JP2009250316A - Cage for rolling bearing - Google Patents

Cage for rolling bearing Download PDF

Info

Publication number
JP2009250316A
JP2009250316A JP2008097543A JP2008097543A JP2009250316A JP 2009250316 A JP2009250316 A JP 2009250316A JP 2008097543 A JP2008097543 A JP 2008097543A JP 2008097543 A JP2008097543 A JP 2008097543A JP 2009250316 A JP2009250316 A JP 2009250316A
Authority
JP
Japan
Prior art keywords
cage
metal material
sintered metal
rolling bearing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008097543A
Other languages
Japanese (ja)
Inventor
Nobuyuki Mori
信之 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008097543A priority Critical patent/JP2009250316A/en
Publication of JP2009250316A publication Critical patent/JP2009250316A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cage for a rolling bearing having necessary mechanical strength and capable of maintaining excellent seize resistance and abrasion resistance for a long period of time even under a severe lubrication condition. <P>SOLUTION: The cage 35 is formed of a sintered porous metallic material having Fe as a main component, contains Cu of 5 to 40 wt.% and has a porosity of 10 to 40%. Lubrication oil is impregnated in pores of the sintered metallic material forming the cage 35 in advance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、設置場所や使用環境により長時間給脂されることがなく、潤滑が不十分になり易い条件下で運転される転がり軸受の保持器に関するもので、例えば、風力発電機の主軸支持や増速器の回転軸支持に用いられる転がり軸受、自動車・建設機械などに使用される転がり軸受に好適である。   The present invention relates to a rolling bearing cage that is not lubricated for a long time depending on the installation location and usage environment, and is operated under conditions where lubrication is likely to be insufficient. For example, a spindle support for a wind power generator It is suitable for rolling bearings used for supporting the rotating shafts of gearboxes and gearboxes, and rolling bearings used for automobiles and construction machinery.

近年、環境に優しい発電方法の一環として風力発電が注目されており、ヨーロッパ諸国を中心に大型の風力発電機の設置が増加している。例えば1.5MW級の風力発電機では、本体部分が高さ50m以上の場所に設置されるため、ブレードの主軸支持や増速機に使用される転がり軸受に対するメンテナンス作業は大変な危険が伴う。加えて、10〜20年という長期にわたり連続運転されるため、軸受内部の潤滑剤(グリース・油)が徐々に枯渇していき、結果的に微量潤滑という過酷な条件で運転されることも考えられる。また、自動車・建設機械などに使用される軸受についても、必ずしも推奨される給脂サイクルが守られるわけではなく、潤滑が不十分な条件下で運転されることも考えられる。   In recent years, wind power generation has attracted attention as part of an environmentally friendly power generation method, and installation of large-scale wind power generators is increasing mainly in European countries. For example, in a 1.5 MW class wind power generator, the main body is installed in a place with a height of 50 m or more, and therefore, maintenance work for the main shaft support of the blade and the rolling bearing used for the gearbox is extremely dangerous. In addition, since it is operated continuously over a long period of 10 to 20 years, the lubricant (grease / oil) inside the bearing will gradually be depleted, and as a result, it may be operated under the harsh conditions of trace lubrication. It is done. Also, bearings used in automobiles and construction machines do not always follow the recommended greasing cycle, and may be operated under insufficient lubrication conditions.

軸受部品の中で、転動体を所定間隔に保持する保持器は、一般に鉄(鋼)や銅合金、樹脂などで形成されている。特に、高速回転・振動といった高い保持器強度が要求される使用条件では、鉄・銅合金(高力黄銅CAC301)等からなる金属製保持器が使用されている。転がり軸受の運転時、転動体は自転を伴いながら軌道面上を公転し、保持器は転動体や軌道輪によって駆動されて回転する。その際、軸受内部の潤滑剤が不足し、転動体と保持器ポケットとの接触部に油膜切れが発生すると、両者の金属接触により、保持器の摩耗が急激に促進される。この保持器の摩耗により生じる金属粉は、転動体と軌道面との接触部に噛み込んで、転動体や軌道面の表面剥離の原因となる。さらに、鉄製保持器の場合、転動体の材質である軸受鋼と同種金属(ともがね)となるため、焼付が生じやすくなる。   Of the bearing parts, a cage that holds rolling elements at a predetermined interval is generally formed of iron (steel), copper alloy, resin, or the like. In particular, a metal cage made of iron / copper alloy (high-strength brass CAC301) or the like is used under use conditions that require high cage strength such as high-speed rotation and vibration. During operation of the rolling bearing, the rolling element revolves on the raceway surface while rotating, and the cage is rotated by being driven by the rolling element or the raceway. At that time, when the lubricant inside the bearing is insufficient and an oil film breakage occurs at the contact portion between the rolling element and the cage pocket, the wear of the cage is rapidly accelerated by the metal contact between the two. The metal powder generated by the wear of the cage is caught in the contact portion between the rolling element and the raceway surface, which causes surface peeling of the rolling element and the raceway surface. Furthermore, in the case of an iron cage, seizure is likely to occur because it is the same metal (toggle) as the bearing steel that is the material of the rolling elements.

保持器材の耐摩耗性や耐焼付性を向上させる手段として、例えば、MoS、グラファイト、Snといった固体潤滑材やPTFE(フッ素樹脂)、PA(ポリアミド)といった樹脂を保持器表面に被膜としてコーティングすることが考えられる。しかし、潤滑不良により油膜切れが発生すると、被膜が摩滅することが考えられるため、長期的に万全な対策とはならない。 As means for improving the wear resistance and seizure resistance of the cage material, for example, a solid lubricant such as MoS 2 , graphite, or Sn, or a resin such as PTFE (fluorine resin) or PA (polyamide) is coated on the cage surface as a film. It is possible. However, if the oil film breaks due to poor lubrication, the coating may be worn away, so this is not a perfect countermeasure for the long term.

一方、多孔質体である焼結金属材の気孔中に潤滑油を含浸させた滑り軸受(焼結含油軸受)は広く使用されている。例えば、下記の特許文献1には、高速回転下での耐久性を向上させた鉄系焼結含油軸受が開示されている。   On the other hand, sliding bearings (sintered oil-impregnated bearings) in which pores of a sintered metal material that is a porous body are impregnated with lubricating oil are widely used. For example, Patent Document 1 below discloses an iron-based sintered oil-impregnated bearing that has improved durability under high-speed rotation.

また、下記の特許文献2には、高速・高温の環境下での保持器の破損等を防止するために、転がり軸受の保持器を多孔質体である焼結金属材で形成することが開示されている。
特許第3410595号公報 特開2003−049841公報
Patent Document 2 below discloses that the cage of the rolling bearing is formed of a sintered metal material that is a porous body in order to prevent the cage from being damaged in a high-speed and high-temperature environment. Has been.
Japanese Patent No. 3410595 JP 2003-049841 A

一般に、転がり軸受は滑り軸受に比べて高速回転で運転されるため、転動体を保持する保持器は十分な機械的強度と耐焼付性をもったものであることが好ましい。しかしながら、多孔質の焼結金属材は密度が低くなると、溶解材(無垢金属材)に比べて機械的強度が
小さくなり、保持器に必要な機械的強度を満足できなくなる。一方、保持器の材質として鉄系焼結金属材(鉄を主成分とする焼結金属材)を用いた場合、強度上の問題は幾分緩和されるものの、軸受鋼で形成されている転動体や軌道輪と保持器が同種金属になるため、厳しい潤滑条件下では、保持器の接触部で焼付が生じやすくなる。
In general, since a rolling bearing is operated at a higher speed than a sliding bearing, it is preferable that the cage for holding the rolling elements has sufficient mechanical strength and seizure resistance. However, when the density of the porous sintered metal material is lowered, the mechanical strength becomes smaller than that of the melting material (solid metal material), and the mechanical strength necessary for the cage cannot be satisfied. On the other hand, when an iron-based sintered metal material (sintered metal material containing iron as a main component) is used as the cage material, the strength problem is somewhat mitigated, but the roller formed of bearing steel is used. Since the moving body, the race and the cage are made of the same metal, seizure tends to occur at the contact portion of the cage under severe lubrication conditions.

本発明は、上記の事情に鑑み、必要な機械的強度を有し、かつ、厳しい潤滑条件下においても、優れた耐焼付性と耐摩耗性を長期間維持することができる転がり軸受用保持器を提供することを課題とする。   In view of the above circumstances, the present invention is a rolling bearing retainer that has necessary mechanical strength and can maintain excellent seizure resistance and wear resistance for a long period even under severe lubrication conditions. It is an issue to provide.

上記課題を解決するため、本発明は、Feを主成分とする多孔質の焼結金属材で形成され、5wt%以上40wt%以下のCuを含有し、かつ、気孔率が10〜40%であることを特徴とする転がり軸受用保持器を提供する。ここで、気孔率は、焼結金属材の密度をρs、該焼結金属材と同じ成分含量でかつ気孔を有しない金属材(例えば鍛造材)の密度をρtとしたとき、{(ρt−ρs)/ρt} ×100で算出される値である。   In order to solve the above problems, the present invention is formed of a porous sintered metal material mainly composed of Fe, contains 5 wt% or more and 40 wt% or less of Cu, and has a porosity of 10 to 40%. There is provided a cage for a rolling bearing characterized by being. Here, the porosity is defined as {(ρt−), where the density of the sintered metal material is ρs, and the density of the metal material having the same component content as the sintered metal material and having no pores (for example, forged material) is ρt. ρs) / ρt} × 100.

保持器を多孔質体である焼結金属材で形成することで、焼結金属材の気孔に潤滑油溜まりとしての機能を持たせることができる。すなわち、軸受内部に給脂された潤滑油(又は潤滑グリース)の一部が毛細管力によって引き込まれて保持器の気孔内に保持される。そして、気孔内に保持された潤滑油は、軸受内部の潤滑油が不足すると、保持器の表面開孔(気孔が表面で開口した部分)から滲み出して転動体や軌道輪等との接触部に供給される。また、保持器に表面開孔があることで、転動体等との接触部に介在する潤滑油の保持性が高まり、油膜形成が促進される。これらの効果により、保持器と転動体等との接触部の良好な潤滑性が長期に亘って維持される。   By forming the cage with a sintered metal material that is a porous body, the pores of the sintered metal material can have a function as a lubricant reservoir. That is, a part of the lubricating oil (or lubricating grease) fed into the bearing is drawn by the capillary force and held in the pores of the cage. And if the lubricating oil held in the pores is insufficient in the bearing, the lubricating oil oozes out from the surface opening of the cage (the portion where the pores are opened on the surface) and contacts with the rolling elements or race rings. To be supplied. In addition, since the surface opening is provided in the cage, the retention property of the lubricating oil interposed in the contact portion with the rolling elements and the like is increased, and the formation of the oil film is promoted. Due to these effects, good lubricity of the contact portion between the cage and the rolling elements is maintained over a long period of time.

焼結金属材の気孔に上記のような潤滑油溜まりとしての機能を持たせるためには、10%以上の気孔率が必要である。一方、気孔率が40%を越えると、材料強度の問題が生じる。気孔に潤滑剤溜まりとしての機能を持たせつつ、所要の材料強度を確保する観点から、気孔率は10〜40%にする必要がある。   In order for the pores of the sintered metal material to have a function as the lubricating oil reservoir as described above, a porosity of 10% or more is necessary. On the other hand, when the porosity exceeds 40%, a problem of material strength occurs. From the viewpoint of ensuring the required material strength while giving the pores a function as a lubricant reservoir, the porosity needs to be 10 to 40%.

また、Feを主成分とする焼結金属材(鉄系焼結金属材)を用いることで、保持器に必要とされる機械的強度を満足させることができ、しかも、5wt%以上40wt%以下のCuを含有させることで、軸受鋼等の鋼材料で形成されている転動体や軌道輪との接触部の初期なじみ性を高めると共に、焼付を防止することができる。また、Cuを含有させることで、焼結時にCuが溶融して内部空洞を埋める役割を果たすと共に、鉄粒子の界面で鉄と合金化して、焼結金属材の引張強度を向上させる。このような効果は、Cuの含有量を5wt%以上とすることにより得ることができる。一方、銅自体の引張強度は鉄よりも低いため、Cuの含有量が40wt%を越えると、焼結金属材の引張強度が却って低下し、また耐摩耗性も低下する。従って、Cuの含有量は40wt%以下である必要がある。   Further, by using a sintered metal material (iron-based sintered metal material) containing Fe as a main component, the mechanical strength required for the cage can be satisfied, and more than 5 wt% and less than 40 wt%. By containing Cu, it is possible to increase the initial conformability of the contact portion with the rolling elements and the bearing rings formed of a steel material such as bearing steel, and to prevent seizure. Moreover, by containing Cu, Cu melts at the time of sintering and fills the internal cavity, and at the same time, it is alloyed with iron at the interface of the iron particles to improve the tensile strength of the sintered metal material. Such an effect can be obtained by setting the Cu content to 5 wt% or more. On the other hand, since the tensile strength of copper itself is lower than that of iron, when the Cu content exceeds 40 wt%, the tensile strength of the sintered metal material is lowered and the wear resistance is also lowered. Therefore, the Cu content needs to be 40 wt% or less.

上記構成において、焼結金属材に3wt%以下のグラファイトを含有させることができる。グラファイトは、焼結により、鉄と合金化して鋼となるため、保持器の強度が高まると同時に靭性の改善も期待できる。また、グラファイトは固体潤滑材としての役割も期待でき、保持器の接触部における焼付防止の効果が高まる。一方、グラファイトは焼結中に脱炭が進むため、歩留まりが一定になり難いが、保持器完成品での含有量が3wt%以下となるようにグラファイトを添加すると良い。   In the above configuration, the sintered metal material can contain 3 wt% or less of graphite. Since graphite is alloyed with iron to form steel by sintering, the strength of the cage is increased and at the same time improvement of toughness can be expected. In addition, graphite can be expected to serve as a solid lubricant, and the effect of preventing seizure at the contact portion of the cage is enhanced. On the other hand, since the decarburization of graphite proceeds during sintering, the yield is difficult to be constant, but it is preferable to add the graphite so that the content in the finished cage product is 3 wt% or less.

また、保持器により高い耐摩耗や耐食性が要求される場合には、焼結金属材の原料金属粉として、鉄粉の一部又は全部に代えてステンレス鋼粉を用いても良い。尚、この場合のステンレス鋼粉は、クロム含有量が12wt%以上の鉄合金の粉末を指す。   Moreover, when high abrasion resistance and corrosion resistance are requested | required by a holder | retainer, it may replace with some or all of iron powder, and may use stainless steel powder as raw material metal powder of a sintered metal material. In this case, the stainless steel powder refers to an iron alloy powder having a chromium content of 12 wt% or more.

また、保持器(焼結金属材)の気孔内に予め潤滑油を含浸させておくと、初期なじみ性に効果がある。   Also, if the lubricating oil is impregnated in advance in the pores of the cage (sintered metal material), the initial conformability is effective.

また、保持器の耐摩耗や耐焼付性を高めるために、保持器(焼結金属材)の気孔中に固体潤滑剤や樹脂を含浸させても良く、あるいは、保持器(焼結金属材)の表面に樹脂コーティングを施しても良い。   Further, in order to improve the wear resistance and seizure resistance of the cage, the pores of the cage (sintered metal material) may be impregnated with a solid lubricant or resin, or the cage (sintered metal material). A resin coating may be applied to the surface.

本発明によれば、必要な機械的強度を有し、かつ、厳しい潤滑条件下においても、優れた耐焼付性と耐摩耗性を長期間維持することができる転がり軸受用保持器を提供することができる。   According to the present invention, there is provided a cage for a rolling bearing which has necessary mechanical strength and can maintain excellent seizure resistance and wear resistance for a long period even under severe lubrication conditions. Can do.

図1は、風力発電機において、ブレードの主軸や増速機の回転軸、特にブレードの主軸を回転自在に支持する転がり軸受の一例を示している。ブレードの主軸は、ブレードが風を受けることによって生じるアキシャル荷重に加え、ブレードの自重や回転によって生じるラジアル荷重やモーメント荷重を受ける。そのため、該主軸を回転自在に支持する転がり軸受には、ラジアル荷重、アキシャル荷重及びモーメント荷重を支持できる機能が要求され、この機能を満足させるため、この実施形態では、主軸支持用に自動調心ころ軸受31(複列自動調心ころ軸受)を用いている。尚、主軸支持用に、単列又は複列の円すいころ軸受、アンギュラ玉軸受、深溝玉軸受を用いても良い。   FIG. 1 shows an example of a rolling bearing that rotatably supports a main shaft of a blade and a rotating shaft of a speed increaser, particularly a main shaft of a blade in a wind power generator. The main shaft of the blade receives a radial load and a moment load generated by its own weight and rotation in addition to an axial load generated when the blade receives wind. Therefore, a rolling bearing that rotatably supports the spindle is required to have a function capable of supporting a radial load, an axial load, and a moment load. In order to satisfy this function, in this embodiment, self-alignment for supporting the spindle is performed. A roller bearing 31 (double-row self-aligning roller bearing) is used. A single-row or double-row tapered roller bearing, an angular ball bearing, or a deep groove ball bearing may be used for supporting the main shaft.

図1に示す自動調心ころ軸受31は、外径面に2列の軌道面32c、32dを有する内輪32と、内径面に軌道面33aを有する外輪33と、内輪32の軌道面32c、32dと外輪33の軌道面33aとの間に介在する2列の球面ころ34と、各列の球面ころ34をそれぞれ保持する一対の保持器35とを備えている。内輪32、外輪33、及び球面ころ34は軸受鋼で形成され、保持器35は多孔質の焼結金属材で形成されている。   A self-aligning roller bearing 31 shown in FIG. 1 includes an inner ring 32 having two rows of raceway surfaces 32c and 32d on an outer diameter surface, an outer ring 33 having a raceway surface 33a on an inner diameter surface, and raceway surfaces 32c and 32d of the inner ring 32. Two rows of spherical rollers 34 interposed between the outer ring 33 and the raceway surface 33a of the outer ring 33, and a pair of cages 35 for holding the rows of spherical rollers 34, respectively. The inner ring 32, the outer ring 33, and the spherical roller 34 are made of bearing steel, and the cage 35 is made of a porous sintered metal material.

内輪32の軌道面32c、32dと外輪33の軌道面33aは、球面ころ34の転動面34aに沿った形状を有している。また、内輪32の外径面の軸方向中央部には中鍔32eが設けられ、軸方向両端部にはそれぞれ外鍔32fが設けられている。   The raceway surfaces 32 c and 32 d of the inner ring 32 and the raceway surface 33 a of the outer ring 33 have a shape along the rolling surface 34 a of the spherical roller 34. Further, an inner collar 32e is provided at the axial center of the outer diameter surface of the inner ring 32, and outer collars 32f are provided at both axial ends.

一対の保持器35は、それぞれ、Feを主成分とし、5wt%以上40wt%以下のCuを含有し、かつ、気孔率が10〜40%の焼結金属材で形成された環体で、各球面ころ34を収容して円周等間隔に保持するためのポケットを複数備えている。また、保持器34を構成する焼結金属材の内部気孔には、予め(軸受完成品の状態で)潤滑油又は潤滑グリースが含浸されている。   Each of the pair of cages 35 is an annular body made of a sintered metal material containing Fe as a main component and containing 5 wt% to 40 wt% of Cu and having a porosity of 10 to 40%. A plurality of pockets are provided for accommodating the spherical rollers 34 and holding them at equal intervals around the circumference. Further, the internal pores of the sintered metal material constituting the cage 34 are impregnated in advance (in the state of the finished bearing) with lubricating oil or lubricating grease.

上記のような保持器35を形成する材料は、150N/mm以上の引張強度を有するものであることが好ましい。原料金属粉として鉄粉のみを用いた焼結金属材では、引張強度も100〜140N/mm程度しか確保できず、転がり軸受の保持器の材料として用いるには不安が残る。また、焼結金属材の強度には気孔率も深く関係するが、原料金属粉として銅粉を添加することで強度を大きく向上させることができる。すなわち、銅は融点が1084℃であるため、焼結温度を1100〜1250℃に設定することで銅粉は溶融し、鉄粉と固溶して合金化して焼結金属材の強度を向上させる他、焼結を促進する効果がある。焼結金属材の引張強度はCu含有量が10wt%付近で最も高くなるが、銅が溶融拡散した跡が空洞となるため、Cu含有量が多すぎると強度は却って低下する。従って、Cu含有量は40wt%以下にする必要がある。一方、原料金属粉としての銅紛は鉄紛に比べてコストが高いため、Cu含有量は5〜20wt%とすることが好ましい。 It is preferable that the material forming the cage 35 as described above has a tensile strength of 150 N / mm 2 or more. A sintered metal material using only iron powder as a raw metal powder can only secure a tensile strength of about 100 to 140 N / mm 2 , and remains uneasy when used as a material for a cage of a rolling bearing. Moreover, the porosity is also deeply related to the strength of the sintered metal material, but the strength can be greatly improved by adding copper powder as the raw metal powder. That is, since the melting point of copper is 1084 ° C., the sintering temperature is set to 1100 to 1250 ° C., so that the copper powder is melted and solidified with the iron powder to be alloyed to improve the strength of the sintered metal material. In addition, there is an effect of promoting sintering. The tensile strength of the sintered metal material is the highest when the Cu content is around 10 wt%, but the trace of the melted and diffused copper becomes a cavity, so that if the Cu content is too high, the strength decreases. Therefore, the Cu content needs to be 40 wt% or less. On the other hand, since the copper powder as the raw metal powder is higher in cost than the iron powder, the Cu content is preferably 5 to 20 wt%.

下記の表1に示す成分含量と気孔率を有する焼結金属材(試験片No.1〜10)と、高力黄銅CAC301の溶解材(試験片No.11)を作製し、図2に示すサバン型摩耗試験機を用いて耐摩耗性・耐焼付性を評価した。気孔率(%)は、焼結金属材の密度をρs、該焼結金属材と同じ成分含量でかつ気孔を有しない金属材(鍛造材)の密度をρtとして、{(ρt−ρs)/ρt} ×100で算出した値である。尚、試験片No.10は、Snを約10wt%含有させた青銅系の焼結金属材である。また、サバン型摩耗試験機の試験条件を下記の表2に示す。   The sintered metal material (test piece No. 1-10) which has the component content and porosity shown in the following Table 1 and the melt | dissolution material (test piece No. 11) of high strength brass CAC301 are produced, and are shown in FIG. Wear resistance and seizure resistance were evaluated using a Sabang type wear tester. Porosity (%) is defined as {(ρt−ρs) //, where ρs is the density of the sintered metal material, and ρt is the density of the metal material (forged material) having the same component content as the sintered metal material and no pores. It is a value calculated by ρt} × 100. The test piece No. 10 is a bronze sintered metal material containing about 10 wt% of Sn. Table 2 below shows the test conditions of the Sabang type wear tester.

Figure 2009250316
Figure 2009250316

Figure 2009250316
Figure 2009250316

上記の試験条件は、転がり軸受の転動体を想定した相手材(軸受鋼SUJ2)と保持器を想定した試験片の摩耗量を境界潤滑条件で評価できるように設定した。つまり、金属接触を伴う潤滑条件での耐摩耗性を評価することを目的としている。耐摩耗性の評価には、試験片に残る摩耗痕(楕円形状)がアスペクト比一定であることを利用して、短軸長さ(相手材の回転方向)から摩耗量を算出した。また、軸受鋼との耐焼付性を評価する際には、最悪の潤滑条件(油切れ)を想定して、図1のサバン型摩耗試験において潤滑油を供給するフェルトパットを取り除き、無潤滑での転動滑り試験を実施し、目安として摩擦係数が0.4を越える時間を比較した。摩擦係数は、相手材(SUJ2)と試験片との摩擦によって発生する引張力(摩擦力)をロードセルで測定し、荷重で除して算出した値である。   The above test conditions were set so that the wear amount of the test piece assuming the counterpart material (bearing steel SUJ2) assuming the rolling elements of the rolling bearing and the cage can be evaluated under boundary lubrication conditions. That is, the object is to evaluate the wear resistance under lubrication conditions involving metal contact. For the evaluation of wear resistance, the amount of wear was calculated from the short axis length (rotating direction of the mating member) by utilizing the fact that the wear scar (elliptical shape) remaining on the test piece had a constant aspect ratio. Also, when evaluating the seizure resistance with the bearing steel, assuming the worst lubrication condition (oil shortage), the felt pad that supplies the lubricating oil in the Saban-type wear test in FIG. The rolling sliding test was conducted, and as a guide, the time when the friction coefficient exceeded 0.4 was compared. The friction coefficient is a value calculated by measuring the tensile force (friction force) generated by the friction between the counterpart material (SUJ2) and the test piece with a load cell and dividing by the load.

上記の条件で実施した耐焼付性試験の結果を図3に示す。転がり軸受の標準保持器材として広く用いられ、鋼材との耐焼付性に優れる高力黄銅CAC301(Cu−Zn合金:試験片No.11)の結果と比較することで、各試験片の耐焼付性を相対評価した。焼結
金属材であるNo.1〜10の各試験片は、石油ベンジン中で脱脂した後に、潤滑油(V
G2)に1時間浸漬して、該潤滑油を気孔内に含浸(含油)させた状態で、耐焼付性試験を実施した。
The result of the seizure resistance test carried out under the above conditions is shown in FIG. Compared with the result of high strength brass CAC301 (Cu-Zn alloy: test piece No. 11), which is widely used as a standard cage material for rolling bearings and has excellent seizure resistance with steel materials, seizure resistance of each test piece Were evaluated relative to each other. Each test piece of No. 1-10 which is a sintered metal material is degreased in petroleum benzine, and then lubricated (V
The seizure resistance test was performed in a state where the lubricant was immersed in G2) for 1 hour and impregnated (oil-impregnated) with the lubricating oil.

図3に示すように、鉄系焼結金属材(試験片No.1、2)では、気孔率の大きい試験
片No.2の方が耐焼付性に優れていたが、含油した状態であってもCAC301(試験
片No.11)に比べると劣っていた。また、銅を2wt%添加したFe−Cu焼結金属
材(試験片No.3)でも、CAC301(試験片No.11)とほぼ同等の耐焼付性しか得られなかったが、銅を5wt%添加したFe−Cu焼結金属材(試験片No.4〜6)
では耐焼付性が大きく向上することが確認できた。さらに、試験片No.4、7、8を比
較すると、気孔率がほぼ同じでも銅の添加量が増加すると、耐焼付性が大きく向上していた。このことから、焼結金属材中の銅が耐焼付性の向上に大きな効果があることがわかる。また、同じFe−5%Cu系焼結金属材でも、気孔率が13%の試験片No.4は耐焼
付性が顕著に優れているとは言えないが、気孔率が19、40%と増加するにつれて、耐焼付性も顕著に向上する傾向がみられた(試験片No.5、6)。試験片No.6、8、9は摩擦係数が約0.35、No.10は約0.3で落ち着いていたため、試験を打切った
As shown in FIG. 3, in the iron-based sintered metal material (test pieces No. 1 and 2), the test piece No. 2 having a higher porosity was superior in seizure resistance, but it was in an oil-impregnated state. However, it was inferior to CAC301 (test piece No. 11). Further, even with Fe-Cu sintered metal material (test piece No. 3) to which 2 wt% of copper was added, only seizure resistance almost equivalent to that of CAC301 (test piece No. 11) was obtained, but copper was 5 wt%. Fe-Cu sintered metal material added (test pieces No. 4 to 6)
Then, it was confirmed that the seizure resistance was greatly improved. Furthermore, when test pieces No. 4, 7, and 8 were compared, seizure resistance was greatly improved when the amount of copper added was increased even though the porosity was substantially the same. From this, it can be seen that copper in the sintered metal material has a great effect in improving seizure resistance. In addition, even with the same Fe-5% Cu-based sintered metal material, test piece No. 4 with a porosity of 13% cannot be said to have significantly superior seizure resistance, but the porosity is 19, 40%. As it increased, the seizure resistance tended to be remarkably improved (test pieces No. 5 and 6). Since the test pieces No. 6, 8, and 9 were settled at a friction coefficient of about 0.35 and No. 10 was about 0.3, the test was terminated.

つぎに、耐摩耗試験の結果を図4に示す。ここで、比摩耗量とは、摩耗体積を荷重と摩擦距離の積(Nm)で除した値であり、この値が低い方が耐摩耗性に優れている。図4に示すように、各焼結金属材(試験片No.1〜10)は、生材である高力黄銅CAC30
1(試験片No.11)と比較して耐摩耗性に優れていることがわかる。これは、高温で
焼結を実施しているために生材より硬度が高いことと、多孔質体であるために油膜形成能力に優れていることに起因すると思われる。なお、鉄紛のみの焼結金属材(試験片No.
1、2)よりも、銅を添加した焼結金属材の方が耐摩耗性に優れていることがわかる。
Next, the results of the abrasion resistance test are shown in FIG. Here, the specific wear amount is a value obtained by dividing the wear volume by the product of the load and the friction distance (Nm), and the lower this value, the better the wear resistance. As shown in FIG. 4, each sintered metal material (test pieces No. 1 to 10) is a high-strength brass CAC30 that is a raw material.
It turns out that it is excellent in abrasion resistance compared with 1 (test piece No. 11). This is considered to be due to the fact that the hardness is higher than that of the raw material because sintering is performed at a high temperature and the oil film forming ability is excellent because it is a porous body. In addition, sintered metal material (test piece No.
It can be seen that the sintered metal material added with copper is more excellent in wear resistance than 1, 2).

つぎに、引張強度試験の結果を図5に示す。保持器材は150N/mm以上の強度を有することが望ましい。溶解材である黄銅(試験片No.11)は高い引張強度を示して
おり、多孔質体である焼結金属材は総じて強度が低い。特に、純鉄の焼結金属材である試験片No.1、2は保持器として使用するには強度不足であり、同じく青銅系(Cu−1
0wt%Sn)焼結金属材である試験片No.10も保持器の材質として用いる強度不足
である。一方、Fe−Cu系の焼結金属材はそれぞれ単一成分組成の焼結金属材に比べて強度が大きく増加している。銅を5wt%含有し、気孔率が13%と低い試験片No.4
は黄銅の溶解材(試験片No.11)とほぼ等しい強度を有している。そして、銅の含有
率が同じ(5wt%)でも、気孔率が増加するにつれて強度が低下している(試験片No.4〜6)。また、銅を2wt%含有している試験片No.3より、銅を5wt%含有している試験片No.5、銅を10wt%含有している試験片No.7の方が同程度の気孔率で
も高い引張強度を示しており、銅が引張強度の向上に効果があることがわかる。しかし、銅の含有量が40wt%と高い試験片No.8では強度が低下している。従って、銅の添
加量は40wt%以下であることが好ましい。
Next, the result of the tensile strength test is shown in FIG. It is desirable that the cage material has a strength of 150 N / mm 2 or more. Brass as a melting material (test piece No. 11) shows high tensile strength, and sintered metal materials as porous bodies generally have low strength. In particular, test pieces No. 1 and No. 2 which are sintered metal materials of pure iron are insufficient in strength to be used as cages, and are similarly bronze-based (Cu-1
Test piece No. 10 which is a 0 wt% Sn) sintered metal material is also insufficient in strength to be used as a material for the cage. On the other hand, the strength of the Fe-Cu-based sintered metal material is greatly increased as compared with the sintered metal material having a single component composition. Test piece No. 4 containing 5wt% copper and low porosity of 13%
Has substantially the same strength as the brass melting material (test piece No. 11). And even if the content rate of copper is the same (5 wt%), intensity | strength is falling as the porosity increases (test piece No. 4-6). Moreover, the test piece No. 5 containing 5 wt% of copper and the test piece No. 7 containing 10 wt% of copper are comparable to the test piece No. 3 containing 2 wt% of copper. Even the porosity shows a high tensile strength, and it can be seen that copper is effective in improving the tensile strength. However, the strength of the test piece No. 8 having a high copper content of 40 wt% is low. Therefore, the amount of copper added is preferably 40 wt% or less.

以上の3つの試験結果より、鉄系焼結金属材への銅の添加量は5〜40wt%が最適であり、気孔率は10〜40%が最適である。   From the above three test results, the optimal amount of copper added to the iron-based sintered metal material is 5 to 40 wt%, and the porosity is optimally 10 to 40%.

加えて、保持器に優れた耐食性や耐摩耗性が要求される場合は、原料金属粉として鉄紛の代わりにステンレス鋼粉末を用いた焼結金属材で保持器を形成しても良い。この場合のステンレス鋼粉末とは、クロム含有量が12wt%以上である鉄系合金の粉末を指す。また、多孔質の焼結金属材は運転中でも潤滑油を吸収して、油溜まりとしての機能を果たすが、予め潤滑油を含浸させておくことで初期なじみに優れた機能が期待できる。また、含浸させる潤滑剤として、MoS、グラファイト、Sn等の固体潤滑材や、PTFE(フッ素樹脂)、PA(ポリアミド)等の樹脂を用いても良い。焼結金属材の表面開孔に固体潤滑剤が封入される事で、耐摩耗性と耐焼付性の両方に優れた性能を発揮できる。 In addition, when the cage is required to have excellent corrosion resistance and wear resistance, the cage may be formed of a sintered metal material using stainless steel powder instead of iron powder as the raw metal powder. The stainless steel powder in this case refers to an iron-based alloy powder having a chromium content of 12 wt% or more. In addition, the porous sintered metal material absorbs the lubricating oil even during operation and functions as an oil reservoir. By impregnating the lubricating oil in advance, a function excellent in initial familiarity can be expected. Further, as a lubricant to be impregnated, a solid lubricant such as MoS 2 , graphite, or Sn, or a resin such as PTFE (fluorine resin) or PA (polyamide) may be used. By encapsulating the solid lubricant in the surface opening of the sintered metal material, it is possible to exhibit excellent performance in both wear resistance and seizure resistance.

本発明の実施形態に係る自動調心ころ軸受を示す断面図である。It is sectional drawing which shows the self-aligning roller bearing which concerns on embodiment of this invention. サバン型摩耗試験の概念図である。It is a conceptual diagram of a Saban-type abrasion test. 耐焼付性試験の結果を示す図である。It is a figure which shows the result of a seizure resistance test. 耐磨耗性試験の結果を示す図である。It is a figure which shows the result of an abrasion resistance test. 引張強度試験の結果を示す図である。It is a figure which shows the result of a tensile strength test.

符号の説明Explanation of symbols

32 内輪
33 保持器
34 球面ころ
35 保持器
32 Inner ring 33 Cage 34 Spherical roller 35 Cage

Claims (9)

Feを主成分とする多孔質の焼結金属材で形成され、5wt%以上40wt%以下のCuを含有し、かつ、気孔率が10〜40%であることを特徴とする転がり軸受用保持器。   Roller bearing retainer formed of a porous sintered metal material mainly composed of Fe, containing 5 wt% to 40 wt% of Cu, and having a porosity of 10 to 40% . 3wt%以下のグラファイトを含有した請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, comprising 3 wt% or less of graphite. 前記焼結金属材のFe成分の一部又は全部が、原料金属粉として配合したステンレス鋼の成分である請求項1又は2に記載の転がり軸受用保持器。   The cage for a rolling bearing according to claim 1 or 2, wherein a part or all of the Fe component of the sintered metal material is a component of stainless steel blended as a raw metal powder. 前記焼結金属材の気孔中に潤滑油を含浸させた請求項1から3の何れか1項に記載の転がり軸受用保持器。   The rolling bearing cage according to any one of claims 1 to 3, wherein pores of the sintered metal material are impregnated with lubricating oil. 前記焼結金属材の気孔中に固体潤滑剤又は樹脂を含浸させた請求項1から3の何れか1項に記載の転がり軸受用保持器。   The rolling bearing cage according to any one of claims 1 to 3, wherein pores of the sintered metal material are impregnated with a solid lubricant or a resin. 前記焼結金属材の表面に樹脂コーティングを施した請求項1から3の何れか1項に記載の転がり軸受用保持器。   The rolling bearing cage according to any one of claims 1 to 3, wherein a resin coating is applied to a surface of the sintered metal material. 請求項1から6の何れか1項に記載の転がり軸受用保持器が組み込まれた転がり軸受。   A rolling bearing in which the rolling bearing cage according to any one of claims 1 to 6 is incorporated. 回転軸を請求項7に記載の転がり軸受で回転自在に支持した回転装置。   A rotating device in which a rotating shaft is rotatably supported by the rolling bearing according to claim 7. 回転軸を請求項7に記載の転がり軸受で回転自在に支持した風力発電機。   A wind power generator in which a rotating shaft is rotatably supported by the rolling bearing according to claim 7.
JP2008097543A 2008-04-03 2008-04-03 Cage for rolling bearing Withdrawn JP2009250316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097543A JP2009250316A (en) 2008-04-03 2008-04-03 Cage for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097543A JP2009250316A (en) 2008-04-03 2008-04-03 Cage for rolling bearing

Publications (1)

Publication Number Publication Date
JP2009250316A true JP2009250316A (en) 2009-10-29

Family

ID=41311229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097543A Withdrawn JP2009250316A (en) 2008-04-03 2008-04-03 Cage for rolling bearing

Country Status (1)

Country Link
JP (1) JP2009250316A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104525A (en) * 2011-11-16 2013-05-30 Ntn Corp Electric linear actuator
JP2013104456A (en) * 2011-11-11 2013-05-30 Ntn Corp Electric linear actuator
CN107246439A (en) * 2017-01-25 2017-10-13 宁夏菲斯克汽车轮毂轴承有限公司 Integrated module construction car speed change odd-side bearing
WO2020196252A1 (en) * 2019-03-28 2020-10-01 Ntn株式会社 Comb cage for self-aligning roller bearing, and self-aligning roller bearing
CN112313419A (en) * 2018-07-19 2021-02-02 铁姆肯公司 Separated type tapered roller bearing
JP2021032358A (en) * 2019-08-26 2021-03-01 日本精工株式会社 Radial roller bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104456A (en) * 2011-11-11 2013-05-30 Ntn Corp Electric linear actuator
CN104024695A (en) * 2011-11-11 2014-09-03 Ntn株式会社 Electric linear actuator
US9353838B2 (en) 2011-11-11 2016-05-31 Ntn Corporation Electric linear actuator
CN104024695B (en) * 2011-11-11 2017-04-12 Ntn株式会社 Electric linear actuator
JP2013104525A (en) * 2011-11-16 2013-05-30 Ntn Corp Electric linear actuator
US9631712B2 (en) 2011-11-16 2017-04-25 Ntn Corporation Electric linear actuator
CN107246439A (en) * 2017-01-25 2017-10-13 宁夏菲斯克汽车轮毂轴承有限公司 Integrated module construction car speed change odd-side bearing
CN112313419A (en) * 2018-07-19 2021-02-02 铁姆肯公司 Separated type tapered roller bearing
CN112313419B (en) * 2018-07-19 2022-01-11 铁姆肯公司 Separated type tapered roller bearing
WO2020196252A1 (en) * 2019-03-28 2020-10-01 Ntn株式会社 Comb cage for self-aligning roller bearing, and self-aligning roller bearing
JP2021032358A (en) * 2019-08-26 2021-03-01 日本精工株式会社 Radial roller bearing

Similar Documents

Publication Publication Date Title
CN202182159U (en) Planet gear speed changer for wind power generation equipment
JP5202307B2 (en) Slide bearings for joints of construction machines or article transfer robots
JP2009250316A (en) Cage for rolling bearing
WO2009150935A1 (en) Retainer, deep groove ball bearing, and bearing with seal
JP2015083861A (en) Cage for needle roller bearing and needle roller bearing
JP3873741B2 (en) Rolling bearing
CN104879386A (en) Powder metallurgy ultralow-noise and long-service-life oil-impregnated bearing
CN109154043B (en) Iron series sintered metal bearing
JP5059506B2 (en) Plain bearing
CN104763740A (en) Self-lubricating type knuckle bearing
CN101975226A (en) Self-lubricating rolling bearing
JP4487530B2 (en) Roller bearing cage and manufacturing method thereof
CN202149140U (en) Self-lubricating oscillating bearing
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP4619302B2 (en) Slide bearing and manufacturing method thereof
JP2013053743A (en) Ball bearing, motor and main shaft device using the same
CN102384161A (en) High-strength abrasion-resistant bearing
JP2010175002A (en) Oil-impregnated sintered bearing
CN201866091U (en) Self-lubricating rolling bearing
JP2007255492A (en) Rolling bearing
JP2007127251A (en) Double-row self-aligning roller bearing
CN215058877U (en) Oil-free self-lubricating mixed ceramic ball bearing
CN208778501U (en) Fan oiliness bearing
KR101311195B1 (en) Non-oiling spherical slide bearing
CN202926880U (en) Rolling bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607