JP2009252824A - Laser pulse compression device - Google Patents

Laser pulse compression device Download PDF

Info

Publication number
JP2009252824A
JP2009252824A JP2008096067A JP2008096067A JP2009252824A JP 2009252824 A JP2009252824 A JP 2009252824A JP 2008096067 A JP2008096067 A JP 2008096067A JP 2008096067 A JP2008096067 A JP 2008096067A JP 2009252824 A JP2009252824 A JP 2009252824A
Authority
JP
Japan
Prior art keywords
diffraction grating
incident
diffraction
laser pulse
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096067A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Nanokaichi
一嘉 七日市
Kiyoshi Takada
清志 高田
Shuhei Yamamoto
修平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008096067A priority Critical patent/JP2009252824A/en
Publication of JP2009252824A publication Critical patent/JP2009252824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser pulse compression device compensating phase dispersion even if change occurs in dispersion of an amplified output laser pulse with a change of the number of pulse reciprocating times and that of a pulse repetition frequency, and obtaining optimum pulse width. <P>SOLUTION: The laser pulse compression device includes a first diffraction grating reflecting laser pulse light, a second diffraction grating receiving incident diffraction light reflected by the first diffraction grating, a prism which repetitively reflects diffraction light reflected by the second diffraction grating and makes it incident on the second diffraction grating, and a total reflection mirror outputting repetitive reflection light which is made incident on the second diffraction grating to an external part through the first diffraction grating as repetitive laser pulse light. The device further includes a sliding mechanism part moving in parallel to an optical axis of incident diffraction light reflected on the first diffraction grating, a movable stand fixing the second diffraction grating to the sliding mechanism part, a cabinet storing them, and an adjusting means varying a distance between the first diffraction grating and the second diffraction grating from outside the cabinet. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、回折格子を用いた短パルスレーザ装置などに搭載するレーザパルス圧縮装置に関するものである。   The present invention relates to a laser pulse compression apparatus mounted on a short pulse laser apparatus using a diffraction grating.

高いピーク出力で、パルス幅がフェムト秒(fs)〜ピコ秒(ps)オーダの(超短)レーザパルスを発生させる方法としてチャープパルス増幅(CPA)が知られている。例えば、特開2004−48020号公報図2(特許文献1参照)には、発信器5、伸張器15及び増幅器25を収納した注入源1の出力を光学的周波数変換器を介して増幅器55と圧縮器65を収納した高エネルギバルク増幅器2を搭載した混成装置のCPAシステムが開示されている。このCPAでは、チャープ光パルスの波長が時間と共に変化するようなパルス幅の広い光パルスを生成し、これを増幅したのち、パルス圧縮器で圧縮して高ピーク出力の短光パルスを得ている。   Chirped pulse amplification (CPA) is known as a method for generating (ultra-short) laser pulses having a high peak output and a pulse width on the order of femtoseconds (fs) to picoseconds (ps). For example, in FIG. 2 of Japanese Patent Application Laid-Open No. 2004-48020 (see Patent Document 1), the output of the injection source 1 containing the transmitter 5, the expander 15, and the amplifier 25 is connected to an amplifier 55 via an optical frequency converter. A CPA system of a hybrid device equipped with a high energy bulk amplifier 2 containing a compressor 65 is disclosed. In this CPA, an optical pulse having a wide pulse width in which the wavelength of the chirped optical pulse changes with time is generated, amplified, and then compressed by a pulse compressor to obtain a short optical pulse with a high peak output. .

また、特開平9−211504号公報図1(特許文献2参照)には、回析格子5−1、5−2を通過したレーザパルスを全反射鏡7で反射させ、再び回析格子5−1、5−2を経由させてレーザパルスを取り出すレーザパルス圧縮装置が開示されている。   Further, in FIG. 1 of Japanese Patent Laid-Open No. 9-211154 (see Patent Document 2), the laser pulse that has passed through the diffraction gratings 5-1, 5-2 is reflected by the total reflection mirror 7, and again, the diffraction grating 5- A laser pulse compression device that takes out a laser pulse via 1 and 5-2 is disclosed.

また、特開2007−109962号公報図1(特許文献3参照)には、回折格子対1、3と、回折格子対1、3の一方の回折格子1に回折格子1の法線を含み回折格子1の格子と直交する入射面と所定の角度をなす入射面もつレーザパルスを入射させる入射手段2と、回折格子対1、3内を通過してくる前記レーザパルスを反射して回折格子対1、3内に再び入射するように配置される反射鏡4とを備えたレーザパルス圧縮装置が開示されている。   FIG. 1 (see Patent Document 3) of Japanese Patent Application Laid-Open No. 2007-109962 includes diffraction grating pairs 1 and 3 and one diffraction grating 1 of diffraction grating pairs 1 and 3 including the normal line of diffraction grating 1 and diffraction. An incident means 2 for making incident a laser pulse having an incident surface perpendicular to the incident surface of the grating 1 and a predetermined angle, and the laser pulse passing through the diffraction grating pairs 1 and 3 are reflected to reflect the diffraction grating pair. A laser pulse compression device is disclosed that includes a reflecting mirror 4 that is arranged so as to be incident again in 1 and 3.

特開2004−48020号公報(第2図)Japanese Patent Laid-Open No. 2004-48020 (FIG. 2)

特開平9−211504号公報(第1図)「段落0032」Japanese Patent Application Laid-Open No. 9-2111504 (FIG. 1) “Paragraph 0032”

特開2007−109962号公報(第1図)JP 2007-109962 (FIG. 1)

しかし、特許文献1に記載のものは、パルス圧縮器には、高ピーク出力による光損傷や非線形性があるためファイバ圧縮器を用いることには問題があり、バルク回析素子圧縮器などが必要であるという課題があった。   However, the one described in Patent Document 1 has a problem in using a fiber compressor because the pulse compressor has optical damage and nonlinearity due to high peak output, and a bulk diffraction element compressor is required. There was a problem of being.

特許文献2に記載のものは、全反射鏡7で反射されたレーザパルス2−3が再び負の分散特性をもつ回析格子対5を通過することにより、回析格子間隔が短くてもパルス圧縮が可能であり装置のコンパクト化に適しているものの、位相分散を補償するための回析格子の間隔を調整し、最適な光路長を構成することについては記載されていない。   Patent Document 2 discloses that the laser pulse 2-3 reflected by the total reflection mirror 7 passes through the diffraction grating pair 5 having negative dispersion characteristics again, so that the pulse can be obtained even if the diffraction grating interval is short. Although compression is possible and suitable for downsizing of the apparatus, there is no description about adjusting the distance of the diffraction grating to compensate for phase dispersion and configuring an optimum optical path length.

特許文献3に記載のものは、回折格子に入射されるレーザパルスの回折格子の法線を含み格子と直交する面内での入射角を変更することができることで回折格子の回折効率を高くして圧縮装置の透過率を高くすることが可能なものの、位相分散を補償するために回析格子の間隔を調整し、最適な光路長を構成することについては記載されていない。   The one described in Patent Document 3 can increase the diffraction efficiency of the diffraction grating by changing the incident angle in the plane perpendicular to the grating including the normal line of the diffraction grating of the laser pulse incident on the diffraction grating. Although it is possible to increase the transmittance of the compression device, there is no description about adjusting the distance between the diffraction gratings to compensate for phase dispersion and configuring an optimum optical path length.

この発明は上記のような課題を解消するためになされたもので、パルス往復回数およびパルス繰り返し周波数の変化に伴う増幅出力レーザパルスの分散の変化が生じた場合でも位相分散を補償し、最適なパルス幅を得ることが可能なレーザパルス圧縮装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and compensates for phase dispersion even when a change in dispersion of the amplified output laser pulse due to a change in the number of times of pulse reciprocation and pulse repetition frequency occurs. An object of the present invention is to provide a laser pulse compression device capable of obtaining a pulse width.

請求項1に係るレーザパルス圧縮装置は、入力窓から入射するレーザパルス光を第1全反射鏡を介して入射させ、回析光として反射させる第1回折格子と、この第1回析格子で反射した入射回析光を受光する前記第1回析格子の入反射面と離間して平行に配置した入反射面を有する第2回折格子と、この第2回析格子で反射した回析光を経路変更して反復反射させて前記第2回析格子に入射させるプリズムと、前記第2回析格子に入射した反復反射光を前記第1回析格子を介して直接出力窓から反復レーザパルス光として外部に出力する第2全反射鏡と、前記第1回析格子で反射した前記入射回析光の光軸に対して平行移動可能なスライド領域を設けたスライド機構部と、このスライド機構部の前記スライド領域に前記第2回析格子を固定し前記スライド領域に沿って移動する可動台と、前記第1全反射鏡、前記第2全反射鏡、前記第1回析格子、前記第2回析格子を固定した前記可動台及び前記スライド機構部を収納する密閉空間を形成する外壁を有する筐体と、この筐体の外部に設けられ、前記筐体の外壁に設けた貫通穴部を貫通して前記可動台と連結された調整棒を可動させ、前記第1回析格子と前記第2回析格子との距離を可変する調整手段とを備えたものである。   According to a first aspect of the present invention, there is provided a laser pulse compression device including a first diffraction grating that causes laser pulse light incident from an input window to be incident through a first total reflection mirror and reflected as diffraction light, and the first diffraction grating. A second diffraction grating having an incident / reflecting surface arranged in parallel with a distance from the incident / reflecting surface of the first diffractive grating for receiving the reflected incident diffracted light, and the diffracted light reflected by the second diffractive grating. And a repetitive laser pulse that is repeatedly reflected from the output window directly through the first diffraction grating. A second total reflection mirror that outputs light to the outside, a slide mechanism portion provided with a slide region that is movable in parallel with the optical axis of the incident diffraction light reflected by the first diffraction grating, and the slide mechanism The second diffraction grating is fixed to the slide area of the section A movable base that moves along the slide region, the first total reflection mirror, the second total reflection mirror, the first diffraction grating, the movable base to which the second diffraction grating is fixed, and the slide mechanism section A housing having an outer wall that forms a sealed space for housing the housing, and an adjustment rod that is provided outside the housing and passes through a through-hole provided in the outer wall of the housing and is connected to the movable base. And adjusting means for varying the distance between the first diffraction grating and the second diffraction grating.

請求項2に係るレーザパルス圧縮装置は、入力窓から入射するレーザパルス光を第1全反射鏡を介して入射させ、回析光として反射させる第1回折格子と、この第1回析格子で反射した入射回析光を受光する前記第1回析格子の入反射面と離間して平行に配置した入反射面を有する第2回折格子と、この第2回析格子で反射した回析光を経路変更して反復反射させて前記第2回析格子に入射させるプリズムと、前記第2回析格子に入射した反復反射光を前記第1回析格子を介して直接出力窓から反復レーザパルス光として外部に出力する第2全反射鏡と、前記第1回析格子で反射した前記入射回析光の光軸に対して平行移動可能なスライド領域を設けたスライド機構部と、このスライド機構部の前記スライド領域に前記第1回析格子を固定し前記スライド領域に沿って移動する可動台と、前記第1全反射鏡、前記第2全反射鏡、前記第1回析格子、前記第1回析格子を固定した前記可動台及び前記スライド機構部を収納する密閉空間を形成する外壁を有する筐体と、この筐体の外部に設けられ、前記筐体の外壁に設けた貫通穴部を貫通して前記可動台と連結された調整棒を可動させ、前記第1回析格子と前記第2回析格子との距離を可変する調整手段とを備えたものである。   According to a second aspect of the present invention, there is provided a laser pulse compression device including a first diffraction grating that causes laser pulse light incident from an input window to be incident through a first total reflection mirror and reflected as diffracted light, and the first diffraction grating. A second diffraction grating having an incident / reflecting surface arranged in parallel with a distance from the incident / reflecting surface of the first diffractive grating for receiving the reflected incident diffracted light, and the diffracted light reflected by the second diffractive grating. And a repetitive laser pulse that is repeatedly reflected from the output window directly through the first diffraction grating. A second total reflection mirror that outputs light to the outside, a slide mechanism portion provided with a slide region that is movable in parallel with the optical axis of the incident diffraction light reflected by the first diffraction grating, and the slide mechanism The first diffraction grating is fixed to the slide area of the part A movable base that moves along the slide region, the first total reflection mirror, the second total reflection mirror, the first diffraction grating, the movable base to which the first diffraction grating is fixed, and the slide mechanism section A housing having an outer wall that forms a sealed space for housing the housing, and an adjustment rod that is provided outside the housing and passes through a through-hole provided in the outer wall of the housing and is connected to the movable base. And adjusting means for varying the distance between the first diffraction grating and the second diffraction grating.

請求項3に係るレーザパルス圧縮装置は、前記調整手段は、入力信号に基づき前記調整棒を移動させるパルス信号を送出する位置制御回路部を具備した請求項1又は2に記載のものである。   According to a third aspect of the present invention, there is provided the laser pulse compression device according to the first or second aspect, wherein the adjusting means includes a position control circuit section for sending a pulse signal for moving the adjusting rod based on an input signal.

請求項4に係るレーザパルス圧縮装置は、前記位置制御回路部は記憶回路部とCPUを搭載し、前記パルス信号のカウント数を前記記憶回路部の記憶素子に記憶させ、カウント情報により、CPUは前記第1回析格子と前記第2回析格子との距離情報を表示する表示信号を前記筐体外部に設置した表示部に送出する請求項3に記載のものである。   In the laser pulse compression device according to claim 4, the position control circuit unit includes a memory circuit unit and a CPU, and the count number of the pulse signal is stored in a memory element of the memory circuit unit. The display signal for displaying distance information between the first diffraction grating and the second diffraction grating is sent to a display unit installed outside the housing.

この発明に係るレーザパルス圧縮装置によれば、短パルスレーザ装置の再生増幅器などにおいてパルス往復回数の変化に伴う分散の変化が生じた場合でも、その分散を最適に補償するように短パルスレーザ装置の回折格子間隔を調整できる効果がある。   According to the laser pulse compression device of the present invention, even when a change in dispersion caused by a change in the number of reciprocating pulses occurs in a regenerative amplifier or the like of a short pulse laser device, the short pulse laser device is optimally compensated for the dispersion. There is an effect that the interval of the diffraction grating can be adjusted.

また、レーザパルス圧縮装置の筐体を開放することなく第1回折格子と第2回析格子との距離(間隔)調整が可能なので筐体内の清浄度を維持することができる。   Further, since the distance (interval) between the first diffraction grating and the second diffraction grating can be adjusted without opening the housing of the laser pulse compression device, the cleanliness in the housing can be maintained.

実施の形態1.
以下、この発明の実施の形態1について図1を用いて説明する。図1は、実施の形態1によるレーザパルス圧縮装置の構成図である。図1において、1はレーザパルス光源からのレーザパルス光を入射する入力窓(入射窓)、2は入力窓1から入射したレーザパルス光を反射する第1全反射鏡、3は第1全反射鏡2で反射したレーザ光を入射し入射回析光として反射光を照射する固定配置した第1回析格子、4は第1回析格子3と平行配置した可動可能な第2回析格子、5は第1回析格子3と第2回析格子4を通過したレーザパルス光を、その高さ(紙面に垂直方向)を上げるように反射させるプリズム、6はプリズム5で折り返し反射したレーザパルス光を第2回析格子4、第1回析格子3を経由して入射させる第2全反射鏡、7は第2全反射鏡6で反射したレーザパルス光を外部に出射させる出力窓(出射窓)である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of a laser pulse compression apparatus according to the first embodiment. In FIG. 1, 1 is an input window (incident window) for receiving laser pulse light from a laser pulse light source, 2 is a first total reflection mirror for reflecting laser pulse light incident from the input window 1, and 3 is first total reflection. A first diffractive grating fixedly arranged to receive laser light reflected by the mirror 2 and irradiate reflected light as incident diffracted light, 4 is a movable second diffractive grating arranged in parallel with the first diffractive grating 3, 5 is a prism that reflects the laser pulse light that has passed through the first diffraction grating 3 and the second diffraction grating 4 so as to increase its height (perpendicular to the paper surface), and 6 is a laser pulse that is reflected back by the prism 5. A second total reflection mirror that allows light to enter through the second diffraction grating 4 and the first diffraction grating 3, and an output window (outgoing) that emits laser pulse light reflected by the second total reflection mirror 6 to the outside. Window).

8は第2回析格子4を移動させる可動台(可動部)、9は可動台8をスライドさせ、第2回析格子4と第1回析格子3との平行距離を可変するガイドとなるレール(スライド機構部)、10は第2回析格子4と可動台8とを固定するホルダ、11は第1全反射鏡2、第2全反射鏡6、第1回析格子3、第2回析格子4、プリズム5等を収納する筐体、12は筐体11の外壁から筐体11の内部に延びた調整棒で可動台8と連結し、可動台8をスライドさせて第2回析格子を移動させるマイクロメータなどを用いた調整手段であり、12aは調整手段12の距離表示部(表示部)、12bは調整棒を回転移動させることで可動台8をスライドさせる調整手段12のつまみ部である。なお、調整手段12は筐体11の外部に設置される。   8 is a movable table (movable part) for moving the second diffraction grating 4, and 9 is a guide for sliding the movable table 8 to change the parallel distance between the second diffraction grating 4 and the first diffraction grating 3. Rail (sliding mechanism) 10 is a holder for fixing the second diffraction grating 4 and the movable base 8, 11 is a first total reflection mirror 2, a second total reflection mirror 6, a first diffraction grating 3, a second A housing for storing the diffraction grating 4 and the prism 5, etc., 12 is connected to the movable base 8 with an adjusting rod extending from the outer wall of the housing 11 to the inside of the housing 11, and the movable base 8 is slid to the second time. An adjusting means using a micrometer or the like for moving the diffraction grating, 12a is a distance display section (display section) of the adjusting means 12, and 12b is an adjusting means 12 for sliding the movable base 8 by rotating the adjusting rod. It is a knob part. The adjusting means 12 is installed outside the housing 11.

次に動作について説明する。入力窓1から入射したレーザパルス光を第1全反射鏡2に入射させ、その反射光を第1回析格子3に入射させる。第1回析格子3は平板上にアルミニウム蒸着膜などに格子を設け格子間に入射したレーザパルス光を回析光として反射させる。この回析されたレーザパルス光は一定距離隔てて設置した第1回析格子3と平行な入射面を有し、第1回析格子3と同一構成の第2回析格子4に入射し、この反射光をプリズム5に入射する(実線矢印表示)。次にプリズム5で反復反射したレーザパルス光は第2回析格子4、第1回析格子3を経由して戻るが、第1全反射鏡2に遮らなれないように復路を伝播する光路を変更して直接第2全反射鏡6に入射させ、この反射光を出力窓2から取り出す(破線矢印表示)。このようにしてレーザパルス光を往復させパルス圧縮を行う。   Next, the operation will be described. Laser pulse light incident from the input window 1 is incident on the first total reflection mirror 2, and the reflected light is incident on the first diffraction grating 3. The first diffraction grating 3 is provided with a grating on an aluminum vapor deposition film or the like on a flat plate and reflects laser pulse light incident between the gratings as diffraction light. The diffracted laser pulse light has an incident surface parallel to the first diffractive grating 3 disposed at a fixed distance, and is incident on the second diffractive grating 4 having the same configuration as the first diffractive grating 3. This reflected light is incident on the prism 5 (indicated by solid arrows). Next, the laser pulse light repeatedly reflected by the prism 5 returns via the second diffraction grating 4 and the first diffraction grating 3, but the optical path propagating through the return path so as not to be blocked by the first total reflection mirror 2. The light is changed and directly incident on the second total reflection mirror 6, and the reflected light is taken out from the output window 2 (indicated by a broken line arrow). In this way, pulse compression is performed by reciprocating the laser pulse light.

互いに平行して入反射面を配置した第1回析格子3と第2回析格子4との距離(間隔)は変更可能なようにするため第2回析格子4は、第1回析格子3と平行を保ちながら可動するレール(スライド機構部)9上にホルダ10を介して可動台8に固定される。また、可動台8はマイクロメータ12から延びた調整棒と連結されマイクロメータ12の距離表示部(表示部)12aで第2回析格子4の移動量を確認する構成となっている。距離の移動量はマイクロメータ12のつまみ部12bで調節する。   In order to be able to change the distance (interval) between the first diffraction grating 3 and the second diffraction grating 4 in which the entrance and reflection surfaces are arranged in parallel to each other, the second diffraction grating 4 is used as the first diffraction grating. 3 is fixed to a movable base 8 via a holder 10 on a rail (sliding mechanism portion) 9 that is movable while being parallel to 3. The movable table 8 is connected to an adjustment rod extending from the micrometer 12 and is configured to check the amount of movement of the second diffraction grating 4 by a distance display unit (display unit) 12 a of the micrometer 12. The movement amount of the distance is adjusted by the knob portion 12b of the micrometer 12.

第2回折格子4の間隔調整は、調整棒の移動量で決まるので調整棒はつまみ部12bによる粗調整と、マイクロメータ12本体による精密調整を組み合わせて行っても良い。   Since the distance adjustment of the second diffraction grating 4 is determined by the amount of movement of the adjustment bar, the adjustment bar may be combined with coarse adjustment by the knob portion 12b and fine adjustment by the micrometer 12 body.

なお、本実施の形態1では、第2回析格子4側を可動台8を用いて可動するようにしたが、第1回析格子3、第2回析格子4の入出射面を互いに平行になるように保つことにより、第1回析格子3側を可動するようにしても良く、第1回析格子3及び第2回析格子4の両方を平行に保ちながら相対的に可動するようにしても良い。   In the first embodiment, the second diffractive grating 4 side is moved by using the movable base 8, but the incident and outgoing surfaces of the first diffractive grating 3 and the second diffractive grating 4 are parallel to each other. The first diffraction grating 3 side may be moved by keeping the first diffraction grating 3 so as to be relatively movable while both the first diffraction grating 3 and the second diffraction grating 4 are kept parallel. Anyway.

図2は、この発明の実施の形態1によるレーザパルス圧縮装置を搭載した短パルスレーザ装置のブロック構成図である。図2において、20はチャープパルス出力のファイバレーザ光源、21はパルス伸張器、22は比較的低出力の超短パルスのパルス幅を伸張後増幅する再生増幅器、23は再生増幅器22で増幅されたレーザ光を時間幅の短い長短パルスに変換するレーザパルス圧縮装置である。   FIG. 2 is a block diagram of a short pulse laser device equipped with the laser pulse compression device according to the first embodiment of the present invention. In FIG. 2, 20 is a fiber laser light source with chirped pulse output, 21 is a pulse stretcher, 22 is a regenerative amplifier that amplifies the pulse width of a relatively short output ultrashort pulse, and 23 is amplified by the regenerative amplifier 22. This is a laser pulse compression device that converts laser light into long and short pulses with a short time width.

次に短パルスレーザ装置の動作について説明する。図2において、チャープパルス増幅法では、その増幅方式として再生増幅器22が使用される。再生増幅器22はレーザパルス増幅器の一種であり、2枚の全反射ミラーとレーザ利得媒質から構成される共振器と、レーザ増幅光の入射/出射タイミングを制御する電気光学素子により構成される。共振器内に入射した発振器からのレーザパルスは共振器内に閉じ込められ、共振器内を往復する。レーザパルスが共振器内を往復する間に、徐々に増幅が行われ、適当な往復回数にて増幅されたレーザパルスはレーザパルス圧縮装置23に出射される。増幅されたレーザパルスの出力パワーと位相分散特性は、共振器内の往復回数、およびパルスの繰り返し周波数に依存する。増幅されたレーザパルスはレーザパルス圧縮装置23に入射し、パルス幅が圧縮されて高いピークパルスとなる。なお、超短レーザパルスの平均出力およびパルス繰り返し周波数は、環境変化や装置の仕様変更により可変される。   Next, the operation of the short pulse laser device will be described. In FIG. 2, in the chirp pulse amplification method, a regenerative amplifier 22 is used as the amplification method. The regenerative amplifier 22 is a kind of laser pulse amplifier, and includes a resonator composed of two total reflection mirrors and a laser gain medium, and an electro-optic element that controls the incident / exit timing of laser amplified light. The laser pulse from the oscillator incident on the resonator is confined in the resonator and reciprocates in the resonator. While the laser pulse reciprocates in the resonator, amplification is gradually performed, and the laser pulse amplified by an appropriate number of reciprocations is emitted to the laser pulse compression device 23. The output power and phase dispersion characteristics of the amplified laser pulse depend on the number of reciprocations in the resonator and the pulse repetition frequency. The amplified laser pulse is incident on the laser pulse compression device 23, and the pulse width is compressed to become a high peak pulse. The average output and pulse repetition frequency of the ultrashort laser pulse can be changed by changing the environment or changing the specifications of the apparatus.

再生増幅器22の出力は上述のように再生増幅器22内の往復回数を適切に設定することで変化させることができる。往復回数を変化させると、再生増幅器22の出力パルスの分散もそれにつれて変化するが、設定往復回数における最適なパルス時間幅を得るためのレーザパルス圧縮装置に設置した第1回折格子3と第2回析格子4との距離(間隔)を予め測定しておき、所望の回折格子間隔を設定し、調整手段12で調整することが可能である。   The output of the regenerative amplifier 22 can be changed by appropriately setting the number of reciprocations in the regenerative amplifier 22 as described above. When the number of reciprocations is changed, the dispersion of the output pulse of the regenerative amplifier 22 also changes accordingly. However, the first diffraction grating 3 and the second diffraction grating 3 installed in the laser pulse compression device for obtaining the optimum pulse time width at the set number of reciprocations It is possible to measure the distance (interval) with the diffraction grating 4 in advance, set a desired diffraction grating interval, and adjust it with the adjusting means 12.

次に図1に示した調整手段12に替えて所望の回折格子間隔を設定し、調整手段で自動調整する方法についてさらに図2を用いて説明する。120は自動式の調整手段であり、120aは第1回析格子3と第2回析格子4との間の距離情報を表示する表示部、120bはパルス信号で駆動するサーボモータ、120cはサーボモータ120bの回転シャフトである。   Next, a method of setting a desired diffraction grating interval in place of the adjusting unit 12 shown in FIG. 1 and automatically adjusting by the adjusting unit will be further described with reference to FIG. 120 is an automatic adjustment means, 120a is a display unit for displaying distance information between the first diffraction grating 3 and the second diffraction grating 4, 120b is a servo motor driven by a pulse signal, and 120c is a servo. It is a rotating shaft of the motor 120b.

120dはCPUや記憶素子を含む記憶回路などを搭載し、外部からの制御入力信号に基づきサーボモータ120bの回転シャフト120cの正逆回転量又は移動量をサーボモータ120bにパルス回数信号で送出する位置制御回路部である。また、パルス回数信号は位置制御回路120dの記憶素子で記憶され、第1回析格子3と第2回析格子4との距離を表示するための位置表示信号を位置制御回路120dに内蔵したCPUを介して送出する。   120d is equipped with a CPU, a storage circuit including a storage element, and the like, and based on a control input signal from the outside, a position for sending the forward / reverse rotation amount or movement amount of the rotating shaft 120c of the servo motor 120b to the servo motor 120b as a pulse count signal It is a control circuit unit. Further, the pulse number signal is stored in the storage element of the position control circuit 120d, and a CPU that incorporates a position display signal for displaying the distance between the first diffraction grating 3 and the second diffraction grating 4 in the position control circuit 120d. To send out.

以上から短パルスレーザ装置のパルス往復回数の変化に伴う分散の変化が生じた場合でも、その分散を最適に補償するように回折格子間隔をレーザパルス圧縮装置で調整可能である。   From the above, even when dispersion changes due to changes in the number of reciprocating pulses of the short pulse laser device, the diffraction grating interval can be adjusted by the laser pulse compression device so as to optimally compensate for the dispersion.

また、レーザパルス圧縮装置の筐体11を開放することなく第1回折格子3と第2回析格子4との距離(間隔)調整が可能なので筐体11内の清浄度を維持することができる。   Further, since the distance (interval) between the first diffraction grating 3 and the second diffraction grating 4 can be adjusted without opening the casing 11 of the laser pulse compression device, the cleanliness in the casing 11 can be maintained. .

この発明の実施の形態1によるレーザパルス圧縮装置の構成図である。It is a block diagram of the laser pulse compression apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるレーザパルス圧縮装置を搭載した短パルスレーザ装置のブロック構成図である。It is a block block diagram of the short pulse laser apparatus carrying the laser pulse compression apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1・・入力窓 2・・第1全反射鏡 3・・第1回析格子 4・・第2回析格子
5・・プリズム 6・・第2全反射鏡 7・・出力窓 8・・可動台(可動部)
9・・スライド機構部(レール) 10・・ホルダ 11・・筐体
12・・調整手段 12a・・表示部(距離表示部) 12b・・つまみ部
20・・レーザ光源(ファイバレーザ光源) 21・・パルス伸張器
22・・再生増幅器 23・・レーザパルス圧縮装置
120・・調整手段 120a・・表示部(距離表示部)
120b・・サーボモータ 120c・・回転シャフト(シャフト)
120d・・位置制御回路部
1..Input window 2..First total reflection mirror 3..First diffraction grating 4..Second diffraction grating 5..Prism 6..Second total reflection mirror 7..Output window 8..Movable Stand (moving part)
9 .. Slide mechanism part (rail) 10 .. Holder 11 .. Housing 12 .. Adjustment means 12 a .. Display part (distance display part) 12 b .. Knob part 20 .. Laser light source (fiber laser light source) 21.・ Pulse stretcher 22 ・ ・ Regenerative amplifier 23 ・ ・ Laser pulse compressor 120 ・ ・ Adjustment means 120a ・ ・ Display (distance display)
120b ... Servo motor 120c ... Rotary shaft (shaft)
120d..Position control circuit section

Claims (4)

入力窓から入射するレーザパルス光を第1全反射鏡を介して入射させ、回析光として反射させる第1回折格子と、この第1回析格子で反射した入射回析光を受光する前記第1回析格子の入反射面と離間して平行に配置した入反射面を有する第2回折格子と、この第2回析格子で反射した回析光を経路変更して反復反射させて前記第2回析格子に入射させるプリズムと、前記第2回析格子に入射した反復反射光を前記第1回析格子を介して直接出力窓から反復レーザパルス光として外部に出力する第2全反射鏡と、前記第1回析格子で反射した前記入射回析光の光軸に対して平行移動可能なスライド領域を設けたスライド機構部と、このスライド機構部の前記スライド領域に前記第2回析格子を固定し前記スライド領域に沿って移動する可動台と、前記第1全反射鏡、前記第2全反射鏡、前記第1回析格子、前記第2回析格子を固定した前記可動台及び前記スライド機構部を収納する密閉空間を形成する外壁を有する筐体と、この筐体の外部に設けられ、前記筐体の外壁に設けた貫通穴部を貫通して前記可動台と連結された調整棒を可動させ、前記第1回析格子と前記第2回析格子との距離を可変する調整手段とを備えたレーザパルス圧縮装置。 A first diffraction grating that makes laser pulse light incident from the input window incident through the first total reflection mirror and reflects it as diffraction light, and the first diffraction light that receives the incident diffraction light reflected by the first diffraction grating. A second diffraction grating having an incident / reflecting surface arranged in parallel and spaced apart from the incident / reflecting surface of the first diffraction grating; and the reflected light reflected by the second diffraction grating is re-routed and repetitively reflected to change the first diffraction grating. A prism that is incident on the second diffraction grating, and a second total reflection mirror that outputs the repetitively reflected light incident on the second diffraction grating to the outside as repetitive laser pulse light directly from the output window via the first diffraction grating A slide mechanism part provided with a slide region that can be translated with respect to the optical axis of the incident diffraction light reflected by the first diffraction grating, and the second diffraction in the slide region of the slide mechanism part A movable base that moves along the slide area while fixing the lattice. The first total reflection mirror, the second total reflection mirror, the first diffraction grating, the movable base to which the second diffraction grating is fixed, and an outer wall that forms a sealed space for housing the slide mechanism. A housing and an adjustment rod provided outside the housing and penetrating through a through hole provided in the outer wall of the housing and coupled to the movable base are moved, and the first diffraction grating and the first diffraction grating are moved. A laser pulse compression device comprising adjusting means for varying the distance from the two diffraction gratings. 入力窓から入射するレーザパルス光を第1全反射鏡を介して入射させ、回析光として反射させる第1回折格子と、この第1回析格子で反射した入射回析光を受光する前記第1回析格子の入反射面と離間して平行に配置した入反射面を有する第2回折格子と、この第2回析格子で反射した回析光を経路変更して反復反射させて前記第2回析格子に入射させるプリズムと、前記第2回析格子に入射した反復反射光を前記第1回析格子を介して直接出力窓から反復レーザパルス光として外部に出力する第2全反射鏡と、前記第1回析格子で反射した前記入射回析光の光軸に対して平行移動可能なスライド領域を設けたスライド機構部と、このスライド機構部の前記スライド領域に前記第1回析格子を固定し前記スライド領域に沿って移動する可動台と、前記第1全反射鏡、前記第2全反射鏡、前記第1回析格子、前記第1回析格子を固定した前記可動台及び前記スライド機構部を収納する密閉空間を形成する外壁を有する筐体と、この筐体の外部に設けられ、前記筐体の外壁に設けた貫通穴部を貫通して前記可動台と連結された調整棒を可動させ、前記第1回析格子と前記第2回析格子との距離を可変する調整手段とを備えたレーザパルス圧縮装置。 A first diffraction grating that makes laser pulse light incident from the input window incident through the first total reflection mirror and reflects it as diffraction light, and the first diffraction light that receives the incident diffraction light reflected by the first diffraction grating. A second diffraction grating having an incident / reflecting surface arranged in parallel and spaced apart from the incident / reflecting surface of the first diffraction grating; and the reflected light reflected by the second diffraction grating is re-routed and repetitively reflected to change the first diffraction grating. A prism that is incident on the second diffraction grating, and a second total reflection mirror that outputs the repetitively reflected light incident on the second diffraction grating to the outside as repetitive laser pulse light directly from the output window via the first diffraction grating A slide mechanism portion provided with a slide region movable in parallel with the optical axis of the incident diffraction light reflected by the first diffraction grating, and the first diffraction in the slide region of the slide mechanism portion A movable base that moves along the slide area while fixing the lattice. The first total reflection mirror, the second total reflection mirror, the first diffraction grating, the movable base to which the first diffraction grating is fixed, and an outer wall that forms a sealed space for housing the slide mechanism portion. A housing and an adjustment rod provided outside the housing and penetrating through a through hole provided in the outer wall of the housing and coupled to the movable base are moved, and the first diffraction grating and the first diffraction grating are moved. A laser pulse compression device comprising adjusting means for varying the distance from the two diffraction gratings. 前記調整手段は、入力信号に基づき前記調整棒を移動させるパルス信号を送出する位置制御回路部を具備した請求項1又は2に記載のレーザパルス圧縮装置。 3. The laser pulse compression device according to claim 1, wherein the adjustment unit includes a position control circuit unit that transmits a pulse signal for moving the adjustment rod based on an input signal. 前記位置制御回路部は記憶回路部とCPUを搭載し、前記パルス信号のカウント数を前記記憶回路部の記憶素子に記憶させ、カウント情報により、CPUは前記第1回析格子と前記第2回析格子との距離情報を表示する表示信号を前記筐体外部に設置した表示部に送出する請求項3に記載のレーザパルス圧縮装置。 The position control circuit unit includes a memory circuit unit and a CPU, and the count number of the pulse signal is stored in a memory element of the memory circuit unit. According to the count information, the CPU detects the first diffraction grating and the second time. 4. The laser pulse compression device according to claim 3, wherein a display signal for displaying distance information with respect to the diffraction grating is sent to a display unit installed outside the casing.
JP2008096067A 2008-04-02 2008-04-02 Laser pulse compression device Pending JP2009252824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096067A JP2009252824A (en) 2008-04-02 2008-04-02 Laser pulse compression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096067A JP2009252824A (en) 2008-04-02 2008-04-02 Laser pulse compression device

Publications (1)

Publication Number Publication Date
JP2009252824A true JP2009252824A (en) 2009-10-29

Family

ID=41313282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096067A Pending JP2009252824A (en) 2008-04-02 2008-04-02 Laser pulse compression device

Country Status (1)

Country Link
JP (1) JP2009252824A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547342C2 (en) * 2012-12-28 2015-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Optical system for laser compressor
JP2015210527A (en) * 2014-04-24 2015-11-24 キヤノン株式会社 Device for controlling chirp of optical signal
CN107918237A (en) * 2018-01-09 2018-04-17 中国航空工业集团公司北京长城计量测试技术研究所 Double femtosecond laser frequency comb generation devices
RU2684929C1 (en) * 2018-03-30 2019-04-16 Автономное учреждение "Технопарк - Мордовия" Apparatus for compressing optical impulse on diffraction plates with possibility of control of compressed impulse duration
KR20200028824A (en) * 2018-09-07 2020-03-17 한국전자통신연구원 Pulse laser apparatus
CN113701658A (en) * 2021-09-01 2021-11-26 中国科学院长春光学精密机械与物理研究所 Thermal deformation detection device and method for absolute grating ruler in non-uniform temperature field
CN113904209A (en) * 2020-06-22 2022-01-07 深圳市欧凌镭射科技有限公司 Chirp pulse compression device and laser
RU2789318C1 (en) * 2022-04-04 2023-02-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for configuring a laser compressor on parallel diffraction gratings and system for implementation thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547342C2 (en) * 2012-12-28 2015-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Optical system for laser compressor
JP2015210527A (en) * 2014-04-24 2015-11-24 キヤノン株式会社 Device for controlling chirp of optical signal
CN107918237A (en) * 2018-01-09 2018-04-17 中国航空工业集团公司北京长城计量测试技术研究所 Double femtosecond laser frequency comb generation devices
RU2684929C1 (en) * 2018-03-30 2019-04-16 Автономное учреждение "Технопарк - Мордовия" Apparatus for compressing optical impulse on diffraction plates with possibility of control of compressed impulse duration
KR20200028824A (en) * 2018-09-07 2020-03-17 한국전자통신연구원 Pulse laser apparatus
KR102210160B1 (en) * 2018-09-07 2021-02-02 한국전자통신연구원 Pulse laser apparatus
CN113904209A (en) * 2020-06-22 2022-01-07 深圳市欧凌镭射科技有限公司 Chirp pulse compression device and laser
CN113701658A (en) * 2021-09-01 2021-11-26 中国科学院长春光学精密机械与物理研究所 Thermal deformation detection device and method for absolute grating ruler in non-uniform temperature field
CN113701658B (en) * 2021-09-01 2022-08-09 中国科学院长春光学精密机械与物理研究所 Thermal deformation detection device and method for absolute grating ruler in non-uniform temperature field
RU2789318C1 (en) * 2022-04-04 2023-02-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for configuring a laser compressor on parallel diffraction gratings and system for implementation thereof

Similar Documents

Publication Publication Date Title
JP2009252824A (en) Laser pulse compression device
US7414779B2 (en) Mode locking methods and apparatus
US3872407A (en) Rapidly tunable laser
RU2670584C1 (en) High-energy fiber laser, generating supershort pulses
JP5637669B2 (en) Pulse width converter and optical amplification system
JP2013520847A5 (en)
KR20130045245A (en) High power femtosecond laser with adjustable repetition rate and simplified structure
JP5255838B2 (en) Fiber amplifier based light source for semiconductor inspection
CA2776321C (en) Spectrometer
EP2323230A1 (en) Wide-band wavelength-variable laser device
US20150204790A1 (en) Stimulated raman scattering measurement apparatus
JP2020511634A (en) Laser light source for emitting pulses
US20230014323A1 (en) Laser Device for Generating an Optical Frequency Comb
EP1923692A1 (en) Optical measuring apparatus and wide-band light source device adaptable to same
US20090028205A1 (en) Dispersion compensator, solid-state laser apparatus using the same, and dispersion compensation method
JP2010093078A (en) Optical element, laser beam oscillation device, and laser beam amplifying device
CN104348073A (en) Tunable narrow-linewidth DUV (Deep Ultra Violet) laser
KR100809271B1 (en) Wavelength converted laser apparatus
JP5861355B2 (en) Terahertz wave propagation device, and fixing member for terahertz wave generation unit or detection unit
JP2002252401A (en) Laser device
JP2006171624A (en) Terahertz wave generation system
US11958128B2 (en) Laser apparatus and laser machining apparatus
KR101540541B1 (en) Apparatus for generating femtosecond laser and apparatus for measuring sprayed coating thickness thereof
JP5524381B2 (en) Pulse width converter and optical amplification system
JP2007317708A (en) Apparatus and method for amplifying/compressing short optical pulse