JP2006260810A - Polymer electrolyte type fuel cell - Google Patents

Polymer electrolyte type fuel cell Download PDF

Info

Publication number
JP2006260810A
JP2006260810A JP2005073164A JP2005073164A JP2006260810A JP 2006260810 A JP2006260810 A JP 2006260810A JP 2005073164 A JP2005073164 A JP 2005073164A JP 2005073164 A JP2005073164 A JP 2005073164A JP 2006260810 A JP2006260810 A JP 2006260810A
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
plane
mea
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005073164A
Other languages
Japanese (ja)
Inventor
Akihiro Kabasawa
明裕 樺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005073164A priority Critical patent/JP2006260810A/en
Publication of JP2006260810A publication Critical patent/JP2006260810A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell which can be stably operated for a long period of time, since a pressurizing force applied to a membrane electrode assembly of a unit cell is almost uniformly held, and the breakage of an electrolyte membrane caused by a stress concentration is avoided. <P>SOLUTION: In this polymer electrolyte type fuel cell in which the outer surface of the membrane electrode assembly comprising the electrolyte membrane 1 held between protective sheets 4, a diffusion layer 3A, and a catalyst layer 2A is composed of a first plane T2 disposed face to face with a region where the catalyst layer 2A is formed, a second plane T2 lower than the first plane T1, a separator 6A to sandwich the membrane electrode assembly is structured so as to have a third plane S1 making contact with the first plane T1 face to face, and a fourth plane S2 making contact with the second plane T2 face to face while being higher than the third plane S1 in its inner surface. This fuel cell is formed by blasting the surface of a carbon composite material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解質層に固体高分子膜を用いる固体高分子電解質形燃料電池に係わり、特に、セル内部の電気損失が小さく、かつ、応力集中による固体高分子電解質膜の破損が回避される構成の固体高分子電解質形燃料電池に関する。   The present invention relates to a solid polymer electrolyte fuel cell using a solid polymer membrane as an electrolyte layer, and in particular, has a configuration in which electrical loss inside a cell is small and damage to the solid polymer electrolyte membrane due to stress concentration is avoided. The present invention relates to a solid polymer electrolyte fuel cell.

固体高分子電解質形燃料電池は、電解質層に固体高分子膜を用いる燃料電池で、出力密度が高い、電池寿命が長いなどの優れた特徴を持つ。この方式の燃料電池は、複数個の単セルを積層して構成されており、通常、各単セルは、図5の断面模式図に示したごとく、中心部に固体高分子電解質膜を配置した膜電極接合体(以下、MEAと称す)を、ガス流路を備えた2枚のセパレータ6で挟持して構成されている。このうちMEAは、集電とガス拡散の機能を果たす拡散層3に触媒層2を形成して構成した電極を、枠状の保護シート4に支持された固体高分子電解質膜1の両面に接合して製作されたもので、固体高分子電解質膜1にはパーフルオロスルホン酸ポリマーが、また保護シート4にはPET(ポリエチレンテレフタレート)等の汎用プラスティックフィルムが用いられることが多い。
燃料極に供給される燃料ガスと空気極に供給される酸化剤ガスを分離するセパレータ6は、これらのガスを供給するガス流路および発熱を排出するための冷却水を供給する冷却水流路を備えるとともに、燃料電池発電反応で得られた電気エネルギーを外部へと伝える役割を果たす構成部材で、通常、炭素複合材料により構成されている。炭素複合材料を形成するための炭素粉末としては、燐片状黒鉛粉、人造黒鉛、膨張黒鉛、カーボンブラックなどが用いられ、また、樹脂としては、熱硬化性樹脂と熱可塑性樹脂の双方が使用可能であり、フェノール樹脂やエポキシ樹脂が使用されている。これらの炭素粉末と樹脂とを混合したコンパウンドを用い、モールド成形法や射出成形法等によってセパレータが作製されている。このようにして作製されたセパレータにおいては、表面に樹脂分が偏在するという特徴があり、材料の種類や混合比に依存して 10 〜 100μm程度の厚さの樹脂層が形成される。この樹脂層は電気伝導度が低いので、そのまま使用すると構成部材との間の接触抵抗が過大となって特性が低下してしまう。したがって、所定の特性を保持するためにはこの樹脂層を除去する必要があり、表面研磨法や、乾式サンドブラスト法、あるいはウェットブラスト法(例えば、特許文献1参照)を用いて除去されている。
The solid polymer electrolyte fuel cell is a fuel cell using a solid polymer membrane as an electrolyte layer, and has excellent characteristics such as high output density and long battery life. A fuel cell of this type is configured by laminating a plurality of single cells. Normally, each single cell has a solid polymer electrolyte membrane disposed at the center as shown in the schematic cross-sectional view of FIG. A membrane electrode assembly (hereinafter referred to as MEA) is sandwiched between two separators 6 each having a gas flow path. Among these, MEA joins the electrode which formed the catalyst layer 2 in the diffusion layer 3 which performs the function of current collection and gas diffusion on both surfaces of the solid polymer electrolyte membrane 1 supported by the frame-shaped protective sheet 4. In many cases, a perfluorosulfonic acid polymer is used for the solid polymer electrolyte membrane 1 and a general-purpose plastic film such as PET (polyethylene terephthalate) is used for the protective sheet 4.
The separator 6 that separates the fuel gas supplied to the fuel electrode and the oxidant gas supplied to the air electrode has a gas flow path for supplying these gases and a cooling water flow path for supplying cooling water for discharging heat. It is a structural member that is provided and plays a role of transmitting the electrical energy obtained by the fuel cell power generation reaction to the outside, and is generally composed of a carbon composite material. As the carbon powder for forming the carbon composite material, flake graphite powder, artificial graphite, expanded graphite, carbon black, etc. are used, and as the resin, both thermosetting resin and thermoplastic resin are used. Yes, phenolic resin or epoxy resin is used. The separator is produced by the molding method, the injection molding method, etc. using the compound which mixed these carbon powder and resin. The separator thus produced has a feature that the resin component is unevenly distributed on the surface, and a resin layer having a thickness of about 10 to 100 μm is formed depending on the type and mixing ratio of the material. Since this resin layer has a low electrical conductivity, if it is used as it is, the contact resistance with the constituent members becomes excessive and the characteristics are deteriorated. Therefore, it is necessary to remove this resin layer in order to maintain predetermined characteristics, and the resin layer is removed using a surface polishing method, a dry sand blast method, or a wet blast method (for example, see Patent Document 1).

一方、単セルのガスシール、すなわち、セパレータ6の燃料ガス流路7に供給された燃料ガスのシール、および酸化剤ガス流路8に供給された酸化剤ガスのシールは、セパレータ6の端部と保護シート4との間に設けられたシールパッキング5により行われる。このシールパッキング5の材料には、フッ素ゴム、エチレンプロピレンゴム、シリコンゴム等が用いられる。
この単セルの発生電圧は1Vに満たない低い電圧であるため、実用に供する固体高分子電解質形燃料電池は、所要電圧に見合う複数個の単セルを積層し、直列に電気接続して構成される。図6は、図5の構成の単セルを積層して構成された従来の固体高分子電解質形燃料電池の側面図である。単セル61を複数個積層し、その両端に、直流電流を取出すための集電板62、積層体を構造体から電気的に絶縁するための絶縁板63、積層体を締付けるための締付け板64を順次配置するとともに、スタッド67とナット68によって支持された端板66の内面と締付け板64の外面との間にコイルばね65を配置して積層体を加圧して締付けている。このように固体高分子電解質形燃料電池では、加圧して締付けることにより、各単セル内部のセパレータとMEA間の接触抵抗や、隣り合う単セル間等の積層部材間の接触抵抗を低減させ、電気的抵抗損失を少なくしている。
On the other hand, the gas seal of the single cell, that is, the seal of the fuel gas supplied to the fuel gas channel 7 of the separator 6 and the seal of the oxidant gas supplied to the oxidant gas channel 8 are the end portions of the separator 6. And a seal packing 5 provided between the protective sheet 4 and the protective sheet 4. Fluorine rubber, ethylene propylene rubber, silicon rubber or the like is used as the material of the seal packing 5.
Since the generated voltage of this single cell is a low voltage of less than 1 V, a solid polymer electrolyte fuel cell for practical use is formed by stacking a plurality of single cells suitable for the required voltage and electrically connecting them in series. The FIG. 6 is a side view of a conventional solid polymer electrolyte fuel cell configured by stacking single cells having the configuration shown in FIG. A plurality of unit cells 61 are stacked, and current collecting plates 62 for taking out a direct current, an insulating plate 63 for electrically insulating the laminated body from the structure, and a clamping plate 64 for fastening the laminated body at both ends thereof. Are sequentially disposed, and a coil spring 65 is disposed between the inner surface of the end plate 66 supported by the stud 67 and the nut 68 and the outer surface of the clamping plate 64 to pressurize and laminate the laminate. In this way, in the solid polymer electrolyte fuel cell, by pressurizing and tightening, the contact resistance between the separator and MEA inside each single cell, and the contact resistance between laminated members such as between adjacent single cells is reduced, Reduces electrical resistance loss.

ところで、MEAの構成部材の一般的な厚さは、電解質膜1が 10 〜 50μm、保護シート4が 10 〜 50μm、触媒層2Aが 10 〜 50μm、拡散層3Aが 100 〜 400μmであり、その組み合わせにより種々のMEAが構成されている。図5の単セルに組込まれたMEAにおいては触媒層2と保護シート4が同一厚さに選定されているので、拡散層3の外面、したがってMEAの外面が略一定の高さを持ち、締付けの際、拡散層3ならびに触媒層2にほぼ均一の加圧力が加わることとなるが、部材の厚さの選定如何によってはMEAの部位によって厚さに差が生じて、加圧力が不均一になる可能性がある。
図7は、固体高分子電解質形燃料電池の単セルに組込まれるMEAの他の従来例を示す断面模式図である。このMEAでは、保護シート4よりも厚さの厚い触媒層2Aを作製してMEAを形成しているので、図中に符号Aで示した触媒層2Aを含む部分はMEAが厚く(MEA凸部)、図中に符号Bで示した拡散層3Aと保護シート4が接触している部分はMEAが薄くなっている(MEA凹部)。触媒層2Aの厚さは最大 50μm、保護シート4の厚さは最小 10μmであるので、上記のMEA凸部とMEA凹部の厚さの差は、片面で 40μm以下、両面で 80μm以下と算定される。
By the way, the general thickness of the constituent members of the MEA is 10-50 μm for the electrolyte membrane 1, 10-50 μm for the protective sheet 4, 10-50 μm for the catalyst layer 2A, and 100-400 μm for the diffusion layer 3A. As a result, various MEAs are configured. In the MEA incorporated in the single cell of FIG. 5, since the catalyst layer 2 and the protective sheet 4 are selected to have the same thickness, the outer surface of the diffusion layer 3, and thus the outer surface of the MEA has a substantially constant height and is tightened. In this case, a substantially uniform pressure is applied to the diffusion layer 3 and the catalyst layer 2, but depending on the selection of the thickness of the member, the thickness varies depending on the MEA part, and the pressure is not uniform. There is a possibility.
FIG. 7 is a schematic cross-sectional view showing another conventional example of MEA incorporated in a single cell of a solid polymer electrolyte fuel cell. In this MEA, the catalyst layer 2A thicker than the protective sheet 4 is produced to form the MEA. Therefore, the MEA is thick in the portion including the catalyst layer 2A indicated by the symbol A in the drawing (MEA convex portion). ), The portion where the diffusion layer 3A and the protective sheet 4 indicated by the symbol B in the drawing are in contact has a thin MEA (MEA recess). Since the thickness of the catalyst layer 2A is 50 μm at the maximum and the thickness of the protective sheet 4 is 10 μm at the minimum, the difference in thickness between the MEA protrusion and MEA recess is calculated to be 40 μm or less on one side and 80 μm or less on both sides. The

図8は、固体高分子電解質形燃料電池の単セルに組込まれるMEAの第3の従来例を示す断面模式図である。このMEAでは、保護シート4とほぼ同等の均一な厚さで作製した触媒層2Bを、保護シート4に一部を重ねて配置して、MEAが構成されており、図中に符号Cで示した保護シート4と触媒層2Bとの重なる部分ではMEAが厚く(MEA凸部)、図中に符号Dで示した他の部分では薄くなっている(MEA凹部)。保護シート4と触媒層2Bの厚さの最大値は 50μmであるので、このMEAの上記のMEA凸部とMEA凹部の厚さの差は、片面で 50μm以下、両面で 100μm以下と算定される。
上記のように、固体高分子電解質形燃料電池の単セルに組込まれるMEAは、必ずしも面内の厚さが一定でなく、凹凸を備えたMEAが用いられる場合がある。このように厚さが均一でないMEAを用いる場合、MEAを均一な厚さを持つセパレータで挟んで加圧、挟持すると、MEAに加わる加圧力が面内で不均一となり、一部分に集中することとなる。このように加圧力が一部分に集中すると、MEAを構成する電解質膜1に加わる力が過大となって、クリープを生じ、膜厚が減少する可能性がある。膜厚が減少すると、その部分の膜の引張り強度が低下して運転中に膜が破損し、燃料ガスと酸化剤ガスが混合するクロスリークが生じて電池が運転不能となる可能性がある。一方、面内に加圧力の小さい部分が生じると、加圧力の低下に伴って構成部材間の接触電気抵抗が増大するので、セパレータとMEAの間に流れる電流が減少し、電極面内での反応が不均一になって電池特性が低下する可能性がある。
FIG. 8 is a schematic cross-sectional view showing a third conventional example of MEA incorporated in a single cell of a solid polymer electrolyte fuel cell. In this MEA, the MEA is configured by arranging a catalyst layer 2B produced with a uniform thickness substantially the same as that of the protective sheet 4 so as to partially overlap the protective sheet 4, and is indicated by C in the figure. Further, the MEA is thick at the part where the protective sheet 4 and the catalyst layer 2B overlap (MEA convex part), and is thin at the other part indicated by symbol D in the figure (MEA concave part). Since the maximum value of the thickness of the protective sheet 4 and the catalyst layer 2B is 50 μm, the difference in thickness between the MEA convex part and the MEA concave part of this MEA is calculated to be 50 μm or less on one side and 100 μm or less on both sides. .
As described above, an MEA incorporated in a single cell of a solid polymer electrolyte fuel cell does not necessarily have a constant in-plane thickness, and an MEA having irregularities may be used. When an MEA having a non-uniform thickness is used in this way, if the MEA is sandwiched between separators having a uniform thickness and pressed and sandwiched, the pressure applied to the MEA becomes non-uniform in the plane and concentrates on a part of the surface. Become. When the applied pressure is concentrated on a part in this way, the force applied to the electrolyte membrane 1 constituting the MEA becomes excessive, which may cause creep and reduce the film thickness. When the film thickness decreases, the tensile strength of the film at that portion decreases, the film breaks during operation, and a cross leak in which the fuel gas and the oxidant gas are mixed may occur, making the battery inoperable. On the other hand, when a portion with a small pressing force is generated in the surface, the contact electric resistance between the constituent members increases with a decrease in the pressing force, so that the current flowing between the separator and the MEA decreases, and in the electrode surface The reaction may become non-uniform and the battery characteristics may be degraded.

このため、凹凸を有するMEAにおける加圧力の面内での不均一に起因するこれらの難点を回避するために、加圧力を均一化させるための方策が種々検討されており、例えば特許文献2においては、MEAの厚さの薄い部分にスペーサを装着することによって厚さを均一化し、加圧力の面内での均一化を図る方策や、対向するセパレータに突起を設けて厚みを調整し、加圧力の均一化を図る方策が開示されている。
特開2003−282084号公報 特開平6−333582号公報
For this reason, in order to avoid these difficulties caused by non-uniformity of the applied pressure in the MEA having unevenness, various measures for making the applied pressure uniform have been studied. Is to make the thickness uniform by attaching spacers to the thin part of the MEA, and to adjust the thickness by adjusting the thickness by providing protrusions on the opposing separator. A measure for equalizing pressure is disclosed.
JP 2003-282084 A JP-A-6-333582

上記のように、固体高分子電解質形燃料電池では、単セルに組込まれるMEAの厚さが必ずしも面内で一定でないがために、このMEAをセパレータで挟んで加圧、挟持すると、MEAに加わる加圧力が面内で不均一となるという問題点がある。このように面内で加圧力に不均一が生じると、加圧力が過大となる部分では、運転中に電解質膜が破損し、クロスリークが生じて電池が運転不能となる危険性があり、加圧力が小さくなった部分では、構成部材間の接触電気抵抗が増大し、流れる電流が減少して電池特性が低下する可能性がある。このため、例えば前述の特許文献2においては、MEAの凹部にスペーサを挿入したり、対向するセパレータに突起を設けたりすることによって、加圧力を均一化するよう配慮されている。このようにスペーサや突起を配設すれば、加圧力が均一化されて過大な加圧力の発生は回避されるが、スペーサや突起から位置が外れて接触抵抗が大きくなる部分が残存することは避けられない。特に、従来のごとく炭素粉末と樹脂との炭素複合材料で作製したセパレータでは、表面に電気伝導度の低い樹脂層が形成されるので部材間の接触抵抗はより一層高くなり、通電電流が減少して電気特性が低下する可能性が強い。   As described above, in the solid polymer electrolyte fuel cell, the thickness of the MEA incorporated in the single cell is not necessarily constant in the plane. Therefore, when the MEA is sandwiched between the separators and pressed and sandwiched, the MEA is added. There is a problem that the applied pressure is not uniform in the plane. In this way, if the applied pressure is uneven, there is a risk that the electrolyte film will be damaged during operation in the part where the applied pressure is excessive, causing a cross leak and making the battery inoperable. In the portion where the pressure is reduced, the contact electrical resistance between the constituent members is increased, the flowing current is decreased, and the battery characteristics may be deteriorated. For this reason, for example, in Patent Document 2 described above, consideration is given to equalizing the pressure by inserting a spacer in the concave portion of the MEA or by providing a protrusion on the opposing separator. If the spacers and protrusions are arranged in this way, the applied pressure is made uniform and the generation of excessive applied pressure is avoided. However, the portion where the contact resistance is increased due to the displacement from the spacers or protrusions remains. Inevitable. In particular, a separator made of a carbon composite material of carbon powder and resin as in the prior art forms a resin layer with low electrical conductivity on the surface, so that the contact resistance between members is further increased, and the conduction current is reduced. The electrical characteristics are likely to deteriorate.

本発明は、このような従来の固体高分子電解質形燃料電池の問題点を考慮してなされたもので、本発明の目的は、MEAをセパレータで挟持して形成された単セルを複数個積層し、加圧し締付けて構成される固体高分子電解質形燃料電池において、MEAの表面が凹凸を有する面より構成されているものにあっても、MEAの各部に加わる加圧力が面内でほぼ均一に保持されて、電解質膜の破損によるクロスリークを生じることなく、長期にわたり安定した運転が可能で、かつ、接触電気抵抗による電気特性の低下を生じることなく運転できる固体高分子電解質形燃料電池を提供することにある。   The present invention has been made in consideration of such problems of the conventional solid polymer electrolyte fuel cell. The object of the present invention is to laminate a plurality of single cells formed by sandwiching MEAs with separators. However, in a solid polymer electrolyte fuel cell configured by pressurizing and tightening, even if the surface of the MEA is composed of an uneven surface, the pressure applied to each part of the MEA is almost uniform in the surface. A solid polymer electrolyte fuel cell that can be operated without causing cross leak due to damage to the electrolyte membrane, stable operation over a long period of time, and deterioration of electrical characteristics due to contact electric resistance. It is to provide.

上記の目的を達成するために、本発明においては、
固体高分子電解質膜の両面に触媒層と拡散層とを配して形成された膜電極接合体を、ガス流通路を備えた2枚のセパレータにより挟持して構成した単セルからなり、かつ、膜電極接合体の両表面がそれぞれ、第一の平面と、この第一の平面より高さの低い第二の平面とからなる固体高分子電解質形燃料電池において、
(1)膜電極接合体の外表面に対向するセパレータの表面に、膜電極接合体の上記の第一の平面に対向し、接して組み込まれる第三の表面と、膜電極接合体の上記の第二の平面に対向し、接して組み込まれる、第三の表面より高さの高い第四の表面とを備えることとし、例えば、上記の膜電極接合体の触媒層の形成領域に対向して、上記の第三の表面、あるいは上記の第四の表面を配することとする。
In order to achieve the above object, in the present invention,
A single cell comprising a membrane electrode assembly formed by arranging a catalyst layer and a diffusion layer on both sides of a solid polymer electrolyte membrane, sandwiched by two separators each having a gas flow path, and In the solid polymer electrolyte fuel cell in which both surfaces of the membrane electrode assembly are each composed of a first plane and a second plane having a height lower than the first plane,
(1) A third surface that is incorporated in contact with the first plane of the membrane electrode assembly on the surface of the separator facing the outer surface of the membrane electrode assembly; A fourth surface having a height higher than that of the third surface, which is opposed to and incorporated in contact with the second plane, for example, facing the formation region of the catalyst layer of the membrane electrode assembly. The third surface or the fourth surface is arranged.

(2)さらに、上記の(1)の固体高分子電解質形燃料電池において、上記のセパレータを炭素粉末と樹脂とからなる炭素複合材料から作製し、上記の第三の表面と上記の第四の表面を、表面層を削除する表面処理、例えば、ブラスト処理を施して形成することとする。   (2) Further, in the solid polymer electrolyte fuel cell according to (1), the separator is made of a carbon composite material made of carbon powder and resin, and the third surface and the fourth The surface is formed by performing a surface treatment for removing the surface layer, for example, a blast treatment.

固体高分子電解質形燃料電池においては、単セルに組込まれるMEAの厚さは必ずしも面内で一定でなく、既に図7、あるいは図8に例示したごとく、高さの異なる表面を有する場合が多い。したがって、上記(1)のごとく、高さの異なる2種類の表面(第一の表面と第二の平面)を備えたMEAに対向して、高さの異なる2種類の表面(第三の表面と第四の平面)を備えたセパレータを配置して、MEAを加圧、挟持することとすれば、それぞれの表面での締付け変位量を均一化することによって、各表面に加わる加圧力を均一化することができる。したがって、過大な加圧力によるMEAの破損や、加圧力の不足による特性の低下が効果的に回避されることとなる。
また、既に述べたように、単セルに用いられるセパレータは一般に炭素粉末と樹脂とからなる炭素複合材料から作製されているが、このようにして作製されたセパレータの表面には電気伝導度の低い樹脂層が形成され、部材間の接触抵抗を増大させるという難点があったが、上記(2)のごとく、作製されたセパレータの表面(第三の表面と第四の平面)を形成する際に、例えばブラスト処理等の表面処理を施し、表面層を削除して形成することとすれば、電気伝導度の低い表面層が削除され、セパレータの表面の電気伝導度が向上する。したがって、部材間の接触抵抗が低減され、この接触抵抗に起因する電気特性の低下が回避されて、効率のよい固体高分子電解質形燃料電池が得られる。
In the solid polymer electrolyte fuel cell, the thickness of the MEA incorporated in the single cell is not necessarily constant in the plane, and as shown in FIG. 7 or FIG. 8, there are many cases where the surfaces have different heights. . Therefore, as described in (1) above, two types of surfaces (third surface) having different heights are opposed to the MEA having two types of surfaces (first surface and second plane) having different heights. And a fourth plane) are arranged to pressurize and pinch the MEA. By uniformizing the amount of tightening displacement on each surface, the applied pressure on each surface is uniform. Can be Therefore, MEA breakage due to excessive pressurization and deterioration of characteristics due to insufficient pressurization are effectively avoided.
In addition, as described above, the separator used for the single cell is generally made of a carbon composite material made of carbon powder and resin, but the surface of the separator thus produced has low electrical conductivity. When the resin layer was formed and the contact resistance between the members was increased, there was a difficulty in forming the surface (third surface and fourth plane) of the manufactured separator as described in (2) above. If, for example, surface treatment such as blasting is performed and the surface layer is removed, the surface layer with low electrical conductivity is removed, and the electrical conductivity of the separator surface is improved. Therefore, the contact resistance between the members is reduced, the deterioration of the electrical characteristics due to the contact resistance is avoided, and an efficient solid polymer electrolyte fuel cell can be obtained.

本発明の固体高分子電解質形燃料電池の最良の実施形態は、固体高分子電解質膜の両面に触媒層と拡散層とを配して形成された膜電極接合体をガス流通路を備えたセパレータにより挟持して構成された単セルからなる固体高分子電解質形燃料電池で、上記の膜電極接合体のそれぞれの表面が、第一の平面と、該第一の平面より高さの低い第二の平面とからなるものにおいて、上記の膜電極接合体の外表面に対向する前記セパレータの表面に、膜電極接合体の上記の第一の平面に対向し、接して組み込まれる第三の表面と、膜電極接合体の上記の第二の平面に対向し、接して組み込まれる、上記の第三の表面より高さの高い第四の表面とを備えて構成された形態にある。   The best mode of the solid polymer electrolyte fuel cell according to the present invention is a separator having a gas flow passage formed of a membrane electrode assembly formed by arranging a catalyst layer and a diffusion layer on both sides of a solid polymer electrolyte membrane. A solid polymer electrolyte fuel cell comprising a single cell sandwiched between the first and second surfaces of the membrane electrode assembly having a height lower than that of the first plane. A third surface which is incorporated in contact with and opposed to the first plane of the membrane electrode assembly on the surface of the separator facing the outer surface of the membrane electrode assembly. And a fourth surface having a height higher than that of the third surface, which is opposed to and is in contact with the second plane of the membrane electrode assembly.

まず、白金―ルテニウム合金(合金比2:1)をカーボン担体に担持した白金―ルテニウム合金担持カーボン触媒と、電解質樹脂溶液(デュポン社製、ナフィオン溶液)を混合し、アノード用の触媒分散スラリーを作製した。続いて、このスラリーを、ガス拡散層、すなわちPTFE(ポリテトラフルオロエチレン)により撥水処理したカーボンペーパー基材(東レ製、TGPH60、120mm×120mm、厚さ 190μm)上の105mm×105mmの領域に塗布し、アノード電極とした。このとき、触媒量が 0.7 mgPt/cm2 となるように塗布し、得られた触媒層の厚さは 45 μm、拡散層と合わせたアノード厚さは 235μmであった。次いで、白金をカーボン担体に担持した白金担持カーボン触媒と、電解質樹脂溶液(デュポン社製、ナフィオン溶液)を混合し、カソード用の触媒分散スラリーを作製した。このスラリーを、ガス拡散層、すなわちPTFE(ポリテトラフルオロエチレン)により撥水処理したカーボンペーパー基材(東レ製、TGPH60、120mm×120mm)上の105mm×105mmの領域に塗布し、カソード電極とした。このとき、触媒量が 0.7 mgPt/cm2 となるように塗布し、得られた触媒層の厚さは 45 μm、拡散層と合わせたカソード厚さは 235μmであった。 First, a platinum-ruthenium alloy-supported carbon catalyst in which a platinum-ruthenium alloy (alloy ratio 2: 1) is supported on a carbon support and an electrolyte resin solution (manufactured by DuPont, Nafion solution) are mixed, and a catalyst-dispersed slurry for an anode is prepared. Produced. Subsequently, the slurry was applied to a 105 mm × 105 mm region on a carbon paper base material (TGP60, 120 mm × 120 mm, thickness 190 μm, manufactured by Toray Industries, Inc.) treated with a gas diffusion layer, that is, PTFE (polytetrafluoroethylene). The anode electrode was applied. At this time, the catalyst was applied so that the amount of catalyst was 0.7 mg Pt / cm 2. The thickness of the obtained catalyst layer was 45 μm, and the anode thickness combined with the diffusion layer was 235 μm. Next, a platinum-supported carbon catalyst in which platinum was supported on a carbon carrier and an electrolyte resin solution (manufactured by DuPont, Nafion solution) were mixed to prepare a catalyst dispersion slurry for the cathode. This slurry was applied to a 105 mm × 105 mm region on a carbon paper substrate (Toray, TGPH60, 120 mm × 120 mm) water-repellently treated with a gas diffusion layer, that is, PTFE (polytetrafluoroethylene) to form a cathode electrode. . At this time, the catalyst was applied so that the amount of the catalyst was 0.7 mg Pt / cm 2 , the thickness of the obtained catalyst layer was 45 μm, and the cathode thickness combined with the diffusion layer was 235 μm.

次に、電解質膜としてナフィオンN−112(デュポン社製、160 mm×160 mm、厚さ約 50 μm)を準備し、これを2枚の枠状の保護シートで挟み込んだ。この保護シートは、厚さ 25μmのPFA(ポリテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体)シートよりなり、外形は電解質膜と同一の160 mm×160mmで、その中央部に100 mm×100 mmの孔が空けられたものである。したがって、電解質膜を保護シートで挟み込むと、100 mm×100 mmの孔の部分に電解質膜が露出することとなる。
保護シートで挟み込んだ電解質膜の両面に、前述のごとく作製したアノード電極とカソード電極を、それぞれ触媒層が電解質膜に対向するように配置して挟み込んだのち、これを熱プレス装置にセットし、温度 140 ℃、圧力 5 MPa、加圧時間 5 min の条件でホットプレスを行ってMEAを作製した。作製したMEAの厚さをマイクロメーターを用いて測定した結果によれば、中心部の触媒層を塗布した105mm×105mmの領域では約 490 μmであり、触媒層を塗布していない拡散層のみの領域では約 450 μmであった。したがって、触媒層の形成されている部分と触媒層のない部分では、両面で 40 μm、片面で 20 μmの段差が生じている。なお、触媒層や拡散層の多孔質材料がホッとプレスにより圧縮変形するので、作製されたMEAの厚さは当初の構成部材の厚さより算定された値とは大きな差がある。
Next, Nafion N-112 (manufactured by DuPont, 160 mm × 160 mm, thickness of about 50 μm) was prepared as an electrolyte membrane and sandwiched between two frame-shaped protective sheets. This protective sheet consists of a PFA (polytetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) sheet having a thickness of 25 μm, and the outer shape is 160 mm × 160 mm, which is the same as the electrolyte membrane, and 100 mm × 100 mm in the center. The hole is made. Therefore, when the electrolyte membrane is sandwiched between the protective sheets, the electrolyte membrane is exposed at a hole portion of 100 mm × 100 mm.
After placing the anode electrode and the cathode electrode prepared as described above on both sides of the electrolyte membrane sandwiched between the protective sheets so that the catalyst layer faces the electrolyte membrane, respectively, this is set in a hot press device, An MEA was manufactured by hot pressing under conditions of a temperature of 140 ° C., a pressure of 5 MPa, and a pressing time of 5 min. According to the result of measuring the thickness of the manufactured MEA using a micrometer, it is about 490 μm in the 105 mm × 105 mm area where the catalyst layer in the center is applied, and only the diffusion layer without the catalyst layer is applied. In the area, it was about 450 μm. Therefore, there is a step of 40 μm on both sides and 20 μm on one side between the part where the catalyst layer is formed and the part where there is no catalyst layer. Since the porous material of the catalyst layer and the diffusion layer is compressed and deformed by pressing, the thickness of the produced MEA is greatly different from the value calculated from the initial thickness of the constituent members.

上記のMEAに組み合わせて単セルを構成するセパレータには、炭素粉末と樹脂からなる材料をモールド成形してガス流路等を成形し、表面処理を施したものを用いた。すなわち、炭素粉末として燐片状黒鉛粉を、また、樹脂としてフェノール樹脂を用い、これらを混合して得たコンパウンドをモールド成形してガス流路等を備えたセパレータを成形した。引き続いて、MEAを挟持する際に気密を保持するために挿入されるシールパッキングが接する部分をマスキング材によってマスクしたのち、サンドブラストにより表面処理を施し、表面から深さ 50 μmの層を削除して第一の面を形成した。次に、MEAの厚さの厚い部分、すなわち、触媒層を塗布した105mm×105mmの領域に対向する部分を除く他の領域をマスクし、105mm×105mmの領域に対向する部分のみをさらに深さ 20 μmにわたってサンドブラストにより表面処理して第二の面を形成した。   As the separator constituting the single cell in combination with the above MEA, a material made of carbon powder and a resin was molded to form a gas flow path and the like and subjected to a surface treatment. That is, a flake graphite powder was used as the carbon powder and a phenol resin was used as the resin, and a compound obtained by mixing them was molded to form a separator having a gas flow path and the like. Subsequently, after masking the part where the seal packing inserted in order to maintain airtightness when sandwiching the MEA with a masking material, surface treatment is performed by sandblasting, and a 50 μm deep layer is removed from the surface. A first surface was formed. Next, the thick part of the MEA, that is, the other area except the part facing the 105 mm × 105 mm area coated with the catalyst layer is masked, and only the part facing the 105 mm × 105 mm area is further deepened. Surface treatment was performed by sandblasting over 20 μm to form a second surface.

以上のような作製方法を用いて作製したMEAとセパレータを、シールパッキングを挿入して組み立て、単セルを作製した。図1は、このようにして作製された単セルの構造を示す断面模式図である。図1に見られるように、MEAは、2枚の枠状の保護シート4で挟み込んだ電解質膜1を、それぞれ拡散層3Aに触媒層2Aを塗布して作製したアノード電極とカソード電極により挟み込み、ホッとプレスにより圧縮成型されており、既に述べたように、中心部の105mm×105mmの領域(図中にT1で示した部分)の全体の厚さは約 490 μmに、また、触媒層を塗布していないその周辺領域(図中にT2で示した部分)の全体の厚さは約 450 μmに形成されている。単セルは、このMEAを、燃料ガス流路7Aを備えた燃料極側のセパレータ6Aと、酸化剤ガス流路8Aを備えた空気極側のセパレータ6Aとによって挟み、挿入したシールパッキング5により気密に保持されている。図1に見られるように、二つのセパレータ6AのMEAに対向する面は、高さの異なる二つの面S1とS2よりなり、S1がMEAのT1の部分に、S2がMEAのT2の部分に相対して組み込まれる。   The MEA and separator manufactured using the manufacturing method as described above were assembled by inserting seal packing to manufacture a single cell. FIG. 1 is a schematic cross-sectional view showing the structure of a single cell fabricated in this way. As shown in FIG. 1, the MEA sandwiches the electrolyte membrane 1 sandwiched between two frame-shaped protective sheets 4 between an anode electrode and a cathode electrode, which are produced by applying the catalyst layer 2A to the diffusion layer 3A, It has been compression-molded with a hot press. As already mentioned, the total thickness of the 105mm × 105mm area (indicated by T1 in the figure) is about 490 μm, and the catalyst layer is The total thickness of the peripheral region (the portion indicated by T2 in the figure) that has not been applied is formed to be about 450 μm. In the single cell, this MEA is sandwiched between a fuel electrode side separator 6A provided with a fuel gas flow path 7A and an air electrode side separator 6A provided with an oxidant gas flow path 8A, and is hermetically sealed by an inserted seal packing 5. Is held in. As shown in FIG. 1, the surface of the two separators 6A facing the MEA is composed of two surfaces S1 and S2 having different heights, where S1 is the T1 portion of the MEA and S2 is the T2 portion of the MEA. Incorporated relative.

図2は、図1の単セルを構成する燃料極側のセパレータ6Aの平面図である。本図に見られるように、セパレータ6Aに備えられたガス流路は、MEAの触媒層を塗布した発電領域、すなわち、中心部の105mm×105mmの領域に対向するS1の面に配設された蛇行流路よりなり、燃料ガスは、セパレータ6Aの一端に配置された燃料ガス入口マニホールド11より供給され、蛇行する燃料ガス流路7Aを流れて発電反応に寄与したのち、他端の燃料ガス出口マニホールド12より外部に排出される。なお、図2に点線で示した二つの方形の領域のうち、内側の方形の領域がS1の面の領域であり、外側の方形と内側の方形との間に位置する領域がS2の面の領域である。また、図中に示した13および14は、相対する空気極側のセパレータ6Aに酸化剤ガスを通流させるのに用いられる酸化剤ガス入口マニホールドと酸化剤ガス出口マニホールドである。   FIG. 2 is a plan view of a separator 6A on the fuel electrode side constituting the single cell of FIG. As seen in this figure, the gas flow path provided in the separator 6A is disposed on the power generation region coated with the MEA catalyst layer, that is, the surface of S1 facing the 105 mm × 105 mm region in the center. The fuel gas is supplied from a fuel gas inlet manifold 11 disposed at one end of the separator 6A and flows through the meandering fuel gas passage 7A to contribute to the power generation reaction, and then the fuel gas outlet at the other end. It is discharged from the manifold 12 to the outside. Of the two rectangular areas shown by dotted lines in FIG. 2, the inner square area is the area of the surface of S1, and the area located between the outer square and the inner square is the area of the surface of S2. It is an area. Reference numerals 13 and 14 shown in the drawing are an oxidant gas inlet manifold and an oxidant gas outlet manifold used to flow the oxidant gas through the separator 6A on the opposite air electrode side.

本実施例では、上記の方法で30個の単セルを作製し、これらの単セルを積層し、図6のごとく締付けて固体高分子電解質形燃料電池を構成した。このときの締付け圧力は、セパレータとMEAが接触する面の面圧力が 0.6 MPa となるように選定した。このようにして構成した固体高分子電解質形燃料電池に、燃料ガスとして 80%H2+20%CO2 の混合ガス、酸化剤ガスとして空気を使用し、スタック温度80℃、アノード加湿温度70℃、カソード加湿温度70℃、電流密度 0.4 A/cm2、常圧の条件下において発電試験を行った。この発電試験では、まず内部抵抗の測定を行ったのち、耐久性を評価するための連続運転試験を行った。
発電時の内部抵抗の測定結果によれば、本実施例のセルの内部抵抗は 0.11 Ωcm2であった。この値は、図5のごとき従来例の構成のセルの内部抵抗 0.13 Ωcm2 に比べて明らかに低く、表面処理を行ってセパレータ6Aの表面層を削除したことによって部材間の接触電気抵抗が低減され、電池特性が向上したことがわかる。図3は、続いて行った連続運転試験(寿命試験)の際の開回路電圧の時間変化を、従来例の場合と対比して示した特性図である。図に見られるように、従来例の場合には運転時間が 2000 hr を超えると開回路電圧が急激に低下し、電解質膜の損傷によるクロスリークの発生が認められたが、本実施例の燃料電池では、運転時間が 4000 hr を超えても開回路電圧の急激な低下はなく、電解質膜の損傷がないことが知られる。本実施例の燃料電池の単セルでは、MEAのセパレータ6Aに接する二つの面T1,T2に対応して、セパレータ6Aの面S2,S1が形成されているので、積層し、締付けてスタックを形成する際に、MEAの各部に均等に加圧力が加わることとなる。したがって、従来例のごとく応力集中による電解質膜の破損が生じる恐れがなく、長時間、安定した開回路電圧を示すものと理解される。
In this example, 30 single cells were produced by the above method, and these single cells were stacked and tightened as shown in FIG. 6 to constitute a solid polymer electrolyte fuel cell. The tightening pressure at this time was selected so that the surface pressure of the surface where the separator and the MEA contact each other was 0.6 MPa. The solid polymer electrolyte fuel cell thus configured uses a mixed gas of 80% H 2 + 20% CO 2 as a fuel gas and air as an oxidant gas, a stack temperature of 80 ° C., an anode humidification temperature of 70 ° C., A power generation test was conducted under conditions of a cathode humidification temperature of 70 ° C., a current density of 0.4 A / cm 2 , and normal pressure. In this power generation test, first, the internal resistance was measured, and then a continuous operation test for evaluating durability was performed.
According to the measurement results of the internal resistance during power generation, the internal resistance of the cell of this example was 0.11 Ωcm 2 . This value is clearly lower than the internal resistance of 0.13 Ωcm 2 of the conventional cell structure as shown in FIG. 5, and the contact resistance between the members is reduced by removing the surface layer of the separator 6A by performing the surface treatment. It can be seen that the battery characteristics were improved. FIG. 3 is a characteristic diagram showing the change over time of the open circuit voltage in the subsequent continuous operation test (life test) compared with the case of the conventional example. As shown in the figure, in the case of the conventional example, when the operation time exceeded 2000 hr, the open circuit voltage dropped rapidly, and the occurrence of cross leak due to the damage of the electrolyte membrane was observed. With batteries, it is known that the open circuit voltage does not drop sharply even when the operation time exceeds 4000 hr, and the electrolyte membrane is not damaged. In the single cell of the fuel cell of the present embodiment, the surfaces S2 and S1 of the separator 6A are formed corresponding to the two surfaces T1 and T2 in contact with the MEA separator 6A. Therefore, they are stacked and tightened to form a stack. In doing so, pressure is applied equally to each part of the MEA. Therefore, it is understood that the electrolyte membrane is not damaged by stress concentration as in the conventional example, and a stable open circuit voltage is exhibited for a long time.

図4は、本発明の固体高分子電解質形燃料電池の第2の実施例に用いられる単セルの構造を示す断面模式図である。本単セルも、第1の実施例の単セルを製作する際に用いられた材料と製作方法を用いて製作されている。第1の実施例との相違点は、MEAのアノード側電極とカソード側電極が、第1の実施例では、共に厚さ 45 μmの触媒層を形成して構成されていたのに対して、第2の実施例では、保護シート4と同一の厚さの 25 μm厚の触媒層2Bを形成して構成されており、このため、MEAは触媒層2Bと保護シート4を重なり合わせた部分(図中にT3で表示)のみ厚さが厚く、図中にT4で表示した中央部分と図中にT5で表示した端部はT3より厚さの薄い同一厚さに形成されている点にある。このように形成されたMEAの表面に対応して、セパレータ6BのMEA側の表面の加工が行われており、相対するMEAの面に接するように、MEAのT3,T4,T5の面に対向してS3,S4,S5が形成されている。したがって、このMEAをこのセパレータ6Bで挟んで締付けた際には、各面にほぼ均等な加圧力が加わることとなるので、応力集中を生じる恐れがなく、電解質膜1が破損することはない。また、セパレータ6Bの表面の加工の際に、サンドブラスト処理によって表面層を除去することによって電気伝導性の劣る層を除去できるので、部材間の接触電気抵抗が低減し、燃料電池の内部抵抗が減少して電気特性が向上することとなる。   FIG. 4 is a schematic cross-sectional view showing the structure of a single cell used in the second embodiment of the solid polymer electrolyte fuel cell of the present invention. This unit cell is also manufactured by using the material and the manufacturing method used in manufacturing the unit cell of the first embodiment. The difference from the first embodiment is that the anode side electrode and the cathode side electrode of the MEA are both configured by forming a catalyst layer having a thickness of 45 μm in the first embodiment. In the second embodiment, the catalyst layer 2B having the same thickness as the protective sheet 4 and having a thickness of 25 μm is formed. For this reason, the MEA is a portion where the catalyst layer 2B and the protective sheet 4 are overlapped ( The thickness is only thick (indicated by T3 in the figure), and the center part indicated by T4 in the figure and the end part indicated by T5 in the figure are formed in the same thickness which is thinner than T3. . The surface of the MEA side of the separator 6B is processed corresponding to the surface of the MEA formed in this way, and is opposed to the surfaces of T3, T4, and T5 of the MEA so as to be in contact with the surface of the MEA. Thus, S3, S4 and S5 are formed. Therefore, when the MEA is clamped by the separator 6B and tightened, almost uniform pressure is applied to each surface, so there is no risk of stress concentration and the electrolyte membrane 1 is not damaged. Further, when processing the surface of the separator 6B, a layer having poor electrical conductivity can be removed by removing the surface layer by sandblasting, so that the contact electrical resistance between members is reduced and the internal resistance of the fuel cell is reduced. As a result, the electrical characteristics are improved.

以上述べたように、固体高分子電解質形燃料電池を請求項1、さらには、請求項2、あるいは請求項3のごとく構成することとすれば、MEAの表面が凹部、凸部を有するものにあっても、MEAの各部に加わる加圧力が面内でほぼ均一に保持され、電解質膜の破損が回避されて長期にわたり安定した運転が可能となり、さらに請求項4、5のごとくとすれば、接触電気抵抗が抵下して内部抵抗損失が低減するので、電気特性の低下が回避されることとなるので、本発明はいろいろな分野で使用される各種の固体高分子電解質形燃料電池に効果的に適用可能である。   As described above, if the solid polymer electrolyte fuel cell is constituted as in claim 1, further, claim 2 or claim 3, the surface of the MEA has a concave portion and a convex portion. Even if it exists, the applied pressure applied to each part of the MEA is maintained almost uniformly in the plane, the damage of the electrolyte membrane is avoided, and stable operation is possible over a long period of time. Since the contact electrical resistance is reduced and the internal resistance loss is reduced, the deterioration of electrical characteristics is avoided. Therefore, the present invention is effective for various solid polymer electrolyte fuel cells used in various fields. Can be applied.

本発明の固体高分子電解質形燃料電池の第一の実施例の単セルの構造を示す断面模式図Sectional schematic diagram showing the structure of a single cell of the first embodiment of the solid polymer electrolyte fuel cell of the present invention 本発明の固体高分子電解質形燃料電池の第一の実施例に用いられる単セルのセパレータの燃料ガス流路を示す平面図The top view which shows the fuel gas flow path of the separator of the single cell used for the 1st Example of the solid polymer electrolyte fuel cell of this invention 本発明の固体高分子電解質形燃料電池の第一の実施例の連続運転試験における開回路電圧の時間変化を示した特性図FIG. 3 is a characteristic diagram showing the change over time of the open circuit voltage in the continuous operation test of the first embodiment of the solid polymer electrolyte fuel cell of the present invention 本発明の固体高分子電解質形燃料電池の第二の実施例の単セルの構造を示す断面模式図Sectional schematic diagram showing the structure of a single cell of the second embodiment of the solid polymer electrolyte fuel cell of the present invention 従来の固体高分子電解質形燃料電池の一般的な単セルの構造を示す断面模式図Cross-sectional schematic diagram showing the structure of a typical single cell of a conventional solid polymer electrolyte fuel cell 従来の固体高分子電解質形燃料電池の側面図Side view of a conventional solid polymer electrolyte fuel cell 固体高分子電解質形燃料電池の単セルに組込まれるMEAの他の従来例の断面図Sectional drawing of other conventional examples of MEAs incorporated in a single cell of a solid polymer electrolyte fuel cell 固体高分子電解質形燃料電池の単セルに組込まれるMEAの第3の従来例の断面図Sectional drawing of the 3rd prior art example of MEA incorporated in the single cell of a polymer electrolyte fuel cell

符号の説明Explanation of symbols

1 電解質膜
2A,2B 触媒層
3A,3B 拡散層
4 保護シート
5 シールパッキング
6A、6B セパレータ
7A,7B 燃料ガス流路
8A,8B 酸化剤ガス流路
S1,S2,S3,S4,S5 セパレータの表面
T1,T2,T3,T4,T5 MEAの表面
1 Electrolyte membrane
2A, 2B catalyst layer
3A, 3B diffusion layer
4 protection sheets
5 Seal packing
6A, 6B separator
7A, 7B Fuel gas flow path
8A, 8B Oxidant gas flow path
S1, S2, S3, S4, S5 Separator surface
T1, T2, T3, T4, T5 MEA surface

Claims (5)

固体高分子電解質膜の両面に触媒層と拡散層とを配して形成された膜電極接合体を、ガス流通路を備えた2枚のセパレータにより挟持して構成した単セルからなり、前記膜電極接合体の両表面がそれぞれ、第一の平面と、該第一の平面より高さの低い第二の平面とからなる固体高分子電解質形燃料電池において、
前記膜電極接合体の外表面に対向する前記セパレータの表面に、膜電極接合体の前記第一の平面に対向して接して組み込まれる第三の表面と、膜電極接合体の前記第二の平面に対向して接して組み込まれる、前記第三の表面より高さの高い第四の表面とが備えられていることを特徴とする固体高分子電解質形燃料電池。
A membrane / electrode assembly formed by arranging a catalyst layer and a diffusion layer on both sides of a solid polymer electrolyte membrane is composed of a single cell sandwiched between two separators each having a gas flow path, and the membrane In the solid polymer electrolyte fuel cell in which both surfaces of the electrode assembly are each composed of a first plane and a second plane having a height lower than the first plane,
A third surface that is incorporated in contact with the surface of the separator facing the outer surface of the membrane electrode assembly, facing the first plane of the membrane electrode assembly, and the second surface of the membrane electrode assembly. A solid polymer electrolyte fuel cell comprising: a fourth surface having a height higher than that of the third surface, which is incorporated in contact with a flat surface.
請求項1に記載の固体高分子電解質形燃料電池において、前記セパレータの前記第三の表面が、前記膜電極接合体の触媒層の形成領域に対向して配されていることを特徴とする固体高分子電解質形燃料電池。 2. The solid polymer electrolyte fuel cell according to claim 1, wherein the third surface of the separator is arranged to face a formation region of a catalyst layer of the membrane electrode assembly. 3. Polymer electrolyte fuel cell. 請求項1に記載の固体高分子電解質形燃料電池において、前記セパレータの前記第四の表面が、前記膜電極接合体の触媒層の形成領域に対向して配されていることを特徴とする固体高分子電解質形燃料電池。 2. The solid polymer electrolyte fuel cell according to claim 1, wherein the fourth surface of the separator is disposed to face a formation region of a catalyst layer of the membrane electrode assembly. 3. Polymer electrolyte fuel cell. 請求項1乃至3のいずれかに記載の固体高分子電解質形燃料電池において、前記セパレータが炭素粉末と樹脂とから形成された炭素複合材料からなり、前記第三の表面と前記第四の表面が、表面層を削除する表面処理を施して形成されていることを特徴とする固体高分子電解質形燃料電池。 4. The solid polymer electrolyte fuel cell according to claim 1, wherein the separator is made of a carbon composite material formed of carbon powder and a resin, and the third surface and the fourth surface are The solid polymer electrolyte fuel cell is characterized by being formed by performing a surface treatment to remove the surface layer. 請求項4に記載の固体高分子電解質形燃料電池において、表面層を削除する前記表面処理がブラスト処理であることを特徴とする固体高分子電解質形燃料電池。 5. The solid polymer electrolyte fuel cell according to claim 4, wherein the surface treatment for removing the surface layer is a blast treatment.
JP2005073164A 2005-03-15 2005-03-15 Polymer electrolyte type fuel cell Pending JP2006260810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073164A JP2006260810A (en) 2005-03-15 2005-03-15 Polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073164A JP2006260810A (en) 2005-03-15 2005-03-15 Polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JP2006260810A true JP2006260810A (en) 2006-09-28

Family

ID=37099827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073164A Pending JP2006260810A (en) 2005-03-15 2005-03-15 Polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JP2006260810A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104791A (en) * 2007-10-19 2009-05-14 Toyota Motor Corp Fuel cell
US8911916B2 (en) 2011-10-20 2014-12-16 Honda Motor Co., Ltd. Fuel cell
JP2016058206A (en) * 2014-09-09 2016-04-21 本田技研工業株式会社 Fuel battery cell
US9780400B2 (en) 2012-09-18 2017-10-03 Honda Motor Co., Ltd. Fuel cell having an empty space gap between the separator and electrode
US10056619B2 (en) 2011-11-01 2018-08-21 Honda Motor Co., Ltd. Fuel cell having a recess in the separator
CN114864989A (en) * 2022-05-26 2022-08-05 一汽解放汽车有限公司 Membrane electrode frame, preparation method thereof and membrane electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104791A (en) * 2007-10-19 2009-05-14 Toyota Motor Corp Fuel cell
US8911916B2 (en) 2011-10-20 2014-12-16 Honda Motor Co., Ltd. Fuel cell
US10056619B2 (en) 2011-11-01 2018-08-21 Honda Motor Co., Ltd. Fuel cell having a recess in the separator
US9780400B2 (en) 2012-09-18 2017-10-03 Honda Motor Co., Ltd. Fuel cell having an empty space gap between the separator and electrode
JP2016058206A (en) * 2014-09-09 2016-04-21 本田技研工業株式会社 Fuel battery cell
CN114864989A (en) * 2022-05-26 2022-08-05 一汽解放汽车有限公司 Membrane electrode frame, preparation method thereof and membrane electrode
CN114864989B (en) * 2022-05-26 2024-01-19 一汽解放汽车有限公司 Membrane electrode frame and preparation method thereof and membrane electrode

Similar Documents

Publication Publication Date Title
US6989214B2 (en) Unitized fuel cell assembly
US8343688B2 (en) Polymer electrolyte fuel cell having a fastening structure including elastic members
US8153316B2 (en) Unitized fuel cell assembly and cooling apparatus
US10581091B2 (en) Resin-framed membrane electrode assembly
JP2007510273A (en) Fuel cell end plate assembly
US9034536B2 (en) Fuel cell having voltage monitor terminal with exposed portion
JP2010092876A (en) Polymer electrolyte fuel cell
US20070184326A1 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
JP2008525986A (en) Field molding fastening for fuel cell assemblies
WO2005074062A1 (en) Polymer electrolyte fuel cell
JP2003068318A (en) Cell of solid polymer fuel cell and solid polymer fuel cell
JP2006260810A (en) Polymer electrolyte type fuel cell
US20100273083A1 (en) Fuel cell
JP2002260693A (en) High polymer electrolyte fuel cell
US7597983B2 (en) Edge stress relief in diffusion media
WO2000074165A1 (en) Polymer electrolyte fuel cell and its usage
US11508982B2 (en) Fuel cell stack
WO2018042975A1 (en) Membrane electrode assembly, fuel cell provided with same and method for producing membrane electrode assembly
JP4859281B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
US8460840B2 (en) Separator for fuel cell and fuel cell comprising the same
JP2003297389A (en) Polyelectrolyte fuel cell
JP2013020723A (en) Fuel cell and membrane electrode assembly
JP2009252666A (en) Fuel cell
CN117174944A (en) Fuel cell and method of manufacturing fuel cell
CN117059831A (en) Fuel cell stack

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704