JP2009252666A - Fuel cell - Google Patents
Fuel cell Download PDFInfo
- Publication number
- JP2009252666A JP2009252666A JP2008102159A JP2008102159A JP2009252666A JP 2009252666 A JP2009252666 A JP 2009252666A JP 2008102159 A JP2008102159 A JP 2008102159A JP 2008102159 A JP2008102159 A JP 2008102159A JP 2009252666 A JP2009252666 A JP 2009252666A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- diffusion layer
- fuel cell
- contact
- electrolyte membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池に係り、特に、集電層と拡散層基材とからなるガス拡散層の構造に関するものである。 The present invention relates to a fuel cell, and more particularly to the structure of a gas diffusion layer comprising a current collecting layer and a diffusion layer substrate.
固体高分子型燃料電池の単セルは、イオン透過性の電解質膜と、該電解質膜を挟持するアノード側触媒層(電極層)およびカソード側触媒層(電極層)とからなる膜電極接合体(MEA:Membrane Electrode Assembly)と、該膜電極接合体に燃料ガスもしくは酸化剤ガスを提供するとともに電気化学反応によって生じた電気を集電するためのガス拡散層(GDL:Gas Diffusion Layer)とセパレータを少なくとも備えている。なお、このセパレータは、各単セルを画成するとともにガス流路層となるものであり、このガス流路層がセパレータから分離した、いわゆるフラットタイプのセパレータもある。燃料電池スタックは、所要電力に応じてこの単セルを所定数だけ積層することによって形成されている。 A single cell of a polymer electrolyte fuel cell has a membrane electrode assembly (an electrode-permeable electrolyte membrane, an anode side catalyst layer (electrode layer) and a cathode side catalyst layer (electrode layer) sandwiching the electrolyte membrane) MEA: Membrane Electrode Assembly, a gas diffusion layer (GDL) for providing fuel gas or oxidant gas to the membrane electrode assembly and collecting electricity generated by an electrochemical reaction, and a separator At least. This separator defines each single cell and becomes a gas flow path layer. There is also a so-called flat type separator in which this gas flow path layer is separated from the separator. The fuel cell stack is formed by stacking a predetermined number of single cells according to required power.
上記する燃料電池では、アノード電極に燃料ガスとして水素ガス等が提供され、カソード電極には酸化剤ガスとして酸素や空気が提供され、各電極では固有のガス流路層(またはセパレータ)にて面内方向にガスが流れ、次いでガス拡散層にて拡散されたガスが電極触媒層に導かれて電気化学反応がおこなわれるものである。 In the fuel cell described above, hydrogen gas or the like is provided as a fuel gas to the anode electrode, oxygen or air is provided as the oxidant gas to the cathode electrode, and each electrode is faced by a unique gas flow path layer (or separator). Gas flows inward, and then the gas diffused in the gas diffusion layer is guided to the electrode catalyst layer to cause an electrochemical reaction.
上記するガス拡散層の形態として、拡散層基材と集電層(MPL:Micro Porous Layer)とから構成されるものは一般に知られるところである。このガス拡散層と膜電極接合体とは、ホットプレスなどの熱圧着によって接合されており、その接触抵抗を低減するために締結圧が加えられているのが一般的である。この熱圧着は電解質膜のガラス転移点付近まで加熱しておこなわれるものであるために、圧着時に電解質膜が損傷しやすい状態にある。 As a form of the gas diffusion layer described above, a gas diffusion layer composed of a diffusion layer base material and a current collecting layer (MPL: Micro Porous Layer) is generally known. The gas diffusion layer and the membrane electrode assembly are bonded by thermocompression bonding such as hot pressing, and generally a fastening pressure is applied to reduce the contact resistance. Since this thermocompression bonding is performed by heating to the vicinity of the glass transition point of the electrolyte membrane, the electrolyte membrane is likely to be damaged during the compression bonding.
さらに、電解質膜の中央領域はその上方の触媒層で保護されている一方で、触媒層で保護されていない電解質膜の端部領域においては、拡散層基材が薄いMPL層を貫通し、電解質膜に突き刺さるという現象が往々にして生じている。この拡散層基材が突き刺さった電解質膜の領域では、燃料電池スタックに締結圧が作用した状態において、電解質膜の中央領域に比してその受ける面圧が低くなり、十分な密着が得られなくなることは必至であって、このことは、この突き刺さり領域においてガスのクロスリークを促進させる原因となるものである。ガスのクロスリークにより、燃料電池の発電性能が低下することは理解に易い。なお、ここで言う構造のガス拡散層を備えた燃料電池が特許文献1に開示されている。
Furthermore, while the central region of the electrolyte membrane is protected by the catalyst layer thereabove, the diffusion layer substrate penetrates the thin MPL layer in the end region of the electrolyte membrane not protected by the catalyst layer, and the electrolyte The phenomenon of piercing the membrane often occurs. In the region of the electrolyte membrane pierced by the diffusion layer base material, the surface pressure received by the fuel cell stack is lower than that in the central region of the electrolyte membrane in a state where the fastening pressure is applied, and sufficient adhesion cannot be obtained. This is inevitable, and this causes gas cross-leakage to be promoted in this piercing region. It is easy to understand that the power generation performance of the fuel cell deteriorates due to gas cross leak. A fuel cell including a gas diffusion layer having the structure referred to here is disclosed in
上記課題を解消するために、膜電極接合体の周縁部、より具体的には触媒層およびMPL層の周縁であって拡散層基材と電解質膜との間にガスケットを設け、拡散層基材(の端部領域)と電解質膜との間に上記する拡散層基材による突き刺さりを防止できる形態(ガス供給用もしくはガス排気用のマニホールドを囲繞する一般的なシール用ガスケットとは別途のガスケットを具備する形態)が存在する。この構造を電解質膜とカソード側の触媒層およびガス拡散層のみを図示した図3を参照して説明すると、電解質膜aの上面に該電解質膜aよりも狭小(面積の小さい)な触媒層bおよびMPL層cが設けられ、MPL層cの外側に拡散層基材dが設けられ、触媒層bおよびMPL層cの周縁であって電解質膜aと拡散層基材dの間に樹脂製のガスケットeが介在する形態である。図示するガスケットを備えた形態では、部品点数が増加することと該ガスケットの組み付け工程が付加されることで製造コスト増となり、燃料電池の量産に伴って製造コストの高騰は顕著となり、さらには、かかる部位に設けられたガスケットによって該周縁部にダメージを与えるという課題が生じているのが実情である。 In order to solve the above problems, a gasket is provided between the diffusion layer base material and the electrolyte membrane at the peripheral edge of the membrane electrode assembly, more specifically, the peripheral edge of the catalyst layer and the MPL layer, and the diffusion layer base material. A configuration that can prevent the diffusion layer base material from being stuck between the (end region) and the electrolyte membrane (a gasket separate from a general sealing gasket surrounding a gas supply or gas exhaust manifold) Form). This structure will be described with reference to FIG. 3 showing only the electrolyte membrane, the cathode-side catalyst layer, and the gas diffusion layer. The catalyst layer b is narrower (smaller in area) than the electrolyte membrane a on the upper surface of the electrolyte membrane a. And a MPL layer c, a diffusion layer base material d is provided outside the MPL layer c, and the periphery of the catalyst layer b and the MPL layer c is made of resin between the electrolyte membrane a and the diffusion layer base material d. The gasket e is interposed. In the form having the gasket shown in the figure, the manufacturing cost increases due to the increase in the number of parts and the assembly process of the gasket, and the increase in the manufacturing cost becomes remarkable with the mass production of the fuel cell. The actual situation is that there is a problem that the peripheral portion is damaged by the gasket provided in such a portion.
本発明は、上記する問題に鑑みてなされたものであり、集電層と拡散層基材とからなるガス拡散層が膜電極接合体に接合されてなる燃料電池に関し、製造コストを高騰させることなく、拡散層基材による電解質膜の損傷を防止できる構造を呈した燃料電池を提供することを目的とする。 The present invention has been made in view of the above-described problems, and relates to a fuel cell in which a gas diffusion layer composed of a current collecting layer and a diffusion layer base material is bonded to a membrane electrode assembly, and increases manufacturing costs. It aims at providing the fuel cell which exhibited the structure which can prevent the damage of the electrolyte membrane by a diffusion layer base material.
前記目的を達成すべく、本発明による燃料電池は、少なくとも電解質膜を備える膜電極接合体に、集電層(MPL)と拡散層基材とからなるガス拡散層を接合してなる燃料電池において、前記電解質膜には、該電解質膜よりも狭小な触媒層が当接し、前記集電層は、該触媒層を包囲するとともに触媒層よりも外側で電解質膜と当接するものであり、前記集電層の触媒層と反対側に前記拡散層基材が形成されており、前記集電層は、該集電層が触媒層と当接する中央領域の厚みが相対的に薄く、電解質膜と当接する外周領域の厚みが相対的に厚くなっており、前記拡散層基材の集電層と当接する側面は、該集電層の形状に対応するべく、該拡散層基材の外周領域の厚みが相対的に薄く、集電層の中央領域と当接する該拡散層基材の中央領域の厚みが相対的に厚くなっているものである。 In order to achieve the above object, a fuel cell according to the present invention is a fuel cell in which a gas diffusion layer comprising a current collecting layer (MPL) and a diffusion layer substrate is bonded to a membrane electrode assembly having at least an electrolyte membrane. The electrolyte membrane is in contact with a catalyst layer that is narrower than the electrolyte membrane, and the current collector layer surrounds the catalyst layer and is in contact with the electrolyte membrane outside the catalyst layer. The diffusion layer base material is formed on the opposite side of the electrode layer from the catalyst layer, and the current collecting layer has a relatively thin central region where the current collecting layer is in contact with the catalyst layer. The thickness of the outer peripheral region in contact with the current collecting layer of the diffusion layer base material is relatively thick, and the side surface of the diffusion layer base material in contact with the current collecting layer corresponds to the shape of the current collecting layer. Is relatively thin and the thickness of the central region of the diffusion layer base material in contact with the central region of the current collecting layer There is one that is relatively thick.
本発明の燃料電池は、ガス拡散層を構成する集電層(MPL層)の厚みを、これが触媒層と当接する中央領域の厚みを相対的に薄くし、電解質膜と直接当接する端部領域の厚みを相対的に厚くするとともに、この集電層の形状に対応するように拡散層基材の端部領域の厚みも相対的に薄くすることにより、触媒層にて保護されていない電解質膜の端部領域と拡散層基材との離間を可及的に長く設定し、もって拡散層基材による電解質膜への突き刺さりを効果的に防止できる燃料電池に関するものである。 In the fuel cell according to the present invention, the thickness of the current collecting layer (MPL layer) constituting the gas diffusion layer is made relatively thin in the central region where it is in contact with the catalyst layer, and the end region is in direct contact with the electrolyte membrane. The electrolyte membrane that is not protected by the catalyst layer is formed by making the thickness of the diffusion layer base material relatively thin and the thickness of the end region of the diffusion layer base material relatively thin so as to correspond to the shape of the current collecting layer. The distance between the end region and the diffusion layer substrate is set to be as long as possible so that the diffusion layer substrate can effectively prevent the electrolyte membrane from being stuck to the electrolyte membrane.
予め端部領域が薄層となる、すなわちその中央領域がMPL層側に突な形状であって、MPL層とは反対側の側面がフラットである拡散層基材に該MPL層を接着させたものを、電解質膜と、これよりも狭小な、すなわち面積の小さな触媒層とが接着したものをホットプレスにて熱圧着することにより、MPL層の端部領域が触媒層にて保護されていない電解質膜の端部領域と接着される。 The MPL layer is bonded to a diffusion layer base material whose end region is a thin layer in advance, that is, the central region has a shape protruding toward the MPL layer and the side surface opposite to the MPL layer is flat. The end region of the MPL layer is not protected by the catalyst layer by thermocompression bonding with an electrolyte membrane and a catalyst layer having a smaller area, that is, a catalyst layer having a smaller area, by hot pressing. Bonded to the end region of the electrolyte membrane.
ここで、拡散層基材の中央領域と触媒層の双方の面積が同一もしくは略同一であり、集電層を介して双方がずらされることなく対向している形態であるのが好ましい。このことは、MPL層の端部領域の上下方向への突出部分、すなわち、拡散層基材側への突出部分と電解質膜側への突出部分が略同一の幅を有していることをも意味するものである。この形態によれば、複数の単セルが積層されてスタックが形成され、その両側から圧縮されて燃料電池が形成された際に、触媒層の全領域に対応する拡散層基材の突な領域(中央領域)から均一な圧力が作用することとなり、触媒層に面内均一な圧力環境を付与することができる。 Here, the area of both the central region of the diffusion layer base material and the catalyst layer is the same or substantially the same, and it is preferable that both are opposed to each other through the current collecting layer without being shifted. This means that the projecting portion in the vertical direction of the end region of the MPL layer, that is, the projecting portion toward the diffusion layer substrate side and the projecting portion toward the electrolyte membrane side have substantially the same width. That means. According to this embodiment, when a plurality of single cells are stacked to form a stack and compressed from both sides to form a fuel cell, the projecting region of the diffusion layer base material corresponding to the entire region of the catalyst layer A uniform pressure acts from the (central region), and an in-plane uniform pressure environment can be imparted to the catalyst layer.
上記する本発明の燃料電池によれば、拡散層基材の形状と集電層の形状を調整しただけの極めて簡易な構造により、拡散層基材から電解質膜への突き刺さりを効果的に防止することができ、これに起因するガスのクロスリークを効果的に抑止することができる。また、既述のごとく電解質膜と拡散層基材との間にガスケット等を介在させる必要がないことから、追加材料(部材)による材料コスト増や工程増に伴う製造コスト増が招来されることはない。この効果は、燃料電池の生産量が増大するにつれて顕著となる。さらに、上記する好ましい燃料電池の形態によれば、面内均一な圧力が触媒層に常時作用することとなり、発電効率および発電性能に優れた燃料電池を得ることができる。 According to the fuel cell of the present invention described above, the piercing from the diffusion layer base material to the electrolyte membrane is effectively prevented by an extremely simple structure in which the shape of the diffusion layer base material and the shape of the current collecting layer are adjusted. It is possible to effectively suppress gas cross-leakage caused by this. In addition, as described above, there is no need to interpose a gasket or the like between the electrolyte membrane and the diffusion layer base material, resulting in an increase in material costs due to additional materials (members) and an increase in manufacturing costs accompanying an increase in processes. There is no. This effect becomes more prominent as the fuel cell production increases. Furthermore, according to the preferable fuel cell configuration described above, the in-plane uniform pressure always acts on the catalyst layer, and a fuel cell excellent in power generation efficiency and power generation performance can be obtained.
以上の説明から理解できるように、本発明の燃料電池によれば、従来構造にはない拡散層基材と集電層双方の形状を備えた電極体構造を適用することで、製造コストを高騰させることなく、拡散層基材から電解質膜への突き刺さりを効果的に防止することができ、もってガスのクロスリークを効果的に抑止することができる。 As can be understood from the above description, according to the fuel cell of the present invention, the manufacturing cost is increased by applying the electrode body structure having both the shape of the diffusion layer base material and the current collecting layer which is not in the conventional structure. Therefore, it is possible to effectively prevent the diffusion layer substrate from sticking to the electrolyte membrane, thereby effectively suppressing gas cross-leakage.
以下、図面を参照して本発明の実施の形態を説明する。図1は本発明の燃料電池の構造の一部を分解した模式図であって、カソード側の触媒層およびガス拡散層のみを抽出して示した図であり、図2は図1の分解構造が一体となった模式図である。なお、アノード側の構造も図示するカソード側の構造と同じ構造を呈していることは勿論のことである。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram in which a part of the structure of the fuel cell of the present invention is disassembled, in which only the catalyst layer and the gas diffusion layer on the cathode side are extracted and shown in FIG. FIG. Of course, the structure on the anode side is the same as the structure on the cathode side shown in the figure.
燃料電池を構成する単セルは、電解質膜1とこれを挟持するカソード側の触媒層2および不図示のアノード側の触媒層とから膜電極接合体(MEA)が形成され、膜電極接合体を挟持するカソード側のガス拡散層5および不図示のアノード側のガス拡散層から電極体(MEGA)が形成され、この電極体を不図示のカソード電極側のガス流路層およびアノード電極側のガス流路層が挟持し、さらにこれらガス流路層をフラットタイプのセパレータが挟持することによって単セルが構成される。なお、フラットタイプのセパレータのほかにも、ガス流路作用と集電作用、および隣接セルとの画成作用を凹凸状のセパレータが備えた従来一般のセパレータであってもよい。
A single cell constituting a fuel cell has a membrane electrode assembly (MEA) formed of an
実際の燃料電池においては、所望する発電量に応じて単セルが所定段積層されて燃料電池スタックが形成されるものである。さらに、この燃料電池スタックは、最外側にエンドプレート、テンションプレート等を備え、両端のテンションプレート間に圧縮力が加えられて燃料電池が形成される。 In an actual fuel cell, a single cell is stacked in a predetermined stage according to a desired power generation amount to form a fuel cell stack. Further, the fuel cell stack includes an end plate, a tension plate, and the like on the outermost side, and a compressive force is applied between the tension plates at both ends to form a fuel cell.
電気自動車等に車載される燃料電池システムは、この燃料電池と、水素ガスや空気を収容する各種タンク、これらのガスを燃料電池に提供するためのブロア、燃料電池を冷却するためのラジエータ、燃料電池で生成された電力を蓄電するバッテリ、この電力で駆動する駆動モータ等から大略構成されるものである。 A fuel cell system mounted on an electric vehicle or the like includes this fuel cell, various tanks for storing hydrogen gas and air, a blower for supplying these gases to the fuel cell, a radiator for cooling the fuel cell, a fuel The battery is generally composed of a battery that stores electric power generated by the battery, a drive motor that is driven by the electric power, and the like.
図1で示すように、電解質膜1の上方にはこれよりも狭小な、すなわち平面積の小さな触媒層2が接着されており、集電層3と拡散層基材4が接着されてなるガス拡散層5をホットプレスにて熱圧着することにより(X方向)、電極体のカソード側の構造が形成される。
As shown in FIG. 1, a
ここで、拡散層基材4の集電層3側の側面は、図2のごとく触媒層2および電解質膜1と圧着された際に、触媒層2と同面積でかつ触媒層2と双方の面全体が対向できる位置(双方がずらされていない位置)で突出する中央領域42と、その外周の端部領域41とから構成されており、拡散層基材4の他方の面はフラット面となっている。
Here, the side surface of the diffusion layer base material 4 on the side of the
図1でその下方面がフラットな集電層3を図2のごとく電解質膜1等と熱圧着することにより、集電層3の下方面は電解質膜1から上方に突出する触媒層2の上面と、その外周の電解質膜1の端部領域の上面とに馴染むようにして接着される。カソード側の電極体が形成された姿勢を示す図2からも明らかなように、集電層3では、触媒層2および拡散層基材4の中央領域42で挟持されたその中央領域32の厚みが相対的に薄く、その外周の端部領域31の厚みが相対的に厚くなっている。
1, the
図示する形状(構造)を呈する電極体とすることにより、触媒層2には、これと同面積で全面積が対向する拡散層基材4の中央領域42から均一な圧縮力をスタック形成時に受け、このことは燃料電池の耐用期間に亘ってかかる均一な圧縮力を常時受けることを意味する。
By forming the electrode body having the shape (structure) shown in the figure, the
さらに、拡散層基材4の端部領域41とこれに対向する電解質膜1の端部領域との離間が、集電層3の厚みの厚い端部領域31にて長く設定されることにより、図2の姿勢において、触媒層2にて保護されない電解質膜1の端部領域に拡散層基材4が突き刺さる可能性を格段に低くする、もしくはかかる突き刺さりを完全に解消することができる。
Furthermore, the separation between the
したがって、従来構造の燃料電池において、拡散層基材が電解質膜の端部領域に突き刺さり、これを起点としてガスのクロスリークが促進され、もって燃料電池の発電効率および発電性能の低下が齎されるといった課題を効果的に解消することができる。 Therefore, in a fuel cell having a conventional structure, the diffusion layer base material pierces the end region of the electrolyte membrane, and gas cross-leakage is promoted starting from this, thereby reducing the power generation efficiency and power generation performance of the fuel cell. The problem can be solved effectively.
[本発明の燃料電池(実施例)と従来構造の燃料電池(比較例1,2)とで、リーク電流とサイクル耐久性とを検証した実験とその結果]
本発明者等は、図2で示すカソード側の電極体に同様のアノード側の構造を付与した単セルを所定段数積層してスタックを形成してなる燃料電池を製造して実施例とし、2種類の従来構造の燃料電池を製造して比較例1,2とし、双方のリーク電流(具体的には、電極作成時における短絡リーク電流値)を計測するとともに、双方のサイクル耐久性を検証した。なお、従来構造の燃料電池にかかる比較例1は、厚みが均一な拡散層基材を使用して拡散層を製作するとともに、拡散層基材と電解質膜双方の端部領域間に補強フィルム等のガスケットを具備しない構造のものであり(図3でガスケットeを備えない構造)、比較例2は、図3のごとくガスケット(補強フィルム)を具備するものである。
[Experiment and results of verifying leakage current and cycle durability between the fuel cell of the present invention (Example) and the conventional fuel cell (Comparative Examples 1 and 2)]
The inventors of the present invention manufactured a fuel cell in which a predetermined number of single cells each having the same anode-side structure as the cathode-side electrode body shown in FIG. A fuel cell having a conventional structure was manufactured as Comparative Examples 1 and 2, and both leakage currents (specifically, the short-circuit leakage current value at the time of electrode preparation) were measured and the cycle durability of both was verified. . In Comparative Example 1 relating to the conventional fuel cell, a diffusion layer is manufactured using a diffusion layer substrate having a uniform thickness, and a reinforcing film or the like is provided between end regions of both the diffusion layer substrate and the electrolyte membrane. 3 is a structure without the gasket (a structure without the gasket e in FIG. 3), and the comparative example 2 has a gasket (reinforcing film) as shown in FIG.
短絡電流リーク値の一覧を以下の表1に示し、サイクル耐久性に関する実験結果を表2に示す。なお、このサイクル耐久性に関しては、セル温度を80℃、通電電流密度を0.1A/cm2とした際に、クロスリークが所定の規格値を超えるまでの耐久時間を計測したものである。 A list of short circuit current leakage values is shown in Table 1 below, and experimental results on cycle durability are shown in Table 2. In addition, regarding this cycle durability, when the cell temperature is 80 ° C. and the energization current density is 0.1 A / cm 2 , the durability time until the cross leak exceeds a predetermined standard value is measured.
表1より、実施例にかかる燃料電池では、ガスケットを具備しない比較例1の燃料電池に比して短絡電流の顕著な低下(およそ1/3程度に低減)が認められた。 As can be seen from Table 1, in the fuel cell according to the example, a remarkable decrease in the short-circuit current (reduction to about 1/3) was recognized as compared with the fuel cell of Comparative Example 1 that does not have the gasket.
また、比較例1にかかる燃料電池に対し、実施例にかかる燃料電池は、補強フィルム(ガスケット)を拡散層基材と電解質膜の間に具備する比較例2の燃料電池と同程度のリーク電流値の低減効果が期待できることが実証された。 Further, in contrast to the fuel cell according to Comparative Example 1, the fuel cell according to the Example has a leakage current comparable to that of the fuel cell according to Comparative Example 2 in which the reinforcing film (gasket) is provided between the diffusion layer base material and the electrolyte membrane. It was proved that the reduction effect of the value can be expected.
また、表2より、比較例1の燃料電池に対し、実施例にかかる燃料電池のクロスリーク耐久時間はおよそ1.6倍程度も長くなり、補強フィルムを具備する比較例2の燃料電池と同程度の耐久性能を有していることが実証された。 Further, from Table 2, the cross-leak endurance time of the fuel cell according to the example is about 1.6 times longer than that of the fuel cell of Comparative Example 1, which is the same as that of the fuel cell of Comparative Example 2 including the reinforcing film. It was proved to have a degree of durability performance.
表1,2の実験結果より、本発明にかかる実施例の燃料電池は、その拡散層基材と電解質膜との間にガスケット等を具備することなく、該ガスケットを具備する従来構造の燃料電池と同程度の性能を発揮できることが実証された。このことは、ガスケット等を電極体に組み付ける作業工程によって齎される製造工程の延長、製造コストの高騰を回避しながら、クロスリーク耐久性の高い燃料電池が得られるということを示している。 From the experimental results shown in Tables 1 and 2, the fuel cell of the example according to the present invention is not provided with a gasket or the like between the diffusion layer base material and the electrolyte membrane, and the conventional fuel cell having the gasket is provided. It was proved that the same level of performance can be demonstrated. This indicates that a fuel cell with high cross-leak durability can be obtained while avoiding the extension of the manufacturing process and the increase in manufacturing cost caused by the work process of assembling the gasket and the like to the electrode body.
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
1…電解質膜、2…(カソード側)触媒層、3…(カソード側)集電層、31…端部領域、32…中央領域、4…(カソード側)拡散層基材、41…端部領域、42…中央領域、5…(カソード側)ガス拡散層
DESCRIPTION OF
Claims (2)
前記電解質膜には、該電解質膜よりも狭小な触媒層が当接し、前記集電層は、該触媒層を包囲するとともに触媒層よりも外側で電解質膜と当接するものであり、
前記集電層の触媒層と反対側に前記拡散層基材が形成されており、
前記集電層は、該集電層が触媒層と当接する中央領域の厚みが相対的に薄く、電解質膜と当接する外周領域の厚みが相対的に厚くなっており、
前記拡散層基材の集電層と当接する側面は、該集電層の形状に対応するべく、該拡散層基材の外周領域の厚みが相対的に薄く、集電層の中央領域と当接する該拡散層基材の中央領域の厚みが相対的に厚くなっている、燃料電池。 In a fuel cell formed by bonding a gas diffusion layer comprising a current collecting layer (MPL) and a diffusion layer base material to a membrane electrode assembly including at least an electrolyte membrane,
A catalyst layer narrower than the electrolyte membrane is in contact with the electrolyte membrane, and the current collecting layer surrounds the catalyst layer and is in contact with the electrolyte membrane outside the catalyst layer,
The diffusion layer base material is formed on the side of the current collecting layer opposite to the catalyst layer,
The current collecting layer has a relatively thin central region where the current collecting layer is in contact with the catalyst layer, and a relatively thick outer peripheral region is in contact with the electrolyte membrane,
The side surface of the diffusion layer base that is in contact with the current collecting layer has a relatively thin outer peripheral region corresponding to the shape of the current collecting layer, and is relatively in contact with the central region of the current collecting layer. A fuel cell in which a thickness of a central region of the diffusion layer base in contact with the base material is relatively thick.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008102159A JP2009252666A (en) | 2008-04-10 | 2008-04-10 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008102159A JP2009252666A (en) | 2008-04-10 | 2008-04-10 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009252666A true JP2009252666A (en) | 2009-10-29 |
Family
ID=41313162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008102159A Withdrawn JP2009252666A (en) | 2008-04-10 | 2008-04-10 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009252666A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9742012B2 (en) | 2014-01-22 | 2017-08-22 | Hyundai Motor Company | Fuel cell and manufacturing method thereof having integrated membrane electrode assembly and gas diffusion layer |
JP2017188346A (en) * | 2016-04-07 | 2017-10-12 | トヨタ自動車株式会社 | Fuel battery |
-
2008
- 2008-04-10 JP JP2008102159A patent/JP2009252666A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9742012B2 (en) | 2014-01-22 | 2017-08-22 | Hyundai Motor Company | Fuel cell and manufacturing method thereof having integrated membrane electrode assembly and gas diffusion layer |
JP2017188346A (en) * | 2016-04-07 | 2017-10-12 | トヨタ自動車株式会社 | Fuel battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10658683B2 (en) | Method for producing electrolyte membrane electrode assembly for fuel cells | |
JP4235687B2 (en) | POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE-MEMBRANE-FRAME ASSEMBLY | |
JP4147773B2 (en) | Fuel cell | |
CN102456896B (en) | Reinforced fuel cell metal plate perimeter | |
JP4243648B2 (en) | POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE-MEMBRANE-FRAME ASSEMBLY | |
JP4488109B2 (en) | Fuel cell | |
WO2006022758A1 (en) | Edge-protected catalyst-coated diffusion media and membrane electrode assemblies | |
JP5881594B2 (en) | Fuel cell stack and manufacturing method thereof | |
JP2009252666A (en) | Fuel cell | |
JP2010003470A (en) | Fuel cell | |
JP2010225484A (en) | Fuel cell and method for manufacturing the same | |
JP4859281B2 (en) | Membrane electrode assembly for polymer electrolyte fuel cell | |
JP4630705B2 (en) | Membrane electrode assembly for fuel cell and fuel cell | |
JP5259888B1 (en) | Polymer electrolyte fuel cell | |
JP5362541B2 (en) | Polymer electrolyte fuel cell | |
JP2007157438A (en) | Manufacturing method of cell of fuel cell and manufacturing equipment of the same | |
JP2006260810A (en) | Polymer electrolyte type fuel cell | |
CN211088401U (en) | Corrugated proton exchange membrane fuel cell | |
JP2013098044A (en) | Fuel cell | |
KR20170077897A (en) | Fuel cell stack having open flow passage | |
JP5050434B2 (en) | Fuel cell | |
JP2019153470A (en) | Manufacturing method of fuel cell stack | |
JP2008218200A (en) | Fuel cell stack and manufacturing method for fuel cell stack | |
JP2014157673A (en) | Method for manufacturing electrolyte membrane-electrode structure for fuel cell | |
JP2010186703A (en) | Method of manufacturing fuel battery cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110705 |