JP2009250724A - Evaluation system of solar energy generation and method for estimating solar energy generation - Google Patents

Evaluation system of solar energy generation and method for estimating solar energy generation Download PDF

Info

Publication number
JP2009250724A
JP2009250724A JP2008097513A JP2008097513A JP2009250724A JP 2009250724 A JP2009250724 A JP 2009250724A JP 2008097513 A JP2008097513 A JP 2008097513A JP 2008097513 A JP2008097513 A JP 2008097513A JP 2009250724 A JP2009250724 A JP 2009250724A
Authority
JP
Japan
Prior art keywords
area
power generation
evaluation
building
solar radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008097513A
Other languages
Japanese (ja)
Other versions
JP5527938B2 (en
Inventor
Mitsuru Sato
充 佐藤
Yasutaka Nakano
泰敬 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2008097513A priority Critical patent/JP5527938B2/en
Publication of JP2009250724A publication Critical patent/JP2009250724A/en
Application granted granted Critical
Publication of JP5527938B2 publication Critical patent/JP5527938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/12Sunshine duration recorders

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation system of solar energy generation capable of efficiently and adequately estimating an activity for solar energy generation in a city, and a method for estimating solar energy generation. <P>SOLUTION: This evaluation system of solar energy generation comprises a local area designation means 3 for designating an estimation target area 2 from map data 1 of GIS, a sunlight reception area computation section 5 that provisionally computes a sunlight reception area of each of a plurality of estimation target buildings 4 which are arbitrarily set in the estimation target area 2 on the basis of a positional relationship between a three-dimensional cubic model of the GIS and a solar position, and a shade interference area computation section 6 that provisionally computes a shaded area which is formed on the sunlight reception area 4a of each of the estimation target buildings 4 by any other estimation target building 4' on the basis of sunlight simulation applied to the three-dimensional cubic model. The evaluation system further comprises a power generation estimation means 7 that provisionally computes a total solar energy generation amount of the entirety of the estimation target area 2 in such a manner that an individual solar energy generation amount of each of the estimation target buildings 4 is obtained by multiplying a power generation coefficient set to the estimation target area 2 to a difference between the sunlight reception area and the shaded area, and the individual solar energy generation amounts of the plurality of the estimation target buildings 4 in the estimation target area 2 are totalized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽光発電の評価システムおよび評価方法に関するものである。   The present invention relates to an evaluation system and an evaluation method for photovoltaic power generation.

太陽光発電の導入の有効性についての検討、評価には、一般に、導入することによって予想される発電量を試算することが重要であり、このような試算の手法としては、従来、特許文献1に記載されたものが知られている。この従来例において、発電量の試算は、太陽電池の設置を検討する評価地点から魚眼レンズ等を備えたカメラによって撮影した半球画像を利用してなされ、半球画像における天空率から評価地点の日射量を算出し、この日射量に基づいて発電電力量が算出される。
特開2002-62188号公報
In order to examine and evaluate the effectiveness of the introduction of solar power generation, it is generally important to estimate the amount of power generation expected by the introduction. Those described in (1) are known. In this conventional example, the power generation amount is estimated using a hemispherical image taken by a camera equipped with a fisheye lens from the evaluation point where the installation of solar cells is considered, and the solar radiation amount at the evaluation point is calculated from the sky rate in the hemispheric image. The amount of generated power is calculated based on the amount of solar radiation.
JP 2002-62188 A

しかしながら、上述した従来例においては、発電量を試算するための日射量の算出が狭小な評価地点でのみなされるに過ぎないために、例えば、都市全体などを対象にした太陽光発電への取り組みの有効性を検討したい場合、多数の地点で半球画像の撮影や日射量の算出が必要となってしまい、多大な時間、手間がかかってしまうという欠点がある。   However, in the above-mentioned conventional example, since the calculation of the amount of solar radiation for calculating the amount of power generation is only performed at a narrow evaluation point, for example, an approach to solar power generation targeting the entire city etc. When it is desired to examine the effectiveness, it is necessary to take hemispherical images and calculate the amount of solar radiation at many points, which takes a lot of time and effort.

すなわち、都市においては多数の中高層建築物が不規則に配置されていることから、これらによって形成される日陰のために場所によって日射量が大きく異なり、狭小な領域の日射量のみを基準にして広範な領域の発電量を試算しても、信頼性が極めて低くなってしまう。   In other words, since many medium- and high-rise buildings are irregularly arranged in cities, the amount of solar radiation varies greatly depending on the location due to the shade formed by them, and it is wide based only on the amount of solar radiation in a narrow area. Even if the amount of power generation in this region is estimated, the reliability will be extremely low.

また、都市において日射量が良好で太陽電池の設置に好適な場所としては、中高層建築物の上部の側壁面なども考えられるが、この場合には高所になってしまうことから、上述した従来例のように設置場所からの撮影が必要であると、その検討が極めて困難になってしまう。   In addition, as a suitable place for installing solar cells in a city where the amount of solar radiation is good, the side wall surface of the upper part of the middle-high-rise building can be considered, but in this case, it becomes a high place, so the above-mentioned conventional If it is necessary to take a picture from the place of installation as in the example, the examination becomes extremely difficult.

本発明は、以上の欠点を解消すべくなされたものであって、都市における太陽光発電への取り組みの有効性を効率的かつ的確に評価することができる太陽光発電の評価システムおよび評価方法の提供を目的とする。   The present invention has been made to eliminate the above drawbacks, and provides an evaluation system and an evaluation method for photovoltaic power generation that can efficiently and accurately evaluate the effectiveness of the efforts for photovoltaic power generation in cities. For the purpose of provision.

また、本発明の他の目的は、都市における中高層の建築物群を対象とした最適な太陽光発電設備の配置を検討できるようにすることにある。   Another object of the present invention is to make it possible to study the optimal arrangement of solar power generation facilities for middle- and high-rise buildings in a city.

本発明によれば上記目的は、
GISの地図データ1から評価対象地域2を指定する地域指定手段3と、
前記評価対象地域2内に適宜設定された複数の評価対象建築物4の各々における日射対峙面積をGISの三次元立体モデルと太陽位置との位置関係から試算する日射対峙面積演算手段5と、
前記三次元立体モデルへの日射シミュレーションから評価対象建築物4の各々の日射対峙面4a上に他の評価対象建築物4’によって形成される日陰面積を試算する影干渉面積演算手段6と、
前記日射対峙面積と日陰面積との差に対して当該評価対象地域2に設定された発電係数を乗算して各評価対象建築物4による個別太陽光発電量を求め、
評価対象地域2内の複数の評価対象建築物4の個別太陽光発電量を合計して評価対象地域2全体の総合太陽光発電量を試算する発電評価手段7とを有する太陽光発電の評価システムを提供することにより達成される。
According to the present invention, the object is
An area designating means 3 for designating an evaluation target area 2 from map data 1 of GIS;
Solar radiation area calculation means 5 for calculating the solar radiation area in each of the plurality of evaluation object buildings 4 appropriately set in the evaluation area 2 from the positional relationship between the GIS three-dimensional solid model and the sun position;
A shadow interference area calculating means 6 for calculating a shaded area formed by the other evaluation object building 4 'on each solar radiation surface 4a of the evaluation object building 4 from the solar radiation simulation to the three-dimensional solid model;
Multiply the difference between the solar radiation area and the shade area by the power generation coefficient set in the evaluation target area 2 to obtain the individual photovoltaic power generation amount by each evaluation target building 4;
A photovoltaic power generation evaluation system having power generation evaluation means 7 for calculating the total photovoltaic power generation amount of the entire evaluation target area 2 by summing up the individual solar power generation amounts of the plurality of evaluation target buildings 4 in the evaluation target area 2 Is achieved by providing

本発明によれば、太陽光発電量の試算は、評価対象建築物4によって形成される日陰をGISの三次元立体モデルへの日射シミュレーションによって把握し、日陰を除いた実効的な日射面積に発電係数を乗算してなされる。発電係数は、太陽電池モジュールの設計係数等のほか、地域によって異なる単位面積当たりの日射量を考慮して決定することができる。   According to the present invention, the amount of photovoltaic power generation is estimated by grasping the shade formed by the building 4 to be evaluated by a solar radiation simulation to a three-dimensional model of GIS and generating power in an effective solar radiation area excluding the shade. This is done by multiplying the coefficient. The power generation coefficient can be determined in consideration of the solar radiation amount per unit area, which varies depending on the region, in addition to the design coefficient of the solar cell module.

したがって、都市における中高層建築物を評価対象建築物4として設定することにより、これらによってもたらされる日陰が他の中高層建築物の一部に及ぶ場合などの複雑な日陰範囲を的確に予測でき、広範な領域における複雑な日射の分布を極めて効率的に把握して都市の太陽光発電への取り組みの有効性を効率的かつ的確に検討することができる。このような有効性の検討はまた、太陽光発電の導入に対する公的助成の拡充の判断材料などとしても役立つ。   Therefore, by setting mid-to-high-rise buildings in the city as the evaluation target building 4, it is possible to accurately predict a complex shade range such as when the shade caused by these extends to a part of other mid-to-high-rise buildings. The distribution of complex solar radiation in the area can be grasped very efficiently, and the effectiveness of urban solar power generation can be examined efficiently and accurately. Such examination of effectiveness is also useful as a judgment material for expanding public subsidies for the introduction of photovoltaic power generation.

また、評価対象建築物4の日射対峙面積、すなわち太陽光に向き合う部分の面積を基準に日射面積を試算することにより、評価対象建築物4の上部の側壁面をも有効活用した太陽光発電量の試算を行うことができる。さらに、このように日射面積を評価対象建築物4を対象に試算することにより、建築物が乱立する都市において、太陽光発電の導入による有効性を良好に検討することができる。   Moreover, the amount of photovoltaic power generation that effectively utilizes the upper side wall surface of the evaluation target building 4 by calculating the solar radiation area based on the solar radiation area of the evaluation target building 4, that is, the area of the part facing the sunlight. Can be estimated. Furthermore, by calculating the solar radiation area for the building 4 to be evaluated in this way, the effectiveness of introducing solar power generation can be satisfactorily examined in a city where buildings are prone.

建築物が乱立する都市やその街区などの評価対象地域2を指定するための地図データ1は、GIS(Geographic Information System:地理情報システム)から取得され、このGISの三次元立体モデルを日射シミュレーションに用いることにより、太陽光発電モジュールの設置ベースとしての複数の評価対象建築物4について精緻な位置、形状に関する情報を容易に取得することができる。また、太陽位置との位置関係から導き出すことができる上述した日射対峙面積についても極めて容易に試算することができる。   The map data 1 for designating the evaluation target area 2 such as a city where a building is prone to appearing or its block is obtained from GIS (Geographic Information System), and the 3D solid model of this GIS is used for the solar radiation simulation. By using it, it is possible to easily acquire information regarding precise positions and shapes of the plurality of evaluation target buildings 4 as the installation base of the photovoltaic power generation module. Further, the above-described solar radiation area that can be derived from the positional relationship with the sun position can be calculated very easily.

さらに、このように太陽光発電の評価についてGISを活用する本発明においては、評価対象建築物4の決定についてもGISを活用することで良好に進めることができる。評価対象建築物4は、そもそも太陽光発電に適した日射量が期待しうるものとして地上高が一定以上の高いものを指定することが望ましく、例えば、GISの属性データ8としての階数データなどを確認することで都市の多数の建築物群の中から容易に特定することができる。このような指定は、階数データに基づく自動抽出によることも可能である。   Furthermore, in this invention which utilizes GIS about evaluation of photovoltaic power generation in this way, it can progress favorably by utilizing GIS also about determination of the evaluation object building 4. FIG. It is desirable that the building to be evaluated 4 should be designated as having a ground height higher than a certain level so that the amount of solar radiation suitable for solar power generation can be expected. For example, floor data as attribute data 8 of GIS By confirming, it can be easily identified from among a large number of buildings in the city. Such designation can also be made by automatic extraction based on floor data.

また、近時の環境問題への取り組みは、環境負荷の明確化による自助努力の促進が原動力の一端ともなっており、太陽光発電の導入が検討される評価対象建築物4自体のエネルギー消費量を試算することで、このような自助努力を促すことができる。この場合、環境負荷と自助努力の相対的な評価ができるエネルギーの自給率、すなわち、評価対象建築物4における太陽光発電によるエネルギー供給量のエネルギー消費量との相対的な割合を試算することが有効である。評価対象建築物4のエネルギー消費量は、GISの属性データ8を活用した推定が可能で、例えば近年においては、属性データ8である用途データ10と固定資産データ11等を用いて適切に推定できることが環境問題の研究者により提案されている。   In addition, recent efforts to address environmental issues are partly driven by the promotion of self-help efforts by clarifying environmental burdens, and the energy consumption of the building 4 itself to be evaluated for the introduction of solar power generation is reduced. By making a trial calculation, such self-help efforts can be promoted. In this case, the energy self-sufficiency rate that can be evaluated relative to the environmental load and the self-help effort, that is, the relative proportion of the energy consumption of the solar power generation in the building 4 to be evaluated can be calculated. It is valid. The energy consumption of the building 4 to be evaluated can be estimated using the attribute data 8 of the GIS. For example, in recent years, the usage data 10 that is the attribute data 8 and the fixed asset data 11 can be appropriately estimated. Has been proposed by researchers on environmental issues.

さらに、都市への太陽光発電の新規導入は、都市全体を一括して評価するのではなく、道路で区画された街区を単位とすることで、日陰の影響をより少なくして都市における太陽光発電設備の配置の適格性を高めることができる。   Furthermore, the new introduction of solar power generation in cities does not evaluate the entire city in a lump, but by using the blocks divided by roads as a unit, solar effects in the city can be reduced with less shade. The eligibility of the arrangement of power generation facilities can be improved.

以上の説明から明らかなように、本発明によれば、都市における太陽光発電への取り組みの有効性を効率的かつ的確に検討することができ、環境負荷を有効に低減させることができる。   As is clear from the above description, according to the present invention, the effectiveness of solar power generation in a city can be examined efficiently and accurately, and the environmental load can be effectively reduced.

また、都市における中高層の建築物群を対象とした最適な太陽光発電設備の配置を検討できるようにすることで、効率的な環境対策を推進することができる。   In addition, efficient environmental measures can be promoted by making it possible to study the optimal arrangement of solar power generation facilities for middle- and high-rise buildings in a city.

図1に都市の街区に太陽光発電を導入することを検討するための太陽光発電の評価方法の全体的な流れを、図2に評価を行うコンピュータシステムの構成を示す。コンピュータシステムは、出願人が既に市販している三次元都市空間データを記録したGISであるMAPCUBE(登録商標4837007号)を利用して構築される。このGISデータ20は、二次元地図のデジタルマッピングデータ1に対し、精密な地物の高さ、形状を特定できる航空レーザ測量データにより形成される数値表層モデルデータ21を重ねて構成されるもので、属性データ8として地図上に位置するビルなどの建物現況データ22や固定資産データ11を備える。   FIG. 1 shows the overall flow of a solar power generation evaluation method for examining the introduction of solar power generation into a city block, and FIG. 2 shows the configuration of a computer system for evaluation. The computer system is constructed by using MAPCUBE (registered trademark No. 4833007), which is a GIS that records three-dimensional city space data already marketed by the applicant. This GIS data 20 is constructed by superimposing numerical surface layer model data 21 formed by aviation laser survey data capable of specifying the precise height and shape of features on the digital mapping data 1 of the two-dimensional map. As the attribute data 8, building status data 22 such as a building located on the map and fixed asset data 11 are provided.

図7(a)は、あるビルAの属性としてのデータ群を示すもので、ビルAのエネルギー消費原単位を推測しうる用途に関する用途データ10、ビルAの建築面積を算出しうる形状に関する形状データ12、ビルAの階数に関する階数データ23、ビルAの所在地に関する位置データ24、ビルAの延べ床面積を備えた固定資産データ11を有して構成される。   FIG. 7A shows a data group as an attribute of a certain building A. The usage data 10 relating to the usage in which the energy consumption basic unit of the building A can be estimated, and the shape relating to the shape capable of calculating the building area of the building A Data 12, floor data 23 regarding the floor of building A, position data 24 regarding the location of building A, and fixed asset data 11 including the total floor area of building A are configured.

また、上記システムは、図2に示すように、図外のマウスなどの入力機器からの入力を受け付ける入力部25と、該入力部25からの入力に従って評価対象地域2としての街区を指定する地域指定手段3と、街区2内における太陽光発電モジュールの設置の候補先としての評価対象建築物4を指定する建築物指定手段9と、街区2の日射状況を演算する日射状況演算部26と、評価対象建築物4の日射状況に基づく太陽光発電についての評価を行う発電評価手段7と、図外のディスプレイやプリンタなどに評価結果に関するデータなどを出力する出力部27とを有する。   In addition, as shown in FIG. 2, the system includes an input unit 25 that receives input from an input device such as a mouse (not shown), and an area that designates a block as an evaluation target area 2 according to the input from the input unit 25. A designation means 3, a building designation means 9 for designating a building 4 to be evaluated as a candidate for installation of a photovoltaic power generation module in the block 2, and a solar radiation condition calculation unit 26 for calculating the solar radiation situation of the block 2. It has a power generation evaluation means 7 for evaluating solar power generation based on the solar radiation situation of the building 4 to be evaluated, and an output unit 27 for outputting data relating to the evaluation result to a display or printer outside the figure.

上記入力部25は、上述したGISへのマウスなどからのアクセスを受け付け、マウスなどからの入力をGISに出力する。これを受けたGISによるデータ処理は、出力部27を介して出力され、例えばマウスの操作によってディスプレイ等に二次元地図を表示することができる。   The input unit 25 receives an access from the mouse or the like to the above-described GIS, and outputs an input from the mouse or the like to the GIS. In response to this, the data processing by GIS is output via the output unit 27, and for example, a two-dimensional map can be displayed on a display or the like by operating the mouse.

太陽光発電の導入に関する評価は、図1に示すように、太陽光発電モジュールを設置する街区2をGISの地図データ1がカバーする地図範囲内からマウスなどで指定することにより始められる(S-1)。この指定は、例えばディスプレイに表示された二次元地図上からポインタにより特定の街区2を選択するほか、特定の地名を図外のキーボードを介して入力することにより行っても足りる。   As shown in FIG. 1, the evaluation regarding the introduction of the photovoltaic power generation is started by designating the block 2 where the photovoltaic power generation module is installed from the map range covered by the map data 1 of the GIS with a mouse or the like (S- 1). This designation may be performed, for example, by selecting a specific block 2 from the two-dimensional map displayed on the display with a pointer or inputting a specific place name via a keyboard not shown.

上記地域指定手段3は、このような入力に従って地図データ1内に街区2を指定するもので、この実施の形態においては、政令指定都市に含まれる街区2を指定可能な単位とする。図3(a)は地域指定手段3による街区2の指定を示したもので、街区2を囲む道路28上に示される鎖線の内側が評価対象領域2である。   The area designating means 3 designates a block 2 in the map data 1 according to such an input. In this embodiment, the block 2 included in the government-designated city is a unit that can be designated. FIG. 3A shows the designation of the block 2 by the area designating means 3, and the inner side of the chain line shown on the road 28 surrounding the block 2 is the evaluation target region 2.

また、上記地域指定手段3は、上述した街区2に加え、高層の建築物などが建設されている場合に指定した街区2に日陰を及ぼすおそれがある街区2の周辺領域29をも指定する。図3(a)の街区2の外側の鎖線は周辺地域29の外縁を示すもので、周辺地域29は、予め地域指定手段3に設定された例えば街区2周辺の300m四方などといった基準に従い、街区2の外側に形成される。以上の指定に伴い、地域指定手段3は、指定された街区2、およびその周辺地域29についての数値表層モデルデータ21をGISデータ20から読み出す。   The area designating means 3 also designates a peripheral area 29 of the city block 2 that may be shaded when a high-rise building or the like is constructed in addition to the city block 2 described above. The chain line outside the block 2 in FIG. 3A indicates the outer edge of the surrounding area 29. The surrounding area 29 is in accordance with a standard such as a 300 m square around the block 2 set in advance in the area specifying means 3. 2 is formed outside. With the above designation, the area designating means 3 reads the numerical surface layer model data 21 for the designated block 2 and its surrounding area 29 from the GIS data 20.

地域指定手段3による街区2、およびその周辺地域29の指定が完了すると、建築物指定手段9により街区2内で太陽光発電モジュールの設置対象となる評価対象建築物4が自動抽出される。建築物指定手段9による抽出は、一般に日射量を期待しうる中層以上の建築物4を対象とするもので、上述した階数データ23、あるいは数値表層モデルデータ21の高さ情報に基づいて街区2内の全ての中高層ビル4が自動抽出される。   When the designation of the city block 2 and the surrounding area 29 by the area designating unit 3 is completed, the building designating unit 9 automatically extracts the evaluation target building 4 to be installed with the solar power generation module in the city block 2. The extraction by the building designating means 9 is generally intended for buildings 4 of the middle or higher layers where the amount of solar radiation can be expected, and based on the height information of the floor data 23 or the numerical surface model data 21 described above, the block 2 All the middle and high-rise buildings 4 are automatically extracted.

また、建築物指定手段9は、同様に階数データ23等に基づき、周辺地域29においても中層以上の建築物4を抽出する。この抽出は街区2内に日陰を及ぼすおそれがある建築物を対象とする。   Similarly, the building designating unit 9 also extracts the buildings 4 of the middle or higher layer in the surrounding area 29 based on the floor data 23 and the like. This extraction is intended for buildings that may be shaded in the block 2.

以上のようにして街区2内、およびその周辺地域29内の数値表層モデルデータ21と、この数値表層モデルデータ21上に位置する中高層ビル4とが抽出されると、続いて、日射状況演算部26によって街区2内の中高層ビル4を対象とする日射状況の演算が行われる(S-2)。日射状況演算部26は、図2に示すように、財団法人日本気象協会が既に提供しているMETPV-3と呼ばれる標準気象・日射データベース30を利用して構築される。このデータベースは日本全国の各地836地点を対象に、各地での過去数年間の平均日射量を所定日時毎に収めたもので、所定日時・場所での単位面積当たりの日射量と仮定できるものを実質的に提供する。また、設定により各地の年間平均日射量を求めることもできるようにされている。   When the numerical surface layer model data 21 in the block 2 and the surrounding area 29 and the mid-to-high-rise building 4 located on the numerical surface layer model data 21 are extracted as described above, the solar radiation state calculation unit 26, the solar radiation situation for the middle and high-rise buildings 4 in the block 2 is calculated (S-2). As shown in FIG. 2, the solar radiation status calculation unit 26 is constructed using a standard weather / solar radiation database 30 called METPV-3 already provided by the Japan Weather Association. This database covers the average amount of solar radiation over the past several years in each region for 836 locations throughout Japan, and can be assumed to be the amount of solar radiation per unit area at a certain date and location. Provide virtually. In addition, the annual average amount of solar radiation at each location can be determined by setting.

また、日射状況演算部26は、街区2の場所を条件にして上記標準気象・日射データベース30内の日射データ31を検索し、街区2の単位面積当たりの日射量を取得する土地単位日射量検索手段32を備えるとともに、街区2の中高層ビル4の日射面積を試算するために、太陽位置データ33と、メッシュ設定手段34と、日射対峙面積演算手段5と、影干渉面積演算手段6と、日射量演算手段35とを有する。上記太陽位置データ33は、太陽の位置情報を所定日時毎にデータベース化して構築される。   Moreover, the solar radiation condition calculation part 26 searches the solar radiation data 31 in the said standard weather and solar radiation database 30 on the condition of the block 2 and acquires the solar radiation amount per unit area of the block 2 per unit solar radiation amount search The solar position data 33, the mesh setting means 34, the solar radiation antipodal area calculation means 5, the shadow interference area calculation means 6, the solar radiation, Quantity calculation means 35. The sun position data 33 is constructed by creating a database of sun position information for each predetermined date and time.

上記メッシュ設定手段34は、街区2内の中高層ビル4の表面にメッシュを設定するもので、メッシュサイズは日射面積の試算の精度を考慮して適宜設定される。街区2内の中高層ビル4の日射面積の算出は図5に示す手順に従って進められ、先ず、図4(a)に示すように、数値表層モデルデータ21に従って形成された中高層ビル4の3Dモデルの立体的に構成された外表面にメッシュが形成される(S-21)。   The mesh setting means 34 sets a mesh on the surface of the mid-to-high-rise building 4 in the block 2 and the mesh size is appropriately set in consideration of the accuracy of trial calculation of the solar radiation area. The calculation of the solar radiation area of the middle-high-rise building 4 in the block 2 proceeds according to the procedure shown in FIG. 5, and first, as shown in FIG. 4A, the 3D model of the middle-high-rise building 4 formed according to the numerical surface model data 21 is obtained. A mesh is formed on the three-dimensional outer surface (S-21).

上記日射対峙面積演算手段5は、図4(a)太線で囲って示すように、街区2内の中高層ビル4の日射方向に対峙する面積としての日射対峙面積、言い換えれば、他の建築物が全くないと仮定したときの中高層ビル4の日射面積を演算するもので、GISデータ20によりその位置や向きなどが特定できる中高層ビル4と、上述した太陽位置データ33の太陽位置との位置関係から日射面積を判定して算出する(S-22)。なお、数値表層モデルデータ21によって特定可能な中高層ビル4の外表面の各面の面の向きの情報などから日射面積を判定することも可能である。   As shown in FIG. 4A, the solar radiation area calculation means 5 is a solar radiation area as an area facing the solar radiation direction of the medium-to-high-rise building 4 in the block 2, in other words, other buildings. Calculates the solar radiation area of the mid-to-high-rise building 4 when it is assumed that it is not at all. From the positional relationship between the mid-to-high-rise building 4 whose position and orientation can be specified by the GIS data 20 and the solar position of the solar position data 33 described above. The solar radiation area is determined and calculated (S-22). The solar radiation area can also be determined from information on the orientation of each surface of the outer surface of the medium- and high-rise building 4 that can be specified by the numerical surface model data 21.

上記影干渉面積演算手段6は、日射シミュレーションを行い、シミュレーション時における街区2内の各中高層ビル4の日射方向に対峙する面上に形成される可能性がある他の中高層ビル4’の影の干渉を確認する(S-23)。この他の中高層ビル4’は上述した周辺地域29に属するものも対象に含まれ、日射シミュレーションは、市販の日影図、あるいは日影時間図の作成ソフトをシステムに組み込むことにより行われる。影の干渉は、図4(b)に示すように、上述した日射対峙面4aに設定されたメッシュの各格子点について、日射シミュレーション時における日陰の有無を判定し(S-24)、これを全格子点の判定が終了するまで多数回繰り返して行うことができ(S-25)、日陰と判定された格子点の数に基づいて日陰面積が決定される(S-26)。   The shadow interference area calculation means 6 performs a solar radiation simulation, and the shadow interference of other middle / high-rise buildings 4 ′ that may be formed on the surface facing the solar radiation direction of each middle-high-rise building 4 in the block 2 at the time of simulation. Interference is confirmed (S-23). Other medium- and high-rise buildings 4 ′ include those belonging to the surrounding area 29 described above, and the solar radiation simulation is performed by incorporating commercially available shadow map or shadow time diagram creation software into the system. As shown in FIG. 4 (b), the shadow interference is determined by the presence or absence of shade at the time of the solar radiation simulation for each lattice point of the mesh set on the solar radiation surface 4a described above (S-24). This can be repeated many times until the determination of all grid points is completed (S-25), and the shade area is determined based on the number of grid points determined to be shade (S-26).

また、上記日射量演算手段35は、一年間の各日時における日射対峙面積と影干渉面積との差を求め、この差に対し、日射データ21から取得したそれぞれの日時における単位面積当たりの日射量を乗算したものを合計し、平均することにより、例えば一日当たりの平均日射量として演算することも可能であるが、本実施の形態においては、図5に示すように、処理効率の向上を図るために、夏至と冬至のそれぞれの正午における日射条件を平均して平均日射量を演算する。具体的には、夏至と冬至のそれぞれの正午における日射対峙面積と影干渉面積との差を演算するとともに(S-27)、上述した土地単位日射量検索手段32も同様に夏至と冬至のそれぞれの正午における単位面積当たりの日射量を検索し、これら夏至と冬至のそれぞれの日射面積と単位面積当たり日射量を乗じたものを平均して平均日射量を算出する(S-30)。   The solar radiation amount calculating means 35 obtains the difference between the solar radiation area and the shadow interference area at each date and time for one year, and against this difference, the solar radiation amount per unit area at each date and time acquired from the solar radiation data 21. It is possible to calculate the average solar radiation amount per day, for example, by summing and multiplying the products multiplied by, but in this embodiment, as shown in FIG. 5, the processing efficiency is improved. Therefore, the average solar radiation amount is calculated by averaging the solar radiation conditions at noon of the summer solstice and the winter solstice. Specifically, while calculating the difference between the solar convection area and the shadow interference area at noon between the summer solstice and the winter solstice (S-27), the above-mentioned land unit solar radiation amount search means 32 is also the summer solstice and winter solstice. The solar radiation amount per unit area at noon is searched, and the average solar radiation amount is calculated by averaging the solar radiation area of the summer solstice and the winter solstice multiplied by the solar radiation amount per unit area (S-30).

平均日射量の算出は街区2内の中高層ビル4毎に行われ、街区2内の全ての中高層ビル4について完了するまで繰り返される(S-28)。また、夏至と冬至のそれぞれの場合についても完了するまで繰り返される(S-29)。   The calculation of the average amount of solar radiation is performed for each medium-to-high-rise building 4 in the block 2 and is repeated until all the medium-to-high-rise buildings 4 in the block 2 are completed (S-28). The process is repeated until the summer solstice and the winter solstice are completed (S-29).

このようにして夏至と冬至に基づいて年間の日射量を推定するため、この実施の形態においては、上述した日射対峙面積演算手段5による日射対峙面積の算出や、影干渉面積演算手段6による影の干渉についても、これらの時期のものを用いて行われる。   In this embodiment, in order to estimate the amount of solar radiation for the year based on the summer solstice and the winter solstice in this way, in the present embodiment, the calculation of the solar radiation antipodal area by the solar antipodal area calculation means 5 described above, Interference is also performed using those at these times.

以上のようにして中高層ビル2毎の平均日射量が算出されると、この後、発電評価手段7による太陽光発電量の演算、評価処理が進められる。発電評価手段7に形成される太陽光発電量演算手段36は、太陽光発電のエネルギー算出式として知られるEp=H×K×P×365÷1により太陽光発電量を演算する(S-3)。   When the average solar radiation amount for each middle-high-rise building 2 is calculated as described above, the calculation and evaluation processing of the photovoltaic power generation amount by the power generation evaluation means 7 is thereafter performed. The photovoltaic power generation amount calculation means 36 formed in the power generation evaluation means 7 calculates the photovoltaic power generation amount by Ep = H × K × P × 365 ÷ 1, which is known as an energy calculation formula for solar power generation (S-3). ).

ここでEpは年間発電量、Hは中高層ビル4の屋上・壁面の一日当たりの年平均日射量、Kは設計係数、Pは太陽光発電原単位、365は年間の日数、1は標準状態における日射強度を意味し、それぞれ太陽光発電量試算データ42として発電評価手段7内に記憶されている。演算された各中高層ビル4の太陽光発電量は、例えば出力部27を介してディスプレイに表示され、この場合、対象となっている中高層ビル4を識別できるようにビル名等も合わせて表示することが望ましい。   Where Ep is the annual power generation, H is the average daily solar radiation on the roof and walls of the mid-to-high-rise building 4, K is the design factor, P is the solar power generation unit, 365 is the number of days in the year, and 1 is in the standard state It means the solar radiation intensity and is stored in the power generation evaluation means 7 as the solar power generation amount calculation data 42, respectively. The calculated solar power generation amount of each middle-high-rise building 4 is displayed on the display via, for example, the output unit 27. In this case, the building name is also displayed so that the target middle-high-rise building 4 can be identified. It is desirable.

また、太陽光発電モジュールの窓による設置面積の制限を考慮して、中高層ビル4の側壁面における太陽光発電量を屋上の太陽光発電量より低く見積もるための定数を上記算出式に加えることが望ましい。   In addition, in consideration of the limitation of the installation area by the window of the solar power generation module, a constant for estimating the solar power generation amount on the side wall surface of the mid-to-high-rise building 4 to be lower than the rooftop solar power generation amount may be added to the above calculation formula. desirable.

また、上述した発電評価手段7は、各中高層ビル4のエネルギー自給率を評価する自給率評価手段13を備え、自給率の試算のために、中高層ビル4毎のエネルギー消費原単位を算出するエネルギー消費原単位算出手段38と、これにより算出されたエネルギー消費原単位を用いて中高層ビル4毎のエネルギー消費量を演算するエネルギー消費量演算手段39とを有する。図6に示すように、エネルギー消費原単位算出手段38は、GISの属性データ8として各中高層ビル4に設定される用途データ10を参照し(S40)、該用途データ10の種別毎に一対一対応する量が設定されたエネルギー消費原単位を各中高層ビル4について決定する(S40-1)。   Moreover, the power generation evaluation means 7 described above includes self-sufficiency rate evaluation means 13 that evaluates the energy self-sufficiency rate of each medium- and high-rise building 4, and calculates the energy consumption basic unit for each medium-to-high-rise building 4 in order to calculate the self-sufficiency rate. Consumption unit calculation means 38 and energy consumption calculation means 39 for calculating the energy consumption for each of the high-rise buildings 4 using the energy consumption unit calculated thereby. As shown in FIG. 6, the energy consumption basic unit calculation means 38 refers to the usage data 10 set in each middle-high-rise building 4 as the GIS attribute data 8 (S40), and is one-to-one for each type of the usage data 10. The energy consumption basic unit for which the corresponding amount is set is determined for each middle-high-rise building 4 (S40-1).

また、上記エネルギー消費量演算手段39は、各中高層ビル4について、エネルギー消費原単位と延べ床面積あるいは世帯数とを乗算し、これによりエネルギー消費量を算出する。エネルギー消費量の算出は、図6に示すように、先ず、用途データ10に基づいてエネルギー消費量算出対象の中高層ビル4が業務系に属するビルであるか(S41)、一般住宅に属するものであるか(S42)、共同住宅に属するものであるか(S43)が判定される。このうち、一般住宅の場合は例えば1.5世帯が居住すると仮定され(S42-1)、また、共同住宅の場合には、一般住宅の一般的な延べ床面積を1.5世帯で除算して1世帯当たりの延べ床面積を試算し、この一世帯当たりの延べ床面積によって共同住宅の延べ床面積を除算し、共同住宅の世帯数として推計する(S43-1)。   The energy consumption calculation means 39 multiplies the energy consumption basic unit by the total floor area or the number of households for each middle and high-rise building 4 to calculate the energy consumption. As shown in FIG. 6, the energy consumption is calculated based on whether the medium-to-high-rise building 4 subject to energy consumption calculation belongs to a business system based on the usage data 10 (S41) or belongs to a general house. It is determined whether there is (S42) or whether it belongs to an apartment house (S43). Of these, it is assumed that 1.5 households live in ordinary houses (S42-1), and in the case of apartment houses, the general total floor area of ordinary houses is divided by 1.5 households. The total floor area per household is estimated, and the total floor area of the apartment house is divided by the total floor area per household to estimate the number of households in the apartment house (S43-1).

一方、業務系のビルの場合には、先ず、固定資産データ11の有無を確認し(S-44)、固定資産データ11を備えているときには、この固定資産データ11から延べ床面積を読み出す(S44-1)。固定資産データ11がないときには、形状データ12から建築面積を算定し(S45)、また、階数データ23の有無を確認して(S46)、階数データ23を備えているときには、その階数と建築面積から延べ床面積を試算する(S46-1)。中高層ビル4の場合、ほとんどが階数データ23を備えていることが予想されるが、仮に階数データ23がない場合には、一般的な2階建て程度と同等であると仮定するなどして延べ床面積を試算する(S47)。なお、この階数の仮定については、中高層ビル4であることを考慮して適宜変更し、設定を調整してもよい。   On the other hand, in the case of a business building, first, the presence / absence of the fixed asset data 11 is confirmed (S-44). When the fixed asset data 11 is provided, the total floor area is read from the fixed asset data 11 ( S44-1). When there is no fixed asset data 11, the building area is calculated from the shape data 12 (S45), and the presence or absence of the floor data 23 is confirmed (S46). When the floor data 23 is provided, the floor number and the building area are calculated. To estimate the total floor area (S46-1). In the case of the mid-to-high-rise buildings 4, most of them are expected to have floor data 23, but if there is no floor data 23, it is assumed that they are equivalent to a general two-story building. The floor area is estimated (S47). The assumption of the number of floors may be changed as appropriate in consideration of the fact that the building is a middle-high-rise building 4 and the setting may be adjusted.

以上のようにして住宅系の世帯数、あるいは業務系の延べ床面積を求めたら、先に決定していたエネルギー消費原単位をこれらに乗算し、各中高層ビル4のエネルギー消費量とする。なお、以上に述べた中高層ビル4のエネルギー消費量の算出処理は、図1に示すように、上述した街区2内に中高層ビル4を抽出した段階で行うことができる(S-6)。   When the number of residential households or the total floor area of the business system is obtained as described above, the energy consumption basic unit determined previously is multiplied by these to obtain the energy consumption of each middle-high-rise building 4. In addition, the calculation process of the energy consumption of the middle-high-rise building 4 described above can be performed when the middle-high-rise building 4 is extracted in the above-described block 2 as shown in FIG. 1 (S-6).

一方、上記自給率評価手段13は、各中高層ビル4における太陽光発電量のエネルギー消費量に対する百分率を求めるもので、太陽光発電量をエネルギー消費量によって除算して中高層ビル4の太陽光発電によるエネルギー自給率を演算する(S-4)。演算の結果、自給率が60%以上であれば、太陽光発電の導入に適しているとの評価を行い、例えば50%以下であれば導入にあまり適していないとの評価を行う(S-5)。この評価結果は出力部27を介して出力されてディスプレイ等に表示される。   On the other hand, the self-sufficiency rate evaluation means 13 obtains a percentage of the photovoltaic power generation amount in each middle-to-high-rise building 4 with respect to the energy consumption amount. The energy self-sufficiency rate is calculated (S-4). As a result of the calculation, if the self-sufficiency rate is 60% or more, it is evaluated that it is suitable for introduction of solar power generation, and if it is 50% or less, for example, it is evaluated that it is not suitable for introduction (S- 5). This evaluation result is output via the output unit 27 and displayed on a display or the like.

したがって地域指定手段3により街区2を指定するだけで、街区2内の太陽光発電に適した適数の中高層ビル4が算出され、また、この適数の中高層ビル4の他の中高層ビル4’により形成される影を考慮した日射量に基づいて太陽光発電量が算出され、さらに、予想される太陽光発電の自給率にしたがって当該中高層ビル4への太陽光発電の導入の適否を判定することができる。このように自給率を太陽光発電の導入判定に含めることで、環境負荷に対する平等で適切な対応を求めることができ、必要な太陽光発電の導入を良好に促し、環境負荷を効率的に低減することができる。   Therefore, only by designating the block 2 by the area designating means 3, an appropriate number of medium- and high-rise buildings 4 suitable for solar power generation in the block 2 are calculated, and other appropriate medium-to-high-rise buildings 4 ' The amount of solar power generation is calculated based on the amount of solar radiation that takes into account the shadow formed by the above, and further, the suitability of the introduction of solar power generation into the middle-high-rise building 4 is determined according to the expected self-sufficiency of solar power generation be able to. By including the self-sufficiency rate in the introduction judgment of solar power generation in this way, it is possible to seek an appropriate and appropriate response to the environmental load, promote the necessary introduction of solar power generation well, and reduce the environmental load efficiently. can do.

図8に本発明の第2の実施の形態を示す。この実施の形態において、地域指定手段3は、評価対象地域2として政令指定都市全体を単位として指定する。また、地域指定手段3は、政令指定都市全体を上述した実施の形態と同程度の広さとなる街区毎に適宜分割し、各街区で中高層ビル4を抽出し(S-50)、太陽光発電の導入の評価を行う。政令指定都市の街区への分割は、予め街区を登録しておくなどすることにより行うことができ、あるいは面積から街区を自動抽出させることにより行うことが可能である。   FIG. 8 shows a second embodiment of the present invention. In this embodiment, the area designating means 3 designates the entire government-designated city as the evaluation target area 2 as a unit. Further, the area designating means 3 appropriately divides the entire government-designated city into each block having the same size as that of the above-described embodiment, and extracts the middle and high-rise buildings 4 in each block (S-50). Evaluate the introduction of The division of the ordinance-designated city into blocks can be performed by registering blocks in advance, or can be performed by automatically extracting blocks from the area.

この後、同様に中高層ビル4毎に日射量を演算し(S-51)太陽光発電量を求める(S-52)。また、同様に、中高層ビル4の消費エネルギーも算出し(S-53)、これらに基づいて太陽光発電の評価を行う(S-54)。都市の全ての街区についてこれを繰り返す(S-55)ことにより、この実施の形態においては、都市全体2のどの街区が太陽光発電の導入に適しているか、すなわち都市2における太陽光発電の最適な導入方法を街区を単位として評価することができる(S-56)。   Thereafter, similarly, the solar radiation amount is calculated for each middle-high-rise building 4 (S-51), and the photovoltaic power generation amount is obtained (S-52). Similarly, the energy consumption of the mid-to-high-rise building 4 is also calculated (S-53), and solar power generation is evaluated based on these (S-54). By repeating this for all city blocks (S-55), in this embodiment, which city block in the entire city 2 is suitable for the introduction of photovoltaic power generation, that is, the optimum photovoltaic power generation in the city 2 The introduction method can be evaluated in units of city blocks (S-56).

また、この実施の形態においては、先に述べた太陽光発電の評価として、上述した実施の形態では機能していない発電評価手段7のコストパフォーマンス評価手段40と、CO排出量試算手段41とによる処理が、この実施の形態においては上述した自給率評価手段13による処理と並行して行われる。上記コストパフォーマンス評価手段40は、図7(b)に示すように、例えば太陽光発電設備の導入によって発生する一年当たりの単位面積当たりの費用を、中高層ビル4の一年当たりの単位面積当たりで発電される太陽光発電量の電力料金で除算したもので、算出される数値が1より大きければ、太陽光発電の導入に適しているとの評価をディスプレイ等に出力する。図7(b)に示す装置設置費用等は、コストパフォーマンス試算データ43として発電評価手段7に記憶されている。 Further, in this embodiment, as the evaluation of solar power generation described above, the cost performance evaluation means 40 of the power generation evaluation means 7 not functioning in the above-described embodiment, the CO 2 emission estimation calculation means 41, and In this embodiment, the process by is performed in parallel with the process by the self-sufficiency rate evaluation means 13 described above. As shown in FIG. 7 (b), the cost performance evaluation means 40 calculates the cost per unit area per year generated by the introduction of the solar power generation facility, for example, per unit area per year of the middle-high-rise building 4. If the calculated numerical value is larger than 1, an evaluation that it is suitable for the introduction of solar power generation is output to a display or the like. The apparatus installation costs shown in FIG. 7B are stored in the power generation evaluation means 7 as cost performance trial calculation data 43.

一方、CO2排出量試算手段41は、発電方式によるCO2発生量を評価要素とするもので、 図7(c)に示すように、電力供給が、例えば石炭火力発電から太陽光発電に切り換えられたときにCO排出量が975から0に削減されることを示す。ここで、表に示す数値は1KW発電で発生するCOの量であり、括弧内は設備導入時あるいは運用時に発生するCOの量である。図7(c)に示す各発電方式に対応するCO発生量は、CO排出量試算データ44として発電評価手段7に記憶されている。なお、この場合、評価対象地域2の導入前の電力供給方法をGISデータ20から取り込むなどすることが望ましい。 On the other hand, the CO 2 emission estimation means 41 uses the amount of CO 2 generated by the power generation method as an evaluation factor. As shown in FIG. 7C, the power supply is switched from, for example, coal-fired power generation to solar power generation. It shows that the CO 2 emission amount is reduced from 975 to 0. Here, the numerical values shown in the table are the amount of CO 2 generated by 1 KW power generation, and the parentheses are the amount of CO 2 generated at the time of facility introduction or operation. The CO 2 generation amount corresponding to each power generation method shown in FIG. 7C is stored in the power generation evaluation means 7 as the CO 2 emission trial calculation data 44. In this case, it is desirable to take in the power supply method before the introduction of the evaluation target area 2 from the GIS data 20.

本発明を示すフローチャートである。It is a flowchart which shows this invention. 本発明を示すブロック図である。It is a block diagram which shows this invention. 評価対象地域および評価対象建築物を説明する図で、(a)は評価対象地域が指定された状態を示す図、(b)は評価対象建築物の日射シミュレーション状態を示す図である。It is a figure explaining an evaluation object area and an evaluation object building, (a) is a figure showing the state where the evaluation object area was specified, and (b) is a figure showing the solar radiation simulation state of an evaluation object building. 日射状況演算部による処理を示す図で、(a)は日射対峙面積を示す図、(b)は影干渉面積を示す図である。It is a figure which shows the process by a solar radiation condition calculating part, (a) is a figure which shows a solar radiation antipodal area, (b) is a figure which shows a shadow interference area. 日射状況演算部による処理のフローチャートである。It is a flowchart of the process by a solar radiation condition calculating part. エネルギー消費量演算手段による処理のフローチャートである。It is a flowchart of the process by an energy consumption calculating means. 発電評価手段で用いられるデータを示す図で、(a)は属性データを説明する図、(b)はコストパフォーマンス評価手段による処理を説明する図、( c)はCO2排出量試算部による処理を説明する図である。It is a figure which shows the data used with a power generation evaluation means, (a) is a figure explaining attribute data, (b) is a figure explaining the process by a cost performance evaluation means, (c) is a process by the CO2 emission estimation part. It is a figure explaining. 本発明の他の実施の形態を示す図でフローチャートである。It is a figure which shows other embodiment of this invention, and is a flowchart.

符号の説明Explanation of symbols

1 地図データ
2 評価対象地域
3 地域指定手段
4 評価対象建築物
4’ 他の評価対象建築物
4a 日射対峙面
5 日射対峙面積演算手段
6 影干渉面積演算手段
7 発電評価手段
8 属性データ
9 建築物指定手段
10 用途データ
11 固定資産データ
12 形状データ
13 自給率評価手段
DESCRIPTION OF SYMBOLS 1 Map data 2 Evaluation object area 3 Area designation means 4 Evaluation object building 4 'Other evaluation object building 4a Solar radiation opposite surface 5 Solar radiation opposite area calculation means 6 Shadow interference area calculation means 7 Power generation evaluation means 8 Attribute data 9 Building Designation means 10 Application data 11 Fixed asset data 12 Shape data 13 Self-sufficiency rate evaluation means

Claims (5)

GISの地図データから評価対象地域を指定する地域指定手段と、
前記評価対象地域内に適宜設定された複数の評価対象建築物の各々における日射対峙面積をGISの三次元立体モデルと太陽位置との位置関係から試算する日射対峙面積演算部と、
前記三次元立体モデルへの日射シミュレーションから評価対象建築物の各々の日射対峙面上に他の評価対象建築物によって形成される日陰面積を試算する影干渉面積演算部と、
前記日射対峙面積と日陰面積との差に対して当該評価対象地域に設定された発電係数を乗算して各評価対象建築物による個別太陽光発電量を求め、
評価対象地域内の複数の評価対象建築物の個別太陽光発電量を合計して評価対象地域全体の総合太陽光発電量を試算する発電評価手段とを有する太陽光発電の評価システム。
An area designation means for designating an evaluation target area from GIS map data;
A solar radiation area calculation unit for calculating the solar radiation area in each of the plurality of buildings to be evaluated appropriately set in the evaluation area from the positional relationship between the three-dimensional model of the GIS and the sun position;
A shadow interference area calculation unit for calculating a shaded area formed by another building to be evaluated on the solar radiation surface of each building to be evaluated from solar radiation simulation to the three-dimensional solid model;
Multiplying the power generation coefficient set in the evaluation target area against the difference between the solar radiation area and the shaded area, the individual photovoltaic power generation amount by each evaluation target building is obtained,
A photovoltaic power generation evaluation system comprising: a power generation evaluation unit that totalizes individual photovoltaic power generation amounts of a plurality of evaluation target buildings in an evaluation target region to calculate a total solar power generation amount of the entire evaluation target region.
前記評価対象建築物をGISの地図データあるいは前記評価対象建築物の属性データから指定する建築物指定手段を有する請求項1記載の太陽光発電の評価システム。   The solar power generation evaluation system according to claim 1, further comprising: a building designating unit that designates the building to be evaluated from map data of GIS or attribute data of the building to be evaluated. 前記発電評価手段は、各評価対象建築物に関するGIS属性データの用途データと、固定資産データあるいは形状データとを参照し、
用途データの種別毎に設定されたエネルギー消費原単位に対し、固定資産データの延べ床面積を乗算し、あるいは形状データに延べ床面積換算値を乗じて得られる推定延べ床面積を乗算して各評価対象建築物のエネルギー消費量を試算し、該エネルギー消費量により前記個別太陽光発電量を除算して得られる自給率が所定の閾値を満たすことを条件として各評価対象建築物についての太陽光発電の導入効果の判定結果を出力する自給率評価手段を有する請求項1または2記載の太陽光発電の評価システム。
The power generation evaluation means refers to the use data of the GIS attribute data related to each evaluation target building and the fixed asset data or shape data,
Multiply the energy consumption intensity set for each type of application data by the total floor area of fixed asset data, or multiply the estimated total floor area obtained by multiplying the shape data by the total floor area conversion value. Estimate the energy consumption of the building to be evaluated, and solar power for each building to be evaluated on condition that the self-sufficiency rate obtained by dividing the individual photovoltaic power generation amount by the energy consumption satisfies a predetermined threshold The solar power generation evaluation system according to claim 1, further comprising a self-sufficiency rate evaluation unit that outputs a determination result of a power generation introduction effect.
前記地域指定手段は、評価対象地域として地図データ上の街区を単位として指定する請求項1ないし3のいずれかに記載の太陽個発電の評価システム。   The solar power generation evaluation system according to any one of claims 1 to 3, wherein the area designating unit designates a block on map data as a unit of evaluation as an evaluation target area. GISの地図データから評価対象地域を指定し、
次いで、前記評価対象地域内に適宜設定された複数の評価対象建築物の各々における日射対峙面積をGISの三次元立体モデルと太陽位置との位置関係から試算するとともに、前記三次元立体モデルへの日射シミュレーションから評価対象建築物の各々の日射対峙面上に他の評価対象建築物によって形成される日陰面積を試算し、
この後、前記日射対峙面積と日陰面積との差に対して当該評価対象地域に設定された発電係数を乗算して各評価対象建築物による個別太陽光発電量を求め、
評価対象地域内の複数の評価対象建築物の個別太陽光発電量を合計して評価対象地域全体の総合太陽光発電量を試算する太陽光発電の評価方法。
Specify the evaluation area from the map data of GIS,
Next, the solar radiation area in each of the plurality of buildings to be evaluated appropriately set in the region to be evaluated is calculated from the positional relationship between the three-dimensional model of the GIS and the sun position, and Estimate the shade area formed by other buildings to be evaluated on the solar radiation surface of each building to be evaluated from solar radiation simulation,
After that, by multiplying the difference between the solar radiation area and the shade area by the power generation coefficient set in the evaluation target area, the individual photovoltaic power generation amount by each evaluation target building is obtained,
A solar power generation evaluation method that estimates the total solar power generation amount of the entire evaluation target area by summing up the individual solar power generation amounts of a plurality of evaluation target buildings in the evaluation target area.
JP2008097513A 2008-04-03 2008-04-03 Solar power generation evaluation system and evaluation method Active JP5527938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097513A JP5527938B2 (en) 2008-04-03 2008-04-03 Solar power generation evaluation system and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097513A JP5527938B2 (en) 2008-04-03 2008-04-03 Solar power generation evaluation system and evaluation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014082529A Division JP5827366B2 (en) 2014-04-14 2014-04-14 Solar power generation evaluation system and evaluation method

Publications (2)

Publication Number Publication Date
JP2009250724A true JP2009250724A (en) 2009-10-29
JP5527938B2 JP5527938B2 (en) 2014-06-25

Family

ID=41311605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097513A Active JP5527938B2 (en) 2008-04-03 2008-04-03 Solar power generation evaluation system and evaluation method

Country Status (1)

Country Link
JP (1) JP5527938B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037523A (en) * 2011-08-08 2013-02-21 Tokyo Gas Co Ltd Shade simulation system
JP5283100B1 (en) * 2013-01-31 2013-09-04 国際航業株式会社 Solar power generation potential evaluation device and solar power generation potential evaluation program
CN103713336A (en) * 2013-12-24 2014-04-09 广西壮族自治区气象服务中心 Hydropower station basin areal rainfall meteorology forecast method based on GIS subarea
JP2014153849A (en) * 2013-02-07 2014-08-25 Tokyo Gas Co Ltd Shade simulation system
JP2015094596A (en) * 2013-11-08 2015-05-18 大阪瓦斯株式会社 Solar-energy-utilization calculation system
JP2015132539A (en) * 2014-01-14 2015-07-23 株式会社東芝 Sunshine quantity calculating apparatus, route proposing apparatus, and sunshine quantity calculating method
JP2016200453A (en) * 2015-04-08 2016-12-01 株式会社Nttファシリティーズ Meteorological data estimation method and electric power plant site evaluation method
JP2017046428A (en) * 2015-08-25 2017-03-02 大和ハウス工業株式会社 Power interchange system
CN111400877A (en) * 2020-03-05 2020-07-10 重庆特斯联智慧科技股份有限公司 Intelligent city simulation system and method based on GIS data
CN111639381A (en) * 2020-06-03 2020-09-08 江苏城乡建设职业学院 Urban building solar energy resource evaluation information system and working method thereof
CN115936387A (en) * 2022-12-20 2023-04-07 中国电建集团贵阳勘测设计研究院有限公司 Photometric data-based photovoltaic power station solar energy resource assessment method
JP7437673B2 (en) 2019-10-29 2024-02-26 パナソニックIpマネジメント株式会社 Evaluation methods, programs, and evaluation systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001265833A (en) * 2000-03-23 2001-09-28 Misawa Homes Co Ltd System and method for simulating shade, and storage medium stored with program making computer implement method for simulating shade
JP2006114838A (en) * 2004-10-18 2006-04-27 Sharp Corp Solar power generation installation diagnostic system, method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001265833A (en) * 2000-03-23 2001-09-28 Misawa Homes Co Ltd System and method for simulating shade, and storage medium stored with program making computer implement method for simulating shade
JP2006114838A (en) * 2004-10-18 2006-04-27 Sharp Corp Solar power generation installation diagnostic system, method and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013023830; 松川洋、他: '太陽光発電システムの建築的利用に関する研究 : (その1) 部分日陰が発電特性に及ぼす影響評価' 学術講演梗概集. D-2, , 20000703, P.445,446, 社団法人日本建築学会 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037523A (en) * 2011-08-08 2013-02-21 Tokyo Gas Co Ltd Shade simulation system
JP5283100B1 (en) * 2013-01-31 2013-09-04 国際航業株式会社 Solar power generation potential evaluation device and solar power generation potential evaluation program
JP2014153849A (en) * 2013-02-07 2014-08-25 Tokyo Gas Co Ltd Shade simulation system
JP2015094596A (en) * 2013-11-08 2015-05-18 大阪瓦斯株式会社 Solar-energy-utilization calculation system
CN103713336A (en) * 2013-12-24 2014-04-09 广西壮族自治区气象服务中心 Hydropower station basin areal rainfall meteorology forecast method based on GIS subarea
JP2015132539A (en) * 2014-01-14 2015-07-23 株式会社東芝 Sunshine quantity calculating apparatus, route proposing apparatus, and sunshine quantity calculating method
JP2016200453A (en) * 2015-04-08 2016-12-01 株式会社Nttファシリティーズ Meteorological data estimation method and electric power plant site evaluation method
JP2017046428A (en) * 2015-08-25 2017-03-02 大和ハウス工業株式会社 Power interchange system
JP7437673B2 (en) 2019-10-29 2024-02-26 パナソニックIpマネジメント株式会社 Evaluation methods, programs, and evaluation systems
CN111400877A (en) * 2020-03-05 2020-07-10 重庆特斯联智慧科技股份有限公司 Intelligent city simulation system and method based on GIS data
CN111639381A (en) * 2020-06-03 2020-09-08 江苏城乡建设职业学院 Urban building solar energy resource evaluation information system and working method thereof
CN115936387A (en) * 2022-12-20 2023-04-07 中国电建集团贵阳勘测设计研究院有限公司 Photometric data-based photovoltaic power station solar energy resource assessment method
CN115936387B (en) * 2022-12-20 2023-11-03 中国电建集团贵阳勘测设计研究院有限公司 Photovoltaic power station solar energy resource assessment method based on photometry data

Also Published As

Publication number Publication date
JP5527938B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5527938B2 (en) Solar power generation evaluation system and evaluation method
Rodríguez et al. Assessment of the photovoltaic potential at urban level based on 3D city models: A case study and new methodological approach
Dehwah et al. Prospects of PV application in unregulated building rooftops in developing countries: A perspective from Saudi Arabia
Shi et al. A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design
Verso et al. GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra
Li et al. A pixel-based approach to estimation of solar energy potential on building roofs
Sun et al. Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images
Wegertseder et al. Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential
Amado et al. Towards solar urban planning: A new step for better energy performance
Mohajeri et al. Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050
Quan et al. A GIS-based energy balance modeling system for urban solar buildings
Zhu et al. Solar accessibility in developing cities: A case study in Kowloon East, Hong Kong
Mutani et al. Buildings’ energy consumption, energy savings potential and the availability of renewable energy sources in urban spaces
Wieland et al. Computing solar radiation on CityGML building data
Gagliano et al. GIS-based decision support for solar photovoltaic planning in urban environment
Moghadam et al. Gis-based energy consumption model at the urban scale for the building stock
JP5827366B2 (en) Solar power generation evaluation system and evaluation method
Chen et al. Quantitative analysis of the building-level relationship between building form and land surface temperature using airborne LiDAR and thermal infrared data
Yildirim et al. Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications
Jaugsch et al. Estimation of solar energy on vertical 3D building walls on city quarter scale
Zubair et al. Assessment of photovoltaic capabilities in urban environments: A case study of Islamabad, Pakistan
Ni et al. Enhancing rooftop solar energy potential evaluation in high-density cities: A Deep Learning and GIS based approach
Zhang et al. Evaluation of the photovoltaic potential in built environment using spatial data captured by unmanned aerial vehicles
Ye et al. Planning the installation of building-integrated photovoltaic shading devices: A GIS-based spatiotemporal analysis and optimization approach
JP2003242232A (en) Peripheral environment information acquiring method and device and electric energy estimating method for photovoltaic power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5527938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250