JP2009250959A - Filter monitoring system - Google Patents

Filter monitoring system Download PDF

Info

Publication number
JP2009250959A
JP2009250959A JP2008103420A JP2008103420A JP2009250959A JP 2009250959 A JP2009250959 A JP 2009250959A JP 2008103420 A JP2008103420 A JP 2008103420A JP 2008103420 A JP2008103420 A JP 2008103420A JP 2009250959 A JP2009250959 A JP 2009250959A
Authority
JP
Japan
Prior art keywords
filter
gas phase
adsorption
sensor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008103420A
Other languages
Japanese (ja)
Inventor
Akiyo Mizutani
晶代 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008103420A priority Critical patent/JP2009250959A/en
Publication of JP2009250959A publication Critical patent/JP2009250959A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent failures of an electronic part or the like by monitoring the time deterioration state of a gas phase adsorbing filter set within a casing or container in real time by a sensor. <P>SOLUTION: A sensor element of a QCM (quartz crystal microbalance) is mounted in the vicinity of the gas phase adsorbing filter of silica gel or activated carbon installed within the casing to temporarily measure the gas phase material adhesion accumulation quantity to the sensor, whereby a correlation database with a preliminarily acquired temporal accumulative adsorption quantity of the gas phase material to the filter corresponding thereto is used to estimate the accumulative adsorption quantity of the gas phase material to the installed filter in real time, and further the deterioration state of the filter performance can be warned. Consequently, failures of the electronic part or an electronic device mounted therewith resulting from overlooking of deterioration of the gas phase filter can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、筐体や容器などの内部に設置される気相吸着用フィルタの特性を監視するシステムに関し、特にガス用や湿度(水蒸気)の吸着用フィルタの経時的な劣化状態をセンサによってモニタするシステムに関する。   The present invention relates to a system for monitoring the characteristics of a gas-phase adsorption filter installed inside a housing or a container, and more particularly to monitor the deterioration of a gas or humidity (water vapor) adsorption filter over time with a sensor. Related to the system.

磁気記録装置をはじめとする精密電子機器装置や、電子部品を格納・搬送するための搬送保管容器、あるいはプロセス処理中の半導体ウエハの保管・搬送するための容器などの筐体内部には、多くの場合、筐体内湿度の水蒸気除去を含むコントロール、筐体内部発生、あるいは外部から侵入する有害性ガスの除去などを目的として、シリカゲル、あるいは活性炭を主材料とする、気相吸着用フィルタが装着されている。   There are many precision electronics devices such as magnetic recording devices, transport storage containers for storing and transporting electronic components, and containers for storing and transporting semiconductor wafers during process processing. In this case, a vapor phase adsorption filter mainly composed of silica gel or activated carbon is installed for the purpose of control including moisture removal of the humidity inside the housing, removal of harmful gases that enter the housing, or enter from the outside. Has been.

これら気相吸着用フィルタは、予め、それら装置筐体内あるいは容器内に、当初から含まれる、あるいは経時的に発生、もしくは侵入する水蒸気やガスの種類や濃度を推定する。そして、それら機器や部品に有害な水蒸気やガスなどの気相物質を、長時間に渡って除去あるいは制御するに足る、シリカゲルや活性炭の種類・量・またそれらの混合比を設計して、気相吸着用フィルタを筐体内に装着することとなる。   These vapor phase adsorption filters estimate in advance the type and concentration of water vapor or gas contained in the apparatus casing or container from the beginning, or generated or invaded with time. Then, the type and amount of silica gel and activated carbon, and their mixing ratio, which are sufficient to remove or control gas phase substances such as water vapor and gas that are harmful to these devices and parts over a long period of time, are designed. The phase adsorption filter is mounted in the housing.

他方、上記のような装置筐体・容器などをはじめとする閉ざされた空間内部や気相が流れる空間などにおける発生ガスなど気相物質の検出については、従来から、その空間内部や流路に水晶振動子を用いたセンサを設置し、その振動子表面の電極での、気相状態における分子あるいは原子などの物質の付着堆積や、あるいは有害ガス分子による電極腐食によって生じる、経時的な重量変化に伴う水晶振動子の振動周波数の変化を測定することにより、水蒸気やガスなどの気相状態における分子あるいは原子などの物質(以下気相物質)の検出や、その量の測定を行うことが提案されている(例えば、特許文献1、2)。
特開2004−47929号公報 特開2007−35180号公報
On the other hand, for the detection of gas phase substances such as generated gas in closed spaces such as the above-mentioned device housings and containers and in the space where the gas phase flows, etc. A sensor using a quartz crystal is installed, and the change in weight over time caused by the deposition of substances such as molecules or atoms in the gas phase or electrode corrosion by harmful gas molecules at the electrode on the surface of the crystal. It is proposed to detect and measure the amount of molecules or atoms in the gas phase such as water vapor and gas (hereinafter referred to as gas phase materials) by measuring the change in the vibration frequency of the quartz crystal due to (For example, Patent Documents 1 and 2).
JP 2004-47929 A JP 2007-35180 A

筐体(あるいは容器)内に装着される気相吸着用フィルタの設計については、上述のように、あくまで、一定の環境条件などを想定して行っている。従って、外部環境条件によっては実装すべきフィルタの内容は大きく異なることが考えられる。   As described above, the design of the gas-phase adsorption filter mounted in the housing (or container) is performed by assuming certain environmental conditions. Therefore, it is conceivable that the content of the filter to be mounted varies greatly depending on the external environmental conditions.

たとえば、その筐体外部環境が高温や高湿度であるとき、また筐体が腐食性ガスなどの発生源に近い場所に置かれるようなときなどの場合、筐体の冷却ファンあるいは通気口などからそういった外気が侵入してきて、フィルタでの、気相状態における分子あるいは原子などの物質(気相物質)の吸着が急激に進み、フィルタの吸着容量性能限界にまで近づいてしまう結果、急速にフィルタの吸着性能が低下するといった事態が発生することが想定される。こうなってしまうと、筐体(容器)内部の電子部品等の性能劣化が引き起こされる可能性が高くなる。   For example, when the external environment of the enclosure is high temperature or high humidity, or when the enclosure is placed near a source of corrosive gas, etc., use the cooling fan or vent of the enclosure. As such outside air enters, the adsorption of substances such as molecules or atoms (gas phase substances) in the gas phase rapidly progresses and approaches the adsorption capacity performance limit of the filter. It is assumed that a situation occurs in which the adsorption performance decreases. If it becomes like this, possibility that the performance deterioration of the electronic components etc. inside a housing | casing (container) will be caused becomes high.

しかし、いったん筐体内に装着されたフィルタの状態を外部からチェックすることは通常、困難であって、たとえば、格納された電子部品の腐食や磁気記録装置の装置故障発生などが発覚して、ようやくフィルタの性能が劣化していたことが解るといった現象がたびたび生じることとなる。   However, it is usually difficult to check the condition of the filter once installed in the housing from the outside. For example, the corrosion of the stored electronic parts or the occurrence of a device failure of the magnetic recording device is finally detected. A phenomenon that it is understood that the performance of the filter has deteriorated frequently occurs.

そこで本発明の課題の一側面は、筐体や容器などの内部に設置される気相吸着用フィルタ特性の、経時的な劣化状態を外部から監視することを可能とし、それによって、たとえば、フィルタの取替え時期に関する警告を発することや、あるいは筐体や容器に内蔵された電子部品などの劣化・故障などの可能性を監視あるいはそれに起因する故障発生の警告告知、といった情報を発するフィルタモニタリングシステムを提供することにある。   Accordingly, one aspect of the problem of the present invention is to enable monitoring of a deterioration state over time of a gas-phase adsorption filter characteristic installed inside a housing or a container from the outside. A filter monitoring system that issues information about the timing of replacement of the product, or monitors the possibility of deterioration or failure of electronic parts built in the case or container, or alerts the occurrence of failure caused by it It is to provide.

本発明のフィルタモニタリングシステムは、
電子機器筐体に収納される気相吸着用フィルタの性能劣化を測定するためのフィルタモニタリングシステムであって、
前記電子機器筐体内に設けられ、前記電子機器筐体内の気相物質を吸着する検出素子を備えた測定手段と、
前期検出素子における前記気相物質の吸着量と前記気相吸着用フィルタにおける前記気相物質の吸着量との関係を示す吸着相関データベースを記憶する記憶手段と、
前記測定手段からの出力信号と、前記吸着相関データベースに基づいて、前記気相吸着用フィルタに吸着している前記気相物質の量を算出する手段とを有する。
The filter monitoring system of the present invention includes:
A filter monitoring system for measuring performance deterioration of a gas phase adsorption filter housed in an electronic device casing,
A measuring means provided in the electronic device casing and provided with a detection element for adsorbing a gas phase substance in the electronic device casing;
Storage means for storing an adsorption correlation database indicating a relationship between an adsorption amount of the gas phase substance in the previous detection element and an adsorption amount of the gas phase substance in the gas phase adsorption filter;
And means for calculating the amount of the gas phase substance adsorbed on the gas phase adsorption filter based on the output signal from the measuring means and the adsorption correlation database.

本発明により、たとえば、リアルタイムに気相吸着用フィルタの性能の劣化状態をモニタリングすることが可能となり、フィルタの取替え時期に関する警告を発することや、あるいは筐体や容器に内蔵された電子部品などの劣化・故障などの可能性を監視あるいはそれに起因する故障発生の警告告知といった情報を、手遅れにならないうちに、タイミング良く、かつ、フィルタを外部に取り出して検査する事無く、発することも可能となる。   According to the present invention, for example, it becomes possible to monitor the deterioration state of the performance of the gas-phase adsorption filter in real time, to issue a warning about the replacement time of the filter, or to an electronic component built in the housing or container, etc. Information such as monitoring of the possibility of deterioration and failure or warning notification of failure caused by it can be issued in a timely manner and without taking out and inspecting the filter outside before it is too late. .

以下に、本発明の実施の形態を、添付図を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

(実施例)
図1は、本発明のフィルタモニタリングシステムの一構成を説明するための模式図である。図1(1)は、磁気記録装置1を模式的に示し、この装置の筐体(あるいは容器)2中には、たとえば、磁気記録媒体3と磁気ヘッド4などの電子部品が内在する。また、筐体2中には、たとえば、筐体中の主に水蒸気の吸着および湿度制御を行うためのシリカゲルを主体としたシリカゲルフィルタ5−1、筐体中の主にガス成分の吸着を行うための活性炭を主体とした活性炭フィルタ5−2などからなる、水蒸気やガスなどの気相状態における分子あるいは原子などの物質(以下気相物質)吸着のためのフィルタ5が装着されている。吸着する水蒸気やガス(特に有害性ガス)は、機器の筐体2中に当初から内在するもの、内在機器から経時的に発生するもの、また筐体2外部から吸気口、排気口などから経時的に侵入するものなどがある。
(Example)
FIG. 1 is a schematic diagram for explaining one configuration of the filter monitoring system of the present invention. FIG. 1 (1) schematically shows a magnetic recording apparatus 1, and electronic components such as a magnetic recording medium 3 and a magnetic head 4 are contained in a casing (or container) 2 of the apparatus. Further, in the housing 2, for example, a silica gel filter 5-1 mainly composed of silica gel for mainly adsorbing water vapor and controlling humidity in the housing, and mainly adsorbing gas components in the housing. A filter 5 for adsorbing a substance (hereinafter referred to as a gas phase substance) such as a molecule or an atom in a gas phase state such as water vapor or gas is mounted. The adsorbed water vapor or gas (especially harmful gas) is inherent in the device casing 2 from the beginning, or is generated with time from the internal device, and from the outside of the housing 2 from the intake port, exhaust port, etc. There are things that invade.

気相吸着用のフィルタ5の近傍の筐体2内に、2種のセンサ(検出素子)からなるセンサ6を装着する。すなわち、シリカゲルセンサ6−1は、シリカゲルフィルタ5−1対応のセンサで、活性炭センサ6−2は、活性炭フィルタ5−2対応のセンサである。   A sensor 6 composed of two types of sensors (detection elements) is mounted in the housing 2 in the vicinity of the filter 5 for gas phase adsorption. That is, the silica gel sensor 6-1 is a sensor corresponding to the silica gel filter 5-1, and the activated carbon sensor 6-2 is a sensor corresponding to the activated carbon filter 5-2.

図1(2)は、同様な磁気記録装置1の、たとえば磁気記録媒体3と磁気ヘッド4などの電子部品が内在する筐体2中に、シリカゲルと活性炭の混合物フィルタ5−3が装着された場合を示し、それに対応した混合物センサ6−3をその近傍に装着する。   FIG. 1 (2) shows a similar magnetic recording device 1, in which a silica gel and activated carbon mixture filter 5-3 is mounted in a housing 2 in which electronic components such as a magnetic recording medium 3 and a magnetic head 4 are present. A case is shown, and a corresponding mixture sensor 6-3 is mounted in the vicinity thereof.

このように構成した磁気記録装置1を、図1(3)に模式的に示す、パーソナルコンピュータなどの情報処理装置7の収納ボックス8内に組み込む。収納ボックス8内には、磁気記録装置1内にあるセンサ6からの情報をセンサデータ読み取り機9で読み取り可能とし、この読み取りデータを、図示されていない記憶装置(あるいは磁気記録装置1など)内に記憶されたデータベースと比較処理などを制御回路10で行って、結果を表示装置11に表示可能とする。   The magnetic recording apparatus 1 configured as described above is incorporated into a storage box 8 of an information processing apparatus 7 such as a personal computer schematically shown in FIG. In the storage box 8, information from the sensor 6 in the magnetic recording device 1 can be read by a sensor data reader 9, and this read data is stored in a storage device (or magnetic recording device 1 or the like) not shown. The control circuit 10 performs comparison processing and the like stored in the database, and the result can be displayed on the display device 11.

上記のセンサ(検出素子)6として、圧電効果を有する水晶振動子をセンサ用素子とし、その振動子の電極形成膜上への気相吸着あるいは離脱によって生じる発振周波数の変動を利用して、気相物質の付着堆積に関する測定装置として用いることができる。そのような気相物質付着堆積計測装置として、QCM(Quartz Crystal Microbalance)が使用可能である(たとえば特許文献1、2など)。   As the sensor (detection element) 6, a quartz crystal resonator having a piezoelectric effect is used as a sensor element, and fluctuations in oscillation frequency caused by gas phase adsorption or separation from the electrode forming film of the transducer are used to It can be used as a measuring device for the deposition of phase material. A QCM (Quartz Crystal Microbalance) can be used as such a vapor phase material deposition measurement apparatus (for example, Patent Documents 1 and 2).

この測定装置においては、センサの電極形成膜上に気相物質が付着堆積あるいは離脱や化学反応して、電極形成膜の質量が増加あるいは減少すると、その変化に応じて振動子の発振周波数が減少あるいは増加する。したがって、その増減程度の経時変化を観察することによって、気相物質の付着堆積あるいは離脱や化学反応の累積変化量を計測できる。   In this measuring device, when the mass of the electrode-forming film increases or decreases due to the deposition, separation, or chemical reaction of the gas phase material on the electrode-forming film of the sensor, the oscillation frequency of the vibrator decreases according to the change. Or increase. Therefore, by observing the change over time of the increase / decrease, it is possible to measure the accumulated change amount of the deposition / desorption or chemical reaction of the vapor phase substance.

本実施例では、このQCMの水晶振動子センサ素子の電極形成膜における金属膜を、たとえば、Ag(銀)、Au(金)あるいはPt(白金)とし、更にその上に、フィルタ材料と同じあるいは同等の材料の膜を予め追加形成しておく。追加膜材料としては、シリカゲルセンサ6−1、活性炭センサ6−2、混合物センサ6−3には、上述のようにそれぞれシリカゲル、活性炭、そしてフィルタと同じ混合比をもつシリカゲルと活性炭の混合材料を用いればよい。このような追加膜を形成することによって、気相吸着用フィルタに生じている気相物質の付着堆積あるいは離脱の反応が、センサ素子表面に再現して測定が行えることとなる。   In this embodiment, the metal film in the electrode forming film of the quartz crystal sensor element of the QCM is, for example, Ag (silver), Au (gold), or Pt (platinum), and further, the same as the filter material or A film of the same material is additionally formed in advance. As an additional membrane material, silica gel sensor 6-1, activated carbon sensor 6-2, and mixture sensor 6-3 are respectively mixed with silica gel, activated carbon, and a mixed material of silica gel and activated carbon having the same mixing ratio as the filter as described above. Use it. By forming such an additional film, the reaction of depositing or desorbing the vapor phase substance generated in the vapor phase adsorption filter can be reproduced and measured on the surface of the sensor element.

次に、このように電極形成膜を形成したQCMの水晶振動子センサ素子と気相吸着用フィルタを、同一筐体(あるいは容器)内に配置する。そしてその筐体環境で、先ず、センサ上への気相物質の付着堆積・離脱の経時的変化を測定する。これは振動子の発振周波数の累積変化量(すなわち、センサへの付着堆積量の結果と同等)の測定によって可能である。   Next, the quartz crystal sensor element of QCM and the gas phase adsorption filter having the electrode forming film thus formed are arranged in the same casing (or container). In the housing environment, first, a change with time of the deposition / desorption of the vapor phase substance on the sensor is measured. This is possible by measuring the cumulative change amount of the oscillation frequency of the vibrator (that is, equivalent to the result of the deposition amount on the sensor).

同時に、筐体(容器)内の実際に装着されたフィルタ中で吸着される、ガスや水蒸気など気相物質の累積的な吸着量を測定する。こうして、センサ上への気相物の付着・堆積量とフィルタ内への気相物累積吸着量との関係を求め、相関データベース化する。   At the same time, the cumulative amount of adsorption of a gas phase substance such as gas or water vapor, which is adsorbed in the actually mounted filter in the casing (container), is measured. In this way, the relationship between the adhesion / deposition amount of the vapor phase substance on the sensor and the accumulated adsorption amount of the vapor phase substance in the filter is obtained, and a correlation database is created.

フィルタ内でのこれらの吸着量の測定は、たとえば、水蒸気は温湿度計、ガスはガスセンサーやガスクロマトグラフ等の分析機器を用い、経過時間毎の各成分の濃度変化を測定することで、経過時間に対する気相物の累積吸収量の関係を求めることができる。   The amount of adsorption in the filter is measured by measuring changes in the concentration of each component over time using, for example, a thermohygrometer for water vapor and an analytical instrument such as a gas sensor or gas chromatograph for gas. The relationship of the accumulated absorption amount of the gas phase with respect to time can be obtained.

求められた両者の関係を示す例(規格化済)を図2に示す。本図は、横軸を振動子の発振周波数の累積変化量から求めた水蒸気やガスなど気相物質のセンサへの付着堆積量とし、縦軸をそれに対する気相吸着用フィルタでのその気相物質の累積吸着量である。   An example (standardized) showing the relationship between the two obtained is shown in FIG. In this figure, the horizontal axis represents the amount of deposition of vapor phase substances such as water vapor and gas obtained from the cumulative change in the oscillation frequency of the vibrator, and the vertical axis represents the gas phase of the gas phase adsorption filter with respect to it. This is the cumulative amount of adsorption of the substance.

この図2で示した関係図は、量的な多少関係や時間的インターバルに関わり無く、つまり、たとえば突然大量に気相物が生じたり、あるいは止まったりする場合などにおいても、筐体内での水蒸気やガスの侵入や発生などの気相状態の変化があれば、センサでの気相物質の付着堆積量を継続的に測定することによって、内蔵した気相吸着用フィルタにおけるそれら気相物質の吸着累積量を推定できることとなる。   The relationship diagram shown in FIG. 2 shows the amount of water vapor in the housing regardless of the quantitative relationship or the time interval, that is, even when a large amount of gas phase is suddenly generated or stopped, for example. If there is a change in the gas phase state, such as invasion or generation of gas, the amount of adsorbed deposition of the gas phase substance on the sensor is continuously measured, so that the adsorption of the gas phase substance in the built-in gas phase adsorption filter is performed. The cumulative amount can be estimated.

本図の実線の傾向から解るように、センサへの付着堆積量の増大とともに、3段階のフィルタの吸着性能段階が生じる。まず、フィルタの使用初期段階、即ち、図中、(I)フィルタ正常状態の範囲では、センサへの付着堆積量に比例して直線的にフィルタでの累積吸収量が増加、つまり気相物質の侵入量に比例して吸着していることを示し、いわば吸着用フィルタとして正常状態で作用していて、吸着能力にまだ余裕がある状態である。フィルタを一定程度使用した後の段階、即ち、図中、(II)フィルタ性能低下状態の範囲では、センサへの付着堆積量に対してフィルタでの累積吸収量が比例せず、徐々に吸着力が低下する。従ってフィルタの吸着性能が低下し、フィルタが正常状態で使用できなくなったことを示す。つまり、吸着すべき気相物質を吸着しきれていない状態である。そして更にフィルタを使用し続けたとき、即ち、図中、(III)フィルタ破過状態の範囲では、吸着剤性能が限界に達し,除去対象物質であるが気相物質がフィルタから流出し始める破過状態であり、センサへの付着堆積量の増大に対してフィルタの累積吸収量は略一定で飽和してきている。   As can be seen from the tendency of the solid line in the figure, the adsorption performance stage of the three stages of filters is generated with the increase in the amount of deposition on the sensor. First, in the initial stage of use of the filter, that is, in the range of (I) normal state of the filter in the figure, the cumulative absorption amount in the filter increases linearly in proportion to the amount of accumulated deposits on the sensor, that is, the gas phase substance. It indicates that the adsorption is in proportion to the amount of intrusion, so to speak, it is operating in a normal state as an adsorption filter, and there is still a margin in the adsorption capacity. In the stage after the filter has been used to a certain extent, that is, in the range of (II) filter performance degradation state in the figure, the accumulated absorption amount in the filter is not proportional to the amount of accumulated deposits on the sensor, and the adsorption force gradually increases. Decreases. Therefore, the adsorption performance of the filter is lowered, indicating that the filter cannot be used in a normal state. That is, the gas phase material to be adsorbed is not completely adsorbed. When the filter is further used, that is, in the range of (III) filter breakthrough state in the figure, the adsorbent performance reaches the limit, and the target substance to be removed but the gas phase substance starts to flow out of the filter. In this state, the accumulated absorption amount of the filter is substantially constant and saturated with respect to an increase in the amount of adhesion and accumulation on the sensor.

実際に筐体(容器)内にフィルタとセンサが同時に装着され状態で、経過時間(横軸)とともにセンサへの気相物の付着堆積量(縦軸)をリアルタイムに測定したときの測定結果例(正規化済)を、図3に示す。たとえば、時間経過(A)の範囲でのセンサへの気相物質の付着堆積量は図2の(I)の範囲、時間経過(B)の範囲でのセンサへの気相物質の付着堆積量は図2の(II)の範囲、そして時間経過(C)の範囲でのセンサへの気相物質の付着堆積量は図2の(III)の範囲に相当することとなる。   Example of measurement results when the deposition amount (vertical axis) of the vapor phase substance on the sensor is measured in real time along with the elapsed time (horizontal axis) with the filter and sensor mounted in the case (container) at the same time (Normalized) is shown in FIG. For example, the deposition amount of the vapor phase substance on the sensor in the range of time lapse (A) is the deposition amount of the vapor phase substance on the sensor in the range of (I) in FIG. 2 corresponds to the range of (II) in FIG. 2 and the amount of deposition and deposition of the vapor phase substance on the sensor in the range of time (C).

こうして、経過時間とともに、センサへの気相物質の付着堆積量を経時的に測定することによって、フィルタにおける吸着性能の状態をリアルタイムで、状態(I)か、状態(II)か、状態(III)かを判定することができる。   In this way, by measuring the amount of vapor deposition of the vapor phase substance on the sensor over time, the state of the adsorption performance in the filter can be changed to the state (I), the state (II), the state (III ) Can be determined.

取得された図2の関係を相関データベース化して、たとえば図1で示した情報処理装置7の記憶装置に記憶させておく。そして情報処理装置7内の磁気記録装置1におけるフィルタ5の吸着性能の状態に関し、センサ6からの振動子の発振周波数の累積変化量(すなわち、センサへの気相物質の付着堆積量)情報を、センサデータ読み取り機9を用いてリアルタイムで読み取り、この値と図示しない記憶装置に記憶された図2の関係を示す相関データベースをもとに、フィルタの気相物累積付着量を算出し、その結果をたとえば、情報処理装置7の表示装置11に表示するといった、フィルタモニタリングシステムを構築することができる。   The acquired relationship of FIG. 2 is made into a correlation database and stored in the storage device of the information processing apparatus 7 shown in FIG. 1, for example. Then, regarding the state of the adsorption performance of the filter 5 in the magnetic recording device 1 in the information processing device 7, information on the cumulative change amount of the oscillation frequency of the vibrator from the sensor 6 (that is, the deposition amount of the vapor phase substance on the sensor) is obtained. Based on the correlation database showing the relationship between this value and the storage device (not shown) in FIG. 2, which is read in real time using the sensor data reader 9, the accumulated amount of vapor phase deposit on the filter is calculated, For example, a filter monitoring system in which the result is displayed on the display device 11 of the information processing device 7 can be constructed.

さらに、たとえば、センサの付着堆積量をもとに算出されたフィルタの気相物質累積付着量が、図3(II)フィルタ性能低下状態の値の領域になったら、フィルタ性能低下の警告をし、図3(III)フィルタ破過状態の値の領域になったら、フィルタ交換の警告を発するといったフィルタ交換アラームシステムを有するフィルタモニタリングシステムも構築できる。   Further, for example, when the accumulated amount of vapor phase material deposited on the filter, which is calculated based on the deposited amount of the sensor, falls within the range of the value of the filter performance degradation state in FIG. FIG. 3 (III) A filter monitoring system having a filter replacement alarm system that issues a filter replacement warning when the value of the filter breakthrough state is reached can be constructed.

図4に、そのフィルタ交換アラームシステムのフローチャート例を示す。先ず、ステップ1のスタートでフィルタ交換アラームシステムを開始し、ステップ2のセンサ監視でフィルタ性能の監視をセンサでリアルタイムで行う。フィルタ使用開始後の一定時間経過し、ステップ3のセンサによるフィルタ状態判断を、先のセンサへの気相物質の付着堆積量(縦軸)をリアルタイムに測定して、相関データベースをもとにフィルタの気相物質累積付着量を求め、判断をする。その値が、(I)フィルタ正常状態の範囲のときは、ステップ4のフィルタ正常状態の判断をしてフィルタの使用を継続し、ステップ1で再度センサ監視を行う。(II)フィルタ性能低下状態の範囲であったときは、ステップ5のフィルタ性能が低下しており、交換用フィルタを容易するように警告を(表示装置などに)発する。そして(III)フィルタ破過状態の範囲になったときは、ステップ6のフィルタが破過しており、すぐにフィルタを交換するように警告する。   FIG. 4 shows a flowchart example of the filter replacement alarm system. First, the filter replacement alarm system is started at the start of step 1, and the filter performance is monitored in real time by the sensor by the sensor monitoring of step 2. After a certain period of time has elapsed since the start of filter use, the filter state is determined by the sensor in Step 3, and the amount of vapor-deposited material deposited on the previous sensor (vertical axis) is measured in real time. The accumulated amount of vapor phase material is determined and judged. When the value is in the range of (I) normal filter state, the filter normal state is determined in step 4 and the use of the filter is continued. In step 1, sensor monitoring is performed again. (II) When the filter performance falls within the range, the filter performance in step 5 is lowered, and a warning is given (to the display device or the like) so as to facilitate the replacement filter. When the range of the filter breakthrough state is reached (III), the filter in step 6 is broken, and a warning is given to replace the filter immediately.

また、(II)フィルタ性能低下状態や、特に(III)フィルタ破過状態の範囲になったときは、この状態が継続されると、筐体や容器内部の電子部品などが劣化し、電子部品の故障あるいはそれに基づく実装装置の故障と結びつく可能性が大きい。従って、このようなセンサ付着堆積量監視によるフィルタモニタリングシステムを、電子部品の故障発生の監視手段として、あるいは、装置の故障発生警告告知手段、またその装置が磁気記録装置ではデータのバックアップの必要性警告告知手段として、付加機能システムとして構築することも可能である。   In addition, (II) when the performance of the filter is degraded, especially when it is in the range of (III) filter breakthrough, if this state continues, the electronic components inside the housing and the container will deteriorate, and the electronic components There is a high possibility that it will be associated with the failure of the mounting device or the failure of the mounting device based on it. Therefore, such a filter monitoring system based on the amount of accumulated deposition on the sensor is used as a means for monitoring the occurrence of a failure of an electronic component, or a means for notifying the occurrence of a device failure, and the necessity of data backup when the device is a magnetic recording device. It can also be constructed as an additional function system as a warning notification means.

上記の説明では、主に磁気記録装置などの筐体内におけるフィルタモニタリングに関して行ってきたが、勿論、それに限られない。気相吸着用フィルタが内蔵される筐体は、たとえば、半導体製造用基板や電子部品(精密機器部品を含む)などを搬送・輸送するための筐体(容器、ボックス)がある。このような場合にも上記のモニタ用のセンサを同時に内蔵し、これに、たとえば、上記のパーソナルコンピュータなどの代わりに、小型のデータロガーを付帯させて搬送・輸送中のセンサにおける気相物質の付着堆積量のデータを記録し、これを上述と同様な方法でフィルタ性能状態を解析することで、たとえば、送付先での気相吸着用フィルタの状態、更には内蔵部品類の異常発生の可能性の有無を知見できる。   In the above description, the filter monitoring has been mainly performed in a housing such as a magnetic recording device, but of course, the present invention is not limited to this. The housing in which the gas phase adsorption filter is built in includes, for example, a housing (container, box) for transporting and transporting semiconductor manufacturing substrates, electronic components (including precision equipment components), and the like. Even in such a case, the above-mentioned monitoring sensor is incorporated at the same time. For example, instead of the above-mentioned personal computer, a small data logger is attached to the gas phase substance in the sensor being transported or transported. By recording data on the amount of deposits and analyzing the performance of the filter in the same way as described above, for example, the state of the filter for gas-phase adsorption at the delivery destination, as well as the occurrence of abnormalities in built-in components, etc. Can know the presence or absence of sex.

以上述べたように、従来は筐体や容器中の気相吸着用フィルタの経時的な性能劣化状況を簡単に、あるいはリアルタイムで把握できなかった。しかし本発明のフィルタモニタリングシステムによって、小型高精度な水晶振動子利用のQCMなどのモニタ用センサを用いてセンサへの気相物質の付着堆積量を測定することで、予め取得したそれとフィルタでの累積吸収量との関係から、容易に気相吸着用フィルタ中の気相物累積吸着量を得て、さらにフィルタの吸着性能の劣化レベルを簡単かつリアルタイムで把握することができることとなった。これをさらに、筐体(容器)内の電子部品等の故障、更にその電子部品を用いた装置の故障の警告システムへと機能拡張することも容易に可能である。   As described above, conventionally, it has not been possible to easily or in real time grasp the deterioration in performance over time of a gas-phase adsorption filter in a casing or container. However, the filter monitoring system of the present invention measures the amount of vapor deposition on the sensor using a monitoring sensor such as a QCM using a small and high-accuracy quartz crystal resonator, so that it can be obtained with a filter obtained in advance. From the relationship with the accumulated absorption amount, it was possible to easily obtain the accumulated adsorption amount of the gas phase substance in the gas phase adsorption filter, and to easily grasp the deterioration level of the adsorption performance of the filter in real time. Further, it is possible to easily extend the function to a warning system for a failure of an electronic component in the casing (container) and a failure of a device using the electronic component.

本発明のフィルタモニタリングシステムを説明する図The figure explaining the filter monitoring system of this invention センサへの気相物質付着堆積量とフィルタへの気相物質累積吸着量の関係を説明する図The figure explaining the relationship between the gaseous-phase substance adhesion deposition amount to a sensor, and the gaseous-phase substance cumulative adsorption amount to a filter 経過時間とセンサへの気相物質付着堆積量との関係を説明する図A diagram for explaining the relationship between the elapsed time and the amount of vapor phase material deposited on the sensor フィルタ交換アラームシステムのフローチャートを説明する図The figure explaining the flowchart of a filter exchange alarm system

符号の説明Explanation of symbols

1 磁気記録装置
2 筐体
3 磁気記録媒体
4 磁気ヘッド
5 フィルタ
6 センサ
7 情報処理装置
8 収納ボックス
9 センサデータ読み取り機
10 制御回路
11 表示装置

DESCRIPTION OF SYMBOLS 1 Magnetic recording device 2 Housing | casing 3 Magnetic recording medium 4 Magnetic head 5 Filter 6 Sensor 7 Information processing apparatus 8 Storage box 9 Sensor data reader 10 Control circuit 11 Display apparatus

Claims (5)

電子機器筐体に収納される気相吸着用フィルタの性能劣化を測定するためのフィルタモニタリングシステムであって、
前記電子機器筐体内に設けられ、前記電子機器筐体内の気相物質を吸着する検出素子を備えた測定手段と、
前期検出素子における前記気相物質の吸着量と前記気相吸着用フィルタにおける前記気相物質の吸着量との関係を示す吸着相関データベースを記憶する記憶手段と、
前記測定手段からの出力信号と、前記吸着相関データベースに基づいて、前記気相吸着用フィルタに吸着している前記気相物質の量を算出する手段とを、
有することを特徴とするフィルタモニタリングシステム。
A filter monitoring system for measuring performance deterioration of a gas phase adsorption filter housed in an electronic device casing,
A measuring means provided in the electronic device casing and provided with a detection element for adsorbing a gas phase substance in the electronic device casing;
Storage means for storing an adsorption correlation database indicating a relationship between an adsorption amount of the gas phase substance in the previous detection element and an adsorption amount of the gas phase substance in the gas phase adsorption filter;
A means for calculating an amount of the gas phase substance adsorbed on the gas phase adsorption filter based on the output signal from the measurement means and the adsorption correlation database;
A filter monitoring system comprising:
前記検出素子は、圧電効果を有する結晶片よりなる振動子の電極上に前記気相吸着用フィルタの材料を含む膜が積層された構造を有し、
前記測定手段は、前記測定素子の発振周波数に応じて変動する電気信号を出力信号として出力することを特徴とする請求項1記載のフィルタモニタリングシステム。
The detection element has a structure in which a film containing a material for the gas phase adsorption filter is laminated on an electrode of a vibrator made of a crystal piece having a piezoelectric effect,
The filter monitoring system according to claim 1, wherein the measurement unit outputs an electrical signal that varies according to an oscillation frequency of the measurement element as an output signal.
前記気相吸着用フィルタに含まれる吸着材料は、シリカゲル、活性炭の何れか、あるいはシリカゲルと活性炭の混合物からなることを特徴とする請求項1または2記載のフィルタモニタリングシステム。   3. The filter monitoring system according to claim 1, wherein the adsorption material contained in the gas phase adsorption filter is made of either silica gel or activated carbon, or a mixture of silica gel and activated carbon. 前記電子機器筐体は、磁気記録装置用筐体あるいは電子部品搬送用容器であることを特徴とする請求項1ないし3のいずれかに記載のフィルタモニタリングシステム。   4. The filter monitoring system according to claim 1, wherein the electronic device casing is a magnetic recording device casing or an electronic component transport container. 前記記憶手段は、さらに、前記電子部品の故障率と前記気相吸着用フィルタにおける前記気相物質の吸着量との関係を示す故障相関データベースを記憶し
前記測定手段からの出力信号と、前記故障相関データベースに基づいて、前記電子部品の故障を判断する手段をさらに有することを特徴とする請求項1ないし4のいずれかに記載のフィルタモニタリングシステム。


The storage means further stores a failure correlation database indicating a relationship between a failure rate of the electronic component and an adsorption amount of the gas phase substance in the gas phase adsorption filter, an output signal from the measurement means, and the failure 5. The filter monitoring system according to claim 1, further comprising means for determining a failure of the electronic component based on a correlation database.


JP2008103420A 2008-04-11 2008-04-11 Filter monitoring system Withdrawn JP2009250959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103420A JP2009250959A (en) 2008-04-11 2008-04-11 Filter monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103420A JP2009250959A (en) 2008-04-11 2008-04-11 Filter monitoring system

Publications (1)

Publication Number Publication Date
JP2009250959A true JP2009250959A (en) 2009-10-29

Family

ID=41311813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103420A Withdrawn JP2009250959A (en) 2008-04-11 2008-04-11 Filter monitoring system

Country Status (1)

Country Link
JP (1) JP2009250959A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012131944A1 (en) * 2011-03-30 2014-07-24 富士通株式会社 Atmospheric environment measuring device, atmospheric environment measuring method, and atmospheric environment measuring system
CN104165819A (en) * 2013-08-29 2014-11-26 北京至感科技有限公司 Online real-time magnetic particle monitoring system
JP2014228484A (en) * 2013-05-24 2014-12-08 富士通株式会社 Environmental measurement instrument and environmental measurement method
KR101746625B1 (en) * 2015-05-11 2017-06-13 주식회사 애니텍 The method and apparatus for absoption for VOCs(volatile organic compound) in engine room of ship
US9817743B2 (en) 2011-09-06 2017-11-14 Nec Platforms, Ltd. Maintenance apparatus of electronic device, maintenance method of electronic device, and non-transitory computer readable medium storing program
CN112525764A (en) * 2020-11-05 2021-03-19 中冶南方都市环保工程技术股份有限公司 Rapid evaluation method and system for performance state of desulfurization and denitrification active coke

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012131944A1 (en) * 2011-03-30 2014-07-24 富士通株式会社 Atmospheric environment measuring device, atmospheric environment measuring method, and atmospheric environment measuring system
JP5742932B2 (en) * 2011-03-30 2015-07-01 富士通株式会社 Atmospheric environment measuring device, atmospheric environment measuring method, and atmospheric environment measuring system
US9395334B2 (en) 2011-03-30 2016-07-19 Fujitsu Limited Atmospheric environment measuring apparatus, atmospheric environment measuring method and atmospheric environment measuring system
US9817743B2 (en) 2011-09-06 2017-11-14 Nec Platforms, Ltd. Maintenance apparatus of electronic device, maintenance method of electronic device, and non-transitory computer readable medium storing program
JP2014228484A (en) * 2013-05-24 2014-12-08 富士通株式会社 Environmental measurement instrument and environmental measurement method
CN104165819A (en) * 2013-08-29 2014-11-26 北京至感科技有限公司 Online real-time magnetic particle monitoring system
KR101746625B1 (en) * 2015-05-11 2017-06-13 주식회사 애니텍 The method and apparatus for absoption for VOCs(volatile organic compound) in engine room of ship
CN112525764A (en) * 2020-11-05 2021-03-19 中冶南方都市环保工程技术股份有限公司 Rapid evaluation method and system for performance state of desulfurization and denitrification active coke
CN112525764B (en) * 2020-11-05 2022-07-08 中冶南方都市环保工程技术股份有限公司 Rapid evaluation method and system for performance state of desulfurization and denitrification active coke

Similar Documents

Publication Publication Date Title
JP2009250959A (en) Filter monitoring system
JP3643521B2 (en) Corrosion environment monitoring device
JP5742932B2 (en) Atmospheric environment measuring device, atmospheric environment measuring method, and atmospheric environment measuring system
US7235214B2 (en) System and method for measuring molecular analytes in a measurement fluid
US20050028593A1 (en) Method and apparatus for high sensitivity monitoring of molecular contamination
US20100107735A1 (en) Gas Sensor
US20070068222A1 (en) Ionic liquid high temperature gas sensors
US20170097255A1 (en) Aerosol mass sensor and sensing method
US10935521B2 (en) Aerosol particle mass sensor and sensing method
US20070109143A1 (en) Method for determining the state of a field measuring instrument for process automation and process instrumentation, and field measuring instrument for carrying out the method
US5817921A (en) Piezoelectric enviromental fluid monitoring assembly and method
US5042288A (en) Method of sensing contamination in the atmosphere
WO2022056120A1 (en) Self-calibrating analyte sensor
JP2023037001A (en) Arithmetic device, arithmetic method and gas detection system
CA2583376C (en) Methods and apparatuses for detecting and monitoring corrosion using nanostructures
JP2002333394A (en) Measuring method of concentration of molecular contamination and measuring apparatus therefor
JP2004205392A (en) Qcm device and sample measuring method
JP5935706B2 (en) Environmental measuring apparatus and environmental measuring method
JP5292359B2 (en) Sensing device
JP2002168748A (en) Chemical filter end detection monitor, board carrying vessel provided with it, board carrying vessel charging station and chemical filter end detection method
WO2022091391A1 (en) Odor measurement device, control device, and odor identification method
JP5664444B2 (en) Quartz microbalance corrosion sensor, corrosion sensor system, and corrosion gas measurement method
JP2002350313A (en) Method and device for chemicals quantification
JP5170704B2 (en) Gas measuring device placed in an enclosed space
WO2022137568A1 (en) Gas detection device and gas detection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705