JP2009255876A - Method for controlling power generation for hybrid vehicle - Google Patents

Method for controlling power generation for hybrid vehicle Download PDF

Info

Publication number
JP2009255876A
JP2009255876A JP2008110336A JP2008110336A JP2009255876A JP 2009255876 A JP2009255876 A JP 2009255876A JP 2008110336 A JP2008110336 A JP 2008110336A JP 2008110336 A JP2008110336 A JP 2008110336A JP 2009255876 A JP2009255876 A JP 2009255876A
Authority
JP
Japan
Prior art keywords
power generation
torque
engine
target
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008110336A
Other languages
Japanese (ja)
Other versions
JP5169433B2 (en
Inventor
裕 ▲高▼村
Yutaka Takamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008110336A priority Critical patent/JP5169433B2/en
Publication of JP2009255876A publication Critical patent/JP2009255876A/en
Application granted granted Critical
Publication of JP5169433B2 publication Critical patent/JP5169433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1011Input shaft speed, e.g. turbine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling power generation for a hybrid vehicle, improving accuracy in energy balance by matching actual torque of a motor generator and target power generation torque of the motor generator. <P>SOLUTION: In the method for controlling power generation for a hybrid vehicle, an engine, a motor generator, and a transmission driven and connected by a transmission side clutch for detachably coupling the motor generator and the transmission, target power generation amount is obtained by correcting torque of the engine and a second clutch based on a deviation between the actual torque of the motor generator under rotation speed control and the target power generation amount (target power generation torque) of the motor generator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジンと、モータジェネレータと、変速機とを、モータジェネレータおよび変速機間を切り離し可能に結合する変速機側クラッチにより駆動結合してなるハイブリッド車両の発電制御方法に関するものである。   The present invention relates to a power generation control method for a hybrid vehicle in which an engine, a motor generator, and a transmission are drive-coupled by a transmission-side clutch that detachably couples the motor generator and the transmission.

従来、エンジンと、モータジェネレータと、変速機とを、モータジェネレータおよび変速機間を切り離し可能に結合する変速機側クラッチにより駆動結合してなるハイブリッド車両は種々の構成のものが知られている。このような従来のハイブリッド車両では、エンジン作動中(運転中)における車両停止時及び低速時は、モータジェネレータを回転数制御(速度制御)するとともに変速機側クラッチ(発進クラッチ)をスリップ制御することで、駆動量を実現すると同時に発電を実施している。そして、上記の制御実施時は、発進クラッチの入力トルク(エンジン+モータジェネレータ)及び出力トルク(発進クラッチ伝達トルク)を精度良く実現することが必要となるため、エンジントルク補正量を学習している(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, there are known various hybrid vehicles in which an engine, a motor generator, and a transmission are drive-coupled by a transmission-side clutch that detachably couples the motor generator and the transmission. In such a conventional hybrid vehicle, when the vehicle is stopped (during operation) and when the vehicle is stopped and at a low speed, the motor generator is controlled in rotational speed (speed control) and the transmission side clutch (starting clutch) is slip controlled. And at the same time as realizing the driving amount, it is generating electricity. When performing the above control, it is necessary to accurately realize the input torque (engine + motor generator) and the output torque (starting clutch transmission torque) of the starting clutch, so the engine torque correction amount is learned. (For example, refer to Patent Document 1).

特開2002−159105号公報JP 2002-159105 A

上述した従来のハイブリッド車両では、発進クラッチ(CL2)の伝達トルクを考慮していないため、実発進クラッチトルクが目標発進クラッチトルクより発進クラッチの伝達トルク分だけ大きくなり、モータジェネレータの速度制御実施時は目標発電量が実現されない、すなわち、実MGトルクが目標発電トルクより小さくなり、エネルギー収支の精度が悪くなる問題があった。   In the conventional hybrid vehicle described above, since the transmission torque of the start clutch (CL2) is not taken into consideration, the actual start clutch torque becomes larger than the target start clutch torque by the transfer torque of the start clutch, and the speed control of the motor generator is performed. However, there is a problem that the target power generation amount is not realized, that is, the actual MG torque is smaller than the target power generation torque, and the accuracy of the energy balance is deteriorated.

本発明の目的は上述した問題点を解消して、実際のモータジェネレータのトルクとモータジェネレータの目標発電トルクとが一致し、エネルギー収支の精度が良好なハイブリッド車両の発電制御方法を提供しようとするものである。   An object of the present invention is to solve the above-mentioned problems and to provide a power generation control method for a hybrid vehicle in which the actual motor generator torque matches the target power generation torque of the motor generator, and the energy balance accuracy is good. Is.

本発明のハイブリッド車両の発電制御方法は、エンジンと、モータジェネレータと、変速機とを、モータジェネレータおよび変速機間を切り離し可能に結合する変速機側クラッチにより駆動結合してなるハイブリッド車両の発電制御方法において、回転数制御中のモータジェネレータの実トルクと、モータジェネレータの目標発電量(目標発電トルク)との偏差から、エンジンおよび変速機側クラッチのトルクを補正し、目標発電量を実現することを特徴とするものである。   The power generation control method for a hybrid vehicle according to the present invention is a power generation control for a hybrid vehicle in which an engine, a motor generator, and a transmission are drive-coupled by a transmission-side clutch that detachably couples the motor generator and the transmission. In the method, the torque of the engine and the transmission side clutch is corrected from the deviation between the actual torque of the motor generator during the rotational speed control and the target power generation amount (target power generation torque) of the motor generator, and the target power generation amount is realized. It is characterized by.

本発明では、回転数制御中のモータジェネレータの実トルクと、モータジェネレータの目標発電量(目標発電トルク)との偏差から、エンジンおよび変速機側クラッチのトルクを補正し、目標発電量を実現することで、実際のモータジェネレータのトルクとモータジェネレータの目標発電トルクとが一致し、エネルギー収支の精度が良好なハイブリッド車両の発電制御方法を得ることができる。   In the present invention, the torque of the engine and the transmission side clutch is corrected from the deviation between the actual torque of the motor generator during the rotational speed control and the target power generation amount (target power generation torque) of the motor generator, thereby realizing the target power generation amount. Thus, it is possible to obtain a power generation control method for a hybrid vehicle in which the actual motor generator torque matches the target power generation torque of the motor generator, and the energy balance accuracy is good.

以下、図面を参照して、本発明のハイブリッド車両の発電制御方法の実施態様を説明する。   Hereinafter, embodiments of a power generation control method for a hybrid vehicle of the present invention will be described with reference to the drawings.

<本発明の発電制御方法の対象となるハイブリッド車両について>
図1は本発明の発電制御方法の対象となるハイブリッド車両のパワートレイン系の構成を説明するための図である。図1に示す例において、エンジン1の出力軸とモータジェネレータ2(以下、MGとも記載する)の入力軸とが、トルク容量可変の第1クラッチ4(エンジン側クラッチ、以下、CL1とも記載する)を介して連結されている。また、MGの出力軸と自動変速機3(以下、ATとも記載する)入力軸とが連結され、ATの出力軸にはディファレンシャルギア6を介してタイヤ7が連結されている。さらに、シフト状態に応じて異なるAT内の動力伝達を担っているトルク容量可変のクラッチのうち1つを第2クラッチ5(変速機側クラッチ、以下、CL2とも記載する)として用いている。これによりATは、CL1を介して入力されるエンジン1の動力と、MGから入力される動力とを合成してタイヤ7へ出力する。なお、図1に示すハイブリッド車両のパワートレイン系の構成では、エンジン1とMG2との間に第1クラッチ4を設けているが、必要に応じて、第1クラッチ4を設けずにエンジン1とMGとを直結する構成をとることもできる。
<About a hybrid vehicle that is a target of the power generation control method of the present invention>
FIG. 1 is a diagram for explaining the configuration of a powertrain system of a hybrid vehicle that is an object of the power generation control method of the present invention. In the example shown in FIG. 1, an output shaft of the engine 1 and an input shaft of a motor generator 2 (hereinafter also referred to as MG) are a first clutch 4 having variable torque capacity (engine-side clutch, hereinafter also referred to as CL1). It is connected through. Further, an output shaft of the MG and an input shaft of an automatic transmission 3 (hereinafter also referred to as AT) are connected, and a tire 7 is connected to the output shaft of the AT via a differential gear 6. Furthermore, one of the variable torque capacity clutches that is responsible for power transmission within the AT depending on the shift state is used as the second clutch 5 (transmission side clutch, hereinafter also referred to as CL2). As a result, the AT synthesizes the power of the engine 1 input via CL1 and the power input from the MG and outputs the resultant to the tire 7. In the configuration of the powertrain system of the hybrid vehicle shown in FIG. 1, the first clutch 4 is provided between the engine 1 and the MG 2. A configuration in which the MG is directly connected can also be adopted.

CL1とCL2とには、例えば、比例ソレノイドで油流量および油圧を断続的に制御できる湿式多板クラッチを用いればよい。このパワートレイン系には、CL1の接続状態に応じて2つの運転モードがあり、CL1切断状態では、MGの動力のみで走行するEVモードであり、CL1接続状態では、エンジン1とMGの動力で走行するHEVモードである。そして、エンジンの回転数を検出するエンジン回転センサ10と、MGの回転数を検出するMG回転センサ11と、ATの入力軸回転数を検出するAT入力回転センサ12と、ATの出力軸回転数を検出するAT出力回転センサ13とが設けられている。但し、ハイブリッド車両の構成は上記構成に限定されるものではなく、CL2として、変速機の入力軸と出力軸のいずれかに新たなクラッチを設けてもよい。   For example, a wet multi-plate clutch that can intermittently control the oil flow rate and hydraulic pressure with a proportional solenoid may be used for CL1 and CL2. This powertrain system has two operation modes depending on the connection state of CL1, and in the CL1 disconnected state, it is an EV mode that runs only with the power of MG. In the CL1 connection state, the power of the engine 1 and MG This is the HEV mode for traveling. The engine speed sensor 10 detects the engine speed, the MG speed sensor 11 detects the MG speed, the AT input speed sensor 12 detects the AT input shaft speed, and the AT output speed. And an AT output rotation sensor 13 for detecting. However, the configuration of the hybrid vehicle is not limited to the above configuration, and a new clutch may be provided as CL2 on either the input shaft or the output shaft of the transmission.

図2は制御装置を含んだハイブリッドシステムの構成の一例を説明するための図である。図2に示す例において、ハイブリッドシステムは、パワートレイン系の動作点を統合制御する統合コントローラ20と、エンジン1を制御するエンジンコントローラ21と、MGを制御するモータコントローラ22と、MGを駆動するインバータ8と電気エネルギを蓄えるバッテリ9と、CL1の油圧を制御するソレノイドバルブ14と、CL2の油圧を制御するソレノイドバルブ15と、アクセル開度を検出するAPOセンサ17と、バッテリ9の充電状態を検出するSOCセンサ16と、図1に示したパワートレイン系とから成る。統合コントローラ20は、アクセル開度APOとバッテリ充電状態SOCと、車速VSP(AT出力軸回転数に比例)とに応じて、運転者が望む駆動力が実現できる運転モードを選択し、モータコントローラ22に目標MGトルクトルクもしくは目標MG回転数を、エンジンコントローラ21に目標エンジントルクを、ソレノイドバルブ14、15に駆動信号を指令する。   FIG. 2 is a diagram for explaining an example of the configuration of a hybrid system including a control device. In the example shown in FIG. 2, the hybrid system includes an integrated controller 20 that integrally controls the operating point of the powertrain system, an engine controller 21 that controls the engine 1, a motor controller 22 that controls MG, and an inverter that drives MG. 8, a battery 9 that stores electrical energy, a solenoid valve 14 that controls the hydraulic pressure of CL 1, a solenoid valve 15 that controls the hydraulic pressure of CL 2, an APO sensor 17 that detects the accelerator opening, and a state of charge of the battery 9 The SOC sensor 16 is a power train system shown in FIG. The integrated controller 20 selects an operation mode capable of realizing the driving force desired by the driver according to the accelerator opening APO, the battery charge state SOC, and the vehicle speed VSP (proportional to the AT output shaft rotation speed), and the motor controller 22 The target MG torque torque or the target MG rotation speed is commanded to the engine controller 21, the target engine torque is commanded to the solenoid valves 14, 15.

<本発明のハイブリッド車両の発電制御方法の説明>
図3は本発明のハイブリッド車両の発電制御方法を実施する制御構成の一例を説明するための図であり、図4は本発明のハイブリッド車両の発電制御方法の一例を説明するためのフローチャートである。また、図5〜図8および図9〜図12はそれぞれ本発明のハイブリッド車両の発電制御方法における種々の条件下での状態を示すタイムチャートである。本発明のハイブリッド車両の発電制御方法は、これらの図からわかるように、発電状態に応じて、エンジン1および第2クラッチ5(CL2)に補正を加え、目標とする発電量を実現する点にある。以下、その具体的な実施方法について説明する。
<Description of Power Generation Control Method for Hybrid Vehicle of the Present Invention>
FIG. 3 is a diagram for explaining an example of a control configuration for carrying out a power generation control method for a hybrid vehicle of the present invention, and FIG. 4 is a flowchart for explaining an example of a power generation control method for a hybrid vehicle of the present invention. . 5 to 8 and 9 to 12 are time charts showing states under various conditions in the power generation control method for a hybrid vehicle of the present invention. As can be seen from these figures, the hybrid vehicle power generation control method according to the present invention corrects the engine 1 and the second clutch 5 (CL2) in accordance with the power generation state, and realizes a target power generation amount. is there. Hereinafter, the concrete implementation method is demonstrated.

図3に示す例において、各種の入力データをするためのセンサ等として、アクセル開度検出手段51、車速検出手段52、SOC検出手段53、エンジン回転数検出手段54、モータ回転数検出手段55、推定モータトルク検出手段56を設けている。目標駆動トルク演算手段61、目標発電量演算手段62、トルク配分演算手段63により目標発電トルクを求める。求めた目標発電トルクと推定モータトルク検出手段56で求めた推定モータトルクと、目標モータ回転数と、実モータ回転数とから、発電補正トルク演算手段64において、発電補正トルクを求める。求めた発電補正トルクを発電補正トルク配分手段65により、エンジントルクの補正分と第2クラッチトルクの補正分とに配分する。配分されたエンジントルクの補正分は、目標エンジントルク演算手段71を介して、エンジントルク制御手段72に供給され、エンジントルクの補正を行う。配分された第2クラッチトルクの補正分は、補正トルク位相補償演算手段81、目標クラッチトルク容量演算手段82を介して、クラッチトルク制御手段83に供給され、第2クラッチトルクの補正を行う。なお、91は目標モータ回転数演算手段、92は目標回転数補正トルク演算手段、93はモータ回転数制御手段である。   In the example shown in FIG. 3, an accelerator opening degree detecting means 51, a vehicle speed detecting means 52, an SOC detecting means 53, an engine speed detecting means 54, a motor speed detecting means 55, as sensors for performing various types of input data, Estimated motor torque detection means 56 is provided. The target power generation torque is calculated by the target drive torque calculation means 61, the target power generation amount calculation means 62, and the torque distribution calculation means 63. The power generation correction torque calculating means 64 determines the power generation correction torque from the calculated target power generation torque, the estimated motor torque obtained by the estimated motor torque detection means 56, the target motor rotation speed, and the actual motor rotation speed. The generated power generation correction torque is distributed by the power generation correction torque distribution means 65 to the correction amount of the engine torque and the correction amount of the second clutch torque. The distributed correction amount of the engine torque is supplied to the engine torque control means 72 via the target engine torque calculation means 71 to correct the engine torque. The distributed correction amount of the second clutch torque is supplied to the clutch torque control unit 83 via the correction torque phase compensation calculation unit 81 and the target clutch torque capacity calculation unit 82 to correct the second clutch torque. In addition, 91 is a target motor speed calculating means, 92 is a target speed correction torque calculating means, and 93 is a motor speed control means.

図4に示すフローチャートに従って、本発明のハイブリッド車両の発電制御方法の一例を説明する。図4に示す例において、まず、各ECUからデータを受信し(S01)、センサ値の読み込みを行う(S02)。次に、アクセル開度検出手段51で求めたAPO情報および車速検出手段52で求めた車速情報に基づき、目標駆動トルク演算手段61において、目標駆動トルク演算を行う(S03)。次に、目標駆動トルク演算手段61で求めた目標駆動トルク、APO情報、SOC検出手段53で求めたSOC情報、エンジン回転数検出手段54で求めたエンジン回転数、モータ回転数検出手段54で求めたエンジン回転数、モータ回転数検出手段55で求めたモータ回転数に基づき、目標発電量演算手段62において、目標発電量を演算する(S04)。次に、目標発電量演算手段62で求めた目標発電量および目標駆動トルク演算手段61で求めた目標駆動トルクに基づき、トルク配分演算手段63において、目標エンジントルクと目標発電トルクとへのトルクの配分を演算する(S05)。次に、APO情報、車速情報に基づき、目標モータ回転数演算手段91において、目標モータ回転数を演算する(S06)。次に、演算した目標モータ回転数に基づき、目標回転補正トルク演算手段92において、目標回転補正トルクを演算する(S07)。   An example of the power generation control method for the hybrid vehicle of the present invention will be described according to the flowchart shown in FIG. In the example shown in FIG. 4, first, data is received from each ECU (S01), and sensor values are read (S02). Next, based on the APO information obtained by the accelerator opening degree detection means 51 and the vehicle speed information obtained by the vehicle speed detection means 52, the target drive torque calculation means 61 performs target drive torque calculation (S03). Next, the target drive torque obtained by the target drive torque calculation means 61, the APO information, the SOC information obtained by the SOC detection means 53, the engine speed obtained by the engine speed detection means 54, and the motor speed detection means 54 are obtained. The target power generation amount calculating means 62 calculates the target power generation amount based on the engine speed and the motor rotation number obtained by the motor rotation number detecting means 55 (S04). Next, based on the target power generation amount obtained by the target power generation amount calculation means 62 and the target drive torque obtained by the target drive torque calculation means 61, the torque distribution calculation means 63 calculates the torque to the target engine torque and the target power generation torque. The distribution is calculated (S05). Next, based on the APO information and the vehicle speed information, the target motor rotation number calculation means 91 calculates the target motor rotation number (S06). Next, based on the calculated target motor rotation speed, the target rotation correction torque calculation means 92 calculates the target rotation correction torque (S07).

その後の以下の各ステップが、本発明のハイブリッド車両の発電制御方法の特徴部分となる。まず、目標モータ回転数、APO情報、モータ回転数、そして、目標発電トルクおよび実MGトルクに基づき、発電補正トルク演算手段64において、発電補正トルクを演算する(S08)。次に、演算して求めた発電補正トルクを、発電補正トルク配分手段65において、エンジントルク補正分と第2クラッチトルク補正分とに分配する(S09)。次に、分配された第2クラッチトルク補正分に基づき、補正トルク位相補償演算手段81において、エンジンへの補正指令と位相を合わせた第2クラッチへの補正指令を演算する(S10)。そして、分配されたエンジントルク補正分、目標回転補正トルク、回転エンジントルクに基づき、目標エンジントルク演算手段71において、目標エンジントルクを演算する(S11)。次に、位相補正した第2クラッチトルク補正分と目標駆動トルクとに基づき、目標クラッチトルク容量演算手段82において、目標クラッチトルクを演算する(S12)。最後に、各ECUへデータを送信する(S13)。   The following steps after that are characteristic features of the power generation control method for the hybrid vehicle of the present invention. First, the power generation correction torque calculating means 64 calculates the power generation correction torque based on the target motor rotation speed, APO information, motor rotation speed, target power generation torque and actual MG torque (S08). Next, the power generation correction torque obtained by calculation is distributed to the engine torque correction amount and the second clutch torque correction amount in the power generation correction torque distribution means 65 (S09). Next, based on the distributed second clutch torque correction amount, the correction torque phase compensation calculating means 81 calculates a correction command for the second clutch in phase with the correction command for the engine (S10). Then, based on the distributed engine torque correction amount, the target rotation correction torque, and the rotation engine torque, the target engine torque calculation means 71 calculates the target engine torque (S11). Next, the target clutch torque capacity calculation means 82 calculates the target clutch torque based on the phase-corrected second clutch torque correction amount and the target drive torque (S12). Finally, data is transmitted to each ECU (S13).

次に、図5〜図8および図9〜図12に示すタイムチャートにより、本発明のハイブリッド車両の発電制御方法を、図20の従来のハイブリッド車両の発電制御方法を参考として、説明する。いずれの例においても、アクセルペダル操作量(APO)とブレーキとの関係、第2のクラッチ(CL2)の実トルクと目標駆動トルクおよび実エンジントルクとの関係、さらには、実モータジェネレータ(MG)トルクおよびMGの目標発電量(目標発電トルク)との関係、実際のエンジン回転数および実際の自動変速機(AT)との関係、をそれぞれタイムチャートとして示している。   Next, the power generation control method for a hybrid vehicle of the present invention will be described with reference to the conventional power generation control method for a hybrid vehicle in FIG. In any example, the relationship between the accelerator pedal operation amount (APO) and the brake, the relationship between the actual torque of the second clutch (CL2), the target drive torque, and the actual engine torque, and further, the actual motor generator (MG) The relationship between the torque and the MG target power generation amount (target power generation torque) and the relationship between the actual engine speed and the actual automatic transmission (AT) are shown as time charts, respectively.

図20は従来のハイブリッド車両における問題点を説明するための図である。図20に示す例では、アクセルペダル操作量(APO)とブレーキとの関係、第2のクラッチ(以下、CL2とも記載する)の実トルクと目標駆動トルクおよび実エンジントルクとの関係、さらには、実モータジェネレータ(以下、MGとも記載する)トルクおよびMGの目標発電量(目標発電トルク)との関係、実際のエンジン回転数および実際の自動変速機(以下、ATとも記載する)との関係、をそれぞれタイムチャートとして示している。図20に示す従来例における、実MGトルクが目標発電トルクより小さくなり、エネルギー収支の精度が悪くなる問題を、以下のタイムチャートに示す例により解決している。   FIG. 20 is a diagram for explaining a problem in a conventional hybrid vehicle. In the example shown in FIG. 20, the relationship between the accelerator pedal operation amount (APO) and the brake, the relationship between the actual torque of the second clutch (hereinafter also referred to as CL2), the target drive torque, and the actual engine torque, Relationship between actual motor generator (hereinafter also referred to as MG) torque and MG target power generation amount (target power generation torque), relationship between actual engine speed and actual automatic transmission (hereinafter also referred to as AT), Are shown as time charts. In the conventional example shown in FIG. 20, the problem that the actual MG torque becomes smaller than the target power generation torque and the energy balance becomes worse is solved by the example shown in the following time chart.

図5〜図8に示すタイムチャートでは、APOが小すなわち車両停止時や低速時においてブレーキに踏力が加わった状態を示している。図5に示す例では、APOが小で発電過多の場合であってエンジントルクが過多の例を示している。図5に示す例において、ブレーキ踏力に伴い実MGトルクが目標発電トルクより大きくなり発電量が多いことを検知し、車両情報によりエンジントルクを補正して、具体的には、目標エンジントルクに合わせるように実エンジントルクを小さくすることで、目標発電量を実現している。実エンジントルクが目標エンジントルクより大きくなる理由としては、例えば、個体バラツキ、掲示劣化、気温、気圧等の環境要因が挙げられる。図6に示す例では、APOが小で発電不足の場合であって第2クラッチトルクが過多の例を示す。図6に示す例において、ブレーキ踏力に伴い実MGトルクが目標発電トルクより小さくなり発電量が少ないことを検知し、車両情報により第2クラッチトルク容量を補正して、具体的には、目標駆動トルクに合うように実CL2トルクを小さくすることで、目標発電量を実現している。図7に示す例では、APOが小で発電不足の場合であってエンジントルクが不足している例を示す。図7に示す例において、ブレーキ踏力に伴い実MGトルクが目標発電トルクより小さくなり発電量が少ないことを検知し、車両情報により第2クラッチトルクを補正して、具体的には、目標駆動トルクに対し実CL2トルクを小さくすることで、目標発電量を実現している。なお、駆動トルクを補正するので、車速の上がりが遅くなる分、駆動トルクが多く要求され、その結果、エンジントルクが増加する。また、補正トルクの効果でエンジントルクとクラッチトルクのバランスは取れる。図8に示す例では、APOが小で発電過多の場合であって第2クラッチトルクが不足の例を示す。図8に示す例において、ブレーキ踏力に伴い実MGトルクが目標発電トルクより大きくなり発電量が多いことを検知し、車両情報よりエンジントルクを補正して、具体的には、目標駆動トルクに対し実エンジントルクを小さくすることで、目標発電量を実現している。   The time charts shown in FIGS. 5 to 8 show a state in which pedal force is applied to the brake when the APO is small, that is, when the vehicle is stopped or at a low speed. The example shown in FIG. 5 shows an example in which the APO is small and the power generation is excessive, and the engine torque is excessive. In the example shown in FIG. 5, it is detected that the actual MG torque is larger than the target power generation torque due to the brake pedal force and the power generation amount is large, and the engine torque is corrected based on the vehicle information, and specifically, matched with the target engine torque. As described above, the target power generation amount is realized by reducing the actual engine torque. Examples of the reason why the actual engine torque becomes larger than the target engine torque include environmental factors such as individual variation, display deterioration, temperature, and atmospheric pressure. The example shown in FIG. 6 shows an example in which the APO is small and power generation is insufficient, and the second clutch torque is excessive. In the example shown in FIG. 6, it is detected that the actual MG torque becomes smaller than the target power generation torque due to the brake depression force, and the power generation amount is small, and the second clutch torque capacity is corrected based on the vehicle information. By reducing the actual CL2 torque so as to match the torque, the target power generation amount is realized. The example shown in FIG. 7 shows an example in which the APO is small and power generation is insufficient and the engine torque is insufficient. In the example shown in FIG. 7, it is detected that the actual MG torque becomes smaller than the target power generation torque due to the brake depression force and the power generation amount is small, and the second clutch torque is corrected based on the vehicle information. On the other hand, the target power generation amount is realized by reducing the actual CL2 torque. Since the driving torque is corrected, a larger amount of driving torque is required as the increase in the vehicle speed is delayed, and as a result, the engine torque increases. Further, the balance between the engine torque and the clutch torque can be achieved by the effect of the correction torque. The example shown in FIG. 8 shows an example in which the APO is small and the power generation is excessive and the second clutch torque is insufficient. In the example shown in FIG. 8, it is detected that the actual MG torque is larger than the target power generation torque due to the brake pedal force and the power generation amount is large, and the engine torque is corrected based on the vehicle information. Target power generation is achieved by reducing the actual engine torque.

図9〜図12に示すタイムチャートでは、APOが大すなわちドライバーの加速意志によりアクセルを踏んだ状態を示している。図9に示す例では、APOが大で発電過多の場合であってエンジントルクが過多の例を示す。図9に示す例において、APOの増加に伴い実MGトルクが目標発電トルクより大きくなり発電量が多いことを検知し、車両情報により第2クラッチトルクを補正して、具体的には、第2クラッチトルクを目標駆動トルクより上げることで、目標発電量を実現している。図10に示す例では、APOが大で発電過多の場合であって第2クラッチトルクが不足している例を示す。図10に示す例において、APOの増加に伴い実MGトルクが目標発電トルクより大きくなり発電量が多いことを検知し、車両情報により第2クラッチトルクを補正して、具体的には、実CL2トルクを上げて目標駆動トルクに合わせることで、目標発電量を実現している。図11に示す例では、APOの増加に伴い実MGトルクが目標発電トルクより小さくなり発電量が不足している例を示す。図11に示す例において、APOの増加に伴い実MGトルクが目標発電トルクより小さくなり発電量が不足していることを検知し、車両情報により実エンジントルクを上げて目標エンジントルクに合わせることで、目標発電量を実現している。図12に示す例では、APOが大で発電不足の場合であって第2クラッチトルクが過多の例を示す。図12に示す例において、APOの増加に伴い実MGトルクが目標発電トルクより小さくなり発電量が不足していることを検知し、車両情報により実エンジントルクを上げることで、目標発電量を実現している。   The time charts shown in FIGS. 9 to 12 show a state where the APO is large, that is, the accelerator is stepped on due to the driver's acceleration intention. The example shown in FIG. 9 shows an example in which the APO is large and the power generation is excessive, and the engine torque is excessive. In the example shown in FIG. 9, it is detected that the actual MG torque becomes larger than the target power generation torque as the APO increases and the power generation amount is large, and the second clutch torque is corrected based on the vehicle information. The target power generation amount is realized by raising the clutch torque from the target drive torque. The example shown in FIG. 10 shows an example where the APO is large and the power generation is excessive and the second clutch torque is insufficient. In the example shown in FIG. 10, it is detected that the actual MG torque becomes larger than the target power generation torque as the APO increases and the power generation amount is large, and the second clutch torque is corrected based on the vehicle information. The target power generation amount is achieved by increasing the torque to match the target drive torque. In the example shown in FIG. 11, the actual MG torque becomes smaller than the target power generation torque as the APO increases, and the power generation amount is insufficient. In the example shown in FIG. 11, it is detected that the actual MG torque becomes smaller than the target power generation torque as the APO increases and the power generation amount is insufficient, and the actual engine torque is increased based on the vehicle information to match the target engine torque. The target power generation is achieved. The example shown in FIG. 12 shows an example where the APO is large and power generation is insufficient, and the second clutch torque is excessive. In the example shown in FIG. 12, the target power generation amount is realized by detecting that the actual MG torque is smaller than the target power generation torque as the APO increases and the power generation amount is insufficient, and increasing the actual engine torque based on the vehicle information. is doing.

次に、図3に示す制御構成のうち重要な構成手段について、その内容をさらに説明する。   Next, the contents of important constituent means in the control configuration shown in FIG. 3 will be further described.

<目標駆動トルク演算手段62について>
図3に示す制御構成のうち、目標駆動トルク演算手段61では、車速、アクセル開度に応じた目標駆動トルクを演算する。トルク配分演算手段63では、目標駆動トルク、SOC、車速等に応じて、基本エンジントルク指令となる目標エンジントルクと、基本モータジェネレータ指令となる目標発電トルク(目標発電量)と、を算出する。目標モータ回転数演算手段91では、アクセル開度、車速に応じた目標モータジェネレータ回転数を演算する。目標回転数補正補正トルク演算手段92では、エンジン(ENG)+モータジェネレータ(MG)イナーシャを考慮してトルク指令を算出する。例えば、以下の式(1)のような式で演算することにより算出する。また、目標回転数や目標駆動トルクを引数としたマップとしても良い。
目標回転数補正トルク=J・s/(τ・s+1) ‥(1)
ここで、J:ENG+MG慣性モーメント、τ:所定の特性を得るための時定数、である。このようにして、エンジントルク指令に目標回転数変動分を考慮することで、回転変動に使われるエネルギを駆動分と分けて考慮することができ、目標発電量を精度良く実現することができる。
<Regarding the target driving torque calculating means 62>
In the control configuration shown in FIG. 3, the target drive torque calculation means 61 calculates the target drive torque according to the vehicle speed and the accelerator opening. The torque distribution calculation means 63 calculates a target engine torque that is a basic engine torque command and a target power generation torque (target power generation amount) that is a basic motor generator command in accordance with the target drive torque, SOC, vehicle speed, and the like. The target motor speed calculation means 91 calculates a target motor generator speed according to the accelerator opening and the vehicle speed. The target rotational speed correction correction torque calculation means 92 calculates a torque command in consideration of the engine (ENG) + motor generator (MG) inertia. For example, it is calculated by calculating with the following equation (1). Also, a map with the target rotation speed and target drive torque as arguments may be used.
Target rotational speed correction torque = J · s / (τ · s + 1) (1)
Here, J: ENG + MG moment of inertia, τ: time constant for obtaining predetermined characteristics. In this way, by considering the target rotational speed fluctuation in the engine torque command, the energy used for the rotational fluctuation can be considered separately from the driving quantity, and the target power generation amount can be realized with high accuracy.

<発電補正トルク演算手段64について>
図13は発電補正トルク演算手段64の一例の構成を示す図である。図13に示す例において、回転数制御中のモータジェネレータの実トルクを、推定モータトルクと、モータ目標回転数および実モータ回転数からなるモータ回転数制御系において目標回転変化に応じて使うトルクと、の差をとることによって求めている。そして、目標発電トルクと求めた実MGトルク(モータジェネレータの実トルク)との差から、発電補正トルクを求めている。なお、目標発電トルクは、モータの極性に合わせ、ここでは、負の値で定義する。推定モータトルクも負の場合に回生と定義する。他の例として、実発電量(実MGトルク)は、バッテリ電流と電圧とから推定しても良い。また、本例では、実発電量(実MGトルク)を求めるにあたり、モータの速い応答による外乱補正という特長を生かすために、過渡応答の補正に使用したトルク(電力)は除去する。具体的には、モータの目標回転との偏差をなくすために使用したトルク(電力)や、高周波数の外乱を抑制するために使用したトルク(電力)である。なお、図13中、GはPI項のゲインである。
<About the power generation correction torque calculation means 64>
FIG. 13 is a diagram showing an example of the configuration of the power generation correction torque calculation means 64. As shown in FIG. In the example shown in FIG. 13, the actual torque of the motor generator during the rotation speed control is calculated as the estimated motor torque and the torque used in accordance with the target rotation change in the motor rotation speed control system including the motor target rotation speed and the actual motor rotation speed. , Seeking by taking the difference. Then, the power generation correction torque is obtained from the difference between the target power generation torque and the obtained actual MG torque (actual torque of the motor generator). The target power generation torque is defined as a negative value according to the polarity of the motor. When the estimated motor torque is negative, it is defined as regeneration. As another example, the actual power generation amount (actual MG torque) may be estimated from the battery current and the voltage. Further, in this example, when the actual power generation amount (actual MG torque) is obtained, the torque (electric power) used for correcting the transient response is removed in order to take advantage of the disturbance correction by the quick response of the motor. Specifically, the torque (electric power) used to eliminate the deviation from the target rotation of the motor and the torque (electric power) used to suppress high-frequency disturbances. In FIG. 13, G is the gain of the PI term.

<発電補正トルク配分手段65について>
図14〜図16はそれぞれ発電補正トルク配分手段65の一例の構成を説明するための図であり、図14は発電補正トルク配分の考え方を示し、図15は発電補正トルク配分係数Kを演算するためのフローチャートを示し、図16は発電補正トルク配分を演算するためのブロック図を示す。
<About power generation correction torque distribution means 65>
FIGS. 14 to 16 are diagrams for explaining an example of the configuration of the power generation correction torque distribution means 65, FIG. 14 shows the concept of power generation correction torque distribution, and FIG. 15 calculates the power generation correction torque distribution coefficient K. FIG. 16 is a block diagram for calculating the power generation correction torque distribution.

図14に示すように、発電補正トルクの配分は、目標発電トルク(目標発電量)に対する実MGトルクの関係に基づき行っている。図14に示す例において、APO小時は、大きな駆動力が要求されていないので、加速しない方向に対処するよう制御している。一方、APO大時は、大きな駆動力が要求されているので、減速しない方向に対処するよう制御している。   As shown in FIG. 14, the distribution of the power generation correction torque is performed based on the relationship of the actual MG torque with respect to the target power generation torque (target power generation amount). In the example shown in FIG. 14, when the APO is small, a large driving force is not required, so control is performed so as to cope with a direction in which acceleration does not occur. On the other hand, when APO is large, since a large driving force is required, control is performed so as to cope with a direction not to decelerate.

図15に示すように、発電補正トルク配分係数Kの演算は、まず、シフトレンジがP、Nかを判断する(S21)。S21での判断の結果、シフトレンジがPまたはNである場合はK=1とする。一方、S21での判断の結果、シフトレンジがP、N以外である場合は、さらに、APOが小であるかを判断する(S22)。S22での判断の結果、APOが小の場合は、さらに、発電補正トルクがしきい値以上であるかを判断する(S23)。S23での判断の結果、発電補正トルクがしきい値以上である場合は、予め求めたパターン(I)に従って車速に応じてKを決定する。一方、S23での判断の結果、発電補正トルクがしきい値未満である場合は、予め求めたパターン(II)に従って車速に応じてKを決定する。また、S22での判断の結果、APOが小でない場合は、さらに、発電欲しトルクがしきい値以上であるかを判断する(S24)。S24での判断の結果、発電補正トルクがしきい値以上である場合は、予め求めたパターン(III)に従って車速に応じてKを決定する。一方、S24での判断の結果、発電補正トルクがしきい値未満である場合は、予め求めたパターン(IV)に従って車速に応じてKを決定する。なお、S22、S23、S24での判断は、ハンチング防止のために発電補正トルクにヒステリシスを設けるためである。   As shown in FIG. 15, in the calculation of the power generation correction torque distribution coefficient K, first, it is determined whether the shift range is P or N (S21). If the result of determination in S21 is that the shift range is P or N, K = 1. On the other hand, if the result of determination in S21 is that the shift range is other than P or N, it is further determined whether or not APO is small (S22). If the APO is small as a result of the determination in S22, it is further determined whether the power generation correction torque is greater than or equal to a threshold value (S23). If the power generation correction torque is greater than or equal to the threshold value as a result of the determination in S23, K is determined according to the vehicle speed according to the pattern (I) obtained in advance. On the other hand, if the power generation correction torque is less than the threshold value as a result of the determination in S23, K is determined according to the vehicle speed in accordance with the previously obtained pattern (II). If the result of determination in S22 is that APO is not small, it is further determined whether or not the desired power generation torque is greater than or equal to a threshold value (S24). If the power generation correction torque is greater than or equal to the threshold value as a result of the determination in S24, K is determined according to the vehicle speed according to the pattern (III) obtained in advance. On the other hand, if the power generation correction torque is less than the threshold value as a result of the determination in S24, K is determined according to the vehicle speed according to the pattern (IV) obtained in advance. The determinations at S22, S23, and S24 are for providing hysteresis to the power generation correction torque to prevent hunting.

そして、図16に示すように、求めた発電補正トルク配分係数Kに基づき、発電補正トルクを、補正エンジントルク(エンジントルク補正分)と補正クラッチトルク容量(第2クラッチトルク補正分)とに配分する。図16においては、発電補正トルク配分係数Kに対し、変化率制限を施し、ドライバーに違和感を与えないようにしている。   Then, as shown in FIG. 16, based on the obtained power generation correction torque distribution coefficient K, the power generation correction torque is distributed to the correction engine torque (engine torque correction amount) and the correction clutch torque capacity (second clutch torque correction amount). To do. In FIG. 16, a rate of change restriction is applied to the power generation correction torque distribution coefficient K so that the driver does not feel uncomfortable.

図14〜図16に示すように、発電補正トルク配分手段65では、目標発電量(目標発電トルク)に対する実発電量(実MGトルク)と、アクセル開度、車速、シフトレンジといったドライバー意図、車両状態を考慮して、発電補正トルクをエンジンおよび第2クラッチへと配分している。このように構成することで、ドライバーに違和感を与えることなく、また、アイドル回転のような低回転域や気圧等の環境の変化によらず、目標発電量を実現することができる。また、非走行状態(P、Nレンジ)/走行状態(D、Rレンジ)のいずれの状態でも、同じ制御系で対処することができる。   As shown in FIGS. 14 to 16, in the power generation correction torque distribution means 65, the actual power generation amount (actual MG torque) with respect to the target power generation amount (target power generation torque), driver intention such as accelerator opening, vehicle speed, shift range, vehicle The power generation correction torque is distributed to the engine and the second clutch in consideration of the state. With this configuration, it is possible to achieve the target power generation amount without giving the driver a sense of incongruity, and without depending on a low rotation region such as idle rotation or an environmental change such as atmospheric pressure. Further, the same control system can cope with any state of the non-running state (P, N range) / running state (D, R range).

<補正トルク位相補償演算手段81について>
図17は補正トルク位相補償演算手段81の一例の構成を示す図である。図17において、配分された補正トルク、ここでは、補正エンジントルクと補正クラッチトルク容量は、実現するアクチュエータの特性が異なることを考慮して位相補償を行う。例えば、図17に示す例では、エンジンおよび第2クラッチの特性より、補正クラッチトルク容量を補正トルク位相補償演算手段81で位相補償して、応答性の遅いエンジンに合わせることで、両者の補正トルクの位相を合わせている。このように構成することで、ドライバーに違和感を与えないように、偏差を補正する2つのアクチュエータ(エンジンおよび第2クラッチ)の位相を合わせることができ、好適に目標発電量を実現することができる。
<Regarding Correction Torque Phase Compensation Calculation Unit 81>
FIG. 17 is a diagram showing a configuration of an example of the correction torque phase compensation calculation means 81. As shown in FIG. In FIG. 17, the distributed correction torque, here, the correction engine torque and the correction clutch torque capacity are subjected to phase compensation in consideration of the fact that the characteristics of the actuator to be realized are different. For example, in the example shown in FIG. 17, the corrected clutch torque capacity is phase-compensated by the corrected torque phase compensation calculation means 81 based on the characteristics of the engine and the second clutch, and the corrected torque of both is adjusted by matching the engine with a slow response. Are in phase. With this configuration, the phases of the two actuators (engine and second clutch) for correcting the deviation can be matched so as not to give the driver a sense of incongruity, and the target power generation amount can be suitably realized. .

<目標発電量演算手段62について>
図18および図19はそれぞれ目標発電量演算手段62の一例を説明するための図であり、図18は目標発電量演算の考え方を示し、図19は目標発電量の演算(SOC適切時)の一例を示す。図18および図19に示す例において、目標発電量は、基本的にアクセル開度(APO:ドライバー要求駆動力)とバッテリの充電状態(SOC)をもとに算出される。
<Regarding the target power generation amount calculating means 62>
18 and 19 are diagrams for explaining an example of the target power generation amount calculation means 62. FIG. 18 shows the concept of target power generation amount calculation, and FIG. 19 shows the calculation of the target power generation amount (when the SOC is appropriate). An example is shown. In the example shown in FIGS. 18 and 19, the target power generation amount is basically calculated based on the accelerator opening (APO: driver requested driving force) and the state of charge (SOC) of the battery.

図18に示す例において、SOC:高と定義した状態では、基本的に発電は行わずエンジンのみで走行を行う。SOC:低と定義した状態では、基本的にバッテリが入力可能な電力に応じて目標発電量を演算する。但し、アクセル開度小時は、エンジントルクの音・振動から要求される制限を考慮する。音・振動からの要求は、エンジン回転、車速等を考慮して決める。SOC:適切と定義した状態では、アクセル開度によって重視する効率(ENG、MG)を切り換える。SOC:適切状態では、ENGトルクとMGトルクとの効率を考慮して目標発電量を演算する。具体的な一例としては、以下に示す図19の例に従って演算する。また、要求された駆動力に応じて、目標発電量は正とする(アシスト走行)。SOC:適切と定義した状態かつアクセル開度小時は、ENGトルクの音・振動から要求される制限を考慮する。   In the example shown in FIG. 18, in a state defined as SOC: high, basically, power generation is not performed, and only the engine travels. In the state defined as SOC: low, the target power generation amount is basically calculated according to the power that can be input by the battery. However, when the accelerator opening is small, the restrictions required from the sound and vibration of the engine torque are taken into account. The demand from sound and vibration is determined in consideration of engine rotation, vehicle speed, etc. SOC: In a state defined as appropriate, the efficiency (ENG, MG) to be emphasized is switched depending on the accelerator opening. SOC: In an appropriate state, the target power generation amount is calculated in consideration of the efficiency of the ENG torque and the MG torque. As a specific example, calculation is performed according to the example of FIG. Further, the target power generation amount is positive (assist travel) according to the requested driving force. SOC: When the state is defined as appropriate and the accelerator opening is small, the restriction required from the sound / vibration of the ENG torque is taken into consideration.

図19に従って、SOC適切時の目標発電量演算の一例を説明すると、以下の通りとなる。
(1)エンジン効率マップより、エンジン回転と目標駆動トルクをオフセットしたマップを切り出す。
(2)MG効率マップより、同じ回転におけるマップを切り出す。
(3)(1)と(2)との積算結果より、最も効率が良くなる目標発電トルクを算出する。
(4)APO小時は、(3)で演算した発電量が、エンジントルク制限−目標駆動トルク以下になるようにする。
An example of the target power generation amount calculation when the SOC is appropriate will be described with reference to FIG.
(1) A map in which the engine rotation and the target drive torque are offset is cut out from the engine efficiency map.
(2) A map at the same rotation is cut out from the MG efficiency map.
(3) Based on the integration result of (1) and (2), the target power generation torque with the highest efficiency is calculated.
(4) When the APO is small, the power generation amount calculated in (3) is set to be equal to or less than engine torque limit-target drive torque.

図18および図19に示す目標発電量演算の一例では、要求された駆動力に応じて、目標発電量を正とすること(アシスト走行をすること)で、アシスト走行時にも、同じ制御系で対処することができる。また、目標発電量をエンジン及びモータの効率を考慮して決定しているため、効率の良い発電を行うことができ、燃費が向上する。   In the example of the target power generation amount calculation shown in FIGS. 18 and 19, the target power generation amount is set to be positive (assist travel is performed) according to the requested driving force, and the same control system is used during assist travel. Can be dealt with. Further, since the target power generation amount is determined in consideration of the efficiency of the engine and the motor, efficient power generation can be performed and fuel efficiency is improved.

本発明のハイブリッド車両の発電制御方法によれば、回転数制御中のモータジェネレータの実トルクと、モータジェネレータの目標発電量(目標発電トルク)との偏差から、エンジンおよび第2のクラッチのトルクを補正し、目標発電量を実現しているため、実際のモータジェネレータのトルクとモータジェネレータの目標発電トルクとが一致し、エネルギー収支の精度が良好なハイブリッド車両等の発電制御方法として好適に用いることができる。   According to the power generation control method for a hybrid vehicle of the present invention, the torque of the engine and the second clutch is calculated from the deviation between the actual torque of the motor generator during the rotational speed control and the target power generation amount (target power generation torque) of the motor generator. Since the target power generation amount is corrected, the actual motor generator torque matches the target power generation torque of the motor generator, and it should be used suitably as a power generation control method for hybrid vehicles and the like with good energy balance accuracy. Can do.

本発明の発電制御方法の対象となるハイブリッド車両のパワートレイン系の構成を説明するための図である。It is a figure for demonstrating the structure of the powertrain type | system | group of the hybrid vehicle used as the object of the electric power generation control method of this invention. 制御装置を含んだハイブリッドシステムの構成の一例を説明するための図である。It is a figure for demonstrating an example of a structure of the hybrid system containing a control apparatus. 本発明のハイブリッド車両の発電制御方法を実施する制御構成の一例を説明するための図である。It is a figure for demonstrating an example of the control structure which implements the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の一例を説明するためのタイムチャートである。4 is a time chart for explaining an example of an APO state, an MG and CL2 torque state, and a rotation state in the power generation control method for a hybrid vehicle of the present invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the other example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の更に他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the further another example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の更に他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the further another example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の更に他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the further another example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の更に他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the further another example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の更に他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the further another example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 本発明のハイブリッド車両の発電制御方法における、APOの状態、MGおよびCL2トルクの状態、回転の状態の更に他の例を説明するためのタイムチャートである。It is a time chart for demonstrating the further another example of the state of APO, the state of MG and CL2 torque, and the state of rotation in the electric power generation control method of the hybrid vehicle of this invention. 発電補正トルク演算手段64の一例の構成を示す図である。FIG. 4 is a diagram showing an example of the configuration of a power generation correction torque calculation means 64. 発電補正トルク配分手段65の一例の構成を説明するための図である。It is a figure for demonstrating the structure of an example of the electric power generation correction torque distribution means 65. FIG. 発電補正トルク配分手段65の他の例の構成を説明するための図である。It is a figure for demonstrating the structure of the other example of the electric power generation correction torque distribution means 65. FIG. 発電補正トルク配分手段65の更に他の例の構成を説明するための図である。It is a figure for demonstrating the structure of the further another example of the electric power generation correction torque distribution means 65. FIG. 補正トルク位相補償演算手段81の一例の構成を示す図である。FIG. 6 is a diagram showing a configuration of an example of a correction torque phase compensation calculation unit 81. 目標発電量演算手段62の一例を説明するための図である。It is a figure for demonstrating an example of the target electric power generation amount calculating means 62. FIG. 目標発電量演算手段62の他の例を説明するための図である。It is a figure for demonstrating the other example of the target electric power generation amount calculating means 62. FIG. 従来のハイブリッド車両における問題点を説明するための図である。It is a figure for demonstrating the problem in the conventional hybrid vehicle.

符号の説明Explanation of symbols

1 エンジン(ENG)
2 モータジェネレータ(MG)
3 自動変速機(AT)
4 第1クラッチ(CL1)
5 第2クラッチ(CL2)
6 ディファレンシャルギア
7 タイヤ
10 エンジン回転センサ
11 MG回転センサ
12 AT入力回転センサ
13 AT出力回転センサ
14 ソレノイドバルブ(CL1用)
15 ソレノイドバルブ(CL2用)
16 SOCセンサ
17 APOセンサ
20 統合コントローラ
21 エンジンコントローラ
22 モータコントローラ
51 アクセル開度検出手段
52 車速検出手段
53 SOC検出手段
54 エンジン回転数検出手段
55 モータ回転数検出手段
56 推定モータトルク検出手段
61 目標駆動トルク演算手段
62 目標発電量演算手段
63 トルク配分演算手段
64 発電補正トルク演算手段
65 発電補正トルク配分手段
71 目標エンジントルク演算手段
72 エンジントルク制御手段
81 補正トルク位相補償演算手段
82 目標クラッチトルク容量演算手段
83 クラッチトルク制御手段
91 目標モータ回転数演算手段
92 目標回転数補正トルク演算手段
93 モータ回転数制御手段
1 Engine (ENG)
2 Motor generator (MG)
3 Automatic transmission (AT)
4 First clutch (CL1)
5 Second clutch (CL2)
6 Differential gear 7 Tire 10 Engine rotation sensor 11 MG rotation sensor 12 AT input rotation sensor 13 AT output rotation sensor 14 Solenoid valve (for CL1)
15 Solenoid valve (for CL2)
DESCRIPTION OF SYMBOLS 16 SOC sensor 17 APO sensor 20 Integrated controller 21 Engine controller 22 Motor controller 51 Accelerator opening degree detection means 52 Vehicle speed detection means 53 SOC detection means 54 Engine rotation speed detection means 55 Motor rotation speed detection means 56 Estimated motor torque detection means 61 Target drive Torque calculation means 62 Target power generation amount calculation means 63 Torque distribution calculation means 64 Power generation correction torque calculation means 65 Power generation correction torque distribution means 71 Target engine torque calculation means 72 Engine torque control means 81 Correction torque phase compensation calculation means 82 Target clutch torque capacity calculation Means 83 Clutch torque control means 91 Target motor speed calculation means 92 Target speed correction torque calculation means 93 Motor speed control means

Claims (7)

エンジンと、モータジェネレータと、変速機とを、モータジェネレータおよび変速機間を切り離し可能に結合する変速機側クラッチにより駆動結合してなるハイブリッド車両の発電制御方法において、回転数制御中のモータジェネレータの実トルクと、モータジェネレータの目標発電量(目標発電トルク)との偏差から、エンジンおよび変速機側クラッチのトルクを補正し、目標発電量を実現することを特徴とするハイブリッド車両の発電制御方法。   In a power generation control method for a hybrid vehicle in which an engine, a motor generator, and a transmission are drive-coupled by a transmission-side clutch that detachably couples the motor generator and the transmission, A power generation control method for a hybrid vehicle, wherein a target power generation amount is realized by correcting torques of an engine and a transmission side clutch from a deviation between an actual torque and a target power generation amount (target power generation torque) of a motor generator. ハイブリッド車両が、エンジンおよびモータジェネレータ間を切り離し可能に結合するエンジン側クラッチを備えることを特徴とする請求項1に記載のハイブリッド車両の発電制御方法。   The hybrid vehicle power generation control method according to claim 1, wherein the hybrid vehicle includes an engine-side clutch that detachably couples the engine and the motor generator. モータジェネレータの実トルクと目標発電量との偏差としての発電補正トルクを、アクセルペダル操作量、車速、シフトレンジに応じて、エンジンおよび第2のクラッチに配分することを特徴とする請求項1または2に記載のハイブリッド車両の発電制御方法。   The power generation correction torque as a deviation between the actual torque of the motor generator and the target power generation amount is distributed to the engine and the second clutch according to the accelerator pedal operation amount, the vehicle speed, and the shift range. 3. A power generation control method for a hybrid vehicle according to 2. 目標発電量を、バッテリの充電状態(SOC)と、エンジンおよびモータジェネレータの効率と、を考慮して決定することを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド車両の発電制御方法。   The power generation of the hybrid vehicle according to any one of claims 1 to 3, wherein the target power generation amount is determined in consideration of a state of charge (SOC) of the battery and the efficiency of the engine and the motor generator. Control method. 目標発電量の偏差を補正するために、エンジンおよび第2クラッチへの補正指令を位相を合わせることを特徴とする請求項1〜4のいずれか1項に記載のハイブリッド車両の発電制御方法。   5. The power generation control method for a hybrid vehicle according to claim 1, wherein phases of correction commands for the engine and the second clutch are matched in order to correct a deviation of the target power generation amount. 6. エンジントルク指令に目標回転数変動分を考慮することを特徴とする請求項1〜5のいずれか1項に記載のハイブリッド車両の発電制御方法。   6. The power generation control method for a hybrid vehicle according to any one of claims 1 to 5, wherein a target rotational speed variation is taken into account in the engine torque command. モータアシストが必要になった場合は、目標発電量を正の値として扱うことを特徴とする請求項1〜6のいずれか1項に記載のハイブリッド車両の発電制御方法。   The power generation control method for a hybrid vehicle according to any one of claims 1 to 6, wherein when the motor assist becomes necessary, the target power generation amount is handled as a positive value.
JP2008110336A 2008-04-21 2008-04-21 Power generation control method for hybrid vehicle Active JP5169433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110336A JP5169433B2 (en) 2008-04-21 2008-04-21 Power generation control method for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110336A JP5169433B2 (en) 2008-04-21 2008-04-21 Power generation control method for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2009255876A true JP2009255876A (en) 2009-11-05
JP5169433B2 JP5169433B2 (en) 2013-03-27

Family

ID=41383863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110336A Active JP5169433B2 (en) 2008-04-21 2008-04-21 Power generation control method for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5169433B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091626A (en) * 2010-10-26 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device
US8498765B2 (en) 2010-09-29 2013-07-30 Aisin Aw Co., Ltd. Control device
US20140232112A1 (en) * 2011-12-14 2014-08-21 Mitsubishi Electric Corporation Hybrid-vehicle power generator control apparatus
JP2014213823A (en) * 2013-04-30 2014-11-17 日産自動車株式会社 Control system of hybrid vehicle
US8992377B2 (en) 2010-03-31 2015-03-31 Aisin Aw Co., Ltd. Control device
US9067592B2 (en) 2010-03-31 2015-06-30 Aisin Aw Co., Ltd. Control device
KR20170005763A (en) * 2015-07-06 2017-01-16 신에쓰 가가꾸 고교 가부시끼가이샤 Powder coating composition and articles coated therewith
CN107303906A (en) * 2016-04-18 2017-10-31 现代自动车株式会社 For the apparatus and method for the engine clutch for controlling motor vehicle driven by mixed power
CN113734141A (en) * 2020-05-27 2021-12-03 广州汽车集团股份有限公司 Method and system for controlling idle speed power generation power of vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109111B1 (en) 2014-02-20 2019-08-28 Panasonic Intellectual Property Management Co., Ltd. Vehicle hybrid system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155843A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Driving device of hybrid vehicle
JP2008030560A (en) * 2006-07-27 2008-02-14 Nissan Motor Co Ltd Motor rotation control device of hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155843A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Driving device of hybrid vehicle
JP2008030560A (en) * 2006-07-27 2008-02-14 Nissan Motor Co Ltd Motor rotation control device of hybrid vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992377B2 (en) 2010-03-31 2015-03-31 Aisin Aw Co., Ltd. Control device
US9446761B2 (en) 2010-03-31 2016-09-20 Aisin Aw Co., Ltd. Control device
US9067592B2 (en) 2010-03-31 2015-06-30 Aisin Aw Co., Ltd. Control device
JP2014196101A (en) * 2010-09-29 2014-10-16 アイシン・エィ・ダブリュ株式会社 Controller
US8498765B2 (en) 2010-09-29 2013-07-30 Aisin Aw Co., Ltd. Control device
JP2012091626A (en) * 2010-10-26 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device
US20140232112A1 (en) * 2011-12-14 2014-08-21 Mitsubishi Electric Corporation Hybrid-vehicle power generator control apparatus
US9145061B2 (en) * 2011-12-14 2015-09-29 Mitsubishi Electric Corporation Hybrid-vehicle power generator control apparatus
JP2014213823A (en) * 2013-04-30 2014-11-17 日産自動車株式会社 Control system of hybrid vehicle
KR20170005763A (en) * 2015-07-06 2017-01-16 신에쓰 가가꾸 고교 가부시끼가이샤 Powder coating composition and articles coated therewith
KR102607012B1 (en) 2015-07-06 2023-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Powder coating composition and articles coated therewith
CN107303906A (en) * 2016-04-18 2017-10-31 现代自动车株式会社 For the apparatus and method for the engine clutch for controlling motor vehicle driven by mixed power
CN107303906B (en) * 2016-04-18 2021-03-16 现代自动车株式会社 Apparatus and method for controlling engine clutch of hybrid vehicle
CN113734141A (en) * 2020-05-27 2021-12-03 广州汽车集团股份有限公司 Method and system for controlling idle speed power generation power of vehicle

Also Published As

Publication number Publication date
JP5169433B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5169433B2 (en) Power generation control method for hybrid vehicle
US9126583B2 (en) Control device for hybrid vehicle
US9604623B2 (en) Drive control system for electric motor and method of controlling electric motor
US9050970B2 (en) Driving torque control device for hybrid vehicle
JP5223603B2 (en) Control device for hybrid vehicle
US8989936B2 (en) Hybrid vehicle control system
JP5176935B2 (en) Control device for hybrid vehicle
EP2873576B1 (en) Hybrid vehicle control device and hybrid vehicle control method
JP3454172B2 (en) Hybrid vehicle control method
JP2010215097A (en) Clutch control device for hybrid car
JP5374914B2 (en) Control device for hybrid vehicle
US11680638B2 (en) Shift control method and shift control system
JP5293268B2 (en) Clutch control device for hybrid vehicle
JP2009090898A (en) Driving force controller
JP2010143512A (en) Control apparatus for hybrid vehicle
JP4086053B2 (en) Control device for hybrid vehicle
JP5407328B2 (en) Control device for hybrid vehicle
JP4534934B2 (en) Power generation control device for hybrid vehicle
JP5761327B2 (en) Control device for hybrid vehicle
KR100916459B1 (en) Calibration method for clutch property of hybrid electric vehicle
JP6011170B2 (en) Motor control device and motor control method
JP2006180657A (en) Four-wheel-drive hybrid vehicle
JP2017013583A (en) Hybrid-vehicular engine torque correction apparatus
US9688266B2 (en) Torque-generating system and method with improved power domain-based control at zero speed
JP2020040449A (en) Control device of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130625