JP2009253423A - Waveform compensation circuit - Google Patents

Waveform compensation circuit Download PDF

Info

Publication number
JP2009253423A
JP2009253423A JP2008096019A JP2008096019A JP2009253423A JP 2009253423 A JP2009253423 A JP 2009253423A JP 2008096019 A JP2008096019 A JP 2008096019A JP 2008096019 A JP2008096019 A JP 2008096019A JP 2009253423 A JP2009253423 A JP 2009253423A
Authority
JP
Japan
Prior art keywords
transmission line
compensation circuit
diode
waveform compensation
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096019A
Other languages
Japanese (ja)
Inventor
Koji Shibuya
幸司 澁谷
Seiichi Saito
成一 斉藤
Hidemasa Ohashi
英征 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008096019A priority Critical patent/JP2009253423A/en
Publication of JP2009253423A publication Critical patent/JP2009253423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a waveform compensation circuit which does not require a high impedance line and has a waveform compensation function of not bringing about a waveform deterioration due to over-compensation even in the case of a line length with a less loss, in high speed signal transmission. <P>SOLUTION: The waveform compensation circuit includes: a first transmission line 2a; an inductor 6 connected to a terminal part of the first transmission line; a second transmission line 2b which has one end connected to the terminal part of the first transmission line through the inductor and has a delay time being half a one-bit width of a digital data pattern to be transmitted and a characteristic impedance being almost the same as the first transmission line; a resistance 5 connected between the other end of the second transmission line and a ground 100; and a diode 4 which is connected in parallel to the resistance and has a direction from the second transmission line to the ground as the forward direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、伝送路の周波数依存性の減衰による波形歪みの補償を行う波形補償回路に関するものである。   The present invention relates to a waveform compensation circuit that compensates for waveform distortion caused by frequency-dependent attenuation of a transmission line.

近年の信号伝送レートの増加に伴って顕在化した伝送路の周波数依存性の減衰による波形歪みに対応するため、高い特性インピーダンスをもつ伝送線路で構成された終端回路を用い伝送路の周波数依存性を打ち消す特性を持つ回路を構成し、周波数依存性を平坦化して波形を補償する波形補償回路が提案されている(例えば、特許文献1参照)。   In order to cope with waveform distortion due to attenuation of the frequency dependence of the transmission line that has become apparent with the recent increase in signal transmission rate, the frequency dependence of the transmission line is made using a termination circuit composed of a transmission line with high characteristic impedance. There has been proposed a waveform compensation circuit that configures a circuit having a characteristic that cancels the waveform and compensates the waveform by flattening the frequency dependence (see, for example, Patent Document 1).

特開2006−270935号公報JP 2006-270935 A

従来の波形補償回路は伝送路の周波数依存性の減衰による波形歪みの補償を目的としたものであるが、インピーダンスミスマッチによる反射を利用する原理であるため、補償効果を高くしようとすると非常に高い特性インピーダンスの線路が必要となり、基板製造が困難になるという問題があった。また、伝送路の長さが短い場合など減衰が小さい場合では、波形補償回路により周波数特性の平坦さが損なわれ、逆に波形が劣化してしまうという問題点があった。このため、ケーブルによる伝送やバックプレーンによる伝送等の運用により配線長が変化するシステムに適用することが困難であった。   The conventional waveform compensation circuit is intended to compensate for waveform distortion due to frequency-dependent attenuation of the transmission line, but it is a principle that uses reflection due to impedance mismatch, so it is very high when trying to increase the compensation effect A characteristic impedance line is required, which makes it difficult to manufacture the substrate. Further, when the attenuation is small, such as when the length of the transmission line is short, there is a problem that the flatness of the frequency characteristics is impaired by the waveform compensation circuit, and conversely the waveform deteriorates. For this reason, it has been difficult to apply to a system in which the wiring length changes due to operation such as transmission using a cable or transmission using a backplane.

この発明は上記のような問題点を解決するためになされたもので、高速信号伝送において、高インピーダンス線路が不要で、損失の少ない線路長に対しても過補償による波形劣化が発生しない波形補償機能を有する波形補償回路を得ることを目的とする。   The present invention has been made to solve the above-described problems, and in high-speed signal transmission, a high impedance line is not required, and waveform compensation that does not cause waveform deterioration due to overcompensation even for a line length with little loss. An object is to obtain a waveform compensation circuit having a function.

この発明に係る波形補償回路は、第1の伝送線路と、前記第1の伝送線路の終端部に接続されたインダクタと、前記インダクタを介して前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路と同程度の特性インピーダンスを持つ第2の伝送線路と、前記第2の伝送線路の他端とグランドとの間に接続された抵抗と、前記抵抗に並列接続され、前記第2の伝送線路から前記グランドに向かう方向を順方向とするダイオードとを備えたものである。   The waveform compensation circuit according to the present invention has a first transmission line, an inductor connected to the terminal end of the first transmission line, and one end connected to the terminal end of the first transmission line via the inductor. A second transmission line having a delay time half the 1-bit width of the transmitted digital data pattern and a characteristic impedance comparable to that of the first transmission line, the other end of the second transmission line, and a ground And a diode connected in parallel to the resistor and having a forward direction from the second transmission line toward the ground.

また、第1の伝送線路と、前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路と同程度の特性インピーダンスを持つ第2の伝送線路と、前記第2の伝送線路の他端とグランドとの間に接続された抵抗と、前記抵抗に並列接続され、前記第2の伝送線路から前記グランドに向かう方向を順方向とするダイオードとを備えたものである。   Also, one end is connected to the first transmission line and a terminal portion of the first transmission line, and the delay time is half the 1-bit width of the digital data pattern to be transmitted, and characteristics comparable to those of the first transmission line. A second transmission line having an impedance; a resistor connected between the other end of the second transmission line and the ground; and a parallel connection to the resistor, and a direction from the second transmission line toward the ground. And a diode whose forward direction is.

また、第1の伝送線路と、前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路より高い特性インピーダンスを持つ第2の伝送線路と、前記第2の伝送線路の他端とグランドとの間に接続された抵抗と、前記抵抗に並列接続され、前記第2の伝送線路から前記グランドに向かう方向を順方向とするダイオードとを備えたものである。   Also, one end is connected to the first transmission line and a terminal portion of the first transmission line, and a delay time that is half the 1-bit width of the transmitted digital data pattern and a characteristic impedance higher than that of the first transmission line are provided. A second transmission line having a resistance, a resistor connected between the other end of the second transmission line and the ground, and a resistor connected in parallel to each other in order from the second transmission line toward the ground. And a diode as a direction.

さらに、第1の伝送線路と、前記第1の伝送線路の終端部に接続されたインダクタと、前記インダクタを介して前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路と同程度の特性インピーダンスを持つ第2の伝送線路と、前記第2の伝送線路の他端とグランドとの間に接続された第1の抵抗と、前記インダクタと前記第2の伝送線路との接続部から前記グランドに向かう方向を順方向とするダイオードと、前記ダイオードと前記グランドとの間に接続された第2の抵抗とを備えたものである。 Furthermore, the first transmission line, the inductor connected to the terminal end of the first transmission line, and digital data transmitted at one end connected to the terminal end of the first transmission line via the inductor A second transmission line having a delay time of half the 1-bit width of the pattern and a characteristic impedance comparable to that of the first transmission line; and a second transmission line connected between the other end of the second transmission line and the ground. 1 resistor, a diode having a forward direction from the connection portion of the inductor and the second transmission line to the ground, and a second resistor connected between the diode and the ground. It is provided.

この発明によれば、高速信号伝送において、高インピーダンス線路が不要で、損失の少ない線路長に対しても過補償による波形劣化が発生しない波形補償機能を有する波形補償回路を得ることができる。   According to the present invention, in high-speed signal transmission, it is possible to obtain a waveform compensation circuit having a waveform compensation function that does not require a high impedance line and does not cause waveform degradation due to overcompensation even for a line length with little loss.

実施の形態1.
図1は、この発明の実施の形態1に係る波形補償回路を示す構成図である。図1に示す波形補償回路は、信号を送出するドライバ1とレシーバ3との間に設けられた伝送線路2aと、伝送線路2aの終端部である、レシーバ3の入力端に接続されたインダクタ6と、インダクタ6を介して伝送線路2aの終端部に一端が接続され、伝送線路2aと同程度の特性インピーダンスと、伝送されるディジタルデータの1bit幅の半分に相当する遅延時間をもつ配線長を有する伝送線路2bと、伝送線路2bの他端とグランド100との間に接続された抵抗5と、抵抗5に並列接続され、伝送線路2bからグラウンド100に向かう方向を順方向とするダイオード4とを備えている。
Embodiment 1 FIG.
1 is a block diagram showing a waveform compensation circuit according to Embodiment 1 of the present invention. The waveform compensation circuit shown in FIG. 1 includes a transmission line 2a provided between a driver 1 that transmits a signal and a receiver 3, and an inductor 6 that is connected to an input end of the receiver 3 that is a terminal portion of the transmission line 2a. One end of the transmission line 2a is connected to the end of the transmission line 2a through the inductor 6, and a wiring length having a characteristic impedance equivalent to that of the transmission line 2a and a delay time corresponding to half of the 1-bit width of the transmitted digital data. A transmission line 2b, a resistor 5 connected between the other end of the transmission line 2b and the ground 100, a diode 4 connected in parallel to the resistor 5 and having a forward direction from the transmission line 2b toward the ground 100, It has.

次に動作について説明する。ドライバ1から送信されたデータパターンは伝送線路2aを経由しレシーバ3に到達する。伝送線路2aは導体損失や誘電体損失などの周波数に依存する損失があるため、レシーバ3に到達した信号は劣化している。信号の劣化は主に遷移ビットの立ち上がりが鈍るという形で現れる。入射した信号はインダクタ6を経由して伝送線路2bへ伝送されるが、インダクタ6により信号が遷移ビットの場合は信号の一部が正反射される。反射された信号はレシーバ3受信端で入射信号と重なり、立ち上がりを急峻化する。これにより、波形が改善される。   Next, the operation will be described. The data pattern transmitted from the driver 1 reaches the receiver 3 via the transmission line 2a. Since the transmission line 2a has a frequency-dependent loss such as a conductor loss or a dielectric loss, the signal reaching the receiver 3 is deteriorated. The deterioration of the signal mainly appears in the form that the rising edge of the transition bit is dull. The incident signal is transmitted to the transmission line 2b via the inductor 6, but when the signal is a transition bit by the inductor 6, a part of the signal is specularly reflected. The reflected signal overlaps with the incident signal at the receiving end of the receiver 3 to sharpen the rise. This improves the waveform.

さらに、伝送線路2bへ伝送された信号は抵抗5およびダイオード4を並列接続した終端部へ到達する。ダイオード4は小さな電圧の信号に対しては、高インピーダンスとなり、並列に接続された抵抗5により終端される。大きな電圧の信号に対しては導通となりグラウンドへ短絡され、負反射が発生する。負の反射波は伝送線路2bを通りレシーバ3へと戻る。伝送線路2bの遅延時間が1bitの半分の時間であるので、負の反射波が到達するのは最初の入射波からちょうど1bit遅れる。つまり、大きな電圧の信号に対して次のbitの信号電圧を低下させる効果がある。伝送線路2aの波形劣化は、大きな電圧の信号の次にbit遷移が起こった場合に次のbitの信号電圧が下がりきらないという傾向があり、これと逆の特性を持つ負の反射波によりこの波形劣化を補償できる。   Further, the signal transmitted to the transmission line 2b reaches the terminal portion where the resistor 5 and the diode 4 are connected in parallel. The diode 4 has a high impedance for a small voltage signal and is terminated by a resistor 5 connected in parallel. A large voltage signal becomes conductive and short-circuited to the ground, and negative reflection occurs. The negative reflected wave returns to the receiver 3 through the transmission line 2b. Since the delay time of the transmission line 2b is half of 1 bit, the arrival of the negative reflected wave is delayed by exactly 1 bit from the first incident wave. That is, there is an effect of reducing the signal voltage of the next bit with respect to a large voltage signal. The waveform deterioration of the transmission line 2a tends to prevent the signal voltage of the next bit from being lowered when a bit transition occurs next to a signal of a large voltage, and this is caused by a negative reflected wave having characteristics opposite to this. Waveform deterioration can be compensated.

以上のように、インダクタ6による正反射とダイオード4による負反射により劣化した波形を補償するように構成しているので、従来の波形補償回路のような高インピーダンス線路が不要で製造しやすい波形補償回路を実現できる。また、ダイオード4を用いることで入射電圧に応じた大きさの負反射を発生させるようにしているので、従来の固定的なインピーダンスミスマッチを用いた構成より効果が大きい。また、高インピーダンス線路が不要となるので、伝送線路2bを構成するにあたり高誘電率材料を利用しやすくなる。高誘電率材料を使用することで波長短縮により伝送線路2bの物理長を短くすることができ、回路の小型化が可能となる。   As described above, since the waveform deteriorated by the regular reflection by the inductor 6 and the negative reflection by the diode 4 is compensated, the waveform compensation which is easy to manufacture without requiring a high impedance line like the conventional waveform compensation circuit. A circuit can be realized. In addition, since the negative reflection having a magnitude corresponding to the incident voltage is generated by using the diode 4, the effect is greater than the configuration using the conventional fixed impedance mismatch. Moreover, since a high impedance line becomes unnecessary, it becomes easy to use a high dielectric constant material in constituting the transmission line 2b. By using a high dielectric constant material, the physical length of the transmission line 2b can be shortened by shortening the wavelength, and the circuit can be miniaturized.

実施の形態2.
図2は、この発明の実施の形態2に係る波形補償回路を示す構成図である。図2に示す実施の形態2に係る波形補償回路は、図1の構成図において、インダクタ6を取り除いた構成を備える。インダクタ6による正反射がなくなるので、実施の形態1より効果は低くなるものの、部品点数を削減できる利点に加え、ダイオード4による負反射効果による波形補償効果が期待できる。
Embodiment 2. FIG.
2 is a block diagram showing a waveform compensation circuit according to Embodiment 2 of the present invention. The waveform compensation circuit according to the second embodiment shown in FIG. 2 has a configuration in which the inductor 6 is removed from the configuration diagram of FIG. Since the regular reflection by the inductor 6 is eliminated, the effect is lower than that of the first embodiment, but in addition to the advantage that the number of parts can be reduced, the waveform compensation effect by the negative reflection effect by the diode 4 can be expected.

また、この構成図において、伝送線路2bの特性インピーダンスを伝送線路2aより高くする構成とすれば、従来技術と同等の正反射および負反射が発生し、さらに、ダイオード4による負反射が加わるので、従来技術より良好な波形補償効果が得られる。   Further, in this configuration diagram, if the characteristic impedance of the transmission line 2b is made higher than that of the transmission line 2a, regular reflection and negative reflection equivalent to those of the prior art occur, and further negative reflection by the diode 4 is added. A better waveform compensation effect than the prior art can be obtained.

実施の形態3.
図3は、この発明の実施の形態3に係る波形補償回路を示す構成図である。図3に示す実施の形態3に係る波形補償回路は、図1の構成図において、ダイオード4の接続位置を伝送線路2bのレシーバ3に近い側にした構成である。抵抗5の抵抗値は伝送線路2bの特性インピーダンスより低いとする。インダクタ6による正反射と抵抗5の負反射により波形を補償するとともに、ある程度以上の大きな振幅の入射信号に対してはダイオード4が導通となり信号の一部がダイオード4とグランド100との間に設けられた抵抗5aにより終端され、伝送線路2bへ伝送される信号は小さくなり抵抗5による反射波は小さくなる。
Embodiment 3 FIG.
FIG. 3 is a block diagram showing a waveform compensation circuit according to Embodiment 3 of the present invention. The waveform compensation circuit according to the third embodiment shown in FIG. 3 has a configuration in which the connection position of the diode 4 is closer to the receiver 3 of the transmission line 2b in the configuration diagram of FIG. The resistance value of the resistor 5 is assumed to be lower than the characteristic impedance of the transmission line 2b. The waveform is compensated by the regular reflection by the inductor 6 and the negative reflection of the resistor 5, and the diode 4 becomes conductive for an incident signal having a large amplitude of a certain level or more and a part of the signal is provided between the diode 4 and the ground 100. The signal that is terminated by the resistor 5a and transmitted to the transmission line 2b becomes small, and the reflected wave by the resistor 5 becomes small.

以上のように、ダイオード4と抵抗5aを組み合わせた終端を伝送線路2aのレシーバ3よりに取り付けているので、伝送線路2aの損失が小さい場合、一般的な波形補償回路では波形劣化が生じるが、入射波の振幅に応じて入射波の一部が終端される構成により、過補償が発生しにくい波形補償回路が実現できる。   As described above, since the termination combining the diode 4 and the resistor 5a is attached from the receiver 3 of the transmission line 2a, when the loss of the transmission line 2a is small, waveform deterioration occurs in a general waveform compensation circuit. With the configuration in which a part of the incident wave is terminated according to the amplitude of the incident wave, a waveform compensation circuit in which overcompensation hardly occurs can be realized.

実施の形態4.
図4は、この発明の実施の形態4に係る波形補償回路を示す構成図である。図4に示す実施の形態4に係る波形補償回路は、図1の構成図において、伝送線路2aとインダクタ6の接続部との間にキャパシタ7を挿入し、ダイオード4を含む終端部分に適当なバイアス回路8を接続した構成である。キャパシタ7により信号のDC成分を除去し、バイアス回路8によりダイオードに固定的にかかるDC成分を調整できる。
Embodiment 4 FIG.
4 is a block diagram showing a waveform compensation circuit according to Embodiment 4 of the present invention. The waveform compensation circuit according to the fourth embodiment shown in FIG. 4 is suitable for the terminal portion including the diode 4 by inserting a capacitor 7 between the transmission line 2a and the connection portion of the inductor 6 in the configuration diagram of FIG. The bias circuit 8 is connected. The DC component of the signal can be removed by the capacitor 7 and the DC component applied to the diode can be adjusted by the bias circuit 8.

以上の構成により、もともとの入射信号のDC成分がダイオード4のスイッチする電圧と大きく異なっている条件でも波形補償回路を実現可能となる。   With the above configuration, the waveform compensation circuit can be realized even under a condition where the DC component of the original incident signal is greatly different from the voltage switched by the diode 4.

実施の形態5.
図5は、この発明の実施の形態5に係る波形補償回路を示す構成図である。図5に示す実施の形態5に係る波形補償回路は、図1の構成図において、ダイオード4の向きを逆にしたものである。ダイオード4は、逆降伏領域以下の逆電圧では電流がほとんど流れず、逆降伏領域以上の逆電圧になると電流が急激に流れる性質がある。つまり、実施の形態5も信号の大小の基準値が異なる実施の形態1と同様な波形補償が可能となる。なお、この実施の形態5は、実施の形態1の構成において、ダイオード4の向きを逆にしたものであるが、他の実施の形態2−4にも同様に適用できる。
Embodiment 5 FIG.
5 is a block diagram showing a waveform compensation circuit according to Embodiment 5 of the present invention. The waveform compensation circuit according to the fifth embodiment shown in FIG. 5 is obtained by reversing the direction of the diode 4 in the configuration diagram of FIG. The diode 4 has a property that current hardly flows at a reverse voltage below the reverse breakdown region, and a current flows rapidly when the reverse voltage exceeds the reverse breakdown region. That is, the fifth embodiment can also perform waveform compensation similar to that of the first embodiment in which the reference value of the signal is different. Note that the fifth embodiment is obtained by reversing the direction of the diode 4 in the configuration of the first embodiment, but can be similarly applied to other embodiments 2-4.

実施の形態6.
図6は、この発明の実施の形態6に係る波形補償回路を示す構成図である。図6に示す実施の形態6に係る波形補償回路は、図1の構成図において、ダイオード4aに対し逆方向のダイオード4bを並列接続して追加したものである。入射信号の電圧が0付近の場合ダイオード4a、4bともに高インピーダンスとなり、信号は抵抗5により終端され反射は発生しない。入射信号がある程度0から離れると、ダイオード4a、4bのどちらかが導通となり、負反射が発生する。なお、この実施の形態6は、実施の形態1の構成において、ダイオード4aに対し逆方向のダイオード4bを並列接続して追加したものであるが、他の実施の形態2−4にも同様に適用できる。
Embodiment 6 FIG.
6 is a block diagram showing a waveform compensation circuit according to Embodiment 6 of the present invention. The waveform compensation circuit according to the sixth embodiment shown in FIG. 6 is obtained by adding a diode 4b in the reverse direction to the diode 4a in parallel in the configuration diagram of FIG. When the voltage of the incident signal is near 0, both the diodes 4a and 4b have high impedance, the signal is terminated by the resistor 5, and no reflection occurs. When the incident signal deviates from 0 to some extent, one of the diodes 4a and 4b becomes conductive and negative reflection occurs. In addition, although this Embodiment 6 adds the diode 4b of the reverse direction with respect to the diode 4a in parallel in the structure of Embodiment 1, it adds similarly to other Embodiment 2-4. Applicable.

以上のように、向きの異なるダイオードを並列に接続しているので、0Vを中心とした正負に電圧がふれるディジタル信号に対し波形補償効果を実現できる。   As described above, since the diodes having different directions are connected in parallel, a waveform compensation effect can be realized for a digital signal in which a voltage is applied positively or negatively around 0V.

実施の形態7.
図7は、この発明の実施の形態7に係る波形補償回路を示す構成図である。図7に示す実施の形態7に係る波形補償回路は、図1の構成図において、ダイオード4をキャパシタ10に置き換えたものである。インダクタ6による正反射とキャパシタ10の負反射により今までの構成例と同様に波形を補償する効果がある。さらに、キャパシタ10は基板パターン等で実現できるので低コスト化が可能となる。
Embodiment 7 FIG.
7 is a block diagram showing a waveform compensation circuit according to Embodiment 7 of the present invention. The waveform compensation circuit according to the seventh embodiment shown in FIG. 7 is obtained by replacing the diode 4 with the capacitor 10 in the configuration diagram of FIG. The regular reflection by the inductor 6 and the negative reflection of the capacitor 10 have an effect of compensating the waveform in the same manner as the conventional configuration examples. Furthermore, since the capacitor 10 can be realized by a substrate pattern or the like, the cost can be reduced.

この発明の実施の形態1に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit based on Embodiment 4 of this invention. この発明の実施の形態5に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit based on Embodiment 5 of this invention. この発明の実施の形態6に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit based on Embodiment 6 of this invention. この発明の実施の形態7に係る波形補償回路を示す構成図である。It is a block diagram which shows the waveform compensation circuit based on Embodiment 7 of this invention.

符号の説明Explanation of symbols

1 ドライバ、2a,2b 伝送線路、3 レシーバ、4,4a,4b ダイオード、5,5a 抵抗、6 インダクタ、7 キャパシタ、8 バイアス回路、10 キャパシタ、100 グランド。   1 driver, 2a, 2b transmission line, 3 receiver, 4, 4a, 4b diode, 5, 5a resistance, 6 inductor, 7 capacitor, 8 bias circuit, 10 capacitor, 100 ground.

Claims (8)

第1の伝送線路と、
前記第1の伝送線路の終端部に接続されたインダクタと、
前記インダクタを介して前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路と同程度の特性インピーダンスを持つ第2の伝送線路と、
前記第2の伝送線路の他端とグランドとの間に接続された抵抗と、
前記抵抗に並列接続され、前記第2の伝送線路から前記グランドに向かう方向を順方向とするダイオードと
を備えた波形補償回路。
A first transmission line;
An inductor connected to a termination portion of the first transmission line;
One end of the first transmission line is connected to the end of the first transmission line via the inductor, and the delay time is half the 1-bit width of the transmitted digital data pattern and has a characteristic impedance comparable to that of the first transmission line. Two transmission lines;
A resistor connected between the other end of the second transmission line and the ground;
And a diode connected in parallel to the resistor and having a forward direction from the second transmission line toward the ground.
第1の伝送線路と、
前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路と同程度の特性インピーダンスを持つ第2の伝送線路と、
前記第2の伝送線路の他端とグランドとの間に接続された抵抗と、
前記抵抗に並列接続され、前記第2の伝送線路から前記グランドに向かう方向を順方向とするダイオードと
を備えた波形補償回路。
A first transmission line;
A second transmission line having one end connected to the terminal end of the first transmission line and having a delay time half the 1-bit width of the transmitted digital data pattern and a characteristic impedance comparable to the first transmission line; ,
A resistor connected between the other end of the second transmission line and the ground;
And a diode connected in parallel to the resistor and having a forward direction from the second transmission line toward the ground.
第1の伝送線路と、
前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路より高い特性インピーダンスを持つ第2の伝送線路と、
前記第2の伝送線路の他端とグランドとの間に接続された抵抗と、
前記抵抗に並列接続され、前記第2の伝送線路から前記グランドに向かう方向を順方向とするダイオードと
を備えた波形補償回路。
A first transmission line;
A second transmission line having one end connected to the terminal end of the first transmission line and having a delay time that is half the 1-bit width of the transmitted digital data pattern and a characteristic impedance higher than that of the first transmission line;
A resistor connected between the other end of the second transmission line and the ground;
And a diode connected in parallel to the resistor and having a forward direction from the second transmission line toward the ground.
第1の伝送線路と、
前記第1の伝送線路の終端部に接続されたインダクタと、
前記インダクタを介して前記第1の伝送線路の終端部に一端が接続され、伝送されるディジタルデータパターンの1bit幅の半分の遅延時間と前記第1の伝送線路と同程度の特性インピーダンスを持つ第2の伝送線路と、
前記第2の伝送線路の他端とグランドとの間に接続された第1の抵抗と、
前記インダクタと前記第2の伝送線路との接続部から前記グランドに向かう方向を順方向とするダイオードと、
前記ダイオードと前記グランドとの間に接続された第2の抵抗と
を備えた波形補償回路。
A first transmission line;
An inductor connected to a termination portion of the first transmission line;
One end of the first transmission line is connected to the end of the first transmission line via the inductor, and the delay time is half the 1-bit width of the transmitted digital data pattern and has a characteristic impedance comparable to that of the first transmission line. Two transmission lines;
A first resistor connected between the other end of the second transmission line and the ground;
A diode having a forward direction from the connecting portion between the inductor and the second transmission line toward the ground;
A waveform compensation circuit comprising: a second resistor connected between the diode and the ground.
請求項1に記載の波形補償回路において、
前記第1の伝送線路と前記終端部との間に挿入されたキャパシタと、
前記終端部に接続されたバイアス回路と
をさらに備えたことを特徴とする波形補償回路。
The waveform compensation circuit according to claim 1,
A capacitor inserted between the first transmission line and the termination portion;
A waveform compensation circuit, further comprising: a bias circuit connected to the termination portion.
請求項1から5までのいずれか1項に記載の波形補償回路において、
前記ダイオードを逆方向に置き換えた
ことを特徴とする波形補償回路。
In the waveform compensation circuit according to any one of claims 1 to 5,
A waveform compensation circuit, wherein the diode is replaced in the reverse direction.
請求項1から5までのいずれか1項に記載の波形補償回路において、
前記ダイオードに、当該ダイオードとは逆方向に並列接続された他のダイオードをさらに備えた
ことを特徴とする波形補償回路。
In the waveform compensation circuit according to any one of claims 1 to 5,
The waveform compensation circuit, further comprising another diode connected in parallel to the diode in a direction opposite to the diode.
請求項1に記載の波形補償回路において、
前記ダイオードをキャパシタに置き換えた
ことを特徴とする波形補償回路。
The waveform compensation circuit according to claim 1,
A waveform compensation circuit, wherein the diode is replaced with a capacitor.
JP2008096019A 2008-04-02 2008-04-02 Waveform compensation circuit Pending JP2009253423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096019A JP2009253423A (en) 2008-04-02 2008-04-02 Waveform compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096019A JP2009253423A (en) 2008-04-02 2008-04-02 Waveform compensation circuit

Publications (1)

Publication Number Publication Date
JP2009253423A true JP2009253423A (en) 2009-10-29

Family

ID=41313716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096019A Pending JP2009253423A (en) 2008-04-02 2008-04-02 Waveform compensation circuit

Country Status (1)

Country Link
JP (1) JP2009253423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067776A1 (en) * 2009-12-04 2011-06-09 Indian Space Research Organisation Circuit for compensating gain variation over operating frequency and/or temperature range

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067776A1 (en) * 2009-12-04 2011-06-09 Indian Space Research Organisation Circuit for compensating gain variation over operating frequency and/or temperature range

Similar Documents

Publication Publication Date Title
US9319043B2 (en) Generation of differential signals
JP6227391B2 (en) Passive equalizer
US9722822B1 (en) Method and system using driver equalization in transmission line channels with power or ground terminations
JP6032270B2 (en) Light modulator
JP4754170B2 (en) Laser drive circuit and optical communication device
US20130342943A1 (en) Input protection circuit
JP2009253423A (en) Waveform compensation circuit
US20080042775A1 (en) Design for transmission line on over split plane structure
JP2006345259A (en) Receiving part termination system
JP2010288007A (en) Variable gain circuit
CN104039075A (en) Pcb circuit
WO2010131428A1 (en) Communication cable
JP5873682B2 (en) Redriver IC, semiconductor device, and manufacturing method thereof
JP2008131141A (en) Termination circuit for transmission line
JP2009099803A (en) Laser diode drive circuit
JP5024969B2 (en) High-speed and long-distance transmission system and equalizer using reflection characteristics
JP2010171460A (en) Laser drive circuit and optical communication device
JP2005032663A (en) Reflection type surge suppression cable
JP4925996B2 (en) Attenuators and electronic devices
JP2020123774A (en) Communication system
JP2017073677A (en) Optical receiving circuit, optical transceiver, and method for controlling optical receiving circuit
WO2022203054A1 (en) Connection circuit and communication interface
US7436869B2 (en) Laser circuit substrate
US9069913B2 (en) Circuit topology for multiple loads
US10855332B2 (en) Signal transmission system