JP2009257066A - Thermal environment simulation device and thermal environment display method for building - Google Patents

Thermal environment simulation device and thermal environment display method for building Download PDF

Info

Publication number
JP2009257066A
JP2009257066A JP2008254044A JP2008254044A JP2009257066A JP 2009257066 A JP2009257066 A JP 2009257066A JP 2008254044 A JP2008254044 A JP 2008254044A JP 2008254044 A JP2008254044 A JP 2008254044A JP 2009257066 A JP2009257066 A JP 2009257066A
Authority
JP
Japan
Prior art keywords
coefficient
room
solar radiation
building
thermal environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008254044A
Other languages
Japanese (ja)
Other versions
JP5123808B2 (en
Inventor
Mineo Sagara
峰雄 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2008254044A priority Critical patent/JP5123808B2/en
Publication of JP2009257066A publication Critical patent/JP2009257066A/en
Application granted granted Critical
Publication of JP5123808B2 publication Critical patent/JP5123808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Building Environments (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal environment simulation device for a building capable of simulating thermal environments of individual rooms of a building by a simple operation. <P>SOLUTION: The thermal environment simulation device comprises memory units 14-14 for storing the information of the individual rooms of a building, a calculation controller 20 for calculating heat loss coefficients of the individual rooms on the basis of the information of the individual rooms of the building and a display unit 12 for displaying the result of calculation calculated by the calculation controller 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、表示手段に表示された間取り図の建物の温熱環境をシミュレーションする建物の温熱環境シミュレーション装置と温熱環境表示方法とに関する。   The present invention relates to a building thermal environment simulation apparatus and a thermal environment display method for simulating a thermal environment of a building in a floor plan displayed on a display means.

従来から、建物の性能評価である熱損失係数と夏期日射取得係数等を算出する建物の性能評価提示装置が知られている(特許文献1参照)。   2. Description of the Related Art Conventionally, a building performance evaluation presentation device that calculates a heat loss coefficient, a summer solar radiation acquisition coefficient, and the like, which are building performance evaluations, is known (see Patent Document 1).

かかる建物の性能評価提示装置は、建物の開口部データや建物の寸法データなどに基づいて建物の熱損失係数と夏期日射取得係数等を算出するものである。
特開2002−4403号公報
Such a building performance evaluation and presentation device calculates a heat loss coefficient of a building, a summer solar radiation acquisition coefficient, and the like based on building opening data, building dimension data, and the like.
Japanese Patent Laid-Open No. 2002-4403

しかしながら、このような建物の性能評価提示装置にあっては、1つの建物の熱損失係数と夏期日射取得係数を求めるものであり、建物の各部屋ごとの温熱環境をシミュレーションすることはできないという問題がある。   However, in such a building performance evaluation and presentation device, the heat loss coefficient and the summer solar radiation acquisition coefficient of one building are obtained, and the thermal environment for each room of the building cannot be simulated. There is.

この発明の目的は、簡単な操作で建物の各部屋ごとの温熱環境をシミュレーションすることのできる建物の温熱環境シミュレーション装置と、温熱環境表示方法とを提供することにある。   An object of the present invention is to provide a building thermal environment simulation apparatus and a thermal environment display method capable of simulating the thermal environment of each room of the building with a simple operation.

請求項1の発明は、建物の各部屋の情報を記憶する記憶手段と、前記建物の各部屋の情報に基づいて各部屋毎の熱損失係数と特定季節の日射取得係数のうち少なくとも一方を算出する算出手段と、この算出手段が算出した算出結果を表示する表示手段とを備えたことを特徴とする温熱環境シミュレーション装置。   The invention according to claim 1 is a storage means for storing information on each room in a building, and calculates at least one of a heat loss coefficient for each room and a solar radiation acquisition coefficient for a specific season based on the information on each room in the building. A thermal environment simulation apparatus comprising: a calculation unit that performs a display; and a display unit that displays a calculation result calculated by the calculation unit.

請求項2の発明は、建物の各部屋の情報を記憶する記憶手段と、前記建物の各部屋の情報に基づいて各部屋毎の熱損失係数と特定季節の日射取得係数を算出する算出手段と、この算出手段が算出した算出結果を表示する表示手段とを備えたことを特徴とする。   Invention of Claim 2 memorize | stores the information of each room of a building, The calculation means which calculates the heat loss coefficient for every room and the solar radiation acquisition coefficient of a specific season based on the information of each room of the said building, And a display means for displaying a calculation result calculated by the calculation means.

請求項3の発明は、前記表示手段は、各部屋毎の熱損失係数と特定季節の日射取得係数を、一方の軸に熱損失係数を示し他方の軸に日射取得係数を示すグラフとして表示することを特徴とする。   In the invention according to claim 3, the display means displays the heat loss coefficient for each room and the solar radiation acquisition coefficient for a specific season as a graph indicating the heat loss coefficient on one axis and the solar radiation acquisition coefficient on the other axis. It is characterized by that.

請求項4の発明は、前記表示手段は、予め設定した熱損失係数の標準値を示す標準線と、予め設定した日射取得係数の標準値を示す標準線を表示することを特徴とする。   The invention of claim 4 is characterized in that the display means displays a standard line indicating a standard value of a preset heat loss coefficient and a standard line indicating a standard value of a preset solar radiation acquisition coefficient.

請求項5の発明は、前記演算手段は、各部屋毎の熱損失係数と特定季節の日射取得係数に基づいて各部屋の温度を予測し、この予測した各部屋の温度を前記表示手段が表示することを特徴とする。   According to a fifth aspect of the present invention, the calculation means predicts the temperature of each room based on the heat loss coefficient for each room and the solar radiation acquisition coefficient for a specific season, and the display means displays the predicted temperature of each room. It is characterized by doing.

請求項6の発明は、前記熱損失係数と特定季節の日射取得係数の算出をインターネットを介して行うことを特徴とする。   The invention of claim 6 is characterized in that the heat loss coefficient and the solar radiation acquisition coefficient for a specific season are calculated via the Internet.

請求項7の発明は、前記特定季節の日射取得係数は、夏期日射取得係数と冬期日射取得係数のうち少なくもいずれか1つであることを特徴とする。   The invention of claim 7 is characterized in that the solar radiation acquisition coefficient in the specific season is at least one of a summer solar radiation acquisition coefficient and a winter solar radiation acquisition coefficient.

請求項8の発明は、建物の各部屋毎の熱損失係数と特定季節の日射取得係数を、一方の軸に熱損失係数を示し他方の軸に日射取得係数を示す書式上に表示することを特徴とする。   The invention of claim 8 displays the heat loss coefficient for each room of the building and the solar radiation acquisition coefficient for a specific season on a format showing the heat loss coefficient on one axis and the solar radiation acquisition coefficient on the other axis. Features.

請求項9の発明は、前記書式上に、予め設定した熱損失係数の標準値を示す標準線と、予め設定した日射取得係数の標準値を示す標準線を表示することを特徴とする。   The invention of claim 9 is characterized in that a standard line indicating a standard value of a preset heat loss coefficient and a standard line indicating a standard value of a preset solar radiation acquisition coefficient are displayed on the format.

この発明によれば、簡単な操作で建物の各部屋ごとの温熱環境をシミュレーションすることができる。   According to the present invention, it is possible to simulate a thermal environment for each room of a building with a simple operation.

以下、この発明に係る建物の温熱環境シミュレーション装置および温熱環境表示方法の実施の形態である実施例を図面に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments that are embodiments of a building thermal environment simulation apparatus and a thermal environment display method according to the present invention will be described below with reference to the drawings.

[第1実施例]
図1は、建物の温熱環境シミュレーション装置10の構成を示したブロック図である。この建物の温熱環境シミュレーション装置10は、キーボードやマウスなどからなる入力手段11と、液晶などの表示装置(表示手段)12と、作成した建物の間取り図を記憶するメモリ13と、建物の部屋の各種の大きさに応じた床,天井,外壁などのそれぞれの面積やそれぞれの大きさの部屋の気積や部屋に設ける各種の窓や引戸などの開口面積を記憶したメモリ(記憶手段)14と、各種の窓や引戸,外壁,天井,床等の熱貫流率(単位面積、単位時間、単位温度差当たりで移動する熱量)やその窓や引戸,外壁,天井,床等の日射侵入率(輻射熱の透過率)を記憶したメモリ(記憶手段)15と、窓や外壁等が設けられる方位に対応した方位係数や外気との接触度を示す係数を記憶したメモリ(記憶手段)16と、Q値である熱損失係数を演算する演算式やμ値である夏期日射取得係数を演算する演算式を記憶したメモリ(記憶手段)17と、各種のキッチン,玄関,階段,トイレ,洗面所や各種の居室空間などやドア,引戸,窓等の建具の平面図を示すデータや家具等の平面図を示すデータを記憶したメモリ18と、熱損失係数や夏期日射取得係数(特定季節の日射取得係数)などを演算して求めたり、メモリ18に記憶された各種のデータに基づいて間取り図を作成するための演算処理を行ったりする演算制御装置(演算手段)20等とを備えている。なお、Q値の単位はW/m2 ・Kであり、μ値は無次元、Kはケルビンである。
[First embodiment]
FIG. 1 is a block diagram showing a configuration of a building thermal environment simulation apparatus 10. This building thermal environment simulation device 10 includes an input means 11 such as a keyboard and a mouse, a display device (display means) 12 such as a liquid crystal, a memory 13 for storing the created floor plan, and a building room. A memory (storage means) 14 for storing each area of the floor, ceiling, outer wall and the like according to various sizes, the volume of each size room, and the opening areas of various windows and sliding doors provided in the room; , The heat transmissivity of various windows, sliding doors, outer walls, ceilings, floors, etc. (the amount of heat that moves per unit area, unit time, unit temperature difference) and solar radiation penetration rates of windows, sliding doors, outer walls, ceilings, floors, etc. ( A memory (storage means) 15 that stores the radiant heat transmittance), a memory (storage means) 16 that stores an azimuth coefficient corresponding to the azimuth in which the window and the outer wall are provided, and a coefficient indicating the degree of contact with the outside air, and Q Value of heat loss A memory (storage means) 17 that stores an arithmetic expression that calculates the summer solar radiation acquisition coefficient that is a μ value, and various kitchens, entrances, stairs, toilets, washrooms, various living spaces, and doors , Memory 18 storing data showing the floor plan of furniture such as sliding doors, windows, etc. and data showing the floor plan of furniture etc., and calculating heat loss coefficient, summer solar radiation acquisition coefficient (specific solar radiation acquisition coefficient), etc. An arithmetic control device (arithmetic unit) 20 or the like for obtaining or performing arithmetic processing for creating a floor plan based on various data stored in the memory 18 is provided. The unit of the Q value is W / m 2 · K, the μ value is dimensionless, and K is Kelvin.

演算制御装置20は、下記に示す演算式(1),(2)によってQ値やμ値を求める。   The arithmetic and control unit 20 obtains the Q value and μ value by the following arithmetic expressions (1) and (2).

Q=(Σki・Ai・Hi+0.35xV)/S …(1)
ただし、iは1からnまでの整数であり、kは壁や床や開口等の熱貫流率で、材質などによって異なり予め求められている値である。Aは壁や床や開口等の面積で予め求められている値である。Hは外気との接触度を示すものであり、外気に接触する外壁や開口などは「1」、床は「0.7」、隣の部屋に接触する壁は完全断熱として捉えその値は「0」である。xは換気回数であり、通常「0.5」である。Vは室の容積(気積)、Sは室の床面積である。
Q = (Σki · Ai · Hi + 0.35xV) / S (1)
However, i is an integer from 1 to n, and k is a heat transmissivity of a wall, a floor, an opening or the like, and is a value determined in advance depending on the material. A is a value obtained in advance in terms of areas such as walls, floors and openings. H indicates the degree of contact with the outside air. The outer wall or opening that contacts the outside air is “1”, the floor is “0.7”, the wall that is in contact with the adjacent room is regarded as completely insulated, and its value is “ 0 ". x is the number of ventilations, and is normally “0.5”. V is the volume (air volume) of the chamber, and S is the floor area of the chamber.

μ=(Σηi・Ai・ν)/S …(2)
ただし、ηは日射侵入率で予め求められている値である。νは方位係数であり、方位によって予め定められた値である。
μ = (Σηi · Ai · ν) / S (2)
However, η is a value obtained in advance by the solar radiation penetration rate. ν is an azimuth coefficient, which is a value predetermined by the azimuth.

この方位係数νは、例えば、図13の表に示すように、予め定めた6つの地域毎に方位によって定めた値であり、夏期方位係数と冬期方位係数とがある。図3の表の方位係数νは、IV地域の夏期方位係数を示す。   For example, as shown in the table of FIG. 13, the azimuth coefficient ν is a value determined by the azimuth for each of six predetermined areas, and includes a summer azimuth coefficient and a winter azimuth coefficient. The azimuth coefficient ν in the table of FIG. 3 indicates the summer azimuth coefficient of the IV region.

なお、この実施例で作成される間取り図の建物は、建物ユニットで構成されるものであり、窓や引戸等の開口面積や各部屋の外壁,天井,床等の面積や部屋の気積等はすべて既知である。また、窓や引戸,外壁,天井,床等の材質も定められているので、熱貫流率kや日射侵入率ηも既知であり、方位係数も既知である。これら既知のデータが各メモリ14〜16に記憶されているものである。
[動 作]
次に、上記のように構成される建物の温熱環境シミュレーション装置10の動作について説明する。
The floor plan building created in this embodiment is composed of building units, such as the opening area of windows and sliding doors, the outer wall, ceiling, floor, etc. of each room, the volume of the room, etc. Are all known. Further, since materials such as windows, sliding doors, outer walls, ceilings, and floors are also determined, the heat transmissibility k and the solar radiation penetration rate η are known, and the orientation coefficient is also known. These known data are stored in the memories 14-16.
[Operation]
Next, operation | movement of the thermal environment simulation apparatus 10 of the building comprised as mentioned above is demonstrated.

先ず、キーボードやマウスを操作して表示装置12の表示画面Gに例えば図2に示すように所望の間取り図を作成する。この間取り図は、既にメモリ13に記憶されている間取り図を読み出すものであってもよい。   First, a desired floor plan is created on the display screen G of the display device 12 as shown in FIG. This floor plan may be one for reading a floor plan already stored in the memory 13.

温熱環境シミュレーションを行う場合には、これを実行するボタン(図示せず)をクリックする。   When a thermal environment simulation is performed, a button (not shown) for executing this is clicked.

このクリックにより演算制御装置20は、表示画面に表示された間取り図の各部屋のデータ(情報)に対応して、各メモリ14〜16に記憶されている各部屋の窓や引戸等の開口面積、外壁,天井,床等の面積、各部屋の気積、その窓や引戸,外壁,天井,床等の熱貫流率およびその日射侵入率、窓や外壁等の方位係数や外気との接触度を示す係数等に基づいて、メモリ17に記憶された演算式により、温熱環境を示す熱損失係数(Q値)と夏期日射取得係数(μ値)を演算して求める。   By this click, the arithmetic and control unit 20 corresponds to the data (information) of each room of the floor plan displayed on the display screen, and the opening area of each room such as windows and sliding doors stored in each of the memories 14 to 16. , Area of outer wall, ceiling, floor, etc., air volume of each room, heat transmissivity of windows and sliding doors, outer wall, ceiling, floor, etc. and solar radiation penetration rate, orientation coefficient of windows, outer walls, etc. and degree of contact with outside air The heat loss coefficient (Q value) indicating the thermal environment and the summer solar radiation acquisition coefficient (μ value) are calculated and calculated by the arithmetic expression stored in the memory 17 based on the coefficient indicating

例えば、図2に示す1階の間取り図のLDKの部屋30のQ値およびν値の求め方の一例を以下に説明する。   For example, an example of how to obtain the Q value and ν value of the LDK room 30 in the floor plan shown in FIG. 2 will be described below.

図3の表に示すように、部屋30の床面積と気積と、部屋30の外壁31〜34の面積と、北の窓40の開口面積と、東の勝手口41,引戸42,43のそれぞれの開口面積と、南の引戸44の開口面積と、部屋の天井の面積とがメモリ14に記憶されており、これら必要な面積を部屋30のデータ(部屋30を構成した各種のデータ)に基づいて演算制御装置20がメモリ14から読み出し、これら読み出した各面積のデータを図示しない内蔵メモリに記憶させる。なお、天井の面積は、2階の建物からはみ出る部分の面積である。   As shown in the table of FIG. 3, the floor area and air volume of the room 30, the areas of the outer walls 31 to 34 of the room 30, the opening area of the north window 40, the east door 41, the sliding doors 42 and 43. Each opening area, the opening area of the south sliding door 44, and the ceiling area of the room are stored in the memory 14, and these necessary areas are stored in the data of the room 30 (various data constituting the room 30). Based on this, the arithmetic and control unit 20 reads from the memory 14, and stores the read data of each area in a built-in memory (not shown). In addition, the area of the ceiling is the area of the portion that protrudes from the building on the second floor.

さらに、演算制御装置20は、メモリ15から天井,外壁31〜34,窓40,勝手口41,引戸42,43,44等の熱貫流率kiや日射侵入率ηを読み出して内蔵メモリに記憶させ、部屋30のデータに基づいてメモリ16から係数Hiや方位係数νを読み出して内蔵メモリに記憶させる。   Further, the arithmetic and control unit 20 reads out the heat transmissivity ki and the solar radiation penetration rate η of the ceiling, the outer walls 31 to 34, the window 40, the door 41, the sliding doors 42, 43 and 44 from the memory 15 and stores them in the built-in memory. The coefficient Hi and the orientation coefficient ν are read from the memory 16 based on the data of the room 30 and stored in the built-in memory.

演算制御装置20は、内蔵メモリに記憶されたそれぞれのデータに基づいて、天井,外壁31〜34,床,各開口40〜44のAi・ki・Hiを求めるとともに、天井,外壁31〜34,各開口40〜44のAi・ν・ηを求める。   The arithmetic and control unit 20 obtains Ai, ki, and Hi for the ceiling, outer walls 31 to 34, floor, and openings 40 to 44 based on the respective data stored in the built-in memory, and the ceiling and outer walls 31 to 34, respectively. Ai · ν · η of each opening 40 to 44 is obtained.

そして、演算制御装置20は、メモリ17に記憶した演算式(1)に基づいて部屋30のQ値である熱損失係数と、演算式(2)に基づいて部屋30のμ値である夏期日射取得係数を求める。この演算で求めた熱損失係数は3.01、夏期日射取得係数は0.078となる。   The arithmetic control unit 20 then calculates the heat loss coefficient that is the Q value of the room 30 based on the arithmetic expression (1) stored in the memory 17 and the summer solar radiation that is the μ value of the room 30 based on the arithmetic expression (2). Obtain the acquisition factor. The heat loss coefficient obtained by this calculation is 3.01, and the summer solar radiation acquisition coefficient is 0.078.

なお、図3の表に示す「14.36」の値は演算式(1)の0.35xVの値であり、「97.00」の値は演算式(1)のΣki・Ai・Hiの値である。   Note that the value of “14.36” shown in the table of FIG. 3 is a 0.35 × V value in Equation (1), and the value of “97.00” is the value of Σki · Ai · Hi in Equation (1). Value.

同様にして、演算制御装置20は、各部屋50〜54の熱損失係数および夏期日射取得係数を求めていく。すなわち、各部屋30,50〜54ごとに温熱環境をシミュレーションしていくことになる。このシミュレーションした結果の一例を図4の表に示す。なお、図4の表に示す「LDK」のQ値およびμ値は、図3の表に示す「LDK」のQ値およびμ値と異なる例を示した。   Similarly, the arithmetic and control unit 20 calculates the heat loss coefficient and the summer solar radiation acquisition coefficient for each of the rooms 50 to 54. That is, the thermal environment is simulated for each room 30, 50-54. An example of the simulation result is shown in the table of FIG. Note that the Q value and μ value of “LDK” shown in the table of FIG. 4 are different from the Q value and μ value of “LDK” shown in the table of FIG.

このシミュレーションした結果は、例えば図5に示すように、温熱環境表示方法の一例として、横軸にQ値、縦軸にμ値を表すグラフ上に、各部屋30,50〜54の熱損失係数Qおよび夏期日射取得係数μの値をプロットしたグラフG1が例えば表示画面Gの下に表示される。この場合、例えば間取り図を縮小したり、この間取り図の代わりにグラフG1のみを表示したりする。   As a result of the simulation, for example, as shown in FIG. 5, as an example of a thermal environment display method, the heat loss coefficient of each room 30, 50 to 54 is plotted on a graph in which the horizontal axis represents the Q value and the vertical axis represents μ value. A graph G1 in which the values of Q and the summer solar radiation acquisition coefficient μ are plotted is displayed below the display screen G, for example. In this case, for example, the floor plan is reduced, or only the graph G1 is displayed instead of the floor plan.

このグラフG1から、各部屋30,50〜54の温熱環境すなわち熱損失係数Qおよび夏期日射取得係数μの状態が分かることになる。   From this graph G1, the thermal environment of each of the rooms 30, 50 to 54, that is, the state of the heat loss coefficient Q and the summer solar radiation acquisition coefficient μ can be understood.

ここで、各部屋30,50〜54のQ値,μ値のバラツキが小さいほうが、各部屋30,50〜54の温熱環境は一定であることを示し、各部屋30,50〜54を移動した際に一定の体感を得ることができ好ましいものとなる。また、Q値が大きいほど熱損失が大きく冷え易い部屋を示し、μ値が大きいほど入射熱が多く、熱ごもりし易く暑くなり易い部屋を示す。   Here, the smaller the variation of the Q value and μ value of the rooms 30, 50 to 54, the more constant the thermal environment of the rooms 30, 50 to 54 is, and the rooms 30, 50 to 54 were moved. In this case, a certain bodily sensation can be obtained, which is preferable. In addition, the larger the Q value, the larger the heat loss, and the easier the room to cool. The larger the μ value, the more the incident heat, and the more likely the room becomes hot and hot.

したがって、Q値が例えば「3.0」以下、μ値が例えば「0.10」以下の範囲内に入っていれば、温熱環境のよい住み心地のよい部屋となり、さらに、Q値,μ値のバラツキが小さいほど温熱環境が一定であることを示すことになる。そして、これらのことが図5に示すグラフG1から一目で分かることになる。   Therefore, if the Q value falls within the range of, for example, “3.0” or less and the μ value falls within the range of, for example, “0.10” or less, the room becomes a comfortable living room with a good thermal environment. The smaller the variation, the more constant the thermal environment. These can be seen at a glance from the graph G1 shown in FIG.

また、各部屋ごとの温度を予測する場合には、表示装置12の表示画面に表示されている予測温度ボタン(図示せず)をクリックすると、各部屋30,50〜54の冬期および夏期の予測温度が求められて、表示画面に表示される。   Further, when predicting the temperature for each room, clicking on a predicted temperature button (not shown) displayed on the display screen of the display device 12 predicts the winter and summer seasons of each room 30, 50-54. The temperature is determined and displayed on the display screen.

この予測温度は、Q値およびμ値から求めるものであり、下記の(3)式により冬期の日平均内外温度差(1日の内外温度差の平均値)を求め、下記の(4)式により夏期の日平均内外温度差を求める。   This predicted temperature is obtained from the Q value and the μ value, and the daily average internal / external temperature difference in winter (average value of the daily internal / external temperature difference) is obtained by the following equation (3), and the following equation (4): To find the daily average temperature difference between summer and summer.

Δt[K]=熱取得[W/m2]/Q …(3)
熱取得は、晴天日の日平均のエネルギーであり、例えば20[W/m2]である。
Δt [K] = heat acquisition [W / m 2 ] / Q (3)
The heat acquisition is the daily average energy on a clear day, for example, 20 [W / m 2 ].

Δt[K]=日射受熱[W/m2]×μ/Q …(4)
日射受熱は、夏期の平均的な日射のエネルギーであり、予め求めておく。
Δt [K] = Solar radiation heat [W / m 2 ] × μ / Q (4)
Solar radiation heat is the average solar radiation energy in the summer, and is obtained in advance.

(3)式,(4)式から求めた温度差Δt[K]に、外気の温度を加算することにより、各部屋30,50〜54の冬期および夏期の予測温度を求める。   By adding the temperature of the outside air to the temperature difference Δt [K] obtained from the equations (3) and (4), the predicted temperatures in the winter and summer seasons of the rooms 30, 50 to 54 are obtained.

このように、各部屋30,50〜54の冬期および夏期の温度をシミュレーションすることができるので、顧客の要望に応じたよりよい建物を提供することができることになる。   In this way, since the winter and summer temperatures of the rooms 30, 50 to 54 can be simulated, it is possible to provide a better building according to the customer's request.

ところで、(3)式および(4)式の演算式はメモリ17に記憶させておくものであり、日平均のエネルギーや平均的な日射のエネルギーの値は例えばメモリ16等に記憶させておき、演算制御装置20がメモリ16,17に記憶されたデータに基づいて各部屋30,50〜54の冬期および夏期の予測温度を求めていくものである。   By the way, the arithmetic expressions of the expressions (3) and (4) are stored in the memory 17, and the daily average energy and the average solar radiation energy value are stored in the memory 16 or the like, for example. Based on the data stored in the memories 16 and 17, the arithmetic and control unit 20 obtains predicted temperatures in the winter and summer seasons of the rooms 30 and 50 to 54.

このように、ボタンをクリックするだけで、演算制御装置20が表示画面G上に表示された間取り図の各部屋30,50〜54ごとのQ値およびμ値や温度、すなわち温熱環境をシミュレーションしていくものであるから、その操作はいたって簡単である。
[第2実施例]
図6は第2実施例の建物の温熱環境シミュレーション装置100を示したものである。
In this way, just by clicking the button, the arithmetic and control unit 20 simulates the Q value and μ value and temperature, that is, the thermal environment, of each room 30, 50 to 54 in the floor plan displayed on the display screen G. The operation is very simple.
[Second Embodiment]
FIG. 6 shows a building thermal environment simulation apparatus 100 according to the second embodiment.

この第2実施例では、メモリ13〜18と演算制御装置20(図1参照)をサーバ101に設け、各家庭のパーソナルコンピュータ102によって温熱環境を第1実施例と同様にQ値,μ値や各部屋の温度をシミュレーションできるようにしたものである。   In the second embodiment, the memories 13 to 18 and the arithmetic and control unit 20 (see FIG. 1) are provided in the server 101, and the thermal environment is changed by the personal computer 102 in each household as in the first embodiment. The temperature of each room can be simulated.

上記の第1,第2実施例は、いずれも縦軸にμ値、横軸にQ値をとっているが、この逆であってもよく、また、Q値およびμ値を求めているが、どちらか一方だけを求めて、表示画面Gに表示するようにしてもよい。
[第3実施例]
図7に示す表は、図3の表に示したものの他に、冬期における天井,外壁31〜34,各開口40〜44の方位係数ν(w)を示したものであり、これら方位係数ν(w)は例えばメモリ16(図1参照)に記憶させておく。
In each of the first and second embodiments, the vertical axis represents the μ value and the horizontal axis represents the Q value. However, the opposite may be used, and the Q value and the μ value are obtained. Only one of them may be obtained and displayed on the display screen G.
[Third embodiment]
The table shown in FIG. 7 shows the azimuth coefficient ν (w) of the ceiling and outer walls 31 to 34 and the openings 40 to 44 in the winter, in addition to those shown in the table of FIG. For example, (w) is stored in the memory 16 (see FIG. 1).

この第3実施例では、第1実施例と同様に、演算制御装置20(図1参照)によって、夏期および冬期の方位係数ν(w)をメモリ16から読み出して天井,外壁31〜34,各開口40〜44の夏期のAi・ν(s)・ηと冬期のAi・ν(w)・ηを求める。そして、演算制御装置20は、メモリ17に記憶した演算式(1)に基づいて部屋30のQ値である熱損失係数と、演算式(2)に基づいて部屋30の夏期日射取得係数(特定季節の日射取得係数)μ(s)と冬期日射取得係数(特定季節の日射取得係数)μ(w)を求める。   In the third embodiment, as in the first embodiment, the arithmetic and control unit 20 (see FIG. 1) reads out the summer and winter orientation coefficients ν (w) from the memory 16, and the ceiling and outer walls 31 to 34, each The summer 40 Ai · ν (s) · η and the winter Ai · ν (w) · η of the openings 40 to 44 are obtained. Then, the arithmetic and control unit 20 determines the heat loss coefficient that is the Q value of the room 30 based on the arithmetic expression (1) stored in the memory 17 and the summer solar radiation acquisition coefficient (specification) of the room 30 based on the arithmetic expression (2). A seasonal solar radiation acquisition coefficient) μ (s) and a winter solar radiation acquisition coefficient (specific seasonal solar radiation acquisition coefficient) μ (w) are obtained.

ここで、μ値は一般に夏期日射取得係数を示すが、ここでは冬期日射取得係数も示すもとのとして扱う。   Here, the μ value generally indicates the summer solar radiation acquisition coefficient, but here it is treated as the source of the winter solar radiation acquisition coefficient.

同様にして、演算制御装置20は、各部屋50〜54(図2参照)の熱損失係数および夏期日射取得係数μ(s)と冬期日射取得係数μ(w)を求めていく。   Similarly, the arithmetic and control unit 20 calculates the heat loss coefficient, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w) of each of the rooms 50 to 54 (see FIG. 2).

図8および図9に各部屋30、50〜54の熱損失係数および夏期日射取得係数μ(s)と、各部屋30、50〜54の熱損失係数および冬期日射取得係数μ(w)とを求めた結果の一例の表を示す。   8 and 9, the heat loss coefficient and summer solar radiation acquisition coefficient μ (s) of each room 30, 50 to 54, and the heat loss coefficient and winter solar radiation acquisition coefficient μ (w) of each room 30, 50 to 54 are shown. A table showing an example of the obtained results is shown.

図10および図11は、図8に示す熱損失係数および夏期日射取得係数μ(s)の結果と、図9に示す熱損失係数および冬期日射取得係数μ(w)の結果を、温熱環境表示方法の一例として、グラフG2,G3として表示したものである。これらグラフは、横軸にQ値、縦軸にμ値をとり、各部屋30,50〜54の熱損失係数Qおよび夏期日射取得係数μ(s)や冬期日射取得係数μ(w)の値をプロットして表示したものである。これらグラフも第1実施例と同様に表示画面Gに表示する。   FIG. 10 and FIG. 11 show the results of the heat loss coefficient and summer solar radiation acquisition coefficient μ (s) shown in FIG. 8 and the results of the heat loss coefficient and winter solar radiation acquisition coefficient μ (w) shown in FIG. As an example of the method, graphs G2 and G3 are displayed. These graphs take the Q value on the horizontal axis and the μ value on the vertical axis, and the values of the heat loss coefficient Q and summer solar radiation acquisition coefficient μ (s) and winter solar radiation acquisition coefficient μ (w) of each room 30, 50-54. Is plotted and displayed. These graphs are also displayed on the display screen G as in the first embodiment.

これらグラフG2,G3から、各部屋30,50〜54の温熱環境すなわち熱損失係数Qおよび夏期日射取得係数μ(s)の状態と、熱損失係数Qおよび冬期日射取得係数μ(w)の状態とが分かることになる。   From these graphs G2 and G3, the thermal environment of each of the rooms 30, 50 to 54, that is, the state of the heat loss coefficient Q and the summer solar radiation acquisition coefficient μ (s), and the state of the heat loss coefficient Q and the winter solar radiation acquisition coefficient μ (w) Will be understood.

そして、熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)に基づいて、例えば、部屋30の南の開口44の戸をシングルサッシにしたときの部屋30の冬期の予測温度と夏期の予測温度とを求めて画面Gに表示し、さらにシングルサッシからアルミペアサッシ、アルプラサッシ、樹脂サッシへと替えたときの部屋30の冬期の平均室温と夏期の予測平均室温とを求めて、図12に示すように画面G4に表示する。   Based on the heat loss coefficient Q, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w), for example, the winter of the room 30 when the door of the south opening 44 of the room 30 is a single sash. The predicted temperature in summer and the predicted temperature in summer are displayed on screen G, and when the room temperature is changed from single sash to aluminum pair sash, alpra sash, and resin sash, the winter average temperature in room 30 and the predicted average room temperature in summer Is displayed on the screen G4 as shown in FIG.

このように、シングルサッシ、アルミペアサッシ、アルプラサッシ、樹脂サッシへと替えたときの部屋30の冬期の予測平均室温と夏期の予測平均室温とを画面G4に表示することにより、客はサッシの種類の選択がし易くなる。他の部屋についても同様に表示する。   Thus, by displaying the predicted average room temperature in winter and the predicted average room temperature in summer in the room 30 when switching to single sash, aluminum pair sash, Alpra sash, and resin sash on the screen G4, the customer can select the type of sash. It becomes easy to select. The other rooms are displayed in the same manner.

なお、各部屋の平均室温は、メモリ15に記憶されたシングルサッシ,アルミペアサッシ,アルプラサッシ,樹脂サッシ等の日射侵入率と、熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)を基にして、例えば上記(4)式などにより求める。   The average room temperature of each room is the solar radiation penetration rate of single sash, aluminum pair sash, Alpra sash, resin sash, etc. stored in the memory 15, heat loss coefficient Q, summer solar radiation acquisition coefficient μ (s), and winter solar radiation acquisition. Based on the coefficient μ (w), for example, the above equation (4) is used.

この第3実施例では、熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)を求めているが、熱損失係数Qと冬期日射取得係数μ(w)を求めてこれを表示するようにしてもよい。
[第4実施例]
図14に示す表は、標準的な部屋を設定した場合の熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)を示したものである。
In the third embodiment, the heat loss coefficient Q, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w) are obtained, but the heat loss coefficient Q and the winter solar radiation acquisition coefficient μ (w) are obtained. This may be displayed.
[Fourth embodiment]
The table shown in FIG. 14 shows the heat loss coefficient Q, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w) when a standard room is set.

標準的な部屋は、床面積=30m2(南6m×東5m)、
天井高=2.4m
開口率(開口面積/床面積)=30%
開口の方位比率(開口比率、南面積:他面積)=1:1
2Fの部屋(天井が熱境界)
と設定したものである。そして、図14の表の「Case5」は、次世代省エネ基準に規定される仕様の場合の熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)の標準値を示す。なお、他の「Case1〜4,6」はその他のそれぞれ異なる仕様の場合の熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)の値の一例をそれぞれ示す。
Standard room has floor area = 30m 2 (south 6m x east 5m),
Ceiling height = 2.4m
Opening ratio (opening area / floor area) = 30%
Azimuth ratio of opening (opening ratio, south area: other area) = 1: 1
2F room (ceiling is a thermal boundary)
Is set. “Case 5” in the table of FIG. 14 shows the standard values of the heat loss coefficient Q, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w) in the case of the specifications stipulated in the next generation energy saving standard. Show. The other “Cases 1 to 4 and 6” indicate examples of values of the heat loss coefficient Q, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w) in other different specifications, respectively.

そして、「Case5」の場合の熱損失係数Qと夏期日射取得係数μ(s)および冬期日射取得係数μ(w)の標準値を示す標準線L1〜L3を図15および図16に示すように、表示装置12(図1参照)の画面G2,G3に表示する。   Then, as shown in FIGS. 15 and 16, standard lines L1 to L3 indicating the standard values of the heat loss coefficient Q, the summer solar radiation acquisition coefficient μ (s), and the winter solar radiation acquisition coefficient μ (w) in the case of “Case 5” are shown. And displayed on the screens G2 and G3 of the display device 12 (see FIG. 1).

この画面G2,G3の標準線L1から右側へいくほど保温性が弱くなることを示し、標準線L1から左へいくほど保温性が強くなることを示す。また、画面G2の標準線L2より上にいくほど日射(暑さ)が大きくなることを示し、標準線L2より下にいくほど日射(暑さ)が小さくなることを示す。同様に、画面G3の標準線L3より上にいくほど日射(暖かさ)が大きくなることを示し、標準線L2より下にいくほど日射(暖かさ)が小さくなることを示す。   It shows that the heat retention becomes weaker as it goes to the right from the standard line L1 of the screens G2 and G3, and shows that the heat retention becomes stronger as it goes to the left from the standard line L1. Moreover, it shows that solar radiation (heat) becomes large, so that it goes above the standard line L2 of the screen G2, and solar radiation (heat) becomes small, so that it goes below the standard line L2. Similarly, the solar radiation (warmth) increases as it goes above the standard line L3 of the screen G3, and the solar radiation (warmth) decreases as it goes below the standard line L2.

また、標準線L1,L2によって画面G2をG2a〜G2dの4つの領域に分け、同様に標準線L1,L3によって画面G3をG3a〜G3dの4つの領域に分ける。   Further, the screen G2 is divided into four areas G2a to G2d by the standard lines L1 and L2, and the screen G3 is similarly divided into four areas G3a to G3d by the standard lines L1 and L3.

そして、画面G2の領域G2aにある部屋は、「日中の日射を遮る工夫が必要です。」などのコメントを画面G2の領域G2a上に表示する。また、画面G2の領域G2bにある部屋は、「日中の日射を遮る工夫が必要です。」などのコメントを画面G2の領域G2b上に表示する。   Then, in the room in the area G2a of the screen G2, a comment such as “It is necessary to devise measures to block the solar radiation during the day” is displayed on the area G2a of the screen G2. In the room in the area G2b of the screen G2, a comment such as “It is necessary to devise a measure to block the solar radiation during the day” is displayed on the area G2b of the screen G2.

また、画面G2の領域G2cにある部屋は、「涼しく過ごすことができます。」などのコメントを画面G2の領域G2c上に表示する。   In the room in the area G2c of the screen G2, a comment such as “I can spend cool time” is displayed on the area G2c of the screen G2.

画面G2の領域G2dにある部屋は、「積極的に窓を開けることが必要です。」などのコメントを画面G2の領域G2d上に表示する。   In the room in the area G2d of the screen G2, a comment such as “It is necessary to open the window actively” is displayed on the area G2d of the screen G2.

同様に、画面G3の領域G3aにある部屋は、「暖かく過ごすことができます。」などのコメントを画面G3の領域G3a上に表示する。画面G3の領域G3b上にある部屋は、「夜室内の熱を逃がさない工夫が必要です。」などのコメントを画面G3の領域G3b上に表示する。   Similarly, the room in the area G3a on the screen G3 displays a comment such as “I can spend warmly” on the area G3a on the screen G3. In the room on the area G3b of the screen G3, a comment such as “It is necessary to devise not to let the heat in the night room escape” is displayed on the area G3b of the screen G3.

画面G3の領域G3c上にある部屋は、「夜室内の熱を逃がさない工夫が必要です。」などのコメントを画面G3の領域G3c上に表示する。画面G3の領域G3d上にある部屋は、「日射を取り込む工夫が必要です。」などのコメントを画面G3の領域G3d上に表示する。   In the room on the area G3c of the screen G3, a comment such as “It is necessary to devise a technique to prevent the heat in the night room from escaping” is displayed on the area G3c of the screen G3. In the room on the area G3d of the screen G3, a comment such as “It is necessary to devise to capture solar radiation” is displayed on the area G3d of the screen G3.

この第4実施例によれば、画面G2,G3に標準線L1〜L3を表示してその画面G2,G3を4つの領域に分けたものであるから、各部屋がどの領域にあるかが分かり、夏は暑いのか涼しいのかや、冬は寒いのか暖かいのかが分かる。また、例えば部屋の床や壁などの仕上材等の材質を選択する場合にも、どの材質を選択すれば快適な居住空間を得ることができるかが分かり、快適な居住空間を得ることのできる住戸のプランを顧客に提案することができる。   According to the fourth embodiment, since the standard lines L1 to L3 are displayed on the screens G2 and G3 and the screens G2 and G3 are divided into four regions, it is possible to know which region each room is in. You can see if the summer is hot or cool and the winter is cold or warm. Also, for example, when selecting materials such as finishing materials such as floors and walls of rooms, it is possible to know which material can be used to obtain a comfortable living space, and it is possible to obtain a comfortable living space. Can be proposed to customers.

上記実施例は、いずれも表示装置12の表示画面Gに各部屋のQ値やμ値等を表示するようにしているが、例えば、横軸にQ値、縦軸にμ値を表すグラフ用紙(書式)上に各部屋のQ値,μ値などを印字して提示するようにしてもよい。   In any of the above embodiments, the Q value or μ value of each room is displayed on the display screen G of the display device 12. For example, a graph sheet showing the Q value on the horizontal axis and the μ value on the vertical axis. The Q value and μ value of each room may be printed on (format) and presented.

この発明は、第1〜第4実施例に限定されるものではなく、種々設計変更できることは勿論である。   The present invention is not limited to the first to fourth embodiments, and various design changes can be made.

この発明に温熱環境シミュレーション装置の構成を示したブロック図である。It is the block diagram which showed the structure of the thermal environment simulation apparatus in this invention. 表示画面上に表示された間取り図を示した説明図である。It is explanatory drawing which showed the floor plan displayed on the display screen. 部屋の床面積,外壁面積,各開口面積と、熱貫通率,日射侵入率,方位係数等との対応関係を示した表である。It is the table | surface which showed the correspondence of the floor area of a room, an outer wall area, each opening area, and a thermal penetration rate, a solar radiation penetration rate, an orientation coefficient, etc. 各部屋のQ値およびμ値を示した表である。It is the table | surface which showed Q value and micro value of each room. 各部屋のQ値およびμ値を示したグラフである。It is the graph which showed Q value and micro value of each room. 第2実施例の構成を示したブロック図である。It is the block diagram which showed the structure of 2nd Example. 第3実施例の部屋の床面積,外壁面積,各開口面積と、熱貫流率,日射侵入率,方位係数等との対応関係を示した表である。It is the table | surface which showed the corresponding relationship with the floor area of the room of 3rd Example, an outer wall area, each opening area, and a heat-transfer rate, a solar radiation penetration rate, an orientation coefficient, etc. 各部屋のQ値と夏期のμ値とを示した表である。It is the table | surface which showed Q value of each room, and micro value in summer. 各部屋のQ値と冬期のμ値とを示した表である。It is the table | surface which showed Q value of each room, and micro value in winter. 図8に示す表をグラフにしたものである。9 is a graph of the table shown in FIG. 図9に示す表をグラフにしたものである。FIG. 10 is a graph of the table shown in FIG. 9. 各種のサッシに対応した部屋の冬期の平均室温と夏期の平均室温とを示した表である。It is the table | surface which showed the average room temperature in the winter of the room corresponding to various sashes, and the average room temperature in the summer. 6つの各地域の夏期方位係数と冬期方位係数とを示した表である。It is the table | surface which showed the summer direction coefficient and winter direction coefficient of six each area. 標準的な部屋をそれぞれ異なる仕様で仕上げた場合のQ値とμ値をそれぞれ示した表である。It is the table | surface which each showed Q value and micro value at the time of finishing a standard room by a respectively different specification. 標準的な部屋のQ値,μ値の標準値を示す標準線を図10のグラフ上に示したものである。A standard line indicating a standard value of a standard room Q value and μ value is shown on the graph of FIG. 標準的な部屋のQ値,μ値の標準値を示す標準線を図11のグラフ上に示したものである。A standard line indicating a standard value of the Q value and μ value of a standard room is shown on the graph of FIG.

符号の説明Explanation of symbols

10 温熱環境シミュレーション装置
12 表示装置(表示手段)
13〜18 メモリ(記憶手段)
20 演算制御装置(演算手段)
10 Thermal environment simulation device 12 Display device (display means)
13-18 memory (storage means)
20 Arithmetic control device (calculation means)

Claims (9)

建物の各部屋の情報を記憶する記憶手段と、前記建物の各部屋の情報に基づいて各部屋毎の熱損失係数と特定季節の日射取得係数のうち少なくとも一方を算出する算出手段と、この算出手段が算出した算出結果を表示する表示手段とを備えたことを特徴とする温熱環境シミュレーション装置。   Storage means for storing information on each room in the building, calculation means for calculating at least one of a heat loss coefficient for each room and a solar radiation acquisition coefficient for a specific season based on the information on each room in the building, and this calculation A thermal environment simulation apparatus comprising: display means for displaying a calculation result calculated by the means. 建物の各部屋の情報を記憶する記憶手段と、前記建物の各部屋の情報に基づいて各部屋毎の熱損失係数と特定季節の日射取得係数を算出する算出手段と、この算出手段が算出した算出結果を表示する表示手段とを備えたことを特徴とする温熱環境シミュレーション装置。   Storage means for storing information on each room in the building, calculation means for calculating a heat loss coefficient for each room and a solar radiation acquisition coefficient for a specific season based on the information on each room in the building, and calculation means calculated by the calculation means A thermal environment simulation apparatus comprising display means for displaying a calculation result. 前記表示手段は、各部屋毎の熱損失係数と特定季節の日射取得係数を、一方の軸に熱損失係数を示し他方の軸に日射取得係数を示すグラフとして表示することを特徴とする請求項2に記載の建物の温熱環境シミュレーション装置。   The display means displays the heat loss coefficient for each room and the solar radiation acquisition coefficient for a specific season as a graph showing the heat loss coefficient on one axis and the solar radiation acquisition coefficient on the other axis. 2. The building thermal environment simulation device according to 2. 前記表示手段は、予め設定した熱損失係数の標準値を示す標準線と、予め設定した日射取得係数の標準値を示す標準線を表示することを特徴とする請求項2または請求項3に記載の建物の温熱環境シミュレーション装置。   The said display means displays the standard line which shows the standard value of the preset heat loss coefficient, and the standard line which shows the standard value of the preset solar radiation acquisition coefficient, The Claim 2 or Claim 3 characterized by the above-mentioned. Building thermal environment simulation equipment. 前記演算手段は、各部屋毎の熱損失係数と特定季節の日射取得係数に基づいて各部屋の温度を予測し、この予測した各部屋の温度を前記表示手段が表示することを特徴とする請求項2ないし請求項4のいずれか1つに記載の建物の温熱環境シミュレーション装置。   The calculation means predicts the temperature of each room based on a heat loss coefficient for each room and a solar radiation acquisition coefficient for a specific season, and the display means displays the predicted temperature of each room. The thermal environment simulation device for a building according to any one of claims 2 to 4. 前記熱損失係数と特定季節の日射取得係数の算出をインターネットを介して行うことを特徴とする請求項2ないし請求項5のいずれか1つに記載の建物の温熱環境シミュレーション装置。   6. The building thermal environment simulation apparatus according to claim 2, wherein the heat loss coefficient and the solar radiation acquisition coefficient for a specific season are calculated via the Internet. 前記特定季節の日射取得係数は、夏期日射取得係数と冬期日射取得係数のうち少なくもいずれか1つであることを特徴とする請求項2ないし請求項6のいずれか1つに記載の建物の温熱環境シミュレーション装置。   The solar radiation acquisition coefficient of the specific season is at least one of a summer solar radiation acquisition coefficient and a winter solar radiation acquisition coefficient. The building according to any one of claims 2 to 6, Thermal environment simulation device. 建物の各部屋毎の熱損失係数と特定季節の日射取得係数を、一方の軸に熱損失係数を示し他方の軸に日射取得係数を示す書式上に表示することを特徴とする温熱環境表示方法。   A thermal environment display method for displaying a heat loss coefficient for each room of a building and a solar radiation acquisition coefficient for a specific season on a format showing the heat loss coefficient on one axis and the solar radiation acquisition coefficient on the other axis . 前記書式上に、予め設定した熱損失係数の標準値を示す標準線と、予め設定した日射取得係数の標準値を示す標準線を表示することを特徴とする請求項8に記載の温熱環境表示方法。   The thermal environment display according to claim 8, wherein a standard line indicating a standard value of a preset heat loss coefficient and a standard line indicating a standard value of a preset solar radiation acquisition coefficient are displayed on the format. Method.
JP2008254044A 2007-10-30 2008-09-30 Building thermal environment simulation device and thermal environment display method Active JP5123808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254044A JP5123808B2 (en) 2007-10-30 2008-09-30 Building thermal environment simulation device and thermal environment display method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007281600 2007-10-30
JP2007281600 2007-10-30
JP2008079890 2008-03-26
JP2008079890 2008-03-26
JP2008254044A JP5123808B2 (en) 2007-10-30 2008-09-30 Building thermal environment simulation device and thermal environment display method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012205821A Division JP5525580B2 (en) 2007-10-30 2012-09-19 Building thermal environment simulation equipment

Publications (2)

Publication Number Publication Date
JP2009257066A true JP2009257066A (en) 2009-11-05
JP5123808B2 JP5123808B2 (en) 2013-01-23

Family

ID=41384816

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008254044A Active JP5123808B2 (en) 2007-10-30 2008-09-30 Building thermal environment simulation device and thermal environment display method
JP2012205821A Active JP5525580B2 (en) 2007-10-30 2012-09-19 Building thermal environment simulation equipment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012205821A Active JP5525580B2 (en) 2007-10-30 2012-09-19 Building thermal environment simulation equipment

Country Status (1)

Country Link
JP (2) JP5123808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063442A (en) * 2012-09-24 2014-04-10 Aisin Seiki Co Ltd Cogeneration device
JP2014167369A (en) * 2013-02-28 2014-09-11 Panahome Corp Building structure
WO2016120909A1 (en) * 2015-01-30 2016-08-04 パナホーム株式会社 Insulating structure for buildings
JP2019114169A (en) * 2017-12-26 2019-07-11 パナソニックホームズ株式会社 Health risk diagnostic method
WO2021024807A1 (en) * 2019-08-08 2021-02-11 パナソニックIpマネジメント株式会社 Space proposal system and space proposal method
JP7264359B1 (en) 2022-03-29 2023-04-25 株式会社インテグラル Heat loss coefficient estimation system, heat loss coefficient estimation method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182340B2 (en) * 2013-03-27 2017-08-16 大和ハウス工業株式会社 Solar radiation effect index value calculation system and calculation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004403A (en) * 2000-06-26 2002-01-09 Daiwa House Ind Co Ltd Device for presenting performance information of individual building
JP2003343894A (en) * 2002-05-24 2003-12-03 Sekisui Chem Co Ltd Air conditioning load calculation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894150A (en) * 1994-09-28 1996-04-12 Tadashi Yamamoto Automatic air conditioning designing apparatus
JP2001060213A (en) * 1999-08-23 2001-03-06 Sekisui House Ltd Method for evaluating temperature distribution of building by computer
JP4891471B2 (en) * 2000-04-13 2012-03-07 旭化成ホームズ株式会社 Housing environment information provision device
JP4570280B2 (en) * 2001-05-24 2010-10-27 旭化成ホームズ株式会社 Building ventilation and temperature prediction system
JP4139592B2 (en) * 2001-12-27 2008-08-27 旭ファイバーグラス株式会社 Insulation method selection support system
JP4553750B2 (en) * 2005-02-24 2010-09-29 旭化成ホームズ株式会社 Acquired solar radiation energy display device
JP4597028B2 (en) * 2005-10-20 2010-12-15 住友林業株式会社 Ventilation / thermal diagnosis system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004403A (en) * 2000-06-26 2002-01-09 Daiwa House Ind Co Ltd Device for presenting performance information of individual building
JP2003343894A (en) * 2002-05-24 2003-12-03 Sekisui Chem Co Ltd Air conditioning load calculation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063442A (en) * 2012-09-24 2014-04-10 Aisin Seiki Co Ltd Cogeneration device
JP2014167369A (en) * 2013-02-28 2014-09-11 Panahome Corp Building structure
WO2016120909A1 (en) * 2015-01-30 2016-08-04 パナホーム株式会社 Insulating structure for buildings
JP2016141953A (en) * 2015-01-30 2016-08-08 パナホーム株式会社 Heat insulation structure of building, and manufacturing method thereof
JP2019114169A (en) * 2017-12-26 2019-07-11 パナソニックホームズ株式会社 Health risk diagnostic method
WO2021024807A1 (en) * 2019-08-08 2021-02-11 パナソニックIpマネジメント株式会社 Space proposal system and space proposal method
JPWO2021024807A1 (en) * 2019-08-08 2021-02-11
JP7149507B2 (en) 2019-08-08 2022-10-07 パナソニックIpマネジメント株式会社 SPATIAL PROPOSAL SYSTEM AND SPATIAL PROPOSAL METHOD
JP7264359B1 (en) 2022-03-29 2023-04-25 株式会社インテグラル Heat loss coefficient estimation system, heat loss coefficient estimation method, and program
JP2023146004A (en) * 2022-03-29 2023-10-12 株式会社インテグラル Heat loss coefficient estimation system, heat loss coefficient estimation method, and program

Also Published As

Publication number Publication date
JP5525580B2 (en) 2014-06-18
JP2013041591A (en) 2013-02-28
JP5123808B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5525580B2 (en) Building thermal environment simulation equipment
Yang et al. Thermal comfort in primary school classrooms: A case study under subarctic climate area of Sweden
Schiavon et al. Room air stratification in combined chilled ceiling and displacement ventilation systems
JP6147494B2 (en) Information processing apparatus and room temperature estimation method
Guo et al. Simulation and measurement of air temperatures and mean radiant temperatures in a radiantly heated indoor space
Wei et al. Impact of occupant behaviour on the energy-saving potential of retrofit measures for a public building in the UK
Kalmár Summer operative temperatures in free running existing buildings with high glazed ratio of the facades
Stabat et al. Progress on single-sided ventilation techniques for buildings
Yoon et al. Dynamic compartmentalization of double-skin façade for an office building with single-sided ventilation
Laborda et al. Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate
Lamberti et al. Uncertainty quantification for modeling night-time ventilation in Stanford’s Y2E2 building
Csáky et al. Investigation of the relationship between the allowable transparent area, thermal mass and air change rate in buildings
Oetelaar et al. A computational investigation of a room heated by subcutaneous convection—A case study of a replica Roman bath
Zhai et al. Review of natural ventilation models
Bomberg et al. A concept of integrated environmental approach, Part 2: Integrated approach to rehabilitation
Rodrigues et al. Quantifying airtightness in Brazilian residential buildings with focus on its contribution to thermal comfort
Bomberg et al. Buildings with environmental quality management: Part 1: Designing multifunctional construction materials
Kolokotroni et al. Environmental impact analysis for typical office facades
Ardehali et al. Proof of concept modeling of energy transfer mechanisms for radiant conditioning panels
Risberg et al. Computational fluid dynamics simulation of indoor climate in low energy buildings: Computational set up
Mitkees et al. Occupant thermal comfort and indoor environmental conditions in Mies van der Rohe’s SR Crown Hall
Brideau et al. Effects of controls and floor construction of radiant floor heating systems for residential application with high variability of solar gains
Le Dréau et al. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems
Dimoudi et al. Experimental study of the cooling performance of a ventilated wall
Marigo et al. Assessment of the dynamic thermal behaviour of a test room using computer simulations and experimental measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5123808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3