変換する。演算手段6は、受信波形から第n位置Pnや極小点Panや極小点Pbnの検出を行なう。記憶手段7は、AD変換手段5により、デジタルデータに変換された受信波形を記憶保持する。記憶手段7は、第n波形Wn及び第n補正波形Wrnを記憶保持する。制御手段8は、図2ステップS1で、記憶手段の内容をリセット(初期化)する。制御手段8は、第n波形Wnを記憶手段7に記憶させる。制御手段8は、第n補正波形Wrnを記憶手段7に記憶させる。制御手段8は、図2ステップS4、S6における判定を行なう。制御手段8は、図2ステップ12において、図2ステップS1で記憶された受信波形から図2ステップS9で記憶された波形を除去する。制御手段8は、図2のステップの進行の制御を行なう。補正手段9は、記憶手段7に記憶保持されている第1〜N波形W1〜WNを補正して第1〜N補正波形Wr1〜WrNにする。画像化手段10は、超音波受信素子4ごとの第1〜N補正波形Wr1〜WrNに基づいて、対象物の空間形状を演算する。画像表示手段11は画像化手段10が演算した対象物の空間形状を表示する。   FIG. 4 schematically shows the configuration of the ultrasonic imaging apparatus. The ultrasonic imaging apparatus includes an ultrasonic array sensor 1, AD conversion means 5, calculation means 6, storage means 7, control means 8, correction means 9, imaging means 10, and image display means 11. The ultrasonic array sensor 1 is as described above. The AD conversion means 5 converts the received signal received by the ultrasonic array sensor 1 into digital data. The calculating means 6 detects the nth position Pn, the minimum point Pan, and the minimum point Pbn from the received waveform. The storage means 7 stores and holds the received waveform converted into digital data by the AD conversion means 5. The storage means 7 stores and holds the nth waveform Wn and the nth correction waveform Wrn. The control means 8 resets (initializes) the contents of the storage means in step S1 of FIG. The control unit 8 stores the nth waveform Wn in the storage unit 7. The control unit 8 stores the nth correction waveform Wrn in the storage unit 7. The control means 8 performs the determination in steps S4 and S6 in FIG. In step 12 of FIG. 2, the control means 8 removes the waveform stored in step S9 of FIG. 2 from the received waveform stored in step S1 of FIG. The control means 8 controls the progress of the steps in FIG. The correction unit 9 corrects the first to N waveforms W1 to WN stored and held in the storage unit 7 to obtain first to N correction waveforms Wr1 to WrN. The imaging means 10 calculates the spatial shape of the object based on the first to N correction waveforms Wr1 to WrN for each ultrasonic receiving element 4. The image display means 11 displays the spatial shape of the object calculated by the imaging means 10.

図5に、図3に示した超音波アレイセンサ1を用いた実験の様子を模式的に示す。ただし、超音波アレイセンサ1以外の装置は、省略している。超音波アレイセンサ1の前方に、風船1〜3を固定配置した。座標系はXYZ座標系で方向は図5に示した通りである。風船の座標は風船の中心を基準にして風船1が(0,0,100)、風船2が(−60,−25,100)、風船3が(60,0,130)である(単位:cm、原点は超音波アレイセンサ1の中心)。風船の直径は30cmである。   FIG. 5 schematically shows the state of the experiment using the ultrasonic array sensor 1 shown in FIG. However, devices other than the ultrasonic array sensor 1 are omitted. Balloons 1 to 3 were fixedly arranged in front of the ultrasonic array sensor 1. The coordinate system is an XYZ coordinate system and the directions are as shown in FIG. Balloon coordinates are (0, 0, 100) for balloon 1, (−60, −25, 100) for balloon 2, and (60, 0, 130) for balloon 3 based on the center of the balloon (unit: cm, the origin is the center of the ultrasonic array sensor 1). The diameter of the balloon is 30 cm.

図6に超音波受信素子4が受信した信号の受信波形と、この受信波形を本発明に係る超音波画像化方法により補正して生成した補正波形を示す。図6における8個のグラフは、超音波アレイセンサ1上に設置されている8個の超音波受信素子4のそれぞれが、1回の超音波の送信に対して受信した波形とその補正波形を示す。それぞれのグラフにおいて、太い実線の波形が元の受信波形であり、細い実線の波形が補正波形である。ただし、比較のため、風船1に対応する補正波形と元の受信波形が同じになるように、元の受信波形全体の信号強度を調整して表示している。   FIG. 6 shows a received waveform of a signal received by the ultrasonic receiving element 4 and a corrected waveform generated by correcting the received waveform by the ultrasonic imaging method according to the present invention. The eight graphs in FIG. 6 show the waveforms received by each of the eight ultrasonic receiving elements 4 installed on the ultrasonic array sensor 1 for one transmission of the ultrasonic wave and the correction waveforms thereof. Show. In each graph, the thick solid line waveform is the original received waveform, and the thin solid line waveform is the correction waveform. However, for comparison, the signal intensity of the entire original received waveform is adjusted and displayed so that the correction waveform corresponding to the balloon 1 and the original received waveform are the same.

まず、比較のため、図6の元の受信波形に基づいて遅延乗算して得られた信号強度をXY座標平面上に濃淡で表したものを図7に示す。図6の元の受信波形において、超音波アレイセンサ1の中心とX座標とY座標が同じであるため、風船1の信号強度は大きい。これに対して、風船2及び風船3の信号強度は風船1の信号強度に比較して小さい。遅延乗算を行なうと信号強度の差は大きくなるので、遅延乗算後は、風船2及び風船3の信号強度は、風船1の信号強度に比較して非常に小さくなる。そのため、図7には、風船1の遅延乗算後の信号しか表示されない。   First, for comparison, FIG. 7 shows a signal intensity obtained by delay multiplication based on the original received waveform in FIG. 6 expressed in shading on the XY coordinate plane. In the original received waveform of FIG. 6, the signal intensity of the balloon 1 is high because the center of the ultrasonic array sensor 1, the X coordinate, and the Y coordinate are the same. On the other hand, the signal intensity of the balloons 2 and 3 is smaller than the signal intensity of the balloon 1. When the delay multiplication is performed, the difference in signal strength becomes large. Therefore, after the delay multiplication, the signal strength of the balloon 2 and the balloon 3 becomes very small as compared with the signal strength of the balloon 1. Therefore, only the signal after delay multiplication of the balloon 1 is displayed in FIG.

これに対して、図6の補正波形に基づいて遅延乗算して得られた信号強度をXY座標平面上に濃淡で表したものを図8に示す。図6に示した補正波形について、風船1〜3の補正波形の信号強度の最大値が「1」になっている。このため、遅延乗算後でも、風船2及び風船3の信号強度は、風船1の信号強度と同程度になる。従って、図8では、風船1だけでなく、風船2および風船3の遅延乗算後の信号も表示されている。   On the other hand, FIG. 8 shows the signal intensity obtained by delay multiplication based on the correction waveform of FIG. 6 expressed in shading on the XY coordinate plane. With respect to the correction waveform shown in FIG. 6, the maximum value of the signal intensity of the correction waveforms of the balloons 1 to 3 is “1”. For this reason, even after delay multiplication, the signal strengths of the balloons 2 and 3 are approximately the same as the signal strength of the balloon 1. Therefore, in FIG. 8, not only the balloon 1 but also the signals after delay multiplication of the balloons 2 and 3 are displayed.

このように、風船2や風船3のように超音波受信素子で得られた信号の強度が弱い対象物であっても、超音波受信素子で得られた信号の受信波形の信号強度の最大値が風船1と同じ「1」になるように補正されて、遅延乗算後に風船1と同等の信号強度が得られる。従って、その遅延乗算後の信号に基づいて空間形状を画像化することが可能である。   As described above, even if the intensity of the signal obtained by the ultrasonic receiving element is low, such as the balloon 2 or the balloon 3, the maximum value of the signal intensity of the received waveform of the signal obtained by the ultrasonic receiving element. Is corrected to be “1”, which is the same as that of the balloon 1, and a signal strength equivalent to that of the balloon 1 is obtained after delay multiplication. Therefore, it is possible to image the spatial shape based on the signal after the delay multiplication.

更に、比較のために、図9に超音波受信素子4が受信した信号の受信波形と、この受信波形を公知である閾値による波形認識方法を用いて補正して生成した補正波形を示す。図9における8個のグラフは、超音波アレイセンサ1上に設置されている8個の超音波受信素子4のそれぞれが、1回の超音波の送信に対して受信した波形とその補正波形を示す。それぞれのグラフにおいて、太い実線の波形が元の受信波形であり、細い実線の波形が補正波形である。ただし、比較のため、風船1に対応する補正波形と元の受信波形が同じになるように、元の受信波形全体の信号強度を調整して表示している。   Further, for comparison, FIG. 9 shows a received waveform of a signal received by the ultrasonic receiving element 4 and a corrected waveform generated by correcting the received waveform using a known waveform recognition method using a threshold value. The eight graphs in FIG. 9 show the waveform received by each of the eight ultrasonic receiving elements 4 installed on the ultrasonic array sensor 1 for one transmission of the ultrasonic wave and its correction waveform. Show. In each graph, the thick solid line waveform is the original received waveform, and the thin solid line waveform is the correction waveform. However, for comparison, the signal intensity of the entire original received waveform is adjusted and displayed so that the correction waveform corresponding to the balloon 1 and the original received waveform are the same.

ここで、公知である閾値による波形認識方法とは、次の(1)〜(4)のステップを行なうものである。(1)受信波形の中で信号強度が最大の点を演算する。(2)(1)のステップで演算された点に対して、時間的に直前・直後の設定した閾値以下の点を検出する。(3)(2)のステップで検出された2つの点の間の波形を1つの物体からの波形として記憶する。(4)(3)のステップで記憶した波形を除いて、(1)〜(3)のステップを繰り返し、(1)のステップで演算された点の信号強度が設定値以下になれば終了する。   Here, the known waveform recognition method using a threshold value is a method in which the following steps (1) to (4) are performed. (1) The point where the signal strength is maximum in the received waveform is calculated. (2) A point that is equal to or less than a set threshold value immediately before and immediately after the point calculated in step (1) is detected. (3) The waveform between the two points detected in step (2) is stored as a waveform from one object. (4) Steps (1) to (3) are repeated except for the waveform stored in step (3), and the process ends when the signal intensity at the point calculated in step (1) is less than or equal to the set value. .

補正は、(3)のステップで記憶したそれぞれの波形の信号強度の最大値が「1」になるように行なった(本発明に係る実施形態と同様の補正)。   The correction was performed so that the maximum value of the signal intensity of each waveform stored in step (3) was “1” (correction similar to the embodiment according to the present invention).

しかしながら、図9において、補正波形の最大信号強度が「1」未満のものがある(図9において(a)で示す)。また、図9において、元の受信波形で物体からの受信波形が存在しないところに補正波形が生じているところがある(図9において(b)で示す)。   However, in FIG. 9, there is a correction waveform having a maximum signal intensity of less than “1” (indicated by (a) in FIG. 9). Further, in FIG. 9, there is a place where a correction waveform is generated where there is no reception waveform from an object in the original reception waveform (indicated by (b) in FIG. 9).

さらに、図9の補正波形に基づいて遅延乗算して得られた信号強度をXY座標平面上に濃淡で表したものを図10に示す。図10では、風船2の遅延乗算後の信号が表示されていない。これは、図9の補正波形において、風船2の補正波形の最大信号強度が「1」未満のものがあるためである(図9の(a)参照)。   Further, FIG. 10 shows the signal intensity obtained by delay multiplication based on the correction waveform in FIG. 9 expressed in shading on the XY coordinate plane. In FIG. 10, the signal after delay multiplication of the balloon 2 is not displayed. This is because the correction waveform of FIG. 9 has a maximum signal intensity of less than “1” in the correction waveform of the balloon 2 (see FIG. 9A).

このように、公知である閾値による波形認識方法を用いた補正では、本発明に係る超音波画像化方法による補正と同等の精度が得られない。   As described above, the correction using the known waveform recognition method based on the threshold value cannot obtain the same accuracy as the correction using the ultrasonic imaging method according to the present invention.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されること無く、種々の変形が可能であり、例えば、前記実施形態では、画像化のための演算に遅延乗算を用いたが、画像化のための演算に遅延加算を用いることも可能であり、その場合には遅延加算の前でなく遅延加算後の波形に補正を行なうことも可能である。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, in the above-described embodiments, delay multiplication is performed for calculation for imaging. Although used, it is also possible to use delay addition for the calculation for imaging. In this case, it is possible to correct the waveform after delay addition instead of before delay addition.

また、上記実施形態では、第1〜第N波形W1〜WNは、元の受信波形の中で最大値が大きいものから小さいものの順に検出して記憶手段に記憶するようにしているが、これとは反対に、小さいものから大きいものの順に検出して記憶手段に記憶するようにしてもよい。   Further, in the above embodiment, the first to Nth waveforms W1 to WN are detected and stored in the storage means in order from the largest to the smallest in the original received waveform. On the contrary, it may be detected in the order from the smallest to the largest and stored in the storage means.

また、上記実施形態では、第n波形Wnを最大信号強度Anが「1」になるように補正しているが、第1波形W1の最大信号強度A1が「1」になるように受信波形全体の強度を最初に設定しておき、他の第2〜第N波形W2〜WNについて、最大信号強度A2〜ANが「1」になるように補正(増幅)してもよい。   In the above embodiment, the nth waveform Wn is corrected so that the maximum signal intensity An is “1”. However, the entire received waveform is adjusted so that the maximum signal intensity A1 of the first waveform W1 is “1”. May be corrected (amplified) so that the maximum signal strengths A2 to AN are “1” for the other second to Nth waveforms W2 to WN.

対象物体に反射した超音波を超音波受信素子により受信した時に得られる信号の波形の1例を模式的に示した図である。It is the figure which showed typically an example of the waveform of the signal obtained when the ultrasonic wave reflected on the target object was received by the ultrasonic wave receiving element. 本発明の実施の形態に係る超音波画像化方法の手順をフローチャートで示した図である。It is the figure which showed the procedure of the ultrasonic imaging method which concerns on embodiment of this invention with the flowchart. 超音波アレイセンサの1例を、模式的に示す図である。It is a figure which shows typically an example of an ultrasonic array sensor. 超音波画像化装置の構成を模式的に示す図である。It is a figure which shows typically the structure of an ultrasonic imaging device. 超音波アレイセンサを用いた実験の様子を模式的に示す図である。It is a figure which shows typically the mode of the experiment using an ultrasonic array sensor. 補正波形と元の受信波形とを示す図である。It is a figure which shows a correction | amendment waveform and the original received waveform. 図6の元の受信波形に基づいて遅延乗算して得られた信号強度をXY座標平面上に濃淡で表した図である。It is the figure which expressed the signal strength obtained by delay multiplication based on the original received waveform of FIG. 6 on the XY coordinate plane with shading. 実施例に係る図6の補正波形に基づいて遅延乗算して得られた信号強度をXY座標平面上に濃淡で表した図である。It is the figure which represented the signal strength obtained by carrying out delay multiplication based on the correction waveform of FIG. 6 which concerns on an Example on the XY coordinate plane with the shading. 公知の方法による補正波形と元の受信波形とを示す図である。It is a figure which shows the correction | amendment waveform and the original receiving waveform by a well-known method. 図9の補正波形に基づいて遅延乗算して得られた信号強度をXY座標平面上に濃淡で表した図である。FIG. 10 is a diagram showing signal intensity obtained by delay multiplication based on the correction waveform of FIG. 9 in light and shade on an XY coordinate plane.

符号の説明Explanation of symbols

1 超音波アレイセンサ
2 基板
3 超音波発信素子
4 超音波受信素子
5 AD変換手段
6 演算手段
7 記憶手段
8 制御手段
9 補正手段
10 画像化手段
11 画像表示手段
DESCRIPTION OF SYMBOLS 1 Ultrasonic array sensor 2 Board | substrate 3 Ultrasonic transmission element 4 Ultrasonic receiving element 5 AD conversion means 6 Calculation means 7 Storage means 8 Control means 9 Correction means 10 Imaging means 11 Image display means

Claims (7)

超音波発信素子から発射した超音波を対象物に当てて反射させ、この反射波を複数の超音波受信素子を配列してなる超音波アレイセンサにより受信し、各受信素子で得られた信号強度と送受波時間との関係に基づいて前記対象物の空間形状を画像化する超音波画像化方法において、
各受信素子で得られる信号強度の受信波形から、
(a)各受信素子ごとで信号強度が最大値となる第n位置を演算する工程、
(b)前記第n位置の直前・直後の信号強度が減少から増大に転ずる一対の極小点を演算する工程、
(c)前記一対の極小点間の受信波形を第n波形として記憶手段に記憶させる工程、
(d)前記(c)工程で記憶させていない受信波形に対して、前記工程(a)から(c)を(N−1)回繰り返して前記記憶手段に第1波形から第N波形までを記憶させる工程、
(e)前記記憶手段に記憶させた各受信素子ごとの第1波形から第N波形までに基づいて前記対象物の空間形状を画像化することを特徴とする超音波画像化方法。ここで、nは整数であって、1からNまで順番に増やすものとする。
The ultrasonic wave emitted from the ultrasonic transmitting element is reflected by the object and reflected, and the reflected wave is received by an ultrasonic array sensor in which a plurality of ultrasonic receiving elements are arranged, and the signal intensity obtained by each receiving element In the ultrasonic imaging method of imaging the spatial shape of the object based on the relationship between the transmission and reception times,
From the received waveform of the signal strength obtained by each receiving element,
(A) calculating the n-th position where the signal intensity is maximum for each receiving element;
(B) calculating a pair of local minimum points at which the signal intensity immediately before and after the nth position changes from decreasing to increasing;
(C) storing the received waveform between the pair of minimum points in the storage means as the nth waveform;
(D) Steps (a) to (c) are repeated (N-1) times for the received waveform not stored in step (c), and the storage means stores the first waveform to the Nth waveform. Memorizing process,
(E) The ultrasonic imaging method characterized in that the spatial shape of the object is imaged based on the first waveform to the Nth waveform for each receiving element stored in the storage means. Here, n is an integer, and is increased from 1 to N in order.
信号強度に関する所定の閾値以上の前記工程(c)の受信波形の数に対応して前記Nの値を設定することを特徴とする請求項1に記載の超音波画像化方法。 2. The ultrasonic imaging method according to claim 1, wherein the value of N is set corresponding to the number of received waveforms in the step (c) that are equal to or greater than a predetermined threshold relating to signal intensity. 各受信素子の前記第1波形から第N波形までの最大値が等しくなるように補正し、前記記憶手段に記憶させる工程を有することを特徴とする請求項1又は2のいずれかに記載の超音波画像化方法。 3. The method according to claim 1, further comprising a step of correcting the maximum values from the first waveform to the Nth waveform of each receiving element to be equal to each other and storing them in the storage unit. Sonic imaging method. 前記記憶手段に記憶させる受信波形に外乱波形が入らないように請求項の繰り返し回数を制限することを特徴とする請求項1〜3のいずれかに記載の超音波画像化方法。 The ultrasonic imaging method according to claim 1 , wherein the number of repetitions of claim 1 is limited so that a disturbance waveform does not enter the received waveform stored in the storage unit. 超音波発信素子から発射した超音波を対象物に当てて反射させ、この反射波を複数の超音波受信素子を配列してなる超音波アレイセンサにより受信し、各受信素子で得られた信号強度と送受波時間との関係に基づいて前記対象物の空間形状を画像化する超音波画像化装置において、
各受信素子で得られる信号強度の受信波形から、各受信素子ごとで信号強度が最大値となる第n位置を演算する第1演算手段と、
前記第n位置の直前・直後の信号強度が減少から増大に転ずる一対の極小点を演算する第2演算手段と、
前記一対の極小点間の受信波形を第n波形として記憶する記憶手段と前記第n波形を前記記憶手段に記憶させる第1制御手段と、
前記一対の極小点間の受信波形を第n波形として記憶手段に記憶させる工程で記憶させていない受信波形に対して、各受信素子ごとで信号強度が最大値となる第n位置を演算する工程、前記第n位置の直前・直後の信号強度が減少から増大に転ずる一対の極小点を演算する工程、前記一対の極小点間の受信波形を第n波形として記憶手段に記憶させる工程を(N−1)回繰り返して前記記憶手段に第1波形から第N波形までを記憶させる第二制御手段と、
前記記憶手段に記憶させた各受信素子ごとの第1波形から第N波形までに基づいて前記対象物の空間形状を画像化する画像化手段を具備することを特徴とする超音波画像化装置。ここで、nは整数であって、1からNまで順番に増やすものとする。
The ultrasonic wave emitted from the ultrasonic transmitting element is reflected by the object and reflected, and the reflected wave is received by an ultrasonic array sensor in which a plurality of ultrasonic receiving elements are arranged, and the signal intensity obtained by each receiving element In the ultrasonic imaging apparatus that images the spatial shape of the object based on the relationship between the transmission and reception times,
First calculation means for calculating the n-th position where the signal intensity is maximum for each receiving element from the received waveform of the signal intensity obtained by each receiving element;
Second computing means for computing a pair of local minimum points at which the signal strength immediately before and after the n-th position changes from decreasing to increasing;
Storage means for storing a received waveform between the pair of local minimum points as an nth waveform, and first control means for storing the nth waveform in the storage means;
The step of calculating the nth position where the signal intensity becomes the maximum value for each receiving element with respect to the received waveform not stored in the step of storing the received waveform between the pair of local minimum points as the nth waveform in the storage means. , A step of calculating a pair of local minimum points at which the signal intensity immediately before and after the nth position changes from decreasing to increasing, and a step of storing the received waveform between the pair of local minimum points in the storage means as the nth waveform (N -1) second control means for repeatedly storing the first waveform to the Nth waveform in the storage means;
An ultrasonic imaging apparatus comprising: imaging means for imaging a spatial shape of the object based on a first waveform to an Nth waveform for each receiving element stored in the storage means. Here, n is an integer, and is increased from 1 to N in order.
信号強度に関する所定の閾値以上の一対の極小点間の受信波形を第n波形として記憶手段に記憶させる程の受信波形の数に対応して前記Nの値を設定する第3制御手段を有することを特徴とする請求項5に記載の超音波画像化装置。 Corresponding to the number of the received waveform of the received waveform between a predetermined threshold value or more pair of minimum points regarding signal strength as engineering to be stored in the storage means as the n waveform having a third control means for setting the value of the N The ultrasonic imaging apparatus according to claim 5. 各受信素子の前記第1波形から第N波形までの最大値が等しくなるように補正する補正手段と前記補正手段により補正された前記第1波形から第N波形を前記記憶手段に記憶させる第4制御手段を有することを特徴とする請求項5又は6のいずれかに記載の超音波画像化装置。 A correction unit that corrects the maximum values from the first waveform to the Nth waveform of each receiving element to be equal, and a fourth unit that stores the N waveform from the first waveform corrected by the correction unit in the storage unit. The ultrasonic imaging apparatus according to claim 5, further comprising a control unit.
JP2006348269A 2006-12-25 2006-12-25 Ultrasonic imaging method and ultrasonic imaging apparatus Expired - Fee Related JP4955381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348269A JP4955381B2 (en) 2006-12-25 2006-12-25 Ultrasonic imaging method and ultrasonic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348269A JP4955381B2 (en) 2006-12-25 2006-12-25 Ultrasonic imaging method and ultrasonic imaging apparatus

Publications (2)

Publication Number Publication Date
JP2008157812A JP2008157812A (en) 2008-07-10
JP4955381B2 true JP4955381B2 (en) 2012-06-20

Family

ID=39658874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348269A Expired - Fee Related JP4955381B2 (en) 2006-12-25 2006-12-25 Ultrasonic imaging method and ultrasonic imaging apparatus

Country Status (1)

Country Link
JP (1) JP4955381B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102091B2 (en) * 2008-04-14 2012-12-19 関西電力株式会社 Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816673B2 (en) * 1976-03-17 1983-04-01 株式会社日立メデイコ Ultrasonic imaging method and device
JPH01237483A (en) * 1988-03-18 1989-09-21 Matsushita Electric Ind Co Ltd Ultrasonic detector of invader
JP2003107155A (en) * 2001-09-28 2003-04-09 National Institute Of Advanced Industrial & Technology Acoustic imaging method

Also Published As

Publication number Publication date
JP2008157812A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
CN102540149B (en) Echo display device, echo display packing
JP6364955B2 (en) SONER SYSTEM, SONER TRANSMITTER AND RECEIVING DEVICE, OBJECT SPECIFICATION METHOD, AND PROGRAM
GB2467641A (en) Rain or snow detection using radar
US9041591B2 (en) Method, device and program for processing signals, and radar apparatus
JP2015210143A (en) Underwater detection device, underwater detection method and underwater detection program
JP4955381B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JP6339446B2 (en) Detection device, detection method, and program
JP2009075086A (en) Ultrasonic three-dimensional distance measuring device, and ultrasonic three-dimensional distance measuring method
JP5055513B2 (en) Ultrasonic array sensor system and delay addition processing method
US20050117755A1 (en) Underwater sounding apparatus
JP4703512B2 (en) Radar equipment
JP2007085866A (en) Object detection device
JP6055460B2 (en) Data processing apparatus, radar apparatus and data processing method
US8858438B2 (en) Ultrasound diagnostic apparatus
KR101142671B1 (en) Imaging sonar with two arrays of transducers with position offset
WO2013183269A1 (en) Ultrasonic diagnostic device, and beam forming method
JP6829801B2 (en) Ultrasonic array sensor system
JP4613141B2 (en) Underground exploration equipment
JP5102091B2 (en) Ultrasonic three-dimensional distance measuring apparatus and ultrasonic three-dimensional distance measuring method
JP2005148013A (en) Radar device
JP5603355B2 (en) Ultrasonic measuring device
JP6261859B2 (en) Signal processing device, underwater detection device, signal processing method, and program
KR101510678B1 (en) Method for Forming Harmonic Image, Ultrasound Medical Apparatus Therefor
JP4197635B2 (en) Radar device and similar device
JP2019070565A (en) Radar device, false image reducing method for radar device, and false image reducing program for radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees