JP2009255057A - Particulate material combustion catalyst, its manufacturing method, and filter for purifying exhaust gas - Google Patents

Particulate material combustion catalyst, its manufacturing method, and filter for purifying exhaust gas Download PDF

Info

Publication number
JP2009255057A
JP2009255057A JP2009051313A JP2009051313A JP2009255057A JP 2009255057 A JP2009255057 A JP 2009255057A JP 2009051313 A JP2009051313 A JP 2009051313A JP 2009051313 A JP2009051313 A JP 2009051313A JP 2009255057 A JP2009255057 A JP 2009255057A
Authority
JP
Japan
Prior art keywords
combustion catalyst
composite oxide
combustion
temperature
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009051313A
Other languages
Japanese (ja)
Other versions
JP5168193B2 (en
Inventor
Masato Machida
正人 町田
Shin Hamada
心 濱田
Tatsuro Miyazaki
達郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Kumamoto University NUC
Original Assignee
Dowa Electronics Materials Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Kumamoto University NUC filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2009051313A priority Critical patent/JP5168193B2/en
Publication of JP2009255057A publication Critical patent/JP2009255057A/en
Application granted granted Critical
Publication of JP5168193B2 publication Critical patent/JP5168193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate material (PM) combustion catalyst which suppresses the deterioration of particulate combustion activities due to the poisoning by a sulfur compound included in a diesel engine exhaust gas and the like and which is capable of burning a particulate material at a low temperature, and to provide a filter for purifying an exhaust gas using the particurate material combustion catalyst. <P>SOLUTION: The particulate material combustion catalyst is a composite oxide with the perovskite type structure having silver included therein wherein site A of the composite oxide contains an element selected from Mg, Ca, Sr, Ba and the like, and site B contains an element selected from Ce, Zr, Pr and the like. The particulate material combustion catalyst is prepared by forming the pevroskite type composite oxide, having silver included and then performing the heat treatment under a temperature of 450-950°C. Also the filter for purifying the exhaust gas having the particulate material combustion catalyst supported on the substrate is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は粒子状物質燃焼触媒およびこれを用いた排気ガス浄化用フィルターに係り、自動車用途を始めとした、ディーゼル機関等から排出される粒子状物質を燃焼するための粒子状物質燃焼触媒およびその製造方法並びに排気ガス浄化用フィルターに関する。   The present invention relates to a particulate matter combustion catalyst and an exhaust gas purification filter using the particulate matter combustion catalyst, and more particularly to a particulate matter combustion catalyst for burning particulate matter discharged from a diesel engine or the like, including automobile applications. The present invention relates to a manufacturing method and an exhaust gas purification filter.

ディーゼル機関は熱効率が高く、欧州では広く自動車用のエンジン機関として使用されている。ただし我が国において、ディーゼル機関は、その排出ガス中に含まれる粒子状物質(Particulate Matterのことである。以下、「PM」と記載する場合がある。)等の印象が悪く、広く利用されているとは言えない状況だった。   Diesel engines have high thermal efficiency and are widely used in Europe as engine engines for automobiles. However, in Japan, diesel engines are widely used because they have a poor impression of particulate matter (particulate matter, hereinafter referred to as “PM”) contained in the exhaust gas. It was a situation that could not be said.

しかし、現在では排気ガスの後処理技術の進展によって、こうしたディーゼル機関のPMの排出量は、各国の排出基準を大幅に低減する迄になっている状況ではある。しかしながら、地球環境のこれ以上の破壊を食い止めるため、より厳しい排出基準が指向されるようになっており、今まで以上にPMを除去できるような浄化機構の開発が求められている。   However, nowadays, due to the progress of exhaust gas aftertreatment technology, the amount of PM emissions from diesel engines has been greatly reduced to the emission standards of each country. However, in order to stop further destruction of the global environment, more stringent emission standards have been directed, and there is a need for the development of a purification mechanism that can remove PM more than ever.

ディーゼル排ガス中に含まれるPMを除去する浄化機構としては、後処理工程に尿素を噴霧して排ガスを浄化する方法、後処理工程にフィルターを配置してPMを除去する方法などが考えられている。しかし、尿素を噴霧する方法では、尿素を連続的に添加する機構が必要であり、機構が複雑になりすぎる上、ランニングコストも高い。   As a purification mechanism for removing PM contained in diesel exhaust gas, a method of purifying exhaust gas by spraying urea in a post-treatment process, a method of removing PM by arranging a filter in the post-treatment process, and the like are considered. . However, the method of spraying urea requires a mechanism for continuously adding urea, the mechanism becomes too complicated, and the running cost is high.

一方、フィルターを配置してPMを除去する方法においては、フィルター内に堆積したPMを除去するために、当該フィルターを加熱してPMを燃焼させることも行われている。
この場合、フィルターを加熱してPMを燃焼させる際に、フィルター内に想定以上のPMが堆積した状態で燃焼処理が行われることもある。このような燃焼がおこると、フィルターに熱がかかりすぎてしまい、フィルターそのものが溶損してしまうことがある。このようなフィルター溶損を回避するため、フィルターにかかる熱は、可能な限り低い方が好ましいとされている。そこで、フィルターに、燃焼温度を低減させる成分として燃焼補助触媒を含有させ、PMの燃焼温度を低減させる提案がなされてきた(例えば、特許文献1〜3参照)。
On the other hand, in the method of removing PM by arranging a filter, in order to remove PM accumulated in the filter, the filter is heated to burn PM.
In this case, when the filter is heated to burn PM, the combustion process may be performed in a state where more PM than expected is accumulated in the filter. When such combustion occurs, the filter is heated too much and the filter itself may be melted. In order to avoid such filter melting damage, the heat applied to the filter is preferably as low as possible. Therefore, proposals have been made to reduce the combustion temperature of PM by adding a combustion auxiliary catalyst as a component for reducing the combustion temperature to the filter (see, for example, Patent Documents 1 to 3).

特開2003−062432号公報JP 2003-062432 A 特開平10−151348号公報JP-A-10-151348 特開2003−170051号公報JP 2003-170051 A

上述したように、フィルターに対して燃焼補助触媒を含有させることによって、フィルターに対する熱的ダメージを低減する検討が行われている。
しかしながら、本発明者らの研究によると、燃料である軽油にわずかながらも含まれる硫黄に起因して生成する含硫黄酸性ガスの影響により、当該燃焼補助触媒のPM燃焼活性は著しく低下することが判明した。さらに自動車排ガス浄化用途の触媒においては、とりわけ長寿命で周囲の環境に左右されず触媒性能を持続させることが望まれる。
As described above, studies have been made to reduce thermal damage to the filter by including a combustion auxiliary catalyst in the filter.
However, according to the study by the present inventors, the PM combustion activity of the combustion auxiliary catalyst is significantly lowered due to the influence of sulfur-containing acidic gas produced due to the slight amount of sulfur contained in the light diesel fuel. found. Further, in the catalyst for automobile exhaust gas purification, it is desired to maintain the catalyst performance, particularly with a long life and not depending on the surrounding environment.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、ディーゼルエンジン排気ガス等に含まれる硫黄化合物の被毒による、PM燃焼活性低下が抑制され、PMを低温で燃焼させることができるPM燃焼触媒、その製造方法、並びに排気ガス浄化用フィルターを提供することにある。   The present invention has been made in view of such problems of the prior art, and its object is to suppress a decrease in PM combustion activity due to poisoning of sulfur compounds contained in diesel engine exhaust gas and the like. An object of the present invention is to provide a PM combustion catalyst capable of burning PM at a low temperature, a manufacturing method thereof, and an exhaust gas purifying filter.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ペロブスカイト(一般式:ABO)型構造を有する複合酸化物のAサイトと、Bサイトとに特定の群から選択される金属元素を配し、さらに銀を含有させたものをPM燃焼触媒とすることで上記課題が解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention are selected from a specific group for the A site and the B site of the complex oxide having a perovskite (general formula: ABO 3 ) type structure. It has been found that the above problem can be solved by using a PM combustion catalyst in which a metal element is further added and silver is further contained, and the present invention has been completed.

即ち、上述の課題を解決する第1の発明は、
ペロブスカイト(ABO)型構造を有する複合酸化物に、銀が含有されている粒子状物質燃焼触媒であって、
前記複合酸化物のAサイトはMg、Ca、Sr、Baから選ばれる少なくとも一つの元素、BサイトはCe、Zr、Prから選ばれる少なくとも一つの元素であることを特徴とする粒子状物質燃焼触媒である。
That is, the first invention for solving the above-described problem is
A particulate matter combustion catalyst in which silver is contained in a composite oxide having a perovskite (ABO 3 ) type structure,
The particulate oxide combustion catalyst characterized in that the A site of the composite oxide is at least one element selected from Mg, Ca, Sr and Ba, and the B site is at least one element selected from Ce, Zr and Pr. It is.

第2の発明は、
前記複合酸化物がBaCeOである、第1の発明に記載の粒子状物質燃焼触媒である。
The second invention is
The particulate matter combustion catalyst according to the first invention, wherein the composite oxide is BaCeO 3 .

第3の発明は、
前記Aサイトの元素の一部が三価の元素A’で置換された(A1−xA’BO)型構造を有し、xが0<x≦0.6の複合酸化物である第1の発明に記載の粒子状物質燃焼触媒である。
The third invention is
It is a composite oxide having a (A 1-x A ′ x BO 3 ) type structure in which a part of the element at the A site is substituted with a trivalent element A ′, and x is 0 <x ≦ 0.6. A particulate matter combustion catalyst according to a first invention.

第4の発明は、
前記複合酸化物が、Ba1−xLaCeOである、第3の発明に記載の粒子状物質燃焼触媒である。
The fourth invention is:
The particulate matter combustion catalyst according to the third invention, wherein the composite oxide is Ba 1-x La x CeO 3 .

第5の発明は、
第1から第4のいずれかの発明に記載の粒子状物質燃焼触媒の製造方法であって、
ペロブスカイト構造を有する(ABO)型複合酸化物、または、(A1−xA’BO)型複合酸化物を形成させた後、当該複合酸化物に銀を含有させ、その後450〜950℃で熱処理する粒子状物質燃焼触媒の製造方法である。
The fifth invention is:
A method for producing a particulate matter combustion catalyst according to any one of the first to fourth inventions,
(ABO 3 ) type complex oxide having a perovskite structure or (A 1-x A ′ x BO 3 ) type complex oxide is formed, then silver is contained in the complex oxide, and then 450 to 950 It is a manufacturing method of the particulate matter combustion catalyst heat-processed at ° C.

第6の発明は、
第1から第4のいずれかの発明に記載の粒子状物質燃焼触媒が、フィルター母材に担持されている排気ガス浄化用フィルターである。
The sixth invention is:
The particulate matter combustion catalyst according to any one of the first to fourth inventions is an exhaust gas purification filter supported on a filter base material.

本発明に係る粒子状物質燃焼触媒、排気ガス浄化用フィルターは、PM燃焼において優れた低温燃焼活性を有すると共に、硫黄化合物に対する被毒耐性を有する。   The particulate matter combustion catalyst and the exhaust gas purifying filter according to the present invention have excellent low-temperature combustion activity in PM combustion, and have poisoning resistance to sulfur compounds.

実施例1〜3および比較例1、2に係る試料のCB(カーボンブラック)燃焼活性を示すグラフである。It is a graph which shows the CB (carbon black) combustion activity of the sample which concerns on Examples 1-3 and Comparative Examples 1 and 2. FIG. 実施例1〜3に係る試料のXRDパターンを示すグラフである。It is a graph which shows the XRD pattern of the sample which concerns on Examples 1-3.

本発明に係るPM燃焼触媒について詳細に説明する。
本発明に係るPM燃焼触媒の担体は、ペロブスカイト型構造(一般式:ABO)を有し、Aサイトがマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、またはバリウム(Ba)、およびこれらの任意の組合せに係るアルカリ土類金属元素であり、Bサイトがセリウム(Ce)、ジルコニウム(Zr)またはプラセオジム(Pr)、およびこれらの任意の組合せに係る元素である複合酸化物である。さらに、当該担体である複合酸化物粒子には銀(Ag)が含有されている。
The PM combustion catalyst according to the present invention will be described in detail.
The PM combustion catalyst carrier according to the present invention has a perovskite structure (general formula: ABO 3 ), and the A site is magnesium (Mg), calcium (Ca), strontium (Sr), or barium (Ba), and A complex oxide which is an alkaline earth metal element according to any combination thereof, and the B site is an element according to cerium (Ce), zirconium (Zr) or praseodymium (Pr), and any combination thereof. Furthermore, the composite oxide particles as the carrier contain silver (Ag).

PM燃焼触媒の担体についてさらに説明する。
上述したように、本発明に係るPM燃焼触媒の担体を構成する複合酸化物において、Aサイトを占めるアルカリ土類元素は、マグネシウム、カルシウム、ストロンチウム、またはバリウム、およびこれらの任意の組合せに係るものを用いる。中でも、バリウムの単独選択、または、バリウムと他の元素組み合わせを選択するのが好ましい。
The carrier for the PM combustion catalyst will be further described.
As described above, in the complex oxide constituting the carrier of the PM combustion catalyst according to the present invention, the alkaline earth element occupying the A site relates to magnesium, calcium, strontium, or barium, and any combination thereof. Is used. Among these, it is preferable to select barium alone or a combination of barium and other elements.

そして、本発明に係るPM燃焼触媒の担体を構成する複合酸化物において、Aサイトの一部を、三価の元素A’で置換することで、PMの燃焼開始をより低温で行うことが出来る。このとき、当該複合酸化物のペロブスカイト型構造は、一般式:A1−xA’BOで示される。但し、Aサイトの三価の元素A’による置換量xの範囲は、0<x≦0.6、好ましくは0.1≦x≦0.6である。
ここで、三価の元素A’は、La、Nd、Sm、Gd、Dy、Y、Biから選択される1種類以上の元素であることが好ましく、Laであることがさらに好ましい。
In the composite oxide constituting the carrier of the PM combustion catalyst according to the present invention, PM combustion can be started at a lower temperature by replacing part of the A site with the trivalent element A ′. . At this time, the perovskite structure of the composite oxide is represented by a general formula: A 1-x A ′ x BO 3 . However, the range of the substitution amount x by the trivalent element A ′ at the A site is 0 <x ≦ 0.6, preferably 0.1 ≦ x ≦ 0.6.
Here, the trivalent element A ′ is preferably one or more elements selected from La, Nd, Sm, Gd, Dy, Y, and Bi, and more preferably La.

他方、本発明に係るPM燃焼触媒の担体を構成する複合酸化物において、Bサイトを占める元素としては、セリウム、ジルコニウムまたはプラセオジム、およびこれらの任意の組合せに係る元素を用いる。中でも、セリウムの単独選択、または、セリウムと他の元素組み合わせを選択するのが好ましい。
そして、前述の組み合わせの元素がAサイトにはA、A’元素が、BサイトにはB元素が、おのおの均質に含まれていることが好ましい。
On the other hand, in the composite oxide constituting the carrier of the PM combustion catalyst according to the present invention, as the element occupying the B site, elements related to cerium, zirconium, or praseodymium, and any combination thereof are used. Among these, it is preferable to select cerium alone or a combination of cerium and other elements.
In addition, it is preferable that the elements of the combination described above contain A and A ′ elements in the A site, and the B element in the B site.

上述の組成構成をとることで、本発明に係るPM燃焼触媒は、燃料中に微量に含まれる硫黄分に由来する含硫黄ガスに対して高い耐性を有するようになった。これは上述の組成構成を採用したことにより、触媒粒子上に別々に存在すると推測される硫黄分の吸着サイトと、PMの燃焼に寄与するサイトとのサイト間距離が適度なものに保たれることによると考えられる。当該サイト間距離が適度なものに保たれる結果、本発明に係るPM燃焼触媒は含硫黄ガスに対して高い耐性を有するようになり、PMの燃焼活性が低下し難くなっているものと考えられる。   By taking the composition composition described above, the PM combustion catalyst according to the present invention has high resistance to sulfur-containing gas derived from a sulfur content contained in a trace amount in the fuel. By adopting the above-described composition, the site-to-site distance between the adsorption site of sulfur estimated to exist separately on the catalyst particles and the site contributing to PM combustion is maintained at an appropriate level. It is thought that. As a result of maintaining the appropriate distance between the sites, the PM combustion catalyst according to the present invention has high resistance to sulfur-containing gas, and it is considered that the PM combustion activity is hardly lowered. It is done.

さらに、ペロブスカイト型複合酸化物粒子へ銀を含有させることで、PMの着火開始温度のさらなる低減化が図られる。
これは、酸素放出能を有する本願発明に開示したペロブスカイト型構造を有する複合酸化物へ、PMの燃焼に対して高い活性を有するAgを含有させたことで、当該複合酸化物の酸素放出能を用いたPM燃焼開始温度の低温化が図れ、且つ、PMの燃焼反応に高い活性を有するAgにより、PM燃焼開始温度の低温化をより促進できたことによる。
Further, by adding silver to the perovskite complex oxide particles, the PM ignition start temperature can be further reduced.
This is because the composite oxide having the perovskite structure disclosed in the present invention having oxygen releasing ability contains Ag having high activity against PM combustion, thereby reducing the oxygen releasing ability of the composite oxide. This is because the PM combustion start temperature can be lowered, and the PM combustion start temperature can be further lowered by Ag having high activity in the PM combustion reaction.

本発明に係るPM燃焼触媒の製造方法について説明する。
Aサイトに配される元素を含む原料化合物、必要に応じて三価の元素A’ を含む原料
化合物、および、Bサイトに配される元素を含む原料化合物を準備する。このとき、これら原料化合物が、易水溶性の化合物であることが便宜上好ましい。
ねらいとするペロブスカイト型複合酸化物の組成に合わせて各原料を秤量し、純水等の適宜な溶媒に溶解させる。得られた各元素を含む溶媒を蒸発乾固した後、さらに十分に乾燥させ、600〜1400℃の温度で、5〜48時間焼成して前駆体を得る。当該焼成は空気中でも良い。
当該前駆体を、乳鉢等を用いて混合した後、800〜1400℃の温度で、5〜48時間焼成して、所望の組成を有するペロブスカイト型複合酸化物を得る。当該焼成は空気中でも良い。
得られた複合酸化物を、所定の含有量に相当する銀量を含有する銀塩水溶液(例えば、AgNO水溶液が好ましい。)に浸漬して含浸物とした。当該含浸物を、450〜950℃の温度で、1〜10時間熱処理し、銀を含有し所望の組成を有するペロブスカイト型複合酸化物を得た。当該熱処理は空気中でも良い。
ここで、熱処理温度を450℃以上とすることで、A元素の一部を、三価の元素A’元素に置換した場合の効果が顕著になる。一方、950℃以下とすることで含有された銀が飛散してしまうのを回避出来るため、銀の触媒効果が担保される。
A method for producing a PM combustion catalyst according to the present invention will be described.
A raw material compound containing an element arranged at the A site, a raw material compound containing a trivalent element A ′ as required, and a raw material compound containing an element arranged at the B site are prepared. At this time, it is preferable for convenience that these raw material compounds are easily water-soluble compounds.
Each raw material is weighed according to the composition of the target perovskite complex oxide and dissolved in an appropriate solvent such as pure water. The obtained solvent containing each element is evaporated to dryness, and then sufficiently dried, and calcined at a temperature of 600 to 1400 ° C. for 5 to 48 hours to obtain a precursor. The firing may be performed in air.
The precursor is mixed using a mortar or the like and then calcined at a temperature of 800 to 1400 ° C. for 5 to 48 hours to obtain a perovskite complex oxide having a desired composition. The firing may be performed in air.
The obtained composite oxide was immersed in a silver salt aqueous solution (for example, an AgNO 3 aqueous solution is preferable) containing a silver amount corresponding to a predetermined content to obtain an impregnated product. The impregnated product was heat-treated at a temperature of 450 to 950 ° C. for 1 to 10 hours to obtain a perovskite complex oxide containing silver and having a desired composition. The heat treatment may be performed in air.
Here, by setting the heat treatment temperature to 450 ° C. or more, the effect when a part of the A element is replaced with the trivalent element A ′ element becomes remarkable. On the other hand, since it can avoid that silver contained by being made into 950 degrees C or less is scattered, the catalytic effect of silver is ensured.

当該銀を含有するペロブスカイト型複合酸化物は、優れた特性を有するPM燃焼触媒である。当該PM燃焼触媒を、公知の方法によりフィルター母材に担持させた排気ガス浄化用フィルターも、高いPM燃焼活性を示し、且つ、排気ガス中の硫黄成分による吸着に伴うPM燃焼活性の低下がほとんど起こらないことが判明した。   The silver-containing perovskite complex oxide is a PM combustion catalyst having excellent characteristics. An exhaust gas purification filter in which the PM combustion catalyst is supported on a filter base material by a known method also exhibits high PM combustion activity, and almost no decrease in PM combustion activity due to adsorption by sulfur components in the exhaust gas. It turns out that it doesn't happen.

以下、担体としてBaCeO、SrCeO、BaZrO、および、Ba1−xLaCeOを用い、含有元素として銀を用いたPM燃焼触媒を例として、本発明をより具体的に説明する。尚、本発明の技術的範囲が、これらの特定の記載に限定されないことはもちろんである。 Hereinafter, the present invention will be described more specifically by taking as an example a PM combustion catalyst using BaCeO 3 , SrCeO 3 , BaZrO 3 , and Ba 1-x La x CeO 3 as a support and using silver as a contained element. Needless to say, the technical scope of the present invention is not limited to these specific descriptions.

[試料の調製]
(実施例1)
バリウム源として硝酸バリウム(Ba(NO)、セリウム源として硝酸セリウム(Ce(NO)を準備し、バリウムとセリウムとのモル比が1:1となる割合をもってイオン交換水に溶解させた。得られた硝酸バリウムと硝酸セリウムの混合水溶液を蒸発乾固した後、乾燥機で一晩乾燥し、空気中にて1000℃で、2時間焼成して前駆体を得た。得られた前駆体を、乳鉢を用いて20分間混合した後、空気中にて1000℃で、6時間焼成して、バリウムとセリウムとを含む複合酸化物を得た。得られた複合酸化物に対して銀量が10質量%に相当する銀を含むAgNO水溶液へ当該複合酸化物を含浸させ、乾燥して水分を除去することで、複合酸化物に銀を付着させた。そして当該含浸物を、空気中450℃で2時間、熱処理し、銀を含有するバリウムとセリウムとの複合酸化物を得た。
[Sample preparation]
Example 1
Barium nitrate (Ba (NO 3 ) 2 ) is prepared as the barium source, and cerium nitrate (Ce (NO 3 ) 3 ) is prepared as the cerium source, and the molar ratio of barium to cerium is 1: 1 in the ion-exchanged water. Dissolved. The obtained mixed aqueous solution of barium nitrate and cerium nitrate was evaporated to dryness, dried overnight in a drier, and calcined in air at 1000 ° C. for 2 hours to obtain a precursor. The obtained precursor was mixed for 20 minutes using a mortar and then calcined in air at 1000 ° C. for 6 hours to obtain a composite oxide containing barium and cerium. The composite oxide is impregnated with an AgNO 3 aqueous solution containing silver corresponding to 10% by mass of silver, and dried to remove moisture, thereby attaching silver to the composite oxide. I let you. The impregnated product was heat-treated at 450 ° C. for 2 hours in air to obtain a composite oxide of barium and cerium containing silver.

(実施例2)
Sr源として硝酸ストロンチウム(Sr(NO)、セリウム源として硝酸セリウム(Ce(NO)を準備し、ストロンチウム,セリウムとのモル比が1:1となる割合をもってイオン交換水に溶解させた。以降は、実施例1と同様の操作を行って、銀を含有するストロンチウムとセリウムとの複合酸化物を得た。
(Example 2)
Prepare strontium nitrate (Sr (NO 3 ) 2 ) as the Sr source and cerium nitrate (Ce (NO 3 ) 3 ) as the cerium source, and put it into ion-exchanged water at a molar ratio of 1: 1 with strontium and cerium. Dissolved. Thereafter, the same operation as in Example 1 was performed to obtain a composite oxide of strontium and cerium containing silver.

(実施例3)
バリウム源として硝酸バリウム(Ba(NO)、ジルコニウム源として硝酸ジルコニウム(ZrO(NO・2HO)を準備し、バリウム,ジルコニウムとのモル比が1:1となる割合をもってイオン交換水に溶解させた。以降は、実施例1と同様の操作を行って、銀を含有するバリウムとジルコニウムとの複合酸化物を得た。
(Example 3)
Barium nitrate (Ba (NO 3 ) 2 ) is prepared as the barium source, and zirconium nitrate (ZrO (NO 3 ) 2 · 2H 2 O) is prepared as the zirconium source, and the molar ratio of barium and zirconium is 1: 1. It was dissolved in ion exchange water. Thereafter, the same operation as in Example 1 was performed to obtain a composite oxide of barium and zirconium containing silver.

(比較例1)
Ce(NO・6HO水溶液(200g/L)へ0.1倍量のアンモニア水(28%)を滴下し、スラリーを調製した。得られたスラリーを90℃に加熱し、蒸発乾固させた。得られた乾固体を100℃でさらに乾燥させた後、空気中にて450℃で5時間焼成し、セリウム酸化物を得た。
(Comparative Example 1)
Was added dropwise and Ce (NO 3) 3 · 6H 2 O aqueous solution (200 g / L) to 0.1 times the amount of ammonia water (28%), to prepare a slurry. The resulting slurry was heated to 90 ° C. and evaporated to dryness. The obtained dry solid was further dried at 100 ° C. and then calcined in air at 450 ° C. for 5 hours to obtain a cerium oxide.

(比較例2)
得られた比較例1のセリウム酸化物に対して銀量が10質量%に相当する銀を含むAgNO水溶液へ、当該セリウム酸化物を含浸させた。そして当該含浸物を、空気中450℃で5時間焼成し、銀を含有するセリウム酸化物を得た。
(Comparative Example 2)
The obtained cerium oxide was impregnated with an aqueous AgNO 3 solution containing silver corresponding to 10% by mass of silver with respect to the obtained cerium oxide. The impregnated product was calcined in air at 450 ° C. for 5 hours to obtain cerium oxide containing silver.

(実施例4)
バリウム源として硝酸バリウム(Ba(NO)、ランタン源として硝酸ランタン(La(NO)、セリウム源として硝酸セリウム(Ce(NO)を準備し、バリウムとランタンとセリウムとのモル比が0.9:0.1:1となる割合をもってイオン交換水に溶解させた。得られた硝酸バリウム、硝酸ランタンと硝酸セリウムの混合水溶液を蒸発乾固した後、乾燥機で一晩乾燥し、空気中にて1000℃で2時間焼成して前駆体を得た。得られた前駆体を、乳鉢を用いて20分間混合した後、空気中にて1000℃で6時間焼成して、バリウムとランタンとセリウムとを含む複合酸化物を得た。得られた複合酸化物に対して銀量が10質量%に相当する銀を含むAgNO水溶液へ、当該複合酸化物を含浸させ、乾燥して水分を除去することで、複合酸化物に銀を付着させた。そして当該含浸物を、空気中600℃で2時間、熱処理し、銀を含有するバリウムとランタンとセリウムとの複合酸化物を得た。
Example 4
Barium nitrate as barium source (Ba (NO 3) 2) , lanthanum nitrate as the lanthanum source (La (NO 3) 3) , to prepare a cerium nitrate (Ce (NO 3) 3) as a cerium source, barium, lanthanum and cerium Was dissolved in ion-exchanged water at a ratio of 0.9: 0.1: 1. The obtained mixed aqueous solution of barium nitrate, lanthanum nitrate and cerium nitrate was evaporated to dryness, dried in a dryer overnight, and calcined in air at 1000 ° C. for 2 hours to obtain a precursor. The obtained precursor was mixed for 20 minutes using a mortar and then calcined in air at 1000 ° C. for 6 hours to obtain a composite oxide containing barium, lanthanum and cerium. The composite oxide is impregnated with an AgNO 3 aqueous solution containing silver corresponding to 10% by mass of silver, and dried to remove moisture, thereby removing silver from the composite oxide. Attached. The impregnated product was heat treated in air at 600 ° C. for 2 hours to obtain a composite oxide of barium, lanthanum, and cerium containing silver.

(実施例5)
AgNO水溶液への含浸処理後における、空気中での熱処理温度を600℃とした以外は実施例1と同様にして、銀を含有するバリウムとセリウムとの複合酸化物を得た。
(Example 5)
A composite oxide of barium and cerium containing silver was obtained in the same manner as in Example 1 except that the heat treatment temperature in air after the impregnation treatment with the AgNO 3 aqueous solution was 600 ° C.

(比較例3)
銀の含有工程を省略し、空気中での熱処理温度を1000℃にした以外は、実施例4と同様にしてバリウムとセリウムとの複合酸化物を得た。
(Comparative Example 3)
A composite oxide of barium and cerium was obtained in the same manner as in Example 4 except that the silver containing step was omitted and the heat treatment temperature in air was 1000 ° C.

(比較例4)
銀の含有工程を省略し、空気中での熱処理温度を1000℃にした以外は、実施例5と同様にして、バリウムとランタンとセリウムとの複合酸化物を得た。
(Comparative Example 4)
A composite oxide of barium, lanthanum, and cerium was obtained in the same manner as in Example 5 except that the silver containing step was omitted and the heat treatment temperature in air was 1000 ° C.

(実施例6〜9)
バリウムとランタンとの構成比を、Ba:La=0.4:0.6(実施例6)、0.6:0.4(実施例7)、0.7:0.3(実施例8)、0.8:0.2(実施例9)と変化させた以外は実施例4と同様にして、銀を含有するバリウムとランタンとセリウムとの複合酸化物を得た。
(Examples 6 to 9)
The composition ratio of barium and lanthanum is Ba: La = 0.4: 0.6 (Example 6), 0.6: 0.4 (Example 7), 0.7: 0.3 (Example 8). ), 0.8: 0.2 (Example 9) A composite oxide of barium, lanthanum, and cerium containing silver was obtained in the same manner as in Example 4, except that the ratio was changed to 0.8: 0.2 (Example 9).

(比較例4〜8)
バリウムとランタンとの構成比を、Ba:La=1.0:0.0(比較例4)、0.4:0.6(比較例5)、0.6:0.4(比較例6)、0.7:0.3(比較例7)、0.8:0.2(比較例8)と変化させた以外は比較例3と同様にして、バリウムとランタンとセリウムとの複合酸化物を得た。
(Comparative Examples 4 to 8)
The composition ratios of barium and lanthanum were Ba: La = 1.0: 0.0 (Comparative Example 4), 0.4: 0.6 (Comparative Example 5), 0.6: 0.4 (Comparative Example 6). ), 0.7: 0.3 (Comparative Example 7), and 0.8: 0.2 (Comparative Example 8), except that the composite oxidation of barium, lanthanum, and cerium was performed in the same manner as Comparative Example 3. I got a thing.

(実施例10、11)
銀含浸処理後における空気中での熱処理温度を、450℃(実施例10)、800℃(実施例11)と変化させた以外は実施例4と同様にして、銀を含有するバリウムとランタンとセリウムとの複合酸化物を得た。
(Examples 10 and 11)
In the same manner as in Example 4 except that the heat treatment temperature in air after the silver impregnation treatment was changed to 450 ° C. (Example 10) and 800 ° C. (Example 11), barium and lanthanum containing silver A complex oxide with cerium was obtained.

(実施例12)
銀含浸処理後における空気中での熱処理温度を、800℃に変化させた以外は実施例5と同様にして、銀を含有するバリウムとセリウムとの複合酸化物を得た。
Example 12
A composite oxide of barium and cerium containing silver was obtained in the same manner as in Example 5, except that the heat treatment temperature in air after the silver impregnation treatment was changed to 800 ° C.

[特性評価の方法]
(1)XRD測定
実施例1〜3に係る各試料の結晶構造解析を、粉末X線回折法により行った。その際に使用した装置は、島津製作所製のX線回折装置XD−D1であり、Cu−Kα線を使用して、管電圧30kV、管電流30mAにて2θ=10〜70°の角度をスキャンスピード2°/分の速度でスキャンすることにより回折を行った。その結果を図2に示す。
[Characteristic evaluation method]
(1) XRD measurement Crystal structure analysis of each sample according to Examples 1 to 3 was performed by a powder X-ray diffraction method. The device used at that time was an X-ray diffractometer XD-D1 manufactured by Shimadzu Corporation. Using Cu-Kα rays, an angle of 2θ = 10 to 70 ° was scanned at a tube voltage of 30 kV and a tube current of 30 mA. Diffraction was performed by scanning at a speed of 2 ° / min. The result is shown in FIG.

(2)CB(カーボンブラック)着火温度の測定
CBを模擬PM粒子とし、TG−DTA装置を使用して、実施例に係る複合酸化物、および、比較例に係る複合酸化物とセリウム酸化物との着火温度測定を行った。TG―DTA測定装置は、リガク製TG−DTA装置(Thermoplus TG8120)を使用した。
具体的には、上記各例で得られた実施例1、4〜12に係る複合酸化物、および、比較例3〜8に係る複合酸化物と、CBとを、20:1の割合で秤量した秤量物を、メノウ乳鉢を用いて混合し、実施例1、4〜12および比較例2、3〜8に係る混合試料とした。測定の際のガス組成はO20%、Nバランスの混合ガス流通下とし、昇温速度10℃/minとなるように調整後、測定を実施した。
(2) Measurement of CB (carbon black) ignition temperature Using TG as simulated PM particles and using a TG-DTA apparatus, the composite oxide according to the example, and the composite oxide and cerium oxide according to the comparative example Ignition temperature was measured. The TG-DTA measuring apparatus used was a Rigaku TG-DTA apparatus (Thermoplus TG8120).
Specifically, the composite oxides according to Examples 1, 4 to 12 obtained in the above examples, the composite oxide according to Comparative Examples 3 to 8, and CB are weighed at a ratio of 20: 1. The weighed product was mixed using an agate mortar to obtain mixed samples according to Examples 1, 4 to 12 and Comparative Examples 2 and 3 to 8. The measurement was carried out after adjusting the gas composition to be 20% O 2 and a mixed gas flow of N 2 balance and adjusting the temperature rising rate to 10 ° C./min.

そして、得られたTG曲線において、重量減少が始まる前の接線と重量減少率(角度)が最大となる点での接線との交点を燃焼開始温度(Ti)として算出した。また、DTA曲線のピークが最大となる温度を、燃焼ピーク温度(Tmax)とした。さらに、Teの算出方法は、重量減少率(角度)が最大となる点での接線と、重量減少が終了した後の接線との交点の温度を、CBの燃焼終了温度(Te)として算出した。
測定結果を表1に示す。
And in the obtained TG curve, the intersection of the tangent before the weight reduction starts and the tangent at the point where the weight reduction rate (angle) becomes the maximum was calculated as the combustion start temperature (Ti). Further, the temperature at which the peak of the DTA curve becomes maximum was defined as the combustion peak temperature (Tmax). Furthermore, the calculation method of Te calculated the temperature of the intersection of the tangent at the point where the weight reduction rate (angle) becomes the maximum and the tangent after the weight reduction is finished as the CB combustion end temperature (Te). .
The measurement results are shown in Table 1.

(3)CB燃焼温度に対するSO被毒処理の影響の評価
CBを模擬PM粒子とし、PM燃焼温度に対するSO被毒の影響の評価を行った。
実施例1〜5に係る複合酸化物、比較例1、2に係るセリウム酸化物、および、比較例3に係る複合酸化物と、CBとを質量比20:1の割合で秤量した秤量物を、メノウ乳鉢を用いて混合し、実施例1〜5および比較例1〜3に係る混合試料とした。得られた各混合試料0.05gをPtプレートに載せ、赤外線昇温装置にセットした。
(3) Evaluation of influence of SO 2 poisoning treatment on CB combustion temperature The effect of SO 2 poisoning on PM combustion temperature was evaluated using CB as simulated PM particles.
A weighed product obtained by weighing the composite oxide according to Examples 1 to 5, the cerium oxide according to Comparative Examples 1 and 2, the composite oxide according to Comparative Example 3, and CB at a mass ratio of 20: 1. The mixed samples according to Examples 1 to 5 and Comparative Examples 1 to 3 were mixed using an agate mortar. 0.05 g of each obtained mixed sample was placed on a Pt plate and set in an infrared temperature raising device.

各混合試料のSO被毒試験は、上記昇温反応の前に、各混合試料を、SO50ppm、O10%、Nバランスの混合ガス流通下、200℃で1時間処理することで行った。(実施例1に係る試料のみ、これに加えて、SO50ppm、O10%、Nバランスの混合ガス流通下、200℃で12時間処理を行った試料を加えた。)
当該SO被毒試験後、各混合試料を室温まで冷却した。そして当該冷却後の各混合試料を用いて昇温反応を行った。そして、各混合試料の昇温反応時における出口ガス中の二酸化炭素濃度を、NDIRを用いて測定することで、各混合試料のCB燃焼活性を評価した。昇温反応時のガス組成はO10%、およびNバランスとし、昇温速度は10℃/minとした。その結果を表1に示す。
In the SO 2 poisoning test of each mixed sample, each mixed sample is treated at 200 ° C. for 1 hour in a mixed gas flow of SO 2 50 ppm, O 2 10%, N 2 balance before the temperature rising reaction. I went there. (In addition to the sample according to Example 1, in addition to this, a sample treated at 200 ° C. for 12 hours under a mixed gas flow of SO 2 50 ppm, O 2 10%, N 2 balance was added.)
After the SO 2 poisoning test, each mixed sample was cooled to room temperature. And the temperature rising reaction was performed using each mixed sample after the said cooling. And the CB combustion activity of each mixed sample was evaluated by measuring the carbon dioxide concentration in the exit gas at the time of temperature rising reaction of each mixed sample using NDIR. The gas composition during the temperature rising reaction was O 2 10% and N 2 balance, and the temperature rising rate was 10 ° C./min. The results are shown in Table 1.

さらに、実施例1および比較例1に係る混合試料については、当該CB燃焼活性を図1に示した。図1は、横軸に温度をとり、縦軸に二酸化炭素濃度をとったグラフであり、実施例1および比較例1に係る混合試料が所定温度にあるときの出口ガスの二酸化炭素濃度をプロットしたものである。尚、実施例1に係るSO被毒処理の未処理試料を太実線、SO1時間処理試料を細実線、SO12時間処理試料を1点鎖線で、比較例1に係るSO被毒処理の未処理試料を短破線、SO1時間処理試料を長破線でプロットした。 Further, the CB combustion activity of the mixed sample according to Example 1 and Comparative Example 1 is shown in FIG. FIG. 1 is a graph in which the horizontal axis represents temperature and the vertical axis represents carbon dioxide concentration, and plots the carbon dioxide concentration of the outlet gas when the mixed sample according to Example 1 and Comparative Example 1 is at a predetermined temperature. It is a thing. Incidentally, the solid line the untreated sample of SO 2 poisoning process according to the first embodiment bold, SO 2 1 hour sample thin solid line, the SO 2 12 hours samples by a chain line, SO 2 to be according to Comparative Example 1 The untreated sample with poison treatment was plotted with a short broken line, and the SO 2 1 hour treated sample with a long broken line.

(4)比表面積の測定
実施例1〜3および比較例1に係る各試料の比表面積の測定を、BET法により行った。その際に使用した装置は、日本ベル株式会社製のBelsorp miniを使用した。その結果を表1に示す。
(4) Measurement of specific surface area The specific surface area of each sample according to Examples 1 to 3 and Comparative Example 1 was measured by the BET method. The apparatus used at that time was Belsorb mini manufactured by Nippon Bell Co., Ltd. The results are shown in Table 1.

(5)CB燃焼試験後の混合試料中における硫黄含有量の定量
上記(3)で説明したCB燃焼試験後における実施例1および比較例1に係る混合試料について、各混合試料中の硫黄含有量を、堀場製作所製蛍光X線分析装置MESA−500Wを使用して測定した。その結果を表1に示す。
(5) Determination of sulfur content in mixed sample after CB combustion test About mixed sample according to Example 1 and Comparative Example 1 after CB combustion test explained in (3) above, sulfur content in each mixed sample Was measured using a fluorescent X-ray analyzer MESA-500W manufactured by Horiba. The results are shown in Table 1.

Figure 2009255057
Figure 2009255057

[特性評価の結果]
(1)実施例に係る酸化物の構造
図2に示すXRDパターンより、実施例1〜3に係る試料では、各元素の単酸化物のピークは認められず、ペロブスカイト型結晶粒子に特有な回折線を有していた。従って、実施例に係る酸化物は、ペロブスカイト型構造を有していることが確認できた。
[Results of characteristic evaluation]
(1) Structure of Oxide According to Example From the XRD pattern shown in FIG. 2, in the samples according to Examples 1 to 3, no single oxide peak of each element was observed, and diffraction unique to perovskite crystal particles Had a line. Therefore, it was confirmed that the oxide according to the example has a perovskite structure.

(2)実施例に係る試料の触媒効果
本発明の一例である実施例で得られた試料の触媒効果は、実施例1の評価結果と比較例2の評価結果とを比較すると明らかである。実施例1はバリウムとセリウムとを含むペロブスカイト構造を有した銀を含む複合酸化物であるが、比較例2は銀を含むセリウム酸化物である。
両者のSO被毒試験結果を、Tmaxの値から比較する。すると、実施例1では被毒試験前後のTmaxの温度差△Tが−6℃であり、劣化率は−1.5%に留まっているのに対して、比較例2では△Tが−135℃であり、劣化率は−39.1%にまで達していることからみても、その差は歴然としている。
(2) Catalytic effect of the sample according to the example The catalytic effect of the sample obtained in the example which is an example of the present invention is apparent when the evaluation result of Example 1 and the evaluation result of Comparative Example 2 are compared. Example 1 is a composite oxide containing silver having a perovskite structure containing barium and cerium, while Comparative Example 2 is a cerium oxide containing silver.
Both SO 2 poisoning test results are compared from the value of Tmax. Then, in Example 1, the temperature difference ΔT of Tmax before and after the poisoning test was −6 ° C. and the deterioration rate remained at −1.5%, whereas in Comparative Example 2, ΔT was −135. The difference is obvious even in view of the fact that the temperature is ℃ and the deterioration rate reaches -39.1%.

一方、SO被毒処理試験において、CB燃焼活性測定後の実施例1に係る試料は、比較例1に係る試料と同等の硫黄含有量に達していることがわかる。しかし、それにも拘わらず、実施例1に係る試料は、「硫黄による触媒活性の劣化に起因するCB燃焼温度の高温化」が抑制された結果になった。実施例1に係る試料について、SO被毒処理後においてCB燃焼温度の高温化が抑制されるメカニズムの詳細は明確ではない。しかし、実施例1に係る試料において、バリウムとセリウムとを複合化させ、ペロブスカイト型構造としたことによって、触媒表面にCB燃焼活性サイトとSO被毒サイトとが生成され、CB燃焼サイトへの硫黄被毒が抑制されたという、硫黄被毒抑制機構が推察できる。 On the other hand, in the SO 2 poisoning treatment test, it can be seen that the sample according to Example 1 after the measurement of CB combustion activity has reached the same sulfur content as the sample according to Comparative Example 1. However, in spite of this, the sample according to Example 1 resulted in suppression of “higher temperature of CB combustion due to deterioration of catalytic activity due to sulfur”. Samples according to Example 1, the high temperature of the CB combustion temperature is not clear details of the mechanism to be inhibited after SO 2 poisoning process. However, in the sample according to Example 1, barium and cerium are combined to form a perovskite structure, so that a CB combustion active site and a SO 2 poisoning site are generated on the catalyst surface. A sulfur poisoning suppression mechanism that sulfur poisoning is suppressed can be inferred.

(3)実施例に係る試料へ銀を含有させた効果
粒子状物質燃焼触媒が銀を含有した複合酸化物であることの効果は、実施例4の評価結果と比較例3の評価結果、同様に、実施例5と比較例4、実施例6と比較例5、実施例7と比較例6、実施例8と比較例7、実施例9と比較例8を比較すると明らかである。実施例4〜9はいずれも銀を含む複合酸化物である。一方、比較例3〜8は、実施例4〜9と同組成であるが銀を含まない複合酸化物である。
Ti、Tmax、Teのいずれの温度も、銀を含む複合酸化物である実施例4〜9は、銀を含まない複合酸化物である比較例3〜8より遙かに低い。因みに、Tiの温度差は63〜141℃、Tmaxの温度差は50〜137℃、Teの温度差は39〜130℃である。
当該結果より、実施例に係る試料は粒子状物質の燃焼温度を下げる銀の含有効果が歴然としている。
(3) Effect of including silver in sample according to Example The effect of the particulate matter combustion catalyst being a composite oxide containing silver is the same as the evaluation result of Example 4 and the evaluation result of Comparative Example 3. In addition, it is clear that Example 5 and Comparative Example 4, Example 6 and Comparative Example 5, Example 7 and Comparative Example 6, Example 8 and Comparative Example 7, and Example 9 and Comparative Example 8 are compared. Examples 4 to 9 are all composite oxides containing silver. On the other hand, Comparative Examples 3 to 8 are composite oxides having the same composition as Examples 4 to 9 but containing no silver.
In any of Ti, Tmax, and Te, Examples 4 to 9 which are composite oxides containing silver are much lower than Comparative Examples 3 to 8 which are composite oxides containing no silver. Incidentally, the temperature difference of Ti is 63 to 141 ° C., the temperature difference of Tmax is 50 to 137 ° C., and the temperature difference of Te is 39 to 130 ° C.
From this result, the sample according to the example clearly shows the silver containing effect of lowering the combustion temperature of the particulate matter.

(4)複合酸化物のAサイトの一部を三価のA’元素に置換させたことによる効果
複合酸化物のAサイトの一部を三価のA’元素に置換させたことによる効果は、実施例4の評価結果と実施例5の評価結果、同様に、実施例11と実施例12を比較すると明らかである。実施例5、12はいずれもAサイトが2価元素であるが、実施例4、11はいずれもAサイトの一部が3価元素に置換している。
Ti、Tmax、Teのいずれの温度も、Aサイトの一部が3価元素に置換している実施例4、11は、Aサイトが2価元素である実施例5、12よりさらに低い。
当該結果より、実施例に係る試料は粒子状物質の燃焼温度を下げることに関し、複合酸化物のAサイトの一部を三価のA’元素に置換させる効果を有することが明らかである。
(4) Effect of substituting a part of the A site of the composite oxide with the trivalent A ′ element The effect of substituting a part of the A site of the composite oxide with the trivalent A ′ element It is clear when the evaluation result of Example 4 and the evaluation result of Example 5 are similarly compared between Example 11 and Example 12. In Examples 5 and 12, the A site is a divalent element, but in Examples 4 and 11, a part of the A site is substituted with a trivalent element.
In any of Ti, Tmax, and Te, Examples 4 and 11 in which a part of the A site is substituted with a trivalent element are lower than Examples 5 and 12 in which the A site is a divalent element.
From the results, it is clear that the sample according to the example has an effect of substituting a part of the A site of the composite oxide with a trivalent A ′ element with respect to lowering the combustion temperature of the particulate matter.

(5)SO被毒処理前後の結果からみた、複合酸化物がペロブスカイト構造を有することの効果
表1に示すように、SO被毒処理前後における、実施例1〜3に係る試料と比較例1、2に係る試料との、CB燃焼ピーク温度の上昇を比較する。すると、SO被毒処理を
行わない場合の実施例1の試料のCB燃焼ピーク温度は403℃であるが、SOガスを含むガスで前処理(1時間)を行った場合409℃へ上昇し、SOガスを含むガスで前処理(12時間)を行った場合433℃へ上昇した。
また、SO被毒処理を行わない場合の実施例2の試料のCB燃焼ピーク温度は420℃であるが、SOガスを含むガスで前処理を行った場合440℃へ上昇した。
さらに、SO被毒処理を行わない場合の実施例3の試料のCB燃焼ピーク温度は459℃であるが、SOガスを含むガスで前処理を行った場合480℃へ上昇した。
(5) Effect of composite oxide having perovskite structure as seen from results before and after SO 2 poisoning treatment As shown in Table 1, compared with samples according to Examples 1 to 3 before and after SO 2 poisoning treatment The increase in the CB combustion peak temperature is compared with the samples according to Examples 1 and 2. Then, the CB combustion peak temperature of the sample of Example 1 when the SO 2 poisoning treatment is not performed is 403 ° C., but increases to 409 ° C. when the pretreatment (1 hour) is performed with the gas containing SO 2 gas. When the pretreatment (12 hours) was performed with a gas containing SO 2 gas, the temperature rose to 433 ° C.
In addition, the CB combustion peak temperature of the sample of Example 2 when the SO 2 poisoning treatment was not performed was 420 ° C., but increased to 440 ° C. when the pretreatment was performed with a gas containing SO 2 gas.
Further, the CB combustion peak temperature of the sample of Example 3 when the SO 2 poisoning treatment is not performed is 459 ° C., but when the pretreatment was performed with a gas containing SO 2 gas, the temperature increased to 480 ° C.

これに対し、SO被毒処理を行わない場合の比較例1の試料のCB燃焼ピーク温度は393℃であるが、SOガスを含むガスで前処理を行った場合493℃へ上昇した。
また、SO被毒処理を行わない場合の比較例2の試料のCB燃焼ピーク温度は345℃であるが、SO被毒処理を行った場合は480℃へ上昇した。
On the other hand, the CB combustion peak temperature of the sample of Comparative Example 1 when the SO 2 poisoning treatment was not performed was 393 ° C., but increased to 493 ° C. when the pretreatment was performed with a gas containing SO 2 gas.
Further, the CB combustion peak temperature of the sample of Comparative Example 2 when the SO 2 poisoning treatment was not performed was 345 ° C., but when the SO 2 poisoning treatment was performed, the temperature increased to 480 ° C.

以上のことから、実施例1〜3に係るアルカリ土類元素、セリウム、ジルコニウムを含む複合酸化物試料のほうが、比較例1、2に係るセリウムの単酸化物に比較して、SO被毒処理によるCB燃焼ピーク温度の上昇が抑制されていることがわかる。 From the above, the composite oxide sample containing alkaline earth elements, cerium and zirconium according to Examples 1 to 3 is more SO 2 poisoned than the cerium monooxide according to Comparative Examples 1 and 2. It can be seen that the increase in the CB combustion peak temperature due to the treatment is suppressed.

(6)SO被毒処理前後の結果からみた、複合酸化物のAサイトの一部を三価のA’元素に置換させたことによる効果
酸性硫黄ガスに対しては、比較例3、4に示すバリウム−セリウムの複合酸化物でも高耐性のものが得られる。しかし、上記(2)で示したCB着火温度の測定結果から比較すると、本発明に係る構成を備えた銀を表面に含有した実施例1に係るバリウム−セリウムの複合酸化物の方が、比較例3、4に示すバリウム−セリウムの複合酸化物より、高い活性を有していることは明らかである。
(6) Effect obtained by substituting a part of the A site of the composite oxide with a trivalent A ′ element, as seen from the results before and after the SO 2 poisoning treatment. A highly resistant barium-cerium composite oxide is also obtained. However, when compared with the measurement result of the CB ignition temperature shown in (2) above, the barium-cerium composite oxide according to Example 1 containing silver having the structure according to the present invention on the surface is compared. It is clear that it has higher activity than the barium-cerium complex oxide shown in Examples 3 and 4.

この効果は、酸性硫黄ガスによる被毒処理を行った後でも確認された。具体的には、比較例2に示す単にセリウムを含有させた場合に極端に劣化していた触媒性能が、実施例1、2に示すように、担体をバリウム(ストロンチウム)−セリウムの複合酸化物に変更することで、酸性硫黄ガスにさらした後でもSO被毒処理前後の燃焼開始温度を比較したときの劣化率が小さい値を示すことからわかるように、PMの燃焼に対する触媒性能が劣化することなく維持されるようになる。さらに、実施例4、11、12においては、銀の有する着火温度の低減化と、複合酸化物の有する耐硫黄性が両立した触媒性能が得られた。 This effect was confirmed even after poisoning treatment with acidic sulfur gas. Specifically, as shown in Examples 1 and 2, the catalyst performance that was extremely deteriorated when cerium was simply contained as shown in Comparative Example 2 was a composite oxide of barium (strontium) -cerium. As shown by the fact that the deterioration rate when comparing the combustion start temperature before and after SO 2 poisoning treatment shows a small value even after exposure to acidic sulfur gas, the catalytic performance for PM combustion deteriorates. Will be maintained without. Furthermore, in Examples 4, 11, and 12, catalyst performance was achieved in which the reduction in the ignition temperature of silver and the sulfur resistance of the composite oxide were compatible.

以上のことより、本発明に係るPM燃焼触媒は、高いPM燃焼活性を示し、且つ、排気ガス中の硫黄成分による吸着に伴うPM燃焼活性の低下は、抑止されていることが判明した。   From the above, it has been found that the PM combustion catalyst according to the present invention exhibits high PM combustion activity, and the decrease in PM combustion activity due to adsorption by the sulfur component in the exhaust gas is suppressed.

さらに加えて、本発明に係るPM燃焼触媒を、公知の方法によりフィルター母材に担持させた排気ガス浄化用フィルターも、高いPM燃焼活性を示し、且つ、排気ガス中の硫黄成分の吸着に伴うPM燃焼活性の低下は、抑止されていることが判明した。   In addition, an exhaust gas purifying filter in which the PM combustion catalyst according to the present invention is supported on a filter base material by a known method also exhibits high PM combustion activity and accompanies adsorption of sulfur components in the exhaust gas. It was found that the decrease in PM combustion activity was suppressed.

Claims (6)

ペロブスカイト(ABO)型構造を有する複合酸化物に、銀が含有されている粒子状物質燃焼触媒であって、
前記複合酸化物のAサイトはMg、Ca、Sr、Baから選ばれる少なくとも一つの元素、BサイトはCe、Zr、Prから選ばれる少なくとも一つの元素であることを特徴とする粒子状物質燃焼触媒。
A particulate matter combustion catalyst in which silver is contained in a composite oxide having a perovskite (ABO 3 ) type structure,
The particulate oxide combustion catalyst characterized in that the A site of the composite oxide is at least one element selected from Mg, Ca, Sr and Ba, and the B site is at least one element selected from Ce, Zr and Pr. .
前記複合酸化物がBaCeOである、請求項1に記載の粒子状物質燃焼触媒。 The particulate matter combustion catalyst according to claim 1, wherein the composite oxide is BaCeO 3 . 前記Aサイトの元素の一部が三価の元素A’で置換された(A1−xA’BO)型構造を有し、xが0<x≦0.6の複合酸化物である請求項1に記載の粒子状物質燃焼触媒。 It is a composite oxide having a (A 1-x A ′ x BO 3 ) type structure in which a part of the element at the A site is substituted with a trivalent element A ′, and x is 0 <x ≦ 0.6. The particulate matter combustion catalyst according to claim 1. 前記複合酸化物がBa1−xLaCeOである、請求項3に記載の粒子状物質燃焼触媒。 It said composite oxide is Ba 1-x La x CeO 3 , particulate matter combustion catalyst according to claim 3. 請求項1から4のいずれか1項に記載の粒子状物質燃焼触媒の製造方法であって、
ペロブスカイト構造を有する(ABO)型複合酸化物、または、(A1−xA’BO)型複合酸化物を形成させた後、当該複合酸化物に銀を含有させ、その後450〜950℃で熱処理する粒子状物質燃焼触媒の製造方法。
A method for producing a particulate matter combustion catalyst according to any one of claims 1 to 4,
(ABO 3 ) type complex oxide having a perovskite structure or (A 1-x A ′ x BO 3 ) type complex oxide is formed, then silver is contained in the complex oxide, and then 450 to 950 A method for producing a particulate matter combustion catalyst that is heat-treated at ℃
請求項1から4のいずれか1項に記載の粒子状物質燃焼触媒が、フィルター母材に担持されていることを特徴とする排気ガス浄化用フィルター。   An exhaust gas purification filter, wherein the particulate matter combustion catalyst according to any one of claims 1 to 4 is supported on a filter base material.
JP2009051313A 2008-03-24 2009-03-04 Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter Expired - Fee Related JP5168193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051313A JP5168193B2 (en) 2008-03-24 2009-03-04 Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008075810 2008-03-24
JP2008075810 2008-03-24
JP2009051313A JP5168193B2 (en) 2008-03-24 2009-03-04 Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter

Publications (2)

Publication Number Publication Date
JP2009255057A true JP2009255057A (en) 2009-11-05
JP5168193B2 JP5168193B2 (en) 2013-03-21

Family

ID=41383182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051313A Expired - Fee Related JP5168193B2 (en) 2008-03-24 2009-03-04 Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter

Country Status (1)

Country Link
JP (1) JP5168193B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064655A3 (en) * 2009-11-27 2011-07-28 Pirelli & C. S.P.A. Particulate filter, catalytic compositions useful for regenerating said filter and processes for their preparation
CN103030403A (en) * 2011-10-10 2013-04-10 三星电机株式会社 Perovskite powder, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
JP2015068175A (en) * 2013-09-26 2015-04-13 三菱重工業株式会社 Exhaust gas treatment device and exhaust gas treatment method
JP2015107480A (en) * 2013-10-21 2015-06-11 本田技研工業株式会社 Exhaust emission control filter
CN104981289A (en) * 2013-02-08 2015-10-14 优美科触媒日本有限公司 Catalyst for purifying NOX occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
CN106076356A (en) * 2016-06-16 2016-11-09 上海净球环保科技有限公司 A kind of titanium tungsten powder and its production and use
CN106111117A (en) * 2016-06-16 2016-11-16 上海净球环保科技有限公司 One is used for processing diesel engine vent gas NOxsCR catalyst and preparation method thereof
CN106111116A (en) * 2016-06-16 2016-11-16 上海净球环保科技有限公司 A kind of perovskite structure material and its production and use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245371A (en) * 1992-03-09 1993-09-24 Osaka Gas Co Ltd Agent and method for removing nitrogen oxides
JPH0582259B2 (en) * 1986-09-17 1993-11-18 Toyota Motor Co Ltd
JP2000042368A (en) * 1998-07-27 2000-02-15 Nissan Motor Co Ltd Exhaust gas purifying method
JP3298873B2 (en) * 1990-10-26 2002-07-08 大阪瓦斯株式会社 NOx removal method
JP2006068730A (en) * 2004-08-05 2006-03-16 Chokoon Zairyo Kenkyusho:Kk Diesel particulate filter and manufacturing method therefor
JP2007014873A (en) * 2005-07-07 2007-01-25 Honda Motor Co Ltd Apparatus for removing particle substance
JP2007296518A (en) * 2006-04-07 2007-11-15 Honda Motor Co Ltd Catalyst and device for cleaning exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582259B2 (en) * 1986-09-17 1993-11-18 Toyota Motor Co Ltd
JP3298873B2 (en) * 1990-10-26 2002-07-08 大阪瓦斯株式会社 NOx removal method
JPH05245371A (en) * 1992-03-09 1993-09-24 Osaka Gas Co Ltd Agent and method for removing nitrogen oxides
JP2000042368A (en) * 1998-07-27 2000-02-15 Nissan Motor Co Ltd Exhaust gas purifying method
JP2006068730A (en) * 2004-08-05 2006-03-16 Chokoon Zairyo Kenkyusho:Kk Diesel particulate filter and manufacturing method therefor
JP2007014873A (en) * 2005-07-07 2007-01-25 Honda Motor Co Ltd Apparatus for removing particle substance
JP2007296518A (en) * 2006-04-07 2007-11-15 Honda Motor Co Ltd Catalyst and device for cleaning exhaust gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064655A3 (en) * 2009-11-27 2011-07-28 Pirelli & C. S.P.A. Particulate filter, catalytic compositions useful for regenerating said filter and processes for their preparation
CN103030403A (en) * 2011-10-10 2013-04-10 三星电机株式会社 Perovskite powder, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
CN104981289A (en) * 2013-02-08 2015-10-14 优美科触媒日本有限公司 Catalyst for purifying NOX occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
US20150375205A1 (en) * 2013-02-08 2015-12-31 Umicore Shokubai Japan Co., Ltd. NOx STORAGE REDUCTION CATALYST FOR PURIFYING EXHAUST GAS AND EXHAUST GAS PURIFICATION METHOD USING SAID CATALYST
US10226755B2 (en) * 2013-02-08 2019-03-12 Umicore Shokubai Japan Co., Ltd. NOx storage reduction catalyst for purifying exhaust gas and exhaust gas purification method using said catalyst
EP2954950B1 (en) * 2013-02-08 2020-06-17 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying nox occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
JP2015068175A (en) * 2013-09-26 2015-04-13 三菱重工業株式会社 Exhaust gas treatment device and exhaust gas treatment method
JP2015107480A (en) * 2013-10-21 2015-06-11 本田技研工業株式会社 Exhaust emission control filter
CN106076356A (en) * 2016-06-16 2016-11-09 上海净球环保科技有限公司 A kind of titanium tungsten powder and its production and use
CN106111117A (en) * 2016-06-16 2016-11-16 上海净球环保科技有限公司 One is used for processing diesel engine vent gas NOxsCR catalyst and preparation method thereof
CN106111116A (en) * 2016-06-16 2016-11-16 上海净球环保科技有限公司 A kind of perovskite structure material and its production and use

Also Published As

Publication number Publication date
JP5168193B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5168193B2 (en) Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter
ES2458499T3 (en) Method for preparing a NOx storage material
RU2292236C2 (en) Catalyst designed to reduce amount of nitrogen oxides in exhaust gases of engines combusting thin fuel mixture
JP5146943B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5864443B2 (en) Exhaust gas purification catalyst
JP2014522726A (en) Catalysts containing lanthanide-doped zirconia and methods of manufacture
WO2013035568A1 (en) Catalyst carrier for exhaust gas purification and catalyst for exhaust gas purification
US7863217B2 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
WO2006134786A1 (en) Catalyst compositions
US20110176969A1 (en) Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification
JP2017192935A (en) Catalyst for exhaust purification, exhaust purifying method, and exhaust purifying system
JP6567168B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same
JP5791439B2 (en) Exhaust gas purification catalyst and carrier
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
JP5805603B2 (en) Exhaust gas purification catalyst
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP5794908B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2010069380A (en) Catalyst for cleaning exhaust gas
JP5071840B2 (en) Exhaust gas purification catalyst
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP2011092859A (en) Oxygen absorption/emission material and catalyst for cleaning exhaust gas containing the same
JP6770265B2 (en) Exhaust gas purification catalyst
JP7188091B2 (en) Nitrogen oxide storage material and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5168193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees