JP2009257807A - Physical quantity measuring device - Google Patents
Physical quantity measuring device Download PDFInfo
- Publication number
- JP2009257807A JP2009257807A JP2008104288A JP2008104288A JP2009257807A JP 2009257807 A JP2009257807 A JP 2009257807A JP 2008104288 A JP2008104288 A JP 2008104288A JP 2008104288 A JP2008104288 A JP 2008104288A JP 2009257807 A JP2009257807 A JP 2009257807A
- Authority
- JP
- Japan
- Prior art keywords
- fixed electrode
- vibrator
- physical quantity
- measuring device
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
Description
本発明は、物理量測定装置に関し、特に、測定精度向上に関するものである。 The present invention relates to a physical quantity measuring device, and more particularly to improving measurement accuracy.
被測定流体の圧力(物理量)を振動式センサを用いて測定する圧力測定装置が一般に知られている。振動式センサを振動させる方式として、振動式センサと電極との間に働く静電吸引力の変化に応じて振動させるものがある。このような圧力測定装置について、物理量測定装置90の構成図を示す図4を用いて説明する。 A pressure measuring device that measures the pressure (physical quantity) of a fluid to be measured using a vibration sensor is generally known. As a method of vibrating the vibration sensor, there is one that vibrates according to a change in electrostatic attraction force acting between the vibration sensor and the electrode. Such a pressure measuring device will be described with reference to FIG. 4 showing a configuration diagram of the physical quantity measuring device 90.
図4において、物理量測定装置90は、固定電極10、振動子11、基準振動子12、電流/電圧変換部20、21、差動増幅部22および駆動部30を備えている。左右に並べられた振動子11および基準振動子12は、固定電極10に対し間隔DISBで対向設置されている。 4, the physical quantity measuring device 90 includes a fixed electrode 10, a vibrator 11, a reference vibrator 12, current / voltage conversion units 20 and 21, a differential amplification unit 22, and a drive unit 30. The vibrator 11 and the reference vibrator 12 arranged on the left and right are disposed to face the fixed electrode 10 with a distance DISB.
振動子11は、その形状(例えば、梁の形状)によって決定される固有振動数を有し、振動子11を固有振動数で振動させる自励振回路が形成される。すなわち、バイアス電圧Vbが印加された固定電極10、固定電極10と振動子11との間に働く静電吸引力Fc、振動子11、電流/電圧変換部20、差動増幅部22、駆動部30および駆動信号KBの固定電極10への帰還によって、自励振回路(正帰還ループ)が形成される。 The vibrator 11 has a natural frequency determined by its shape (for example, the shape of a beam), and a self-excited circuit that vibrates the vibrator 11 at the natural frequency is formed. That is, the fixed electrode 10 to which the bias voltage Vb is applied, the electrostatic attraction force Fc acting between the fixed electrode 10 and the vibrator 11, the vibrator 11, the current / voltage conversion unit 20, the differential amplification unit 22, and the drive unit 30 and the feedback of the drive signal KB to the fixed electrode 10 forms a self-excited circuit (positive feedback loop).
振動子11の振動の動作(自励振動作)について詳しく説明する。固定電極10と振動子11との間、固定電極10と基準振動子12との間には、抵抗を介してバイアス電圧Vbが印加される。 The vibration operation (self-excited vibration operation) of the vibrator 11 will be described in detail. A bias voltage Vb is applied between the fixed electrode 10 and the vibrator 11 and between the fixed electrode 10 and the reference vibrator 12 via a resistor.
固定電極10は駆動信号KBによって駆動される。なお、駆動信号KBの周波数は振動子11の固有振動数と一致する。駆動信号KBによって固定電極10に印加される電圧が変化するため、振動子11は、固定電極10と振動子11との間に働く静電吸引力Fcの変化に応じて固有振動数で振動する。このとき、静電電流SBが、固定電極10と振動子11との間に形成された容量を介して、固定電極10から振動子11へ流れる。静電電流SBは、駆動信号KBと同相の電流にノイズ電流NAを重畳した電流である。そして、静電電流SBは、振動子11から出力され、電流/電圧変換部20によって電圧に変換される。 The fixed electrode 10 is driven by a drive signal KB. Note that the frequency of the drive signal KB matches the natural frequency of the vibrator 11. Since the voltage applied to the fixed electrode 10 is changed by the drive signal KB, the vibrator 11 vibrates at the natural frequency according to the change in the electrostatic attractive force Fc acting between the fixed electrode 10 and the vibrator 11. . At this time, the electrostatic current SB flows from the fixed electrode 10 to the vibrator 11 via the capacitance formed between the fixed electrode 10 and the vibrator 11. The electrostatic current SB is a current obtained by superimposing the noise current NA on the current in phase with the drive signal KB. The electrostatic current SB is output from the vibrator 11 and converted into a voltage by the current / voltage conversion unit 20.
一方、基準振動子12の固有振動数と振動子11の固有振動数とは異なる。よって、固定電極10に印加された電圧が振動子11の固有振動数で変化しても、基準振動子12は殆ど振動せず、ノイズ電流NAと同振幅で同相のノイズ電流NBが、基準振動子12から出力され電流/電圧変換部21によって電圧に変換される。 On the other hand, the natural frequency of the reference vibrator 12 and the natural frequency of the vibrator 11 are different. Therefore, even if the voltage applied to the fixed electrode 10 changes at the natural frequency of the vibrator 11, the reference vibrator 12 hardly vibrates, and the noise current NB having the same amplitude and the same phase as the noise current NA The current is output from the child 12 and converted into a voltage by the current / voltage converter 21.
差動増幅部22は、電流/電圧変換部20、21の出力電圧の差動増幅を行うため、ノイズ電流NA、NBの成分を打ち消しあい、振動子11の固有振動数の成分を出力する。このため、差動増幅部22の出力である物理量出力信号Poの周波数は、振動子11の固有振動数と一致する。 Since the differential amplifier 22 performs differential amplification of the output voltages of the current / voltage converters 20 and 21, the components of the noise currents NA and NB are canceled out and the natural frequency component of the vibrator 11 is output. For this reason, the frequency of the physical quantity output signal Po that is the output of the differential amplifier 22 matches the natural frequency of the vibrator 11.
物理量出力信号Poは、オートゲインコントロール部(以下、「AGC部」という)31に入力されるとともに、交流/直流変換部32に入力される。交流/直流変換部32は、物理量出力信号Poの振幅に一致する直流電圧に変換し、誤差増幅部33に出力する。誤差増幅部33は、交流/直流変換部32の直流電圧と設定電圧Vs(直流)との誤差を増幅してAGC部31に出力する。AGC部31は、物理量出力信号Poの振幅を設定電圧Vsに一致させた駆動信号KB(交流)を固定電極10へ出力する。
The physical quantity output signal Po is input to an auto gain control unit (hereinafter referred to as “AGC unit”) 31 and also to an AC /
なお、被測定流体の圧力が振動子11に作用することによって、振動子11の歪が変化し、固有振動数が変化する。すなわち、振動子11に印加される圧力に応じて、振動子11の固有振動数は変化する。物理量出力信号Poの周波数は振動子11の固有振動数と一致するため、物理量出力信号Po(圧力測定信号)の周波数によって圧力を知ることができる。 In addition, when the pressure of the fluid to be measured acts on the vibrator 11, the distortion of the vibrator 11 changes, and the natural frequency changes. That is, the natural frequency of the vibrator 11 changes according to the pressure applied to the vibrator 11. Since the frequency of the physical quantity output signal Po matches the natural frequency of the vibrator 11, the pressure can be known from the frequency of the physical quantity output signal Po (pressure measurement signal).
なお、特許文献1には、振動ゲートが静電吸引力の変化に応じて振動することについて記載されている。 Note that Patent Document 1 describes that a vibrating gate vibrates according to a change in electrostatic attraction force.
ところで、基準振動子12の固有振動数に近い周波数をもつ外部振動が基準振動子12に伝達した場合、基準振動子12は外部振動によって振動を起こし、この振動信号が電流/電圧変換部21を介して物理量出力信号Poに重畳して、物理量の測定精度が悪化することがある。 By the way, when an external vibration having a frequency close to the natural frequency of the reference vibrator 12 is transmitted to the reference vibrator 12, the reference vibrator 12 is vibrated by the external vibration, and this vibration signal causes the current / voltage conversion unit 21. The measurement accuracy of the physical quantity may deteriorate due to being superimposed on the physical quantity output signal Po.
また、振動子11と基準振動子12との絶縁を保つため、振動子11は基準振動子12と正確な間隔DISAを保って製造する必要がある。これに加えて、振動子11の固有振動数において基準振動子12が振動しないように、両者の固有振動数を離す必要があるため、固有振動数を決定する振動子11と基準振動子12の形状を正確に製造する必要がある。このように、振動子11と基準振動子12は、両者の間隔DISAおよび形状において正確に製造する必要があるため、製造の歩留まりが低下し、製造コストが高くなることがある。 Further, in order to maintain insulation between the vibrator 11 and the reference vibrator 12, the vibrator 11 needs to be manufactured while keeping an accurate distance DISA from the reference vibrator 12. In addition to this, since it is necessary to separate the natural frequencies of the vibrator 11 so that the reference vibrator 12 does not vibrate at the natural frequency of the vibrator 11, the vibration of the vibrator 11 that determines the natural frequency and the reference vibrator 12 is determined. It is necessary to manufacture the shape accurately. As described above, the vibrator 11 and the reference vibrator 12 need to be accurately manufactured in the distance DISA and the shape of both, so that the manufacturing yield may be reduced and the manufacturing cost may be increased.
また、製造上の誤差などが原因で、振動子11と基準振動子12の固有振動数が互いに近くなった場合、振動子11が固有振動数で振動するとともに、基準振動子12も振動を起こすことがある。このため、振動子11の振動エネルギーが基準振動子12に吸収され、振動子11の振動が不安定になり、物理量出力信号Poの周波数が不安定になって、物理量の測定精度が悪化することがある。 Further, when the natural frequencies of the vibrator 11 and the reference vibrator 12 become close to each other due to manufacturing errors, the vibrator 11 vibrates at the natural frequency, and the reference vibrator 12 also vibrates. Sometimes. For this reason, the vibration energy of the vibrator 11 is absorbed by the reference vibrator 12, the vibration of the vibrator 11 becomes unstable, the frequency of the physical quantity output signal Po becomes unstable, and the measurement accuracy of the physical quantity deteriorates. There is.
本発明の目的は、振動子の安定な振動、物理量の測定精度向上および振動子の歩留まり向上を実現する物理量測定装置を提供することである。 An object of the present invention is to provide a physical quantity measuring apparatus that realizes stable vibration of a vibrator, improvement in measurement accuracy of a physical quantity, and improvement in yield of the vibrator.
このような目的を達成するために、請求項1の発明は、
被測定対象の物理量が作用する振動子とバイアス電圧が印加された第1固定電極との間に働く静電吸引力に応じて振動する前記振動子の出力信号に基づいて、前記物理量を測定する物理量測定装置において、
前記第1固定電極に対し所定の間隔で設置された第2固定電極と、
前記振動子の出力信号に基づいて生成される第1駆動信号によって前記第1固定電極を駆動し、前記第1駆動信号と逆相の第2駆動信号によって前記第2固定電極を駆動する駆動部を備えた、
ことを特徴とする。
請求項2の発明は、請求項1に記載の発明において、
前記第1および第2駆動信号は、前記第1固定電極と前記振動子との第1間隔および前記第2固定電極と前記振動子との第2間隔に基づいた振幅を有する、
ことを特徴とする。
請求項3の発明は、請求項2に記載の発明において、
前記第1および第2駆動信号の振幅比は、前記第1間隔と前記第2間隔との比に基づいた振幅比である、
ことを特徴とする。
請求項4の発明は、請求項3に記載の発明において、
前記駆動部は、前記第1駆動信号を出力する第1増幅部と前記第2駆動信号を出力する第2増幅部とを備え、
前記第1および第2駆動信号の振幅比は、前記第1増幅部の増幅率と前記第2増幅部の増幅率との比に基づいて決定される、
ことを特徴とする。
請求項5の発明は、請求項4に記載の発明において、
前記第1および第2増幅部の少なくともいずれか一方は、増幅率を変更できる可変増幅部である、
ことを特徴とする。
請求項6の発明は、請求項1から5のいずれか一項に記載の発明において
前記第1固定電極、前記第2固定電極および前記振動子は同一のシリコンウエハに設けられた、
ことを特徴とする。
In order to achieve such an object, the invention of claim 1
The physical quantity is measured based on an output signal of the vibrator that vibrates according to an electrostatic attraction force acting between the vibrator on which the physical quantity to be measured acts and the first fixed electrode to which the bias voltage is applied. In physical quantity measuring equipment,
A second fixed electrode installed at a predetermined interval with respect to the first fixed electrode;
A drive unit that drives the first fixed electrode by a first drive signal generated based on an output signal of the vibrator, and drives the second fixed electrode by a second drive signal having a phase opposite to that of the first drive signal. With
It is characterized by that.
The invention of claim 2 is the invention of claim 1,
The first and second drive signals have amplitudes based on a first interval between the first fixed electrode and the transducer and a second interval between the second fixed electrode and the transducer,
It is characterized by that.
The invention of claim 3 is the invention of claim 2,
The amplitude ratio of the first and second drive signals is an amplitude ratio based on a ratio between the first interval and the second interval.
It is characterized by that.
The invention of claim 4 is the invention of claim 3,
The driving unit includes a first amplifying unit that outputs the first driving signal and a second amplifying unit that outputs the second driving signal,
An amplitude ratio between the first and second drive signals is determined based on a ratio between an amplification factor of the first amplification unit and an amplification factor of the second amplification unit.
It is characterized by that.
The invention of claim 5 is the invention of claim 4,
At least one of the first and second amplification units is a variable amplification unit that can change the amplification factor.
It is characterized by that.
The invention of claim 6 is the invention according to any one of claims 1 to 5, wherein the first fixed electrode, the second fixed electrode, and the vibrator are provided on the same silicon wafer.
It is characterized by that.
本発明によれば、基準振動子を使用せず、第1および第2固定電極を互いに逆相の駆動信号で駆動することによって、振動子を安定に振動し、物理量の測定精度を向上し、振動子の歩留まりを向上する物理量測定装置を実現できる。 According to the present invention, the vibrator is stably vibrated by improving the measurement accuracy of the physical quantity by driving the first and second fixed electrodes with drive signals having opposite phases to each other without using the reference vibrator. A physical quantity measuring device that improves the yield of the vibrator can be realized.
本発明の実施形態の一例を図1を用いて説明する。図1は、物理量測定装置190の構成図であり、図4と同一のものは同一符号を付し説明を省略する。 An example of an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of the physical quantity measuring apparatus 190. The same components as those in FIG.
図1において、被測定流体(被測定対象)の圧力(物理量)の測定を例として、物理量測定装置190について説明する。 In FIG. 1, a physical quantity measuring device 190 will be described by taking an example of measuring a pressure (physical quantity) of a fluid to be measured (object to be measured).
物理量測定装置190は、バイアス電圧Vbが印加された第1固定電極100、第1固定電極100に対し所定の間隔DISTで設置された第2固定電極101、第1固定電極100と第2固定電極101との間に設けられた振動子102、振動子102の出力信号SENSの電流を電圧に変換する電流/電圧変換部110、電流/電圧変換部110の出力(物理量出力信号Po)に基づいて第1および第2駆動信号KD1、KD2を生成し、第1および第2固定電極100、101を駆動する駆動部120を備えている。 The physical quantity measuring apparatus 190 includes a first fixed electrode 100 to which a bias voltage Vb is applied, a second fixed electrode 101 installed at a predetermined distance DIST with respect to the first fixed electrode 100, the first fixed electrode 100, and the second fixed electrode. 101 based on the output of the vibrator 102, the current / voltage converter 110 that converts the current of the output signal SENS of the vibrator 102 into a voltage, and the output (physical quantity output signal Po) of the current / voltage converter 110. A drive unit 120 that generates first and second drive signals KD1 and KD2 and drives the first and second fixed electrodes 100 and 101 is provided.
また、駆動部120は、物理量出力信号Po(交流)を直流に変換する交流/直流変換部32、交流/直流変換部32によって変換された直流電圧と設定電圧Vs(直流)との誤差を増幅する誤差増幅部33、物理量出力信号Poの振幅を設定電圧Vsに一致させたオートゲインコントロール出力信号(以下、「AGC出力信号」という)SAGCを出力するAGC部31、AGC出力信号SAGCを増幅した第1駆動信号KD1によって第1固定電極100を駆動する第1増幅部121、AGC出力信号SAGCを増幅した第2駆動信号KD2によって第2固定電極101を駆動する第2増幅部122、第1増幅部121の増幅率を決定する第1帰還抵抗R1、第2増幅部122の増幅率を決定する第2帰還抵抗R2、抵抗を介して第1固定電極100をバイアスするバイアス電圧Vbを備えている。
The drive unit 120 also amplifies an error between the DC voltage converted by the AC /
振動子102は、第1固定電極100と対向設置されるとともに、第2固定電極101と対向設置される。振動子102は、第1固定電極100と間隔DIS1(第1間隔)を保ち、第2固定電極101と間隔DIS2(第2間隔)を保っている。振動子102の固有振動数以外の振動数の信号に対しては、振動子102と第1固定電極100との間に容量C1(図示省略)が等価的に形成され、振動子102と第2固定電極101との間に容量C2(図示省略)が等価的に形成される。なお、容量C1は第1間隔DIS1に反比例し、容量C2は第2間隔DIS2に反比例する。 The vibrator 102 is placed opposite to the first fixed electrode 100 and is placed opposite to the second fixed electrode 101. The vibrator 102 maintains a distance DIS1 (first interval) from the first fixed electrode 100, and maintains a distance DIS2 (second interval) from the second fixed electrode 101. For signals having frequencies other than the natural frequency of the vibrator 102, a capacitor C1 (not shown) is equivalently formed between the vibrator 102 and the first fixed electrode 100, and the vibrator 102 and the second A capacitor C <b> 2 (not shown) is equivalently formed between the fixed electrode 101. Note that the capacitance C1 is inversely proportional to the first interval DIS1, and the capacitance C2 is inversely proportional to the second interval DIS2.
また、振動子102の固有振動数の信号に対しては、振動子102と第1固定電極100との間に抵抗RS1(図示省略)が等価的に形成され、振動子102と第2固定電極101との間に抵抗RS2(図示省略)が等価的に形成される。 For the signal of the natural frequency of the vibrator 102, a resistor RS1 (not shown) is equivalently formed between the vibrator 102 and the first fixed electrode 100, and the vibrator 102 and the second fixed electrode. A resistor RS2 (not shown) is equivalently formed between the resistor 101 and the resistor 101.
第1固定電極100、第2固定電極101および振動子102の構造の一例を、図2を用いて説明する。 An example of the structure of the first fixed electrode 100, the second fixed electrode 101, and the vibrator 102 will be described with reference to FIG.
図2において、シリコンウエハ200には、中間部を薄くしたダイアフラム201が形成され、ダイアフラム201の部分に、第1固定電極100、第2固定電極101および振動子102が形成されている。このように、第1固定電極100、第2固定電極101および振動子102は、同一のシリコンウエハ200に設けられている。 In FIG. 2, a diaphragm 201 having a thin intermediate portion is formed on a silicon wafer 200, and a first fixed electrode 100, a second fixed electrode 101, and a vibrator 102 are formed in the diaphragm 201. As described above, the first fixed electrode 100, the second fixed electrode 101, and the vibrator 102 are provided on the same silicon wafer 200.
第1固定電極100(斜線部)と第2固定電極101(斜線部)は、所定間隔DISTを保っている。第1固定電極100と第2固定電極101との間に振動子102が形成され、振動子102は、第1固定電極100と第1間隔DIS1を保ち対向するとともに、第2固定電極101と第2間隔DIS2を保ち対向している。 The first fixed electrode 100 (shaded portion) and the second fixed electrode 101 (shaded portion) maintain a predetermined distance DIST. A vibrator 102 is formed between the first fixed electrode 100 and the second fixed electrode 101. The vibrator 102 is opposed to the first fixed electrode 100 while maintaining a first distance DIS1, and the second fixed electrode 101 and the second fixed electrode 101 are opposed to each other. The two faces DIS2 are kept facing each other.
そして、被測定流体の圧力PRSがダイアフラム201に印加されると、ダイアフラム201が変形し、振動子102に歪が生じる。 When the pressure PRS of the fluid to be measured is applied to the diaphragm 201, the diaphragm 201 is deformed, and the vibrator 102 is distorted.
図1に戻り、振動子102は、その形状(例えば、梁の形状)によって決定される固有振動数を有し、振動子102を固有振動数で振動させる自励振回路が形成される。すなわち、バイアス電圧Vbが印加された第1固定電極100、第1固定電極100と振動子102との間に働く静電吸引力Fc、振動子102、電流/電圧変換部110、駆動部120および第1駆動信号KD1の第1固定電極100への帰還によって、自励振回路(正帰還ループ)が形成される。 Returning to FIG. 1, the vibrator 102 has a natural frequency determined by its shape (for example, the shape of a beam), and a self-excited circuit that vibrates the vibrator 102 at the natural frequency is formed. That is, the first fixed electrode 100 to which the bias voltage Vb is applied, the electrostatic attraction force Fc acting between the first fixed electrode 100 and the vibrator 102, the vibrator 102, the current / voltage conversion unit 110, the driving unit 120, and A self-excited circuit (positive feedback loop) is formed by feedback of the first drive signal KD1 to the first fixed electrode 100.
振動子102の振動の動作(自励振動作)について詳しく説明する。まず、第1間隔DIS1と第2間隔DIS2とが等しく、これに伴い容量C1と容量C2とが等しい場合について説明する。 The vibration operation (self-excited vibration operation) of the vibrator 102 will be described in detail. First, a case will be described in which the first interval DIS1 and the second interval DIS2 are equal, and accordingly the capacitance C1 and the capacitance C2 are equal.
バイアス電圧Vbは、第1固定電極100と回路コモン電圧Vcomとの間に抵抗を介して接続される。振動子102は、電流/電圧変換部110の演算増幅器によって回路コモン電圧Vcomに(仮想)接地される。これによって、第1固定電極100と振動子102との間にバイアス電圧Vbが印加される。一方、第2固定電極101と振動子102との間にバイアス電圧は印加されない。 The bias voltage Vb is connected between the first fixed electrode 100 and the circuit common voltage Vcom via a resistor. The vibrator 102 is (virtually) grounded to the circuit common voltage Vcom by the operational amplifier of the current / voltage conversion unit 110. As a result, the bias voltage Vb is applied between the first fixed electrode 100 and the vibrator 102. On the other hand, no bias voltage is applied between the second fixed electrode 101 and the vibrator 102.
第1固定電極100は第1駆動信号KD1によって駆動される。なお、第1駆動信号KD1の周波数は振動子102の固有振動数と一致する。第1駆動信号KD1によって第1固定電極100に印加される電圧が変化するため、振動子102は、第1固定電極100と振動子102との間に働く静電吸引力Fcの変化に応じて固有振動数で振動する。 The first fixed electrode 100 is driven by the first drive signal KD1. The frequency of the first drive signal KD1 matches the natural frequency of the vibrator 102. Since the voltage applied to the first fixed electrode 100 is changed by the first drive signal KD1, the vibrator 102 responds to the change in the electrostatic attractive force Fc acting between the first fixed electrode 100 and the vibrator 102. Vibrates at the natural frequency.
このとき、第1静電電流SD1が、第1固定電極100から振動子102へ流れる。第1静電電流SD1は、第1駆動信号KD1と同相の電流にノイズ電流N1を重畳した電流である。この第1駆動信号KD1と同相の電流は、第1固定電極100から抵抗RS1を介して振動子102へ流れ、ノイズ電流N1は、第1固定電極100から容量C1を介して振動子102へ流れる。 At this time, the first electrostatic current SD1 flows from the first fixed electrode 100 to the vibrator 102. The first electrostatic current SD1 is a current obtained by superimposing a noise current N1 on a current in phase with the first drive signal KD1. The current in phase with the first drive signal KD1 flows from the first fixed electrode 100 to the vibrator 102 via the resistor RS1, and the noise current N1 flows from the first fixed electrode 100 to the vibrator 102 via the capacitor C1. .
一方、第2固定電極101は、第1駆動信号KD1と逆相の第2駆動信号KD2によって駆動されるが、バイアス電圧が印加されていないため、第2固定電極101と振動子102との間には、第2駆動信号KD2の周波数に応じた静電吸引力Fcは働かない。よって、ノイズ電流N1と同一振幅で逆相のノイズ電流N2が第2静電電流SD2として、第2固定電極101から容量C2を介して振動子102へ流れる。 On the other hand, the second fixed electrode 101 is driven by the second drive signal KD2 having a phase opposite to that of the first drive signal KD1, but since no bias voltage is applied, the second fixed electrode 101 is not connected between the second fixed electrode 101 and the vibrator 102. The electrostatic attraction force Fc corresponding to the frequency of the second drive signal KD2 does not work. Therefore, a noise current N2 having the same amplitude and opposite phase as the noise current N1 flows from the second fixed electrode 101 to the vibrator 102 as the second electrostatic current SD2 via the capacitor C2.
振動子102に流れ込む電流のうち、ノイズ電流N1とノイズ電流N2とは同一振幅で逆相なので、互いに打ち消しあう。このため、第1駆動信号KD1と同相の電流が、振動子出力信号SENSとして、振動子102から電流/電圧変換部110へ流れる。 Among the currents flowing into the vibrator 102, the noise current N1 and the noise current N2 have the same amplitude and opposite phase, and therefore cancel each other. For this reason, a current in phase with the first drive signal KD1 flows from the vibrator 102 to the current / voltage conversion unit 110 as the vibrator output signal SENS.
そして、電流/電圧変換部110は、振動子出力信号SENSの電流を電圧に変換し、物理量出力信号Poとして出力する。なお、物理量出力信号Poの周波数は、振動子102の固有振動数と一致する。 The current / voltage conversion unit 110 converts the current of the transducer output signal SENS into a voltage and outputs the voltage as a physical quantity output signal Po. Note that the frequency of the physical quantity output signal Po matches the natural frequency of the vibrator 102.
物理量出力信号Poは、AGC部31に入力されるとともに、交流/直流変換部32に入力される。なお、AGC部31、交流/直流変換部32および誤差増幅部33は図4と同じであり、AGC部31は、物理量出力信号Poの振幅を設定電圧Vsに一致させたAGC出力信号SAGC(交流)を、第1増幅部121と第2増幅部122に出力する。
The physical quantity output signal Po is input to the
第1増幅部121は、AGC出力信号SAGCを増幅した第1駆動信号KD1を出力し、第1固定電極100を駆動する。第2増幅部122は、AGC出力信号SAGCを増幅した第2駆動信号KD2を出力し、第2固定電極101を駆動する。 The first amplifier 121 outputs a first drive signal KD1 obtained by amplifying the AGC output signal SAGC, and drives the first fixed electrode 100. The second amplification unit 122 outputs a second drive signal KD2 obtained by amplifying the AGC output signal SAGC, and drives the second fixed electrode 101.
なお、第1増幅部121の増幅率G1の符号は第2増幅部122の増幅率G2の符号と異なるため、第1駆動信号KD1と第2駆動信号KD2とは逆相になる。 Since the sign of the amplification factor G1 of the first amplification unit 121 is different from the sign of the amplification factor G2 of the second amplification unit 122, the first drive signal KD1 and the second drive signal KD2 are in opposite phases.
そして、図2に示すように、振動子102に作用(印加)する被測定流体の圧力PRSが変化すると、振動子102の歪が変化し、固有振動数が変化する。すなわち、振動子102に印加される圧力に応じて、振動子102の固有振動数は変化する。図1の振動子102の固有振動数は物理量出力信号Poの周波数と一致するため、物理量出力信号Po(圧力測定信号)の周波数によって圧力PRSを知ることができる。 As shown in FIG. 2, when the pressure PRS of the fluid to be measured that acts (applies) to the vibrator 102 changes, the strain of the vibrator 102 changes and the natural frequency changes. That is, the natural frequency of the vibrator 102 changes according to the pressure applied to the vibrator 102. Since the natural frequency of the vibrator 102 in FIG. 1 matches the frequency of the physical quantity output signal Po, the pressure PRS can be known from the frequency of the physical quantity output signal Po (pressure measurement signal).
つぎに、図1で説明した各部の信号波形について図3を用いて説明する。図3において、(a)はAGC出力信号SAGC(電圧)、(b)は第1駆動信号KD1(電圧)、(c)は第2駆動信号KD2(電圧)、(d)は第1静電電流SD1、(e)は第2静電電流SD2、(f)は振動子出力信号SENS(電流)、(g)は物理量出力信号Po(電圧)である。なお、(d)の波形は、(d1)に(d2)を重畳した波形となる。 Next, the signal waveforms of the respective parts described in FIG. 1 will be described with reference to FIG. 3, (a) is the AGC output signal SAGC (voltage), (b) is the first drive signal KD1 (voltage), (c) is the second drive signal KD2 (voltage), and (d) is the first electrostatic signal. The current SD1, (e) is the second electrostatic current SD2, (f) is the transducer output signal SENS (current), and (g) is the physical quantity output signal Po (voltage). The waveform (d) is a waveform obtained by superimposing (d2) on (d1).
第1増幅部121の増幅率G1が正の場合、AGC出力信号SAGC(a)は、第1駆動信号KD1(b)と同相になる。一方、第2増幅部122の増幅率G2が負の場合、第2駆動信号KD2(c)は、AGC出力信号SAGC(a)および第1駆動信号KD1(b)と逆相になる。なお、第1駆動信号KD1(b)の電圧振幅を第1振幅A1、第2駆動信号KD2(c)の電圧振幅を第2振幅A2とする。 When the amplification factor G1 of the first amplifier 121 is positive, the AGC output signal SAGC (a) is in phase with the first drive signal KD1 (b). On the other hand, when the amplification factor G2 of the second amplifying unit 122 is negative, the second drive signal KD2 (c) is out of phase with the AGC output signal SAGC (a) and the first drive signal KD1 (b). The voltage amplitude of the first drive signal KD1 (b) is the first amplitude A1, and the voltage amplitude of the second drive signal KD2 (c) is the second amplitude A2.
第1静電電流SD1(d)のうち、SD1a(d1)は第1駆動信号KD1(b)と同相の電流であり、SD1b(d2)はノイズ電流N1である。 Of the first electrostatic current SD1 (d), SD1a (d1) is a current in phase with the first drive signal KD1 (b), and SD1b (d2) is a noise current N1.
第2静電電流SD2(e)は、SD1b(d2)と同一振幅で逆相のノイズ電流N2である。 The second electrostatic current SD2 (e) is a noise current N2 having the same amplitude as that of SD1b (d2) and having a reverse phase.
振動子出力信号SENS(f)は、SD1b(d2)がSD2(e)と打ち消しあうため、SD1a(d1)と同じになる。 The transducer output signal SENS (f) is the same as SD1a (d1) because SD1b (d2) cancels out SD2 (e).
物理量出力信号Po(g)は、振動子出力信号SENS(f)の電流を電圧に変換したものであり、その周波数は被測定流体の圧力PRSに対応する。 The physical quantity output signal Po (g) is obtained by converting the current of the transducer output signal SENS (f) into a voltage, and the frequency thereof corresponds to the pressure PRS of the fluid to be measured.
前述したように、第1間隔DIS1が第2間隔DIS2と等しく、容量C1が容量C2と等しいため、容量C1のインピーダンスZ1は容量C2のインピーダンスZ2と等しい。そして、第1振幅A1が第2振幅A2と等しければ、オームの法則より、ノイズ電流N1(図3(d2))はノイズ電流N2(図3(e))と同一振幅になって、互いに逆相の関係にある両者は打ち消しあう。 As described above, since the first interval DIS1 is equal to the second interval DIS2 and the capacitor C1 is equal to the capacitor C2, the impedance Z1 of the capacitor C1 is equal to the impedance Z2 of the capacitor C2. If the first amplitude A1 is equal to the second amplitude A2, according to Ohm's law, the noise current N1 (FIG. 3 (d2)) has the same amplitude as the noise current N2 (FIG. 3 (e)) and is opposite to each other. The two who are in phase relations cancel each other.
第1振幅A1を第2振幅A2と等しくするためには、増幅率G1の絶対値を増幅率G2の絶対値と等しくすればよい。すなわち、第1間隔DIS1と第2間隔DIS2との比が「1」の場合、第1振幅A1と第2振幅A2との比、および増幅率G1の絶対値と増幅率G2の絶対値との比をいずれも「1」にすれば、ノイズ電流N1とノイズ電流N2とを打ち消すことができる。 In order to make the first amplitude A1 equal to the second amplitude A2, the absolute value of the amplification factor G1 may be made equal to the absolute value of the amplification factor G2. That is, when the ratio between the first interval DIS1 and the second interval DIS2 is “1”, the ratio between the first amplitude A1 and the second amplitude A2, and the absolute value of the amplification factor G1 and the absolute value of the amplification factor G2 If both ratios are set to “1”, the noise current N1 and the noise current N2 can be canceled.
つぎに、例えば、製造上の誤差などが原因で、第1間隔DIS1が第2間隔DIS2より小さく(DIS1<DIS2)、これに伴い容量C1が容量C2より大きく(C1>C2)なる場合がある。この場合について説明する。 Next, for example, due to manufacturing errors, the first interval DIS1 may be smaller than the second interval DIS2 (DIS1 <DIS2), and the capacitance C1 may be larger than the capacitance C2 (C1> C2). . This case will be described.
容量C1が容量C2より大きいため、容量C1のインピーダンスZ1は容量C2のインピーダンスZ2より小さい(Z1<Z2)。 Since the capacitor C1 is larger than the capacitor C2, the impedance Z1 of the capacitor C1 is smaller than the impedance Z2 of the capacitor C2 (Z1 <Z2).
このため、第1振幅A1を第2振幅A2より小さくすれば(A1<A2)、オームの法則より、ノイズ電流N1がノイズ電流N2と同一振幅になって、ノイズ電流N1とノイズ電流N2とを打ち消すことができる。そして、第1振幅A1を第2振幅A2より小さくするには、増幅率G1の絶対値を増幅率G2の絶対値より小さくすればよい(|G1|<|G2|)。 Therefore, if the first amplitude A1 is made smaller than the second amplitude A2 (A1 <A2), the noise current N1 has the same amplitude as the noise current N2 according to Ohm's law, and the noise current N1 and the noise current N2 are Can be countered. In order to make the first amplitude A1 smaller than the second amplitude A2, the absolute value of the amplification factor G1 may be made smaller than the absolute value of the amplification factor G2 (| G1 | <| G2 |).
このように、第1振幅A1と第2振幅A2は、第1間隔DIS1と第2間隔DIS2に基づいたものである。そして、例えば、第1間隔DIS1と第2間隔DIS2との比(DIS1/DIS2)、第1振幅A1と第2振幅A2との比(A1/A2)、増幅率G1の絶対値と増幅率G2の絶対値との比(|G1|/|G2|)は、互いに比例関係であればよい。 Thus, the first amplitude A1 and the second amplitude A2 are based on the first interval DIS1 and the second interval DIS2. For example, the ratio between the first interval DIS1 and the second interval DIS2 (DIS1 / DIS2), the ratio between the first amplitude A1 and the second amplitude A2 (A1 / A2), the absolute value of the amplification factor G1, and the amplification factor G2. The ratio (| G1 | / | G2 |) with the absolute value of suffices to be proportional to each other.
なお、第1間隔DIS1が第2間隔DIS2より大きい(DIS1>DIS2)場合には、前述した大小関係を反対にして考えればよい。 When the first interval DIS1 is larger than the second interval DIS2 (DIS1> DIS2), the magnitude relationship described above may be reversed.
また、前述した比例関係を実現するために、第1増幅部121および第2増幅部122の少なくともいずれか一方は、増幅率G1、G2を変更できる可変増幅部であってもよい。 In order to realize the above-described proportional relationship, at least one of the first amplification unit 121 and the second amplification unit 122 may be a variable amplification unit that can change the amplification factors G1 and G2.
本実施形態によれば、ノイズ電流N1とノイズ電流N2とを殆ど打ち消して、物理量(圧力)を測定することによって、物理量の測定精度を向上できる。 According to the present embodiment, the measurement accuracy of the physical quantity can be improved by almost canceling out the noise current N1 and the noise current N2 and measuring the physical quantity (pressure).
そして、基準振動子を使用しないため、外部振動が基準振動子へ伝達するのを防止できるほか、振動子102の振動エネルギーが基準振動子に吸収されない。これによって、振動子102が安定に振動して、物理量の測定精度を向上できる。また、振動子102は、基準振動子との関係(両者の間隔、形状)において正確に製造する必要がないので、振動子102の歩留まりを向上し、製造コストを低減できる。 Since the reference vibrator is not used, external vibration can be prevented from being transmitted to the reference vibrator, and vibration energy of the vibrator 102 is not absorbed by the reference vibrator. As a result, the vibrator 102 vibrates stably, and the physical quantity measurement accuracy can be improved. In addition, since the vibrator 102 does not need to be accurately manufactured in relation to the reference vibrator (the distance and shape between the two), the yield of the vibrator 102 can be improved and the manufacturing cost can be reduced.
また、第1間隔DIS1と第2間隔DIS2に応じて、第1帰還抵抗R1と第2帰還抵抗R2を選択変更して増幅率G1、G2を変更できるので、より容易に前述した比例関係を実現し、ノイズ電流N1とノイズ電流N2とを殆ど打ち消して、物理量の測定精度を向上できる。 Further, since the amplification factors G1 and G2 can be changed by selectively changing the first feedback resistor R1 and the second feedback resistor R2 in accordance with the first interval DIS1 and the second interval DIS2, the proportional relationship described above can be realized more easily. Then, the noise current N1 and the noise current N2 are almost canceled out, and the physical quantity measurement accuracy can be improved.
また、第1間隔DIS1と第2間隔DIS2に応じて、第1および第2増幅部121、122の可変増幅によって増幅率G1、G2を変更できるので、さらに容易および柔軟に前述した比例関係を実現し、ノイズ電流N1とノイズ電流N2とを殆ど打ち消して、物理量の測定精度を向上できる。 Further, since the amplification factors G1 and G2 can be changed by variable amplification of the first and second amplification units 121 and 122 according to the first interval DIS1 and the second interval DIS2, the proportional relationship described above is realized more easily and flexibly. Then, the noise current N1 and the noise current N2 are almost canceled out, and the physical quantity measurement accuracy can be improved.
また、図2に示したように、第1固定電極100、第2固定電極101および振動子102を、同一のシリコンウエハ200に設けることによって、振動子102の製造が、より容易になって、歩留まりの向上および製造コストを低減できる。 Further, as shown in FIG. 2, by providing the first fixed electrode 100, the second fixed electrode 101, and the vibrator 102 on the same silicon wafer 200, the vibrator 102 can be manufactured more easily. Yield improvement and manufacturing cost can be reduced.
また、物理量が振動子102に作用して、振動子102の歪を変化させれば物理量を測定できる。このため、物理量測定装置190は、振動子102の歪を変化させる流量、温度、密度などの物理量測定にも利用できる。 Further, if the physical quantity acts on the vibrator 102 to change the distortion of the vibrator 102, the physical quantity can be measured. For this reason, the physical quantity measuring device 190 can also be used for measuring physical quantities such as a flow rate, a temperature, and a density that change the strain of the vibrator 102.
なお、本発明は、前述の実施例に限定されることなく、その本質を逸脱しない範囲で、さらに多くの変更および変形を含む。また、前述した各部の組み合わせ以外の組み合わせを含むことができる。 In addition, this invention is not limited to the above-mentioned Example, In the range which does not deviate from the essence, many change and deformation | transformation are included. Moreover, combinations other than the combination of each part mentioned above can be included.
100 第1固定電極
101 第2固定電極
102 振動子
110 電流/電圧変換部
120 駆動部
121 第1増幅部
122 第2増幅部
190 物理量測定装置
200 シリコンウエハ
DIS1 第1間隔
DIS2 第2間隔
DIST 所定間隔
Fc 静電吸引力
KD1 第1駆動信号
KD2 第2駆動信号
Po 物理量出力信号
PRS 圧力
SENS 振動子出力信号
DESCRIPTION OF SYMBOLS 100 1st fixed electrode 101 2nd fixed electrode 102 Vibrator 110 Current / voltage conversion part 120 Drive part 121 1st amplification part 122 2nd amplification part 190 Physical quantity measuring apparatus 200 Silicon wafer DIS1 1st space | interval DIS2 2nd space | interval DIST Predetermined space | interval Fc electrostatic attraction force KD1 first drive signal KD2 second drive signal Po physical quantity output signal PRS pressure SENS transducer output signal
Claims (6)
前記第1固定電極に対し所定の間隔で設置された第2固定電極と、
前記振動子の出力信号に基づいて生成される第1駆動信号によって前記第1固定電極を駆動し、前記第1駆動信号と逆相の第2駆動信号によって前記第2固定電極を駆動する駆動部を備えた、
ことを特徴とする物理量測定装置。 The physical quantity is measured based on an output signal of the vibrator that vibrates according to an electrostatic attraction force acting between the vibrator on which the physical quantity to be measured acts and the first fixed electrode to which the bias voltage is applied. In physical quantity measuring equipment,
A second fixed electrode installed at a predetermined interval with respect to the first fixed electrode;
A drive unit that drives the first fixed electrode by a first drive signal generated based on an output signal of the vibrator, and drives the second fixed electrode by a second drive signal having a phase opposite to that of the first drive signal. With
A physical quantity measuring device characterized by that.
ことを特徴とする請求項1に記載の物理量測定装置。 The first and second drive signals have amplitudes based on a first interval between the first fixed electrode and the transducer and a second interval between the second fixed electrode and the transducer,
The physical quantity measuring device according to claim 1.
ことを特徴とする請求項2に記載の物理量測定装置。 The amplitude ratio of the first and second drive signals is an amplitude ratio based on a ratio between the first interval and the second interval.
The physical quantity measuring device according to claim 2, wherein:
前記第1および第2駆動信号の振幅比は、前記第1増幅部の増幅率と前記第2増幅部の増幅率との比に基づいて決定される、
ことを特徴とする請求項3に記載の物理量測定装置。 The driving unit includes a first amplifying unit that outputs the first driving signal and a second amplifying unit that outputs the second driving signal,
An amplitude ratio between the first and second drive signals is determined based on a ratio between an amplification factor of the first amplification unit and an amplification factor of the second amplification unit.
The physical quantity measuring device according to claim 3.
ことを特徴とする請求項4に記載の物理量測定装置。 At least one of the first and second amplification units is a variable amplification unit that can change the amplification factor.
The physical quantity measuring device according to claim 4.
ことを特徴とする請求項1から5のいずれか一項に記載の物理量測定装置。 The first fixed electrode, the second fixed electrode, and the vibrator are provided on the same silicon wafer,
The physical quantity measuring device according to any one of claims 1 to 5, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008104288A JP5596275B2 (en) | 2008-04-14 | 2008-04-14 | Physical quantity measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008104288A JP5596275B2 (en) | 2008-04-14 | 2008-04-14 | Physical quantity measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009257807A true JP2009257807A (en) | 2009-11-05 |
JP5596275B2 JP5596275B2 (en) | 2014-09-24 |
Family
ID=41385426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008104288A Active JP5596275B2 (en) | 2008-04-14 | 2008-04-14 | Physical quantity measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5596275B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011196833A (en) * | 2010-03-19 | 2011-10-06 | Fuji Electric Co Ltd | Vacuum gauge |
JP2022169132A (en) * | 2021-04-27 | 2022-11-09 | 株式会社豊田中央研究所 | Physical amount sensor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02110383A (en) * | 1988-10-20 | 1990-04-23 | Hitachi Ltd | Method and apparatus for detecting acceleration |
JPH08240501A (en) * | 1994-12-22 | 1996-09-17 | Vaisala Oy | Method for linearizing flow-velocity sensor and linearized-flow-velocity measuring instrument |
JP3292286B2 (en) * | 1996-08-26 | 2002-06-17 | 横河電機株式会社 | Vibration transducer and manufacturing method thereof |
JP2002188973A (en) * | 2000-12-21 | 2002-07-05 | Yazaki Corp | Pressure sensor |
-
2008
- 2008-04-14 JP JP2008104288A patent/JP5596275B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02110383A (en) * | 1988-10-20 | 1990-04-23 | Hitachi Ltd | Method and apparatus for detecting acceleration |
JPH08240501A (en) * | 1994-12-22 | 1996-09-17 | Vaisala Oy | Method for linearizing flow-velocity sensor and linearized-flow-velocity measuring instrument |
JP3292286B2 (en) * | 1996-08-26 | 2002-06-17 | 横河電機株式会社 | Vibration transducer and manufacturing method thereof |
JP2002188973A (en) * | 2000-12-21 | 2002-07-05 | Yazaki Corp | Pressure sensor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011196833A (en) * | 2010-03-19 | 2011-10-06 | Fuji Electric Co Ltd | Vacuum gauge |
JP2022169132A (en) * | 2021-04-27 | 2022-11-09 | 株式会社豊田中央研究所 | Physical amount sensor device |
JP7268696B2 (en) | 2021-04-27 | 2023-05-08 | 株式会社豊田中央研究所 | Physical quantity sensor device |
Also Published As
Publication number | Publication date |
---|---|
JP5596275B2 (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3536497B2 (en) | Vibration type angular velocity detector | |
US7779688B2 (en) | Vibration gyro sensor | |
JPWO2008032415A1 (en) | Angular velocity sensor | |
JP4576441B2 (en) | Angular velocity sensor | |
JP5774016B2 (en) | Physical quantity sensor | |
KR20040086789A (en) | Vibration type angular velocity sensor | |
JP5104936B2 (en) | Acceleration and angular velocity detection device | |
JPWO2015129464A1 (en) | Vibration type angular velocity sensor | |
JP5596275B2 (en) | Physical quantity measuring device | |
US9513309B2 (en) | Inertia sensor with switching elements | |
EA004091B1 (en) | Measuring and operating circuit for a coriolis type mass flowmeter | |
JP2012156946A (en) | Oscillation circuit and vibration type sensor using the same | |
EP2461139B1 (en) | Coriolis mass flowmeter | |
CN103048922A (en) | Analogue proportional-integral controller circuit based on transconductance-capacitance structure | |
JP5371505B2 (en) | Temperature compensation circuit and acceleration or angular velocity sensor | |
JP2017156313A (en) | Angular velocity detection circuit, angular velocity detection device, electronic apparatus and mobile body | |
JP5745834B2 (en) | Compensated micro / nano resonator with improved capacitance detection and manufacturing method thereof | |
JP5618491B2 (en) | Vibration sensor measuring device | |
US10254134B2 (en) | Interference-insensitive capacitive displacement sensing | |
JP2001304866A (en) | Gyro device and method for reducing stroke thereof | |
JP5559733B2 (en) | Physical quantity sensor | |
RU2315953C1 (en) | Method of control of sensitive element and forming output signal of vibration corolis gyroscopic angular-rate sensor and device for realization of this method | |
JP3035161B2 (en) | Vibrating gyroscope | |
RU2665832C1 (en) | Method of management of sensitive element and formation of output signal of vibration coriolis of gyroscopic sensor of corner speed | |
JP5227061B2 (en) | Flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20110209 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120627 |
|
A521 | Written amendment |
Effective date: 20120816 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130719 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130726 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20130830 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20140807 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Country of ref document: JP Ref document number: 5596275 |