JP2009252723A - Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method, and membrane-electrolyte assembly for polymer electrolyte fuel cell - Google Patents

Electrolyte membrane for polymer electrolyte fuel cell, its manufacturing method, and membrane-electrolyte assembly for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2009252723A
JP2009252723A JP2008103385A JP2008103385A JP2009252723A JP 2009252723 A JP2009252723 A JP 2009252723A JP 2008103385 A JP2008103385 A JP 2008103385A JP 2008103385 A JP2008103385 A JP 2008103385A JP 2009252723 A JP2009252723 A JP 2009252723A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte membrane
membrane
polymer electrolyte
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008103385A
Other languages
Japanese (ja)
Other versions
JP5320799B2 (en
Inventor
Hiroyuki Watabe
浩行 渡部
Shogo Kodera
省吾 小寺
Satoru Motomura
了 本村
Hiroshi Shimoda
博司 下田
Kazuo Hamazaki
一夫 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008103385A priority Critical patent/JP5320799B2/en
Publication of JP2009252723A publication Critical patent/JP2009252723A/en
Application granted granted Critical
Publication of JP5320799B2 publication Critical patent/JP5320799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane high in strength even when thickness is small, excelling in dimensional stability in absorbing water, and low in resistance; a manufacturing method of the electrolyte membrane; and a membrane-electrolyte assembly for a polymer electrolyte fuel cell having high power output and excelling in durability. <P>SOLUTION: This electrolyte membrane for a polymer electrolyte fuel cell is reinforced by a nonwoven fabric and contains an ion exchange resin as a main constituent. The electrolyte membrane for a polymer electrolyte fuel cell is characterized in that the nonwoven fabric is formed of a fiber of polypropylene having an average fiber diameter of 0.01-6 μm, and a basis weight of 1.0-4.0 g/m<SP>2</SP>, and has, as the outermost layer(s) of one surface or both surfaces, an unreinforced layer formed of an ion exchange resin that may be identical to or different from that of the above ion exchange resin; the total thickness of the unreinforced layer is 2-10 μm; and the thickness of the whole electrolyte membrane for a polymer electrolyte fuel cell is 10-20 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、不織布で補強された固体高分子形燃料電池用電解質膜、その製造方法及び当該電解質膜を有する固体高分子形燃料電池用膜電極接合体に関する。   The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell reinforced with a nonwoven fabric, a production method thereof, and a membrane electrode assembly for a polymer electrolyte fuel cell having the electrolyte membrane.

近年、プロトン伝導性の高分子膜を電解質として用いる固体高分子形燃料電池の研究が進んでいる。固体高分子形燃料電池は、低温で作動し、出力密度が高く、小型化できるという特徴を有し、車載用電源等の用途に対し有望視されている。   In recent years, research on polymer electrolyte fuel cells using a proton-conductive polymer membrane as an electrolyte has been advanced. A polymer electrolyte fuel cell operates at a low temperature, has a high output density, and can be miniaturized, and is expected to be promising for uses such as an in-vehicle power source.

固体高分子形燃料電池用の電解質膜には、通常厚さ10〜200μmのプロトン伝導性イオン交換膜が用いられ、特にスルホン酸基を有するパーフルオロカーボン重合体(以下、スルホン酸型パーフルオロカーボン重合体という。)からなる陽イオン交換膜が基本特性に優れるため広く検討されている。実際の車載を目的とした燃料電池用電解質膜は、膜オーム損が特に低いものが求められてきている。膜オーム損は、その用いられる電解質ポリマーの導電性に依存するものの、特に10〜30μm程度の厚みの電解質膜が検討されつつある。   As the electrolyte membrane for a polymer electrolyte fuel cell, a proton conductive ion exchange membrane having a thickness of 10 to 200 μm is usually used. In particular, a perfluorocarbon polymer having a sulfonic acid group (hereinafter referred to as a sulfonic acid type perfluorocarbon polymer). The cation exchange membrane consisting of) is widely studied because of its excellent basic properties. Fuel cell electrolyte membranes intended for actual in-vehicle use have been required to have particularly low membrane ohmic loss. Although the membrane ohmic loss depends on the conductivity of the electrolyte polymer used, an electrolyte membrane having a thickness of about 10 to 30 μm is being studied.

上記陽イオン交換膜の電気抵抗を低減する方法としては、スルホン酸基濃度の増加と膜厚の低減がある。しかし、スルホン酸基濃度が著しく増加すると膜の機械的強度が低下したり、燃料電池の長期運転において膜がクリープしやすくなり、燃料電池の耐久性が低下する等の問題が生じる。一方、膜厚を低減すると膜の機械的強度が低下し、膜をガス拡散電極と接合させて膜電極接合体を作製する場合に、加工しにくくなったり取扱いにくくなる等の問題が生じる。   Methods for reducing the electrical resistance of the cation exchange membrane include increasing the sulfonic acid group concentration and reducing the film thickness. However, when the concentration of the sulfonic acid group is remarkably increased, the mechanical strength of the membrane is lowered, and the membrane is likely to creep during the long-term operation of the fuel cell, resulting in a decrease in the durability of the fuel cell. On the other hand, when the film thickness is reduced, the mechanical strength of the film is lowered, and when a membrane electrode assembly is produced by joining the membrane to the gas diffusion electrode, problems such as difficulty in processing and handling are caused.

また、上記の電解質膜は含水時に寸法が増大しやすく、様々な弊害を生じやすい。例えば、膜電極接合体を作製する場合には、寸法変化によって取り扱いが困難になるという問題がある。膜電極接合体を燃料電池セルに組込んで運転を行う場合には、反応により生成した水や燃料ガスとともに供給される水蒸気等により膜が膨潤し、膜の寸法が増大する。通常、膜と電極は接合しているので電極も膜の寸法変化に追従する。膜電極接合体は通常ガスの流路として溝が形成されたセパレータ等で拘束されているため、膜の寸法増大分は「しわ」となる。そして、そのしわがセパレータの溝を埋めてガスの流れを阻害することがある。   In addition, the above electrolyte membrane tends to increase in size when it contains water, and easily causes various harmful effects. For example, when producing a membrane electrode assembly, there is a problem that handling becomes difficult due to dimensional changes. When operation is performed with the membrane electrode assembly incorporated in a fuel cell, the membrane swells due to water generated by the reaction or water vapor supplied together with the fuel gas, and the size of the membrane increases. Usually, since the membrane and the electrode are joined, the electrode follows the dimensional change of the membrane. Since the membrane electrode assembly is usually restrained by a separator or the like in which grooves are formed as gas flow paths, the increase in the dimension of the membrane becomes “wrinkles”. And the wrinkle may fill the groove of the separator and obstruct the gas flow.

上記の問題を解決する方法として、ポリテトラフルオロエチレン(以下、PTFEという。)からなる多孔質体にスルホン酸型パーフルオロカーボン重合体を含浸する方法が提案されている(特許文献1)。しかしPTFEの多孔質体はその材質に由来し比較的軟質であるために、延伸倍率の高い延伸操作をほどこすことが求められ、高生産性であるとは言いがたい。また、ポリオレフィンからなる多孔質体にイオン交換樹脂を充填する方法も提案されているが(特許文献2)、膜抵抗の上昇が大きく、実用上十分でない。   As a method for solving the above problem, a method of impregnating a porous body made of polytetrafluoroethylene (hereinafter referred to as PTFE) with a sulfonic acid type perfluorocarbon polymer has been proposed (Patent Document 1). However, since the porous body of PTFE is derived from the material and is relatively soft, it is required to perform a stretching operation with a high stretching ratio, and it is difficult to say that it is highly productive. Further, although a method of filling a porous body made of polyolefin with an ion exchange resin has been proposed (Patent Document 2), the increase in membrane resistance is large and not practically sufficient.

また、特許文献3では、ポリエチレン繊維、織布、不織布により補強された固体高分子形燃料電池用電解質膜が提案されている。これらの補強体は、ポリエチレンの耐熱性が低いため、燃料電池の運転環境では補強体として構造を維持できない懸念がある。また、不織布に関する提案では目付量が比較的大きく、実際の運転環境では膜抵抗の上昇を招くと考えられる。   Patent Document 3 proposes an electrolyte membrane for a polymer electrolyte fuel cell reinforced with polyethylene fiber, woven fabric, or non-woven fabric. Since these reinforcing bodies have low heat resistance of polyethylene, there is a concern that the structure cannot be maintained as a reinforcing body in the operating environment of the fuel cell. Moreover, the proposal regarding a nonwoven fabric has a comparatively large basis weight, and it is thought that it raises a membrane resistance in an actual driving environment.

また、特許文献4では、フッ素樹脂の不織布により補強された固体高分子形燃料電池用電解質膜が提案されている。これらの手法により、十分な性能と耐久性を併せ持つ高性能・高耐久燃料電池用電解質膜が得られるが、これらの補強体は材料粘度が高く、細い繊維径をもつ不織布を安定的に製造することは困難であり、また、強度の高い不織布を作製するには、一部のフッ素樹脂に関してはイオン交換樹脂との界面の密着性が弱く、表面処理を行ったとしても十分に抵抗の上昇を抑えることが困難な場合がある。   Further, Patent Document 4 proposes an electrolyte membrane for a polymer electrolyte fuel cell reinforced with a fluororesin nonwoven fabric. By these methods, electrolyte membranes for high performance and high durability fuel cells that have both sufficient performance and durability can be obtained, but these reinforcements have a high material viscosity and stably produce non-woven fabrics with thin fiber diameters. In addition, in order to produce a high-strength non-woven fabric, the adhesion of the interface with the ion exchange resin is weak for some fluororesins, and the resistance is sufficiently increased even after surface treatment. It may be difficult to suppress.

特公平5−75835号公報(特許請求の範囲)Japanese Patent Publication No. 5-75835 (Claims) 特公平7−68377号公報(特許請求の範囲)Japanese Patent Publication No. 7-68377 (Claims) 特開2000−231928号公報(特許請求の範囲)JP 2000-231928 A (Claims) 特開2007−18995号公報(特許請求の範囲)JP 2007-1895 A (Claims)

本発明は、厚さが薄くても強度が高く、含水時の寸法安定性に優れ、抵抗の低い固体高分子形燃料電池用電解質膜を高い生産性を実現しながら提供することを目的とする。   An object of the present invention is to provide an electrolyte membrane for a polymer electrolyte fuel cell that has high strength even when it is thin, has excellent dimensional stability when containing water, and has low resistance while realizing high productivity. .

さらに、厚さが薄くても強度が高く、含水時の寸法安定性に優れ、抵抗の低い固体高分子形燃料電池用電解質膜を高い生産性で製造することができる固体高分子形燃料電池用電解質膜の製造右方法を提供する。   Furthermore, for polymer electrolyte fuel cells, it is possible to produce high-productivity electrolyte membranes for polymer electrolyte fuel cells with high strength, excellent dimensional stability when containing water, and low resistance even when they are thin. An electrolyte membrane manufacturing right method is provided.

さらにこのような電解質膜を有することにより、出力が高く耐久性に優れる固体高分子形燃料電池用膜電極接合体を低コストで提供することを目的とする。   It is another object of the present invention to provide a membrane electrode assembly for a polymer electrolyte fuel cell having high output and excellent durability by having such an electrolyte membrane at low cost.

本発明の固体高分子形燃料電池用電解質膜は、不織布で補強されたイオン交換樹脂を主成分とする固体高分子形燃料電池用電解質膜であって、前記不織布は、平均繊維径が0.01〜6μmのポリプロピレンの繊維からなり、かつ、目付量が1.0〜4.0g/mであり、片面又は両面の最外層として、前記イオン交換樹脂と同じでも異なっていてもよいイオン交換樹脂からなる補強されない層を有し、前記補強されない層の総厚みが2〜10μmであり、前記固体高分子形燃料電池用電解質膜全体の厚みが10〜20μmであることを特徴とする。 The electrolyte membrane for a polymer electrolyte fuel cell of the present invention is an electrolyte membrane for a polymer electrolyte fuel cell mainly composed of an ion exchange resin reinforced with a nonwoven fabric, and the nonwoven fabric has an average fiber diameter of 0.00. Ion exchange consisting of 01 to 6 μm polypropylene fibers and having a basis weight of 1.0 to 4.0 g / m 2 and may be the same as or different from the ion exchange resin as the outermost layer on one or both sides It has an unreinforced layer made of resin, the total thickness of the unreinforced layer is 2 to 10 μm, and the total thickness of the electrolyte membrane for a polymer electrolyte fuel cell is 10 to 20 μm.

90℃の温水中に2時間浸漬させたときの、前記不織布の質量分率が5〜10質量%であることが好ましい。   The mass fraction of the nonwoven fabric when immersed in warm water at 90 ° C. for 2 hours is preferably 5 to 10% by mass.

本発明の固体高分子形燃料電池用電解質膜の製造方法は、前記固体高分子形燃料電池用電解質膜は、平均繊維径が0.01〜6μmのポリプロピレンの繊維からなり目付量が1.0〜4.0g/mである不織布で補強されたイオン交換樹脂を主成分とする固体高分子形燃料電池用電解質膜であり、片面又は両面の最外層として前記イオン交換樹脂と同じでも異なっていてもよいイオン交換樹脂からなる補強されない層が配置されており、前記補強されない層の総厚みが2〜10μmであり、前記固体高分子形燃料電池用電解質膜全体の厚みが10〜20μmであり、前記固体高分子形燃料電池用電解質膜を乾燥する乾燥工程を有し、前記乾燥工程は、前記固体高分子形燃料電池用電解質膜にエタノールを塗布して150℃以下で乾燥を行うことを特徴とする。 In the method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to the present invention, the electrolyte membrane for a polymer electrolyte fuel cell is made of polypropylene fibers having an average fiber diameter of 0.01 to 6 μm and has a basis weight of 1.0. It is an electrolyte membrane for a polymer electrolyte fuel cell mainly composed of an ion exchange resin reinforced with a nonwoven fabric of ~ 4.0 g / m 2 , and is the same as or different from the above ion exchange resin as an outermost layer on one or both sides. An unreinforced layer made of an ion exchange resin may be disposed, the total thickness of the unreinforced layer is 2 to 10 μm, and the total thickness of the electrolyte membrane for a polymer electrolyte fuel cell is 10 to 20 μm And a drying step of drying the electrolyte membrane for a polymer electrolyte fuel cell, wherein the drying step is performed by applying ethanol to the electrolyte membrane for a polymer electrolyte fuel cell and drying at 150 ° C. or lower. And features.

本発明の固体高分子形燃料電池用膜電極接合体は、触媒とイオン交換樹脂とを含む触媒層を有するカソード及びアノードと、該カソードと該アノードとの間に配置される高分子電解質膜と、を備える固体高分子形燃料電池用膜電極接合体において、前記高分子電解質膜は本発明の固体高分子形燃料電池用電電解質膜からなることを特徴とする。   A membrane electrode assembly for a polymer electrolyte fuel cell according to the present invention comprises a cathode and an anode having a catalyst layer containing a catalyst and an ion exchange resin, and a polymer electrolyte membrane disposed between the cathode and the anode. The membrane electrode assembly for a polymer electrolyte fuel cell comprising the polymer electrolyte membrane comprises the electrolyte membrane for a polymer electrolyte fuel cell of the present invention.

本発明の固体高分子形燃料電池用電解質膜は、補強による抵抗の上昇が少なく、含水時の寸法安定性に優れ、高い生産性を有する。   The electrolyte membrane for a polymer electrolyte fuel cell of the present invention has little increase in resistance due to reinforcement, is excellent in dimensional stability when containing water, and has high productivity.

本発明の固体高分子形燃料電池用電解質膜の製造方法によれば、厚さが薄くても強度が高く、含水時の寸法安定性に優れ、抵抗の低い固体高分子形燃料電池用電解質膜を高い生産性で製造することができる。   According to the method for producing an electrolyte membrane for a polymer electrolyte fuel cell of the present invention, the electrolyte membrane for a polymer electrolyte fuel cell has a high strength even when it is thin, has excellent dimensional stability when containing water, and has a low resistance. Can be manufactured with high productivity.

本発明の固体高分子形燃料電池用膜電極接合体は、出力が高く耐久性に優れている。   The membrane / electrode assembly for polymer electrolyte fuel cells of the present invention has high output and excellent durability.

本発明の固体高分子形燃料電池用電解質膜(以下、電解質膜ともいう。)は、必要最小限の目付量のポリプロピレン樹脂の繊維からなる不織布を用いて補強することで、補強による抵抗の上昇が少なく、含水時の寸法安定性に優れ、さらに高い生産性を有することから低コスト化とすることができる。   The electrolyte membrane for a polymer electrolyte fuel cell of the present invention (hereinafter also referred to as an electrolyte membrane) is reinforced by using a nonwoven fabric made of polypropylene resin fibers with a minimum basis weight, thereby increasing the resistance due to reinforcement. Therefore, it is possible to reduce the cost because it has excellent dimensional stability when containing water and has high productivity.

本発明において不織布とは、JIS L−0222にも記載されるとおり、繊維シート、ウェブ又はパットで、繊維が一方向又はランダムに配列しており、交絡、及び/又は融着、及び/又は接着によって繊維間が結合されたものである。本発明の電解質膜に用いられる不織布は、融着により繊維間が結合していると抵抗の上昇を抑えることができるので好ましい。   In the present invention, as described in JIS L-0222, the nonwoven fabric is a fiber sheet, web, or pad, in which fibers are unidirectionally or randomly arranged, entangled, and / or fused, and / or bonded. The fibers are bonded by the above. The nonwoven fabric used for the electrolyte membrane of the present invention is preferably bonded between fibers by fusion because the increase in resistance can be suppressed.

本発明の電解質膜に用いる不織布は、ポリプロピレン樹脂の繊維からなる。本発明に用いる不織布の繊維は、アスペクト比10000以上を有することが好ましい。繊維長は20mm以上であることが望ましい。   The nonwoven fabric used for the electrolyte membrane of the present invention is made of polypropylene resin fibers. It is preferable that the fibers of the nonwoven fabric used in the present invention have an aspect ratio of 10,000 or more. The fiber length is desirably 20 mm or more.

本発明における不織布は、アスペクト比の大きい繊維からなることにより、繊維同士の充分な絡み合いが形成され、力学的欠陥と成り得る繊維端部の数が著しく少ない。また、繊維間の交点の少なくとも一部が固定化されているため、弾性率が高い。   Since the nonwoven fabric in the present invention is composed of fibers having a large aspect ratio, sufficient entanglement between the fibers is formed, and the number of fiber end portions that can be mechanical defects is extremely small. Moreover, since at least a part of the intersections between the fibers is fixed, the elastic modulus is high.

本発明の電解質膜に用いる不織布は、繊維の平均繊維径(直径)が、0.01〜6μmであり、0.01〜3μmであることがより好ましく、0.1〜3μmであることが特に好ましい。   The nonwoven fabric used for the electrolyte membrane of the present invention has an average fiber diameter (diameter) of 0.01 to 6 μm, more preferably 0.01 to 3 μm, and particularly preferably 0.1 to 3 μm. preferable.

なお、本発明における平均繊維径は、電子顕微鏡観察において、繊維200本の繊維径を測定し、データのうち最も細い10本のデータと太いデータ10本を除いた平均値を平均繊維径とする。   In addition, the average fiber diameter in this invention measures the fiber diameter of 200 fibers in electron microscope observation, and makes the average fiber diameter the average value except 10 data and 10 thick data among data. .

繊維の平均繊維径を6μm以下とすることで、プロトン移動が円滑に行われ、不織布の厚みも抑えることができるため、補強による抵抗の上昇を抑えることができる。また、平均繊維径を6μm以下とすると、同一膜厚における繊維間の交点を増すことができるため、不織布の強度を増強でき、電解質膜の寸法安定性を向上しうる。一方、平均繊維径を0.01μm以上とすることで、繊維1本あたりの引張強度を強くすることができ、ハンドリングの点で実用上使用することが容易となる。   By controlling the average fiber diameter of the fibers to 6 μm or less, proton transfer can be performed smoothly and the thickness of the nonwoven fabric can be suppressed, so that an increase in resistance due to reinforcement can be suppressed. Moreover, since the intersection between the fibers in the same film thickness can be increased when the average fiber diameter is 6 μm or less, the strength of the nonwoven fabric can be enhanced and the dimensional stability of the electrolyte membrane can be improved. On the other hand, by setting the average fiber diameter to 0.01 μm or more, the tensile strength per fiber can be increased, and it becomes easy to use practically in terms of handling.

本発明の電解質膜に用いる不織布の目付け量は、1.0〜4.0g/mであり、好ましくは2.0〜3.0g/mである。目付量を1.0g/m以上とすることで十分な強度を有し、4.0g/m以下とすることで、電解質膜の抵抗の上昇を抑えることができる。 The basis weight of the nonwoven fabric used for the electrolyte membrane of the present invention is 1.0 to 4.0 g / m 2 , preferably 2.0 to 3.0 g / m 2 . When the weight per unit area is 1.0 g / m 2 or more, sufficient strength is obtained, and when the basis weight is 4.0 g / m 2 or less, an increase in resistance of the electrolyte membrane can be suppressed.

本発明における不織布に対しては、放射線照射、プラズマ照射及び金属ナトリウムによる化学処理からなる群から選ばれる1種以上の表面処理を行うことが好ましい。これらの表面処理を行うことにより、繊維表面に−COOH基、−OH基、−COF基等の極性基が導入され、マトリックスとなるイオン交換樹脂と補強材となる不織布との界面の密着性を高めることができ、その結果、補強効果を高めることができる。   The nonwoven fabric in the present invention is preferably subjected to at least one surface treatment selected from the group consisting of irradiation with radiation, plasma irradiation and chemical treatment with metallic sodium. By performing these surface treatments, polar groups such as -COOH groups, -OH groups, and -COF groups are introduced on the fiber surface, and the adhesion at the interface between the ion-exchange resin as the matrix and the nonwoven fabric as the reinforcing material is improved. As a result, the reinforcing effect can be enhanced.

本発明において電解質膜の主成分であるイオン交換樹脂としては、陽イオン交換樹脂であればよく、炭化水素系重合体や部分フッ素化された炭化水素系重合体からなる陽イオン交換樹脂等が使用できる。燃料電池に使用する場合は、耐久性に優れるスルホン酸型パーフルオロカーボン重合体からなる陽イオン交換樹脂が好ましい。電解質膜中のイオン交換樹脂は、単一のイオン交換樹脂からなってもよいし、2種以上のイオン交換樹脂を混合したものであってもよい。   In the present invention, the ion exchange resin that is the main component of the electrolyte membrane may be a cation exchange resin, such as a cation exchange resin made of a hydrocarbon polymer or a partially fluorinated hydrocarbon polymer. it can. When used in a fuel cell, a cation exchange resin comprising a sulfonic acid type perfluorocarbon polymer having excellent durability is preferred. The ion exchange resin in the electrolyte membrane may consist of a single ion exchange resin or a mixture of two or more ion exchange resins.

スルホン酸型パーフルオロカーボン重合体としては、公知の重合体が広く採用される。例えば、スルホン酸型パーフルオロカーボン重合体は、SOF基を有する樹脂からなる前駆体を加水分解及び酸型化処理して得られる。なお、本明細書において、パーフルオロカーボン重合体は、エーテル結合性の酸素原子等を含んでいてもよい。 As the sulfonic acid type perfluorocarbon polymer, known polymers are widely used. For example, a sulfonic acid type perfluorocarbon polymer can be obtained by hydrolyzing and acidifying a precursor made of a resin having a SO 2 F group. In the present specification, the perfluorocarbon polymer may contain an etheric oxygen atom or the like.

上記SOF気を有する樹脂からなる前駆体としては、汎用のスルホン酸基含有パーフルオロカーボン重合体を製造するために使用されている下記式(1)で表されるフルオロスルホニル基含有パーフルオロ化合物や、下記式(2)〜(6)で表される、フルオロスルホニル基を1又は2個有するパーフルオロ化合物に基づくモノマー単位と、テトラフルオロエチレン、ヘキサフルオロプロピレンのようなパーフルオロオレフィン、クロロトリフルオロエチレン、又はパーフルオロ(アルキルビニルエーテル)に基づくモノマー単位とを含む共重合体が好ましい。特に下記フルオロスルホニル基含有パーフルオロ化合物に基づくモノマー単位とテトラフルオロエチレンに基づくモノマー単位とを含む共重合体が特に好ましい。 As the precursor comprising the resin having SO 2 F gas, a fluorosulfonyl group-containing perfluoro compound represented by the following formula (1) used for producing a general-purpose sulfonic acid group-containing perfluorocarbon polymer: Or a monomer unit based on a perfluoro compound having one or two fluorosulfonyl groups represented by the following formulas (2) to (6), a perfluoroolefin such as tetrafluoroethylene or hexafluoropropylene, chlorotri Copolymers containing monomer units based on fluoroethylene or perfluoro (alkyl vinyl ether) are preferred. Particularly preferred are copolymers comprising monomer units based on the following fluorosulfonyl group-containing perfluoro compounds and monomer units based on tetrafluoroethylene.

また、上記SOF基を有する樹脂からなる前駆体としては、下記のフルオロスルホニル基含有パーフルオロ化合物に基づくモノマー単位を2種以上含有してもよい。 Further, as the precursor comprising a resin having a SO 2 F group, the monomer units based on fluorosulfonyl group-containing perfluoro compound of the following may be contained two or more.

Figure 2009252723
Figure 2009252723

ただし、式中、Yはフッ素原子又はトリフルオロメチル基、nは1〜12の整数、mは0〜3の整数、pは0又は1(ただし、m+p>0)を示す。kは2〜6の整数を示す。Rf1、Rf2は、それぞれ独立に、単結合又はエーテル性酸素原子を有していてもよい炭素数1〜6の直鎖パーフルオロアルキレン基を示す。qは0又は1を示す。Rf3は、炭素数1〜6のパーフルオロアルキレン基を示す。Rf4、Rf5は、それぞれ独立に、炭素数1〜8のパーフルオロアルキレン基を示す。Rf6は、炭素数1〜6のパーフルオロアルキレン基を示す。 In the formula, Y represents a fluorine atom or a trifluoromethyl group, n represents an integer of 1 to 12, m represents an integer of 0 to 3, and p represents 0 or 1 (where m + p> 0). k shows the integer of 2-6. R f1 and R f2 each independently represent a C 1-6 linear perfluoroalkylene group which may have a single bond or an etheric oxygen atom. q represents 0 or 1; R f3 represents a C 1-6 perfluoroalkylene group. R f4 and R f5 each independently represent a C 1-8 perfluoroalkylene group. R f6 represents a C 1-6 perfluoroalkylene group.

スルホン酸型パーフルオロカーボン重合体の重量平均分子量は、1×10〜1×10が好ましく、特に5×10〜5×10が好ましい。重量平均分子量が1×10以上であれば、膨潤度等の物性が経時的に変化しにくく、電解質膜の耐久性が充分となる。重量平均分子量が1×10以下であれば、溶液化及び成形が容易となる。 The weight average molecular weight of the sulfonic acid type perfluorocarbon polymer is preferably 1 × 10 4 to 1 × 10 7 , and particularly preferably 5 × 10 4 to 5 × 10 6 . When the weight average molecular weight is 1 × 10 4 or more, the physical properties such as the degree of swelling hardly change with time, and the durability of the electrolyte membrane is sufficient. If the weight average molecular weight is 1 × 10 7 or less, solutionization and molding become easy.

また、パーフルオロカーボン重合体以外の重合体の陽イオン交換樹脂としては、例えば下記式(1)で表されるモノマー単位と下記式(2)で表されるモノマー単位とを含む重合体が挙げられる。ここで、Pはフェニルトリール基、ビフェニルトリール基、ナフタレントリール基、フェナントレントリール基、アントラセントリール基であり、Pはフェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、アントラシレン基であり、Aは−SO基(Mは水素原子又はアルカリ金属原子、以下同じ)、−COOM基又は加水分解によりこれらの基に転換する基であり、B、Bはそれぞれ独立に酸素原子、イオウ原子、スルホニル基又はイソプロピリデン基である。P及びPの構造異性は特に限定されず、P及びPの水素原子の1個以上がフッ素原子、塩素原子、臭素原子又は炭素数1〜3のアルキル基に置換されていてもよい。 Moreover, as a cation exchange resin of polymers other than a perfluorocarbon polymer, the polymer containing the monomer unit represented, for example by following formula (1), and the monomer unit represented by following formula (2) is mentioned. . Here, P 1 is a phenyltolyl group, a biphenyltolyl group, a naphthalene reel group, a phenanthrene reel group, and an anthracylene group, P 2 is a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, and an anthracylene group, and A 1 is a —SO 3 M 2 group (M 2 is a hydrogen atom or an alkali metal atom, the same shall apply hereinafter), a —COOM 2 group or a group that is converted to these groups by hydrolysis, and B 1 and B 2 are each independently An oxygen atom, a sulfur atom, a sulfonyl group or an isopropylidene group; Structural isomers of P 1 and P 2 is not particularly limited, one or more fluorine atoms of the hydrogen atom of the P 1 and P 2, a chlorine atom, be substituted by a bromine atom or an alkyl group having 1 to 3 carbon atoms Good.

Figure 2009252723
Figure 2009252723

本発明におけるイオン交換樹脂のイオン交換容量としては、燃料電池用の高分子電解質膜として使用する場合は0.5〜2.0ミリ当量/グラム乾燥樹脂、特に0.7〜1.6ミリ当量/グラム乾燥樹脂であることが好ましい。イオン交換容量が低すぎると抵抗が大きくなる。一方、イオン交換容量が高すぎると水に対する親和性が強すぎるため、発電時に電解質膜が溶解するおそれがある。   The ion exchange capacity of the ion exchange resin in the present invention is 0.5 to 2.0 meq / g dry resin, particularly 0.7 to 1.6 meq when used as a polymer electrolyte membrane for a fuel cell. / G dry resin is preferred. If the ion exchange capacity is too low, the resistance increases. On the other hand, if the ion exchange capacity is too high, the affinity for water is too strong, and thus the electrolyte membrane may be dissolved during power generation.

本発明の電解質膜は、片面又は両面の最外層として、不織布で補強されたイオン交換樹脂と同じでも異なっていてもよいイオン交換樹脂からなる補強されない層を有する。これにより、本発明の電解質膜を固体高分子形燃料電池用の高分子電解質膜として使用するとき、電解質膜と電極の接合部における抵抗を低下させることができる。本発明においては、両面の最外層として、補強されない層を有することが好ましい。   The electrolyte membrane of the present invention has an unreinforced layer made of an ion exchange resin that may be the same as or different from the ion exchange resin reinforced with a nonwoven fabric as the outermost layer on one or both sides. Thereby, when using the electrolyte membrane of this invention as a polymer electrolyte membrane for a polymer electrolyte fuel cell, the resistance in the junction part of an electrolyte membrane and an electrode can be reduced. In this invention, it is preferable to have a layer which is not reinforced as an outermost layer of both surfaces.

本発明において、イオン交換樹脂からなる補強されない層の厚みは2〜10μmであり、4〜8μmであることがより好ましい。厚みが2μm以上となると、燃料電池の燃料ガスのバリアー性に優れ、厚みが10μm以下になると、膜抵抗上昇と寸法変化を抑えることができる。   In the present invention, the thickness of the non-reinforced layer made of an ion exchange resin is 2 to 10 μm, and more preferably 4 to 8 μm. When the thickness is 2 μm or more, the fuel gas barrier property of the fuel cell is excellent, and when the thickness is 10 μm or less, an increase in membrane resistance and a dimensional change can be suppressed.

なお、本明細書において補強されない層の厚みは、光学顕微鏡、レーザー顕微鏡、SEM等の断面観察より測定することできる。補強されない層の厚みは、電解質膜表面と不織布の繊維との最短距離を意味する。   In addition, the thickness of the layer which is not reinforced in this specification can be measured by cross-sectional observations such as an optical microscope, a laser microscope, and an SEM. The thickness of the unreinforced layer means the shortest distance between the electrolyte membrane surface and the nonwoven fabric fibers.

また、イオン交換樹脂からなる補強されない層は、補強材以外の抵抗上昇を招かない成分を含んでいてもよい。   Further, the non-reinforced layer made of ion exchange resin may contain a component that does not cause an increase in resistance other than the reinforcing material.

本発明の電解質膜を固体高分子形燃料電池用の高分子電解質膜として使用するとき、プロトンの移動は不織布の繊維に遮蔽される。補強されない層の厚みが薄すぎると、電流が繊維を回避して迂回するための距離が大きくなり、不要な抵抗上昇の要因となり得る。特に補強されない層の厚みが不織布の繊維の平均繊維径の半分以下である場合は、抵抗の上昇が起こりやすくなる。補強されない層の厚みが不織布の繊維の平均繊維径の値である場合には、電流の迂回距離が小さく済み、結果として抵抗の不要な上昇を避けられ好ましい。   When the electrolyte membrane of the present invention is used as a polymer electrolyte membrane for a polymer electrolyte fuel cell, proton movement is shielded by non-woven fibers. If the thickness of the layer that is not reinforced is too thin, the distance for the current to bypass the fiber and bypass it becomes large, which may cause an unnecessary increase in resistance. In particular, when the thickness of the layer that is not reinforced is equal to or less than half the average fiber diameter of the nonwoven fabric fibers, the resistance tends to increase. When the thickness of the layer that is not reinforced is equal to the average fiber diameter of the nonwoven fabric fibers, it is preferable to reduce the current bypass distance and avoid unnecessary increase in resistance as a result.

本発明の電解質膜は、電解質膜全体の厚みが10〜20μmであり、好ましくは12〜18μmである。   In the electrolyte membrane of the present invention, the thickness of the entire electrolyte membrane is 10 to 20 μm, preferably 12 to 18 μm.

電解質膜全体の厚さを20μm以下とすることで、抵抗を小さくすることができ、また、燃料電池の高分子電解質膜として使用する場合、薄いほうがカソード側で生成する生成水の逆拡散を起こし易くすることができる。電解質膜全体の厚さを10μm以上とすることにより、力学的強度を十分に高めることができ、ガス漏れ等の発生を抑えることができる。   By making the thickness of the entire electrolyte membrane 20 μm or less, the resistance can be reduced, and when it is used as a polymer electrolyte membrane of a fuel cell, the thinner one causes reverse diffusion of the generated water generated on the cathode side. Can be made easier. By setting the thickness of the entire electrolyte membrane to 10 μm or more, the mechanical strength can be sufficiently increased, and the occurrence of gas leakage and the like can be suppressed.

また、上記の電解質膜の膜厚の観点から、不織布の厚さは好ましくは0.5〜16μm以下であり、特に好ましくは8〜16μmである。   Moreover, from the viewpoint of the thickness of the electrolyte membrane, the thickness of the nonwoven fabric is preferably 0.5 to 16 μm or less, and particularly preferably 8 to 16 μm.

不織布で補強されたイオン交換樹脂を主成分とする電解質膜を作製する方法としては、例えば、(1)不織布に、イオン交換樹脂の溶液又は分散液を塗工又は含浸させた後、乾燥し造膜するキャスト法、(2)不織布に、あらかじめ形成しておいたイオン交換樹脂の膜状物を加熱積層して一体化する方法等が挙げられる。この不織布とイオン交換樹脂との複合膜を延伸処理等によって強化してもよい。   Examples of a method for producing an electrolyte membrane mainly composed of an ion exchange resin reinforced with a non-woven fabric include (1) coating or impregnating a non-woven fabric with a solution or dispersion of an ion exchange resin, followed by drying and manufacturing. Examples thereof include a casting method for forming a film, and (2) a method in which an ion-exchange resin film-form formed in advance is laminated on a non-woven fabric by heat lamination. You may reinforce the composite film of this nonwoven fabric and ion exchange resin by an extending | stretching process etc.

上述のように不織布とイオン交換樹脂との複合膜を形成した時点で、その最外層としてイオン交換樹脂からなる補強されない層が形成されていることもある。また、複合膜の形成に続いて、該複合膜の表面にイオン交換樹脂の溶液又は分散液をコーティングしたり、イオン交換樹脂の単膜を積層したりすることによってもイオン交換樹脂からなる補強されない層を形成することができる。   As described above, when the composite membrane of the nonwoven fabric and the ion exchange resin is formed, an unreinforced layer made of the ion exchange resin may be formed as the outermost layer. In addition, after the formation of the composite membrane, the surface of the composite membrane is not reinforced with an ion exchange resin by coating with a solution or dispersion of the ion exchange resin or by laminating a single membrane of the ion exchange resin. A layer can be formed.

本発明の電解質膜は、90℃の温水中に2時間浸漬させたときの不織布の質量分率が5〜10質量%が好ましく、5〜8質量%が特に好ましい。5質量%以上とすることで、寸法変化を抑制し、10質量%以下とすることで、膜抵抗上昇の低い電解質膜を得ることができる。90℃の温水中に2時間浸漬させたときの不織布の質量分率とは、90℃の温水中に2時間浸漬させた電解質膜の質量に対しての不織布の質量の割合である。   In the electrolyte membrane of the present invention, the mass fraction of the nonwoven fabric when immersed in warm water at 90 ° C. for 2 hours is preferably from 5 to 10 mass%, particularly preferably from 5 to 8 mass%. A dimensional change is suppressed by setting it as 5 mass% or more, and an electrolyte membrane with a low film | membrane resistance rise can be obtained by setting it as 10 mass% or less. The mass fraction of the nonwoven fabric when immersed in warm water at 90 ° C. for 2 hours is the ratio of the mass of the nonwoven fabric to the mass of the electrolyte membrane immersed in warm water at 90 ° C. for 2 hours.

本発明の電解質膜の製造方法では、固体高分子形燃料電池用電解質膜を乾燥する乾燥工程を有しており、乾燥工程では、固体高分子形燃料電池用電解質膜にエタノールを塗布して150℃以下で乾燥を行う。乾燥を行うことにより、電解質膜の寸法安定性を向上させることができる。また、エタノールを塗布して乾燥させることで、電解質膜の乾燥温度を150℃以下としても十分に乾燥を行うことができるので、ポリプロピレン不織布の熱劣化を回避することができる。乾燥温度範囲は110〜150℃が好ましく、130〜150℃が特に好ましい。   The method for producing an electrolyte membrane of the present invention includes a drying step for drying the electrolyte membrane for a polymer electrolyte fuel cell. In the drying step, 150 is applied by applying ethanol to the electrolyte membrane for a polymer electrolyte fuel cell. Dry at a temperature below ℃. By performing the drying, the dimensional stability of the electrolyte membrane can be improved. Further, by applying ethanol and drying it, the electrolyte membrane can be sufficiently dried even if the drying temperature of the electrolyte membrane is 150 ° C. or lower, so that thermal deterioration of the polypropylene nonwoven fabric can be avoided. The drying temperature range is preferably 110 to 150 ° C, particularly preferably 130 to 150 ° C.

本発明の電解質膜は、固体高分子形燃料電池用膜電極接合体の高分子電解質膜として用いられる。固体高分子形燃料電池用膜電極接合体は、触媒とイオン交換樹脂とを含む触媒層を有するカソード及びアノードと、該カソードと該アノードとの間に配置される高分子電解質膜と、を備える。   The electrolyte membrane of the present invention is used as a polymer electrolyte membrane of a membrane electrode assembly for a polymer electrolyte fuel cell. A membrane electrode assembly for a polymer electrolyte fuel cell includes a cathode and an anode having a catalyst layer containing a catalyst and an ion exchange resin, and a polymer electrolyte membrane disposed between the cathode and the anode. .

固体高分子形燃料電池用膜電極接合体は通常の手法に従い、例えば以下のようにして得られる。まず、白金触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末と電解質材料とを含む液状組成物からなる均一な分散液を得て、以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。   The membrane / electrode assembly for a polymer electrolyte fuel cell can be obtained in the following manner, for example, according to a usual method. First, obtain a uniform dispersion composed of a liquid composition containing a conductive carbon black powder carrying platinum catalyst or platinum alloy catalyst fine particles and an electrolyte material, and form a gas diffusion electrode by one of the following methods: Thus, a membrane electrode assembly is obtained.

第1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を2枚のカーボンクロス又はカーボンペーパーで密着する方法である。第2の方法は、上記分散液を2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布された面が電解質膜と密着するように、電解質膜の両面から挟みこむ方法である。第3の方法は、上記分散液を別途用意した基材フィルム上に塗布、乾燥して触媒層を形成した後、電解質膜の両面に電極層を転写し、さらに2枚のカーボンクロス又はカーボンペーパーで両面を密着する方法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有するものである。   The first method is a method in which the dispersion liquid is applied to both surfaces of the electrolyte membrane, dried, and then both surfaces are adhered to each other with two carbon cloths or carbon paper. The second method is a method in which the dispersion liquid is applied and dried on two sheets of carbon cloth or carbon paper and then sandwiched from both surfaces of the electrolyte membrane so that the surface to which the dispersion solution is applied is in close contact with the electrolyte membrane. . The third method is to apply the above dispersion on a separately prepared substrate film and dry it to form a catalyst layer, then transfer the electrode layer to both sides of the electrolyte membrane, and then add two sheets of carbon cloth or carbon paper This is a method of sticking both sides together. Here, the carbon cloth or the carbon paper has a function as a gas diffusion layer and a function as a current collector for diffusing the gas uniformly by the layer containing the catalyst.

得られた膜電極接合体は、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータの間に挟まれ、膜電極接合体のアノード側には水素ガスが供給され、カソード側には酸素又は空気が供給され固体高分子形燃料電池が得られる。   The obtained membrane electrode assembly is formed with a groove serving as a passage for fuel gas or oxidant gas, and is sandwiched between separators. Hydrogen gas is supplied to the anode side of the membrane electrode assembly, and oxygen is supplied to the cathode side. Or air is supplied and a polymer electrolyte fuel cell is obtained.

以下に、実施例を挙げて本発明を詳しく説明するが、本発明はこれらの例によって限定されない。例1〜3は実施例であり、例4〜15は比較例である。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 3 are examples, and examples 4 to 15 are comparative examples.

〔例1〕
〔イオン交換樹脂からなる補強されない層(単層)の製造〕
CF=CFとCF=CF−OCFCF(CF)−OCFCFSOFとを共重合し、スルホン酸型パーフルオロカーボン重合体の前駆体を得た。この前駆体を加水分解及び酸型化処理してイオン交換容量が1.1ミリ当量/グラム乾燥樹脂であるイオン交換樹脂に変換し、次いで、このイオン交換樹脂の水とエタノール溶液の混合液を溶媒とする溶液(固形分濃度15質量%)を調整した。次いで、この溶液に硝酸セリウムを蒸留水に溶解した溶液を添加し、イオン交換樹脂中のスルホン酸基の15%をCe3+でイオン交換した樹脂(以下、イオン交換樹脂(A)という)の溶液を得た。この溶液をダイコートにより旭硝子社製フッ素樹脂(商品名:フィルムアフレックス)品番100N(厚み100μm)の上に流延し、80℃15分間乾燥し、上記イオン交換樹脂(A)からなる補強されていない単層を得た。
[Example 1]
[Production of unreinforced layer (single layer) made of ion exchange resin]
CF 2 = CF 2 and CF 2 = CF-OCF 2 CF (CF 3) -OCF 2 CF 2 SO 2 and F were copolymerized to obtain a precursor of a sulfonic acid type perfluorocarbon polymer. This precursor is hydrolyzed and acidified to convert it to an ion exchange resin having an ion exchange capacity of 1.1 meq / g dry resin, and then a mixture of the ion exchange resin in water and ethanol is used. A solution (solid concentration 15% by mass) as a solvent was prepared. Subsequently, a solution of cerium nitrate dissolved in distilled water is added to this solution, and a solution of a resin in which 15% of the sulfonic acid groups in the ion exchange resin are ion exchanged with Ce 3+ (hereinafter referred to as ion exchange resin (A)). Got. This solution is cast on a fluororesin (trade name: Film Aflex) product number 100N (thickness: 100 μm) manufactured by Asahi Glass Co., Ltd. by die coating, dried at 80 ° C. for 15 minutes, and reinforced with the above ion exchange resin (A). No monolayer was obtained.

〔不織布連続体の製造〕
材料にポリプロピレンを用い、化繊ノズル社製のメルトブローン製造装置を使用し、温度、延伸用ホットエアー、流量を適宜調整して、平均繊維径が2.0μm、目付け量が3.0g/mのポリプロピレンの不織布連続体RA1を作製した。
[Production of non-woven fabric continuum]
Using polypropylene as the material, using a melt blown manufacturing apparatus manufactured by Kasei Nozzle Co., Ltd., adjusting the temperature, hot air for drawing, and flow rate as appropriate, the average fiber diameter is 2.0 μm, and the basis weight is 3.0 g / m 2 . A nonwoven fabric continuous body RA1 of polypropylene was produced.

〔厚み調整(厚密化)〕
次に、図1に示す簡易積層装置(TAISEI LAMINATOR社製VAII−700)を用いて、ポリプロピレンの不織布連続体RA1(41)を市販の厚さ100μmの連続ポリエチレンテレフタレート支持体42上に載せ、厚密化して、連続PET支持体/厚密化不織布連続体RAP1(43)を得た。
[Thickness adjustment (thickening)]
Next, using a simple laminating apparatus shown in FIG. 1 (VAII-700 manufactured by TAISEI LAMINATOR), a polypropylene nonwoven fabric continuous body RA1 (41) is placed on a commercially available continuous polyethylene terephthalate support 42 having a thickness of 100 μm. Densification was performed to obtain a continuous PET support / thickened non-woven fabric continuum RAP1 (43).

厚密化不織布連続体RAP1の接触式マイクロメータ(キーエンス社製:AT−005V 5mmΦ円形Tip)による厚み測定をしたところ、平均9.3μmであった。なお、厚密化の際の金属ロール44の温度及びゴムロール45の温度は120℃、ロール加圧の力は600mmのロール面長に対して0.026MPa/mであり、連続PET支持体の送り速度は0.15m/分であった。得られた連続PET支持体/厚密化不織布RAP1(43)の仮圧着品は、ハンドリング性に優れていた。   When the thickness of the thickened nonwoven fabric RAP1 was measured with a contact-type micrometer (manufactured by Keyence Corporation: AT-005V 5 mmΦ circular Tip), the average was 9.3 μm. Note that the temperature of the metal roll 44 and the temperature of the rubber roll 45 at the time of densification are 120 ° C., and the force of the roll pressurization is 0.026 MPa / m with respect to a roll surface length of 600 mm. The speed was 0.15 m / min. The obtained temporary pressure-bonded product of continuous PET support / thickened nonwoven fabric RAP1 (43) was excellent in handling properties.

〔電解質膜形成〕
さらに図1の簡易積層装置(TAISEI LAMINATOR社製VAII−700)を用いて、連続PET支持体/厚密化不織布連続体RAP1と、単層とを熱圧着せしめ、連続PET支持体/中間積層体P1を得た。なお、厚密化の際の金属ロール44の温度及びゴムロール45の温度は120℃、ロール加圧の圧力は600mmのロール面長に対して0.026MPa/mであり、連続PET支持体/中間積層体P1の挿入速度は0.15m/分であった。
[Electrolyte film formation]
Further, the continuous PET support / thickened non-woven fabric continuous body RAP1 and the single layer are thermocompression bonded using the simple laminating apparatus of FIG. 1 (VAII-700 manufactured by TAISEI LAMINATOR), and the continuous PET support / intermediate laminated body P1 was obtained. Note that the temperature of the metal roll 44 and the temperature of the rubber roll 45 at the time of densification are 120 ° C., and the pressure of the roll pressurization is 0.026 MPa / m with respect to a roll surface length of 600 mm. The insertion speed of the laminate P1 was 0.15 m / min.

次に、図2に示す連続コーティングシステムを用いて、連続PET支持体/中間積層体P1から連続PET支持体を剥がした中間積層体P1(51)を用いて、剥がした面にイオン交換樹脂(A)の水とエタノール溶液の混合液(固形分濃度15質量%)の溶液を用いて、ダイコータ52により塗工し乾燥炉53にて80℃20分間乾燥させた。   Next, using the continuous coating system shown in FIG. 2, using the intermediate laminate P1 (51) obtained by peeling the continuous PET support from the continuous PET support / intermediate laminate P1, an ion exchange resin ( Using a solution of a mixture of A) water and ethanol solution (solid content concentration 15% by mass), coating was performed by the die coater 52 and dried in a drying furnace 53 at 80 ° C. for 20 minutes.

その後、得られた電解質膜にエタノールを25g/mダイコート52により塗布し、140℃30分の条件で、残留溶媒等を乾燥させて補強された電解質膜R1を得た。なお、電子顕微鏡の断面観察から、表面の補強されない層の総厚みは約8.3μmであり、補強膜全体の厚みは15.6μmであった。 Thereafter, ethanol was applied to the obtained electrolyte membrane by 25 g / m 2 die coat 52, and a residual solvent was dried under conditions of 140 ° C. for 30 minutes to obtain a reinforced electrolyte membrane R1. From the cross-sectional observation of the electron microscope, the total thickness of the non-reinforced layer on the surface was about 8.3 μm, and the total thickness of the reinforcing film was 15.6 μm.

[含水時の不織布質量分率及び寸法変化率測定]
電解質膜R1を90℃のイオン交換水に2時間浸漬した後の、単位面積あたりの電解質膜R1の質量を測定した。測定した単位面積あたりの質量と不織布の目付量から、90℃のイオン交換水に2時間浸漬させたときの不織布の質量分率を求めた。
[Measurement of mass fraction of nonwoven fabric and dimensional change rate when water is contained]
The mass of the electrolyte membrane R1 per unit area after the electrolyte membrane R1 was immersed in 90 ° C. ion exchange water for 2 hours was measured. From the measured mass per unit area and the basis weight of the nonwoven fabric, the mass fraction of the nonwoven fabric when immersed in ion-exchanged water at 90 ° C. for 2 hours was determined.

また、電解質膜R1を縦方向、横方向それぞれ2枚、短冊型(2cm×10cm)に切り出し、短辺方向と平行に6cm間隔のラインを引く。温度25℃、湿度50%の雰囲気に2時間曝し、ライン間の長さを測定する。次に、2枚のサンプルの内、一方には20mN、もう一方には60mNの張力が掛かった状態で、90℃のイオン交換水に2時間浸漬した後、水中でライン間の長さを測定する。ここで測定されたサンプルの伸びから、張力の影響を取り除くために、(1)式により、張力が0となるサンプルの伸びを算出し、縦方向の伸びと横方向の伸びの平均値を求め、寸法変化率とした。
(張力0Nの伸び)=(張力20mNの伸び)−((張力60mNの伸び)−(張力20mNの伸び))÷2 ・・・(1)。
Further, the electrolyte membrane R1 is cut into two strips (2 cm × 10 cm) each in the vertical direction and the horizontal direction, and lines with an interval of 6 cm are drawn parallel to the short side direction. It is exposed to an atmosphere of temperature 25 ° C. and humidity 50% for 2 hours, and the length between lines is measured. Next, after immersing in ion exchange water at 90 ° C for 2 hours with one of 20 mN tension applied to one sample and 60 mN applied to the other, the length between the lines was measured in water. To do. In order to remove the influence of the tension from the sample elongation measured here, the elongation of the sample at which the tension becomes zero is calculated by the equation (1), and the average value of the elongation in the vertical direction and the elongation in the horizontal direction is obtained. Dimensional change rate.
(Elongation of tension 0N) = (elongation of tension 20 mN) − ((elongation of tension 60 mN) − (elongation of tension 20 mN)) ÷ 2 (1).

[燃料電池の作製及び評価]
燃料電池セルを以下のようにして組み立てる。まずイオン交換樹脂(A)をエタノールと水の混合溶媒(質量比で1:1)に投入し、還流機能を有したフラスコ内で60℃16時間撹拌して溶解し、固形分9%のポリマー溶液を得る。次に白金担持カーボンを水、エタノールの順で逐次添加することにより、エタノールと水の混合分散媒(質量比で1:1)に分散した触媒分散液(固形分9質量%)を得る。その後、ポリマー溶液と触媒分散液を4:5の質量比で混合し、塗工液を作製する。次にこの塗工液をETFE基材上にダイコート法で塗工し、乾燥して厚さ10μm、白金担持量0.2mg/cmの触媒層を形成する。次に電解質膜R1にこの触媒層を熱プレスにより(温度130℃、圧力2.6MPa)接着し、さらにその両外側にカーボンクロスをガス拡散層として配置することにより、膜電極接合体が得られる。この膜電極接合体の両外側にガス通路用の細溝をジグザグ状に切削加工したカーボン板製のセパレータ、さらにその外側にヒータを配置することにより、有効膜面積25cmの固体高分子形燃料電池が組み立てられる。
[Production and evaluation of fuel cells]
The fuel cell is assembled as follows. First, the ion exchange resin (A) is charged into a mixed solvent of ethanol and water (mass ratio of 1: 1), dissolved in a flask having a reflux function by stirring at 60 ° C. for 16 hours, and a polymer having a solid content of 9%. Obtain a solution. Next, a platinum-supported carbon is sequentially added in the order of water and ethanol to obtain a catalyst dispersion (solid content 9% by mass) dispersed in a mixed dispersion medium (1: 1 by mass) of ethanol and water. Thereafter, the polymer solution and the catalyst dispersion are mixed at a mass ratio of 4: 5 to prepare a coating solution. Next, this coating solution is applied onto an ETFE substrate by a die coating method and dried to form a catalyst layer having a thickness of 10 μm and a platinum loading of 0.2 mg / cm 2 . Next, this catalyst layer is adhered to the electrolyte membrane R1 by hot pressing (temperature 130 ° C., pressure 2.6 MPa), and a carbon cloth is disposed on both outer sides as a gas diffusion layer, whereby a membrane electrode assembly is obtained. . A solid polymer fuel having an effective membrane area of 25 cm 2 by disposing a carbon plate separator having zigzag cuts on the gas channel narrow grooves on both outer sides of the membrane electrode assembly, and a heater on the outer side. The battery is assembled.

燃料電池の温度を80℃に保ち、カソードに空気、アノードに水素をそれぞれ0.2MPaで供給し、電流密度1.0A/cmで16時間発電する。次にカソードに窒素、アノードに水素をそれぞれ0.2MPaで供給し、1mVの交流印加電圧を周波数20kHz〜5Hzまで掃印し、インピーダンスを測定する。このとき、インピーダンスの位相角が0度となる周波数のセル抵抗を測定し、この抵抗値から接触抵抗等を差し引くことで、膜単体の比抵抗値とする。結果は、表1に示すとおりとなった。なお、接触抵抗等については、厚みが15、20、25μmの無補強膜のセル抵抗RE、RE、REを測定し、(2)式より算出した。
(接触抵抗等)=(35RE+5RE−25RE)÷15 ・・・(2)。
The temperature of the fuel cell is maintained at 80 ° C., air is supplied to the cathode and hydrogen is supplied to the anode at 0.2 MPa, respectively, and electricity is generated at a current density of 1.0 A / cm 2 for 16 hours. Next, nitrogen is supplied to the cathode and hydrogen is supplied to the anode at 0.2 MPa, respectively, and an AC applied voltage of 1 mV is swept up to a frequency of 20 kHz to 5 Hz, and impedance is measured. At this time, the cell resistance of the frequency at which the phase angle of the impedance is 0 degree is measured, and the contact resistance or the like is subtracted from this resistance value to obtain the specific resistance value of the single membrane. The results are as shown in Table 1. Note that the contact resistance or the like, the thickness is measured cell resistance RE 1, RE 2, RE 3 unreinforced membrane 15,20,25Myuemu, was calculated from equation (2).
(Contact resistance or the like) = (35RE 1 + 5RE 2 −25RE 3 ) ÷ 15 (2).

〔例2〕
CF=CFとCF=CF−OCFCF(CF)−OCFCFSOFとCF=CF−OCFCF(OCFCFSOF)−OCFCFSOFとを共重合し、それぞれのモノマー単位の割合が82.6mol%、7.8mol%、9.6mol%であるスルホン酸型パーフルオロカーボン重合体の前駆体を得た。この前駆体を加水分解及び酸型化処理してイオン交換容量が1.52ミリ当量/グラム乾燥樹脂であるイオン交換樹脂に変換し、次いで、このイオン交換樹脂の水とエタノール溶液の混合液を溶媒とする溶液(固形分濃度10質量%)を調整した。次いで、この溶液に硝酸セリウムを蒸留水に溶解した溶液を添加し、イオン交換樹脂中のスルホン酸基の10%をCe3+でイオン交換した樹脂(以下、イオン交換樹脂(B)という)の溶液を得た。
[Example 2]
CF 2 = CF 2 and CF 2 = CF-OCF 2 CF (CF 3) -OCF 2 CF 2 SO 2 F and CF 2 = CF-OCF 2 CF (OCF 2 CF 2 SO 2 F) -OCF 2 CF 2 SO 2 F was copolymerized to obtain a sulfonic acid-type perfluorocarbon polymer precursor in which the ratio of each monomer unit was 82.6 mol%, 7.8 mol%, and 9.6 mol%. This precursor is hydrolyzed and acidified to convert it into an ion exchange resin having an ion exchange capacity of 1.52 meq / g dry resin, and then a mixture of the ion exchange resin in water and ethanol is used. A solution (solid content concentration 10% by mass) as a solvent was prepared. Subsequently, a solution of cerium nitrate dissolved in distilled water is added to this solution, and a solution of a resin in which 10% of the sulfonic acid groups in the ion exchange resin are ion exchanged with Ce 3+ (hereinafter referred to as ion exchange resin (B)). Got.

イオン交換樹脂(A)溶液の代わりに、上記のイオン交換樹脂(B)の水とエタノールの混合液を溶媒とする溶液を用いた以外は例1と同様の手法により、電解質膜R2を作製した。電解質R2の補強されない層の厚さは、約6.5μmであり、電解質膜R2全体の厚さは16.3μmであった。電解質膜R2について、例1と同様の評価を行い、得られた結果を表1に示す。   An electrolyte membrane R2 was produced in the same manner as in Example 1 except that instead of the ion exchange resin (A) solution, a solution of the above ion exchange resin (B) in water and ethanol was used as a solvent. . The thickness of the unreinforced layer of the electrolyte R2 was about 6.5 μm, and the total thickness of the electrolyte membrane R2 was 16.3 μm. The electrolyte membrane R2 was evaluated in the same manner as in Example 1, and the results obtained are shown in Table 1.

〔例3〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が0.9μm、目付量2.6g/mのポリプレンの不織布連続体RA3を作製した。
[Example 3]
Polypropylene is used as a material, and the melt blown manufacturing apparatus described in Example 1 is used. The temperature and flow rate of hot air for drawing are adjusted, and an average fiber diameter of 0.9 μm and a basis weight of 2.6 g / m 2 A nonwoven fabric continuous body RA3 was produced.

ポリプロピレンの不織布連続体RA1の代わりに、ポリプロピレンの不織布連続体RA3を用い、厚み調整(厚密化)を行って不織布連続体RA3の厚みを11.5μmとした後に、市販のコロナ放電処理機(tantec社Corona Generator Model HV 05−2)を用いてコロナ放電により表面処理を行った以外は、例2と同様の手法により、電解質膜R3を作製した。電解質R3の補強されない層の厚さは、約5.8μmであり、電解質膜R3全体の厚さは12.8μmであった。電解質膜R3について、例1と同様の評価を行い、得られた結果を表1に示す。   Instead of the polypropylene nonwoven fabric RA1, a polypropylene nonwoven fabric RA3 was used to adjust the thickness (thickening) so that the thickness of the nonwoven fabric continuum RA3 was 11.5 μm. An electrolyte membrane R3 was produced in the same manner as in Example 2 except that surface treatment was performed by corona discharge using Tantec Corp. Generator Generator HV 05-2). The thickness of the unreinforced layer of the electrolyte R3 was about 5.8 μm, and the total thickness of the electrolyte membrane R3 was 12.8 μm. The electrolyte membrane R3 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

〔例4〕
ポリプロピレンの不織布連続体RA1の代わりに、帝人デイーエスエム・ソルテック社製ポリエチレン多孔体を用い、厚み調整(厚密化)を行わないこと以外は、例1と同様の手法により、電解質膜R4の作製を試みたが、製膜時の乾燥(温度140℃)時にポリエチレン多孔体に熱変形が生じたため、電解質膜R4を作製することができなかった。
[Example 4]
Preparation of electrolyte membrane R4 by the same method as in Example 1 except that a polyethylene porous body manufactured by Teijin DSM Soltec Co. was used instead of the polypropylene nonwoven fabric RA1, and thickness adjustment (thickening) was not performed. However, the electrolyte porous membrane R4 could not be produced because thermal deformation occurred in the polyethylene porous body during drying (temperature: 140 ° C.) during film formation.

〔例5〕
図3に示すように、口径30mmの単軸押出機31(L/D=24:田辺プラスティック社製)に、流量調整構造と加熱エアー導入構造をもつ特殊ダイ32を取り付け、その先端部に有効幅10cmに、内径300μmの円形吐出口10本を直線状に配し、その配列方向と平行に、吐出樹脂に延伸応力がかかるように延伸用ホットエアー36を500μmのスリットから噴出させることが可能な延伸エアー吹き出し口331を有する化繊ノズル社製のメルトブローン不織布製造用特殊ノズル33を用い、旭硝子社製パーフルオロ樹脂(商品名:アフロンPFA(MFR 40g/10分))を用い、ダイ温度360℃、延伸用ホットエアー36を温度330℃で、3Nm/hrの流量で噴出、駆動ステージ上37上の吸引ポンプ381を有するエアー吸引装置38に設置せしめた20メッシュのステンレスメッシュ35上にガス吸引口に設置せしめたステンレスメッシュ(20メッシュ)を連続的に6m/分の速度で一方向に駆動せしめ、幅約5cm、平均繊維径が3.5μm、目付け量が1.6g/mの不織布A1(34)を形成した。しかしながら、形成した不織布は、繊維径にばらつきがあり、所望する繊維径の不織布を得るための歩留まりは50%であった。これは、同じ繊維径2.6μmのポリプロピレン不織布を得るための歩留まり80%に比べて低い。不織布A1は、内径3インチ、肉厚7mmの紙管に巻き取ることができ、長さ3mの不織布連続体RA5を得た。
[Example 5]
As shown in FIG. 3, a special die 32 having a flow rate adjusting structure and a heated air introduction structure is attached to a single-screw extruder 31 (L / D = 24: manufactured by Tanabe Plastic Co.) having a diameter of 30 mm, and effective at the tip thereof. Ten circular discharge ports with an inner diameter of 300 μm are linearly arranged in a width of 10 cm, and the drawing hot air 36 can be ejected from a 500 μm slit so as to apply a drawing stress to the discharging resin in parallel with the arrangement direction. A special nozzle 33 for the production of melt blown nonwoven fabric manufactured by Chemical Fiber Nozzle Co., Ltd. having a stretched air outlet 331, a perfluoro resin (trade name: Aflon PFA (MFR 40 g / 10 min)) manufactured by Asahi Glass Co., Ltd., and a die temperature of 360 ° C. The hot air for drawing 36 is ejected at a temperature of 330 ° C. at a flow rate of 3 Nm 3 / hr, and has a suction pump 381 on the drive stage 37. The stainless steel mesh (20 mesh) installed in the gas suction port on the 20 mesh stainless steel mesh 35 installed in the air suction device 38 is continuously driven in one direction at a speed of 6 m / min. A nonwoven fabric A1 (34) having an average fiber diameter of 3.5 μm and a basis weight of 1.6 g / m 2 was formed. However, the formed nonwoven fabric had variations in fiber diameter, and the yield for obtaining a nonwoven fabric having a desired fiber diameter was 50%. This is lower than the yield of 80% for obtaining a polypropylene nonwoven fabric having the same fiber diameter of 2.6 μm. Nonwoven fabric A1 could be wound around a paper tube having an inner diameter of 3 inches and a thickness of 7 mm to obtain a nonwoven fabric continuous body RA5 having a length of 3 m.

ポリプロピレンの不織布連続体RA1の代わりに、PFAの不織布連続体RA5を用い、厚み調整(厚密化)を行って厚みを11.5μmとした後に、例3に記載のコロナ放電処理機を用いてコロナ放電により表面処理を行った以外は、例2と同様の手法により、電解質膜R6を作製した。電解質R6の補強されない層の厚さは、約6.2μmであり、電解質膜R6全体の厚さは16.9μmであった。電解質膜R3について、例1と同様の評価を行い、得られた結果を表1に示す。   Using the PFA nonwoven fabric continuum RA5 instead of the polypropylene nonwoven fabric continuity RA1 and adjusting the thickness (thickening) to 11.5 μm, using the corona discharge treatment machine described in Example 3 An electrolyte membrane R6 was produced in the same manner as in Example 2 except that the surface treatment was performed by corona discharge. The thickness of the unreinforced layer of the electrolyte R6 was about 6.2 μm, and the total thickness of the electrolyte membrane R6 was 16.9 μm. The electrolyte membrane R3 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

〔例6〕
例5に記載の単軸押出機と、特殊ダイ、メルトブローン不織布製造用特殊ノズルを用いて、旭硝子社製ETFEフッ素樹脂(商品名:アフロンCOP(MFR 40g/10分))を用い、ダイ温度360℃、延伸用ホットエアーを温度330℃で、3Nm/hrの流量で噴出させて、ガス吸引口に設置せしめたステンレスメッシュ(20メッシュ)上に平均繊維径が5μm、目付量が1.5g/mの不織布連続体RA6の作製を試みたが、繊維が切れやすく、安定して繊維を形成することができなかったため、作製することができなかった。
[Example 6]
Using a single-screw extruder described in Example 5, a special die, and a special nozzle for manufacturing a melt blown nonwoven fabric, ETFE fluororesin (trade name: Aflon COP (MFR 40 g / 10 min)) manufactured by Asahi Glass Co., Ltd., and die temperature 360 The average fiber diameter is 5 μm and the weight per unit area is 1.5 g on a stainless mesh (20 mesh) which is jetted at a flow rate of 3 Nm 3 / hr at a temperature of 330 ° C. at a temperature of 330 ° C. Although an attempt was made to produce a nonwoven fabric continuum RA6 of / m 2 , the fibers could not be produced because the fibers were easily cut and the fibers could not be stably formed.

〔例7〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が0.01μm未満、目付量4.0g/mのポリプレンの不織布連続体RA7の作製を試みた。しかしながら、繊維が形成されてもコレクター上への集積効率が低く、多くが周辺空間に飛散した。一部、コレクター上に集積されたものを布状連続体として回収を試みたが、繊維間の結合が弱く、布状として回収できなくなり、不織布連続体RA7の作製することができなかった。
[Example 7]
Polypropylene having a mean fiber diameter of less than 0.01 μm and a basis weight of 4.0 g / m 2 by using polypropylene as a material and adjusting the temperature and flow rate of hot air for drawing using the melt blown manufacturing apparatus described in Example 1. An attempt was made to produce a nonwoven fabric continuum RA7. However, even if the fibers were formed, the efficiency of accumulation on the collector was low, and many scattered in the surrounding space. Part of the material collected on the collector was collected as a cloth-like continuous body. However, the bond between the fibers was weak, and the cloth-like continuous body could not be recovered, and the nonwoven fabric continuous body RA7 could not be produced.

〔例8〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が6.5μm、目付量4.0g/mのポリプレンの不織布連続体RA8の作製を試みたが、繊維の本数が少ないとともに、繊維間の密着も弱く、布状連続体として巻き取ることができず、不織布連続体RA8を作製することができなかった。
[Example 8]
Polypropylene is used as a material, and the melt blown manufacturing apparatus described in Example 1 is used. The temperature and flow rate of hot air for drawing are adjusted, and the average fiber diameter is 6.5 μm and the weight per unit area is 4.0 g / m 2 . Although an attempt was made to produce the nonwoven fabric continuous body RA8, the number of fibers was small, and the adhesion between the fibers was weak, so that the nonwoven fabric continuous body RA8 could not be produced.

〔例9〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が0.9μm、目付量0.9g/mのポリプレンの不織布連続体RA9の作製を試みたが、繊維の本数が少ないとともに、繊維間の密着も弱く、3inch紙間に布状連続体として巻き取ることができず、不織布連続体RA9を作製することができなかった。
[Example 9]
Polypropylene is used as a material, and the melt blown manufacturing apparatus described in Example 1 is used. The temperature and flow rate of hot air for drawing are adjusted, and an average fiber diameter of 0.9 μm and a basis weight of 0.9 g / m 2 Although an attempt was made to produce the nonwoven fabric continuous body RA9, the number of fibers was small and the adhesion between the fibers was weak, and the nonwoven fabric continuous body RA9 could not be wound up as a cloth-like continuous body between 3 inch papers. could not.

〔例10〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が2μm、目付量5.11g/mのポリプレンの不織布連続体RA10を作製した。
[Example 10]
Polypropylene is used as a material, and the melt blown production apparatus described in Example 1 is used. The temperature and flow rate of hot air for stretching are adjusted, and a nonwoven fabric continuous with an average fiber diameter of 2 μm and a basis weight of 5.11 g / m 2. A body RA10 was produced.

ポリプロピレンの不織布連続体RA1の代わりに、ポリプロピレンの不織布連続体RA10を用い、厚み調整(厚密化)を行って厚みを13μmとした以外は、例1と同様の手法により、電解質膜R10を作製した。電解質R10の補強されない層の厚さは、約7.8μmであり、電解質膜R10全体の厚さは18.8μmであった。電解質膜R10について、例1と同様の評価を行い、得られた結果を表1に示す。   An electrolyte membrane R10 was produced in the same manner as in Example 1 except that a polypropylene nonwoven fabric continuum RA10 was used in place of the polypropylene nonwoven fabric continuum RA1 and the thickness was adjusted (thickened) to 13 μm. did. The thickness of the unreinforced layer of the electrolyte R10 was about 7.8 μm, and the total thickness of the electrolyte membrane R10 was 18.8 μm. The electrolyte membrane R10 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

〔例11〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が2μm、目付量4g/mのポリプレンの不織布連続体RA11を作製した。
[Example 11]
Polypropylene non-woven fabric continuum RA11 having an average fiber diameter of 2 μm and a basis weight of 4 g / m 2 using polypropylene as a material and adjusting the temperature and flow rate of hot air for drawing using the melt blown manufacturing apparatus described in Example 1. Was made.

ポリプロピレンの不織布連続体RA1の代わりに、ポリプロピレンの不織布連続体RA11を用い、厚み調整(厚密化)を行って厚みを13μmとした以外は、例1と同様の手法により、電解質膜R11を作製した。電解質R11の補強されない層の厚さは、約14.0μmであり、電解質膜R11全体の厚さは21.0μmであった。電解質膜R11について、例1と同様の評価を行い、得られた結果を表1に示す。   An electrolyte membrane R11 was produced in the same manner as in Example 1 except that the polypropylene nonwoven fabric continuum RA11 was used instead of the polypropylene nonwoven fabric continuum RA1 and the thickness was adjusted (thickened) to 13 μm. did. The thickness of the unreinforced layer of the electrolyte R11 was about 14.0 μm, and the total thickness of the electrolyte membrane R11 was 21.0 μm. The electrolyte membrane R11 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

〔例12〕
例3に記載のコロナ放電処理機をコロナ放電により表面処理を、厚み調整(厚密化)を行った後に行った以外は、例2と同様の手法により、電解質膜R12を作製した。電解質R12の補強されない層の厚さは、約10.4μmであり、電解質膜R12全体の厚さは15.7μmであった。電解質膜R12について、例1と同様の評価を行い、得られた結果を表1に示す。
[Example 12]
An electrolyte membrane R12 was produced in the same manner as in Example 2, except that the corona discharge treatment machine described in Example 3 was subjected to surface treatment by corona discharge after thickness adjustment (thickening). The thickness of the unreinforced layer of the electrolyte R12 was about 10.4 μm, and the total thickness of the electrolyte membrane R12 was 15.7 μm. The electrolyte membrane R12 was evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

〔例13〕
材料にポリプロピレンを用い、例1に記載のメルトブローン製造装置を使用し、延伸用ホットエアーの温度、流量を調整して、平均繊維径が2μm、目付量2.6g/mのポリプレンの不織布連続体RA13を作製した。
[Example 13]
Polypropylene is used as the material, and the melt blown manufacturing apparatus described in Example 1 is used. The temperature and flow rate of hot air for drawing are adjusted, and the nonwoven fabric continuous with an average fiber diameter of 2 μm and a basis weight of 2.6 g / m 2 is used. Body RA13 was produced.

ポリプロピレンの不織布連続体RA1の代わりに、ポリプロピレンの不織布連続体RA13を用い、厚み調整(厚密化)を行って不織布の厚みを8.5μmとした後に、例3に記載のコロナ放電処理機を用いてコロナ放電により表面処理を行い、さらに単膜の厚さを調整した以外は、例1と同様の手法により、電解質膜R13を作製した。電解質R13の補強されない層の厚さは、1.0μm未満であり、電解質膜R13全体の厚さは8.6μmであった。電解質膜R13について、例1と同様に燃料電池を作製し評価を試みたが、水素クロスリークが大きく発電を行うことができなかったので、評価することができなかった。   Instead of the polypropylene nonwoven fabric RA1, the polypropylene nonwoven fabric RA13 was used to adjust the thickness (thickening) so that the nonwoven fabric had a thickness of 8.5 μm, and then the corona discharge treatment machine described in Example 3 was used. An electrolyte membrane R13 was produced in the same manner as in Example 1 except that the surface treatment was performed by corona discharge and the thickness of the single membrane was adjusted. The thickness of the unreinforced layer of the electrolyte R13 was less than 1.0 μm, and the total thickness of the electrolyte membrane R13 was 8.6 μm. Regarding the electrolyte membrane R13, a fuel cell was produced and evaluated in the same manner as in Example 1. However, since the hydrogen cross leak was large and power generation could not be performed, the evaluation could not be performed.

〔例14〕
イオン交換樹脂(A)の水とエタノールの混合液を溶媒とする溶液(固形分濃度15%)をダイコートにより旭硝子社製アフレックス(商品名)上に塗布し、80℃20分間乾燥し、上記イオン交換樹脂(A)からなる厚み25μmの単膜を得た。該単膜にエタノールを25g/m塗布し、140℃で30分乾燥し、電解質膜14を得た。電解質膜R14について、例1と同様の評価を行い、得られた結果を表1に示す。
[Example 14]
A solution (solid content concentration 15%) of a mixture of water and ethanol of ion exchange resin (A) as a solvent is applied onto Aflex (trade name) manufactured by Asahi Glass Co., Ltd. by die coating, dried at 80 ° C. for 20 minutes, A single membrane made of an ion exchange resin (A) having a thickness of 25 μm was obtained. Ethanol was applied to the single membrane at 25 g / m 2 and dried at 140 ° C. for 30 minutes to obtain an electrolyte membrane 14. The electrolyte membrane R14 was evaluated in the same manner as in Example 1, and the results obtained are shown in Table 1.

〔例15〕
イオン交換樹脂(B)の水とエタノールの混合液を溶媒とする溶液(固形分濃度10%)をダイコートにより旭硝子社製アフレックス(商品名)上に塗布し、80℃20分間乾燥し、上記イオン交換樹脂(B)からなる厚み25μmの単膜を得た。該単膜にエタノールを25g/m塗布し、140℃で30分乾燥し、電解質膜R15を得た。電解質膜R15について、例1と同様の評価を行い、得られた結果を表1に示す。
[Example 15]
A solution (solid content concentration: 10%) of a mixture of water and ethanol of ion exchange resin (B) as a solvent is applied onto Aflex (trade name) manufactured by Asahi Glass Co., Ltd., and dried at 80 ° C. for 20 minutes. A single membrane made of ion exchange resin (B) having a thickness of 25 μm was obtained. Ethanol was applied to the single membrane at 25 g / m 2 and dried at 140 ° C. for 30 minutes to obtain an electrolyte membrane R15. The electrolyte membrane R15 was evaluated in the same manner as in Example 1, and the results obtained are shown in Table 1.

Figure 2009252723
Figure 2009252723

本発明によれば、含水時の寸法安定性に優れ、抵抗の低い電解質膜を安価な材料を用いて生産性高く得ることができるから低コストである。そしてこの電解質膜を用いて得られた膜電極接合体は、出力が高く安定性に優れ安価であり、高い発電性能と耐久性を有する固体高分子形燃料電池が得られる。   According to the present invention, an electrolyte membrane having excellent dimensional stability when containing water and having low resistance can be obtained with high productivity using an inexpensive material, so that the cost is low. The membrane electrode assembly obtained using this electrolyte membrane has a high output, excellent stability and low cost, and a solid polymer fuel cell having high power generation performance and durability can be obtained.

不織布厚密化・PET仮圧着の連続加工装置概略図である。It is the continuous processing apparatus schematic of nonwoven fabric thickening and PET temporary pressure bonding. 補強された電解質膜製造のための連続塗工システム概略図である。1 is a schematic diagram of a continuous coating system for manufacturing a reinforced electrolyte membrane. FIG. メルトブローン不織布製造装置で用いられる押出システム概略図である。It is an extrusion system schematic diagram used with a melt blown nonwoven fabric manufacturing device.

符号の説明Explanation of symbols

31:単軸押出機
32:特殊ダイ
33:メルトブローン不織布製造法特殊ノズル
34:不織布A1
35:ステンレスメッシュ
36:延伸用ホットエアー
37:駆動ステージ
38:エアー吸引装置
39:余剰樹脂排出口
41:不織布連続体RA1
42:連続PET支持体
43:連続PET支持体/厚密化不織布連続体RAP1
44、54:金属ロール
45、55:ゴムロール
51:中間積層体P1
52:ダイコーター
53:乾燥炉
31: Single screw extruder 32: Special die 33: Melt blown nonwoven fabric manufacturing method special nozzle 34: Nonwoven fabric A1
35: Stainless steel mesh 36: Hot air for stretching 37: Drive stage 38: Air suction device 39: Excess resin outlet 41: Non-woven fabric continuum RA1
42: Continuous PET support 43: Continuous PET support / thickened non-woven fabric RAP1
44, 54: Metal roll 45, 55: Rubber roll 51: Intermediate laminate P1
52: Die coater 53: Drying furnace

Claims (4)

不織布で補強されたイオン交換樹脂を主成分とする固体高分子形燃料電池用電解質膜であって、
前記不織布は、平均繊維径が0.01〜6μmのポリプロピレンの繊維からなり、かつ、目付量が1.0〜4.0g/mであり、
片面又は両面の最外層として、前記イオン交換樹脂と同じでも異なっていてもよいイオン交換樹脂からなる補強されない層を有し、
前記補強されない層の総厚みが2〜10μmであり、前記固体高分子形燃料電池用電解質膜全体の厚みが10〜20μmであることを特徴とする固体高分子形燃料電池用電解質膜。
An electrolyte membrane for a polymer electrolyte fuel cell mainly composed of an ion exchange resin reinforced with a nonwoven fabric,
The nonwoven fabric is made of polypropylene fibers having an average fiber diameter of 0.01 to 6 μm, and the basis weight is 1.0 to 4.0 g / m 2 .
As an outermost layer on one or both sides, it has an unreinforced layer made of an ion exchange resin that may be the same as or different from the ion exchange resin,
The electrolyte membrane for a polymer electrolyte fuel cell, wherein the total thickness of the unreinforced layers is 2 to 10 μm, and the thickness of the entire electrolyte membrane for a polymer electrolyte fuel cell is 10 to 20 μm.
90℃の温水中に2時間浸漬させたときの、前記不織布の質量分率が5〜10質量%であることを特徴とする請求項1に記載の固体高分子形燃料電池用電解質膜。   2. The electrolyte membrane for a polymer electrolyte fuel cell according to claim 1, wherein the nonwoven fabric has a mass fraction of 5 to 10 mass% when immersed in warm water of 90 ° C. for 2 hours. 固体高分子形燃料電池用電解質膜の製造方法であって、
前記固体高分子形燃料電池用電解質膜は、平均繊維径が0.01〜6μmのポリプロピレンの繊維からなり目付量が1.0〜4.0g/mである不織布で補強されたイオン交換樹脂を主成分とする固体高分子形燃料電池用電解質膜であり、片面又は両面の最外層として前記イオン交換樹脂と同じでも異なっていてもよいイオン交換樹脂からなる補強されない層が配置されており、前記補強されない層の総厚みが2〜10μmであり、前記固体高分子形燃料電池用電解質膜全体の厚みが10〜20μmであり、
前記固体高分子形燃料電池用電解質膜を乾燥する乾燥工程を有し、前記乾燥工程は、前記固体高分子形燃料電池用電解質膜にエタノールを塗布して150℃以下で乾燥を行うことを特徴とする固体高分子形燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising:
The electrolyte membrane for a polymer electrolyte fuel cell is made of polypropylene fibers having an average fiber diameter of 0.01 to 6 μm and reinforced with a nonwoven fabric having a basis weight of 1.0 to 4.0 g / m 2. Is an electrolyte membrane for a polymer electrolyte fuel cell mainly composed of a non-reinforcing layer made of an ion exchange resin that may be the same as or different from the ion exchange resin as an outermost layer on one or both sides, The total thickness of the unreinforced layer is 2 to 10 μm, and the total thickness of the electrolyte membrane for a polymer electrolyte fuel cell is 10 to 20 μm,
A drying step of drying the electrolyte membrane for a polymer electrolyte fuel cell, wherein the drying step is performed by applying ethanol to the electrolyte membrane for a polymer electrolyte fuel cell and drying at 150 ° C. or lower. A method for producing an electrolyte membrane for a polymer electrolyte fuel cell.
触媒とイオン交換樹脂とを含む触媒層を有するカソード及びアノードと、該カソードと該アノードとの間に配置される高分子電解質膜と、を備える固体高分子形燃料電池用膜電極接合体において、前記高分子電解質膜は請求項1又は2の固体高分子形燃料電池用電電解質膜からなることを特徴とする固体高分子形燃料電池用膜電極接合体。   In a membrane electrode assembly for a polymer electrolyte fuel cell, comprising: a cathode and an anode having a catalyst layer containing a catalyst and an ion exchange resin; and a polymer electrolyte membrane disposed between the cathode and the anode. 3. The membrane electrode assembly for a polymer electrolyte fuel cell, wherein the polymer electrolyte membrane comprises the electrolyte membrane for a polymer electrolyte fuel cell according to claim 1 or 2.
JP2008103385A 2008-04-11 2008-04-11 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell Expired - Fee Related JP5320799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103385A JP5320799B2 (en) 2008-04-11 2008-04-11 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103385A JP5320799B2 (en) 2008-04-11 2008-04-11 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2009252723A true JP2009252723A (en) 2009-10-29
JP5320799B2 JP5320799B2 (en) 2013-10-23

Family

ID=41313211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103385A Expired - Fee Related JP5320799B2 (en) 2008-04-11 2008-04-11 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5320799B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506270A (en) * 2011-03-31 2014-03-13 コーロン インダストリーズ インク POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
JP2014222666A (en) * 2014-07-29 2014-11-27 旭化成イーマテリアルズ株式会社 Membrane electrode assembly and solid polymer electrolyte fuel cell
TWI476108B (en) * 2011-07-22 2015-03-11 Kan Lin Hsueh A polymer film used for isolating ions and the manufacturing method and application thereof
JP2016538698A (en) * 2013-11-26 2016-12-08 エルジー・ケム・リミテッド Polymer electrolyte membrane, membrane electrode assembly including polymer electrolyte membrane, and fuel cell including membrane electrode assembly
CN115109210A (en) * 2022-07-27 2022-09-27 深圳市中仁能源科技有限公司 Proton exchange resin solution for improving power generation capacity of fuel cell electrode and application method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165047A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Membrane-electrode junction, and fuel cell using the same
JP2005048088A (en) * 2003-07-30 2005-02-24 Toyota Motor Corp Branched high polymer compound and method for manufacturing the same, durable solid polymer electrolyte membrane and method for manufacturing the same, and fuel cell
JP2007083467A (en) * 2005-09-21 2007-04-05 Japan Vilene Co Ltd Composite sheet
JP2007095433A (en) * 2005-09-28 2007-04-12 Asahi Glass Co Ltd Electrolyte film for solid polymer fuel cells, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165047A (en) * 2002-11-14 2004-06-10 Sekisui Chem Co Ltd Membrane-electrode junction, and fuel cell using the same
JP2005048088A (en) * 2003-07-30 2005-02-24 Toyota Motor Corp Branched high polymer compound and method for manufacturing the same, durable solid polymer electrolyte membrane and method for manufacturing the same, and fuel cell
JP2007083467A (en) * 2005-09-21 2007-04-05 Japan Vilene Co Ltd Composite sheet
JP2007095433A (en) * 2005-09-28 2007-04-12 Asahi Glass Co Ltd Electrolyte film for solid polymer fuel cells, and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506270A (en) * 2011-03-31 2014-03-13 コーロン インダストリーズ インク POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME
US9240607B2 (en) 2011-03-31 2016-01-19 Kolon Industries, Inc. Polymer electrolyte and preparation method thereof
US9553325B2 (en) 2011-03-31 2017-01-24 Kolon Industries, Inc. Polymer electrolyte and preparation method thereof
TWI476108B (en) * 2011-07-22 2015-03-11 Kan Lin Hsueh A polymer film used for isolating ions and the manufacturing method and application thereof
JP2016538698A (en) * 2013-11-26 2016-12-08 エルジー・ケム・リミテッド Polymer electrolyte membrane, membrane electrode assembly including polymer electrolyte membrane, and fuel cell including membrane electrode assembly
US10297852B2 (en) 2013-11-26 2019-05-21 Lg Chem, Ltd. Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
JP2014222666A (en) * 2014-07-29 2014-11-27 旭化成イーマテリアルズ株式会社 Membrane electrode assembly and solid polymer electrolyte fuel cell
CN115109210A (en) * 2022-07-27 2022-09-27 深圳市中仁能源科技有限公司 Proton exchange resin solution for improving power generation capacity of fuel cell electrode and application method thereof

Also Published As

Publication number Publication date
JP5320799B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP4956961B2 (en) ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER FUEL CELL
JP5333438B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
US7311989B2 (en) Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
JP5163209B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
EP1674508B1 (en) Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells
JP2009245639A (en) Electrolyte membrane for polymer electrolyte fuel cell, method for manufacturing thereof, and membrane-electrode assembly for polymer electrolyte fuel cell
JP2007109657A (en) Multi-layered polymeric electrolyte membrane for fuel cell
US8394549B2 (en) Nonwoven fabric and electrolyte membrane
US11031618B2 (en) Polymer, polymer electrolyte membrane and membrane/electrode assembly
JP5397375B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP2009301755A (en) Forming method of catalyst layer, and manufacturing method of membrane electrode assembly for solid polymer fuel cell
WO2008072673A1 (en) Solid polymer electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly
JP5320799B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JPWO2016051633A1 (en) Gas diffusion layer for fuel cell, fuel cell and method for forming gas diffusion layer for fuel cell
JP5505408B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and membrane electrode assembly for polymer electrolyte fuel cell
JP2012018871A (en) Method of manufacturing membrane electrode assembly for solid polymer fuel cell
JP2002343380A (en) Electrolyte film for solid polymer fuel cell, and manufacturing method of the same
JP4234573B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

LAPS Cancellation because of no payment of annual fees