JP2009249698A - High rigidity steel sheet and method for producing the same - Google Patents

High rigidity steel sheet and method for producing the same Download PDF

Info

Publication number
JP2009249698A
JP2009249698A JP2008100479A JP2008100479A JP2009249698A JP 2009249698 A JP2009249698 A JP 2009249698A JP 2008100479 A JP2008100479 A JP 2008100479A JP 2008100479 A JP2008100479 A JP 2008100479A JP 2009249698 A JP2009249698 A JP 2009249698A
Authority
JP
Japan
Prior art keywords
rolling
less
temperature
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008100479A
Other languages
Japanese (ja)
Other versions
JP5251221B2 (en
Inventor
Naoki Yoshinaga
直樹 吉永
Natsuko Sugiura
夏子 杉浦
Koji Hanya
公司 半谷
Masaharu Oka
正春 岡
Yasunobu Miyazaki
康信 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008100479A priority Critical patent/JP5251221B2/en
Publication of JP2009249698A publication Critical patent/JP2009249698A/en
Application granted granted Critical
Publication of JP5251221B2 publication Critical patent/JP5251221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high rigidity steel sheet having an increased Young's modulus in the direction of 35 to 75° to the rolling direction of the steel sheet, and to provide a method for producing the same. <P>SOLUTION: The high rigidity steel sheet has a composition including, by mass, ≥0.03 to <0.20% Mn, 0.0010 to 0.0500% S, and >1.50 to <5.00% Al, and including suitable amounts of C and Mn, and in which the contents of Si, P, S and N are limited, and the balance Fe with inevitable impurities, wherein the pole density of the ä110}<001> in the 1/4 layer of the sheet thickness is ≥6, and sheet thickness is ≥0.5 mm. Also, a production method is disclosed where, after hot rolling in which a heating temperature is >1,220°C, a finishing temperature is <850°C and a coiling temperature is <600°C, hot rolled sheet annealing in which the maximum temperature is ≥800°C is performed or hot rolling in which a finishing temperature is ≥850°C, a coiling temperature is ≥550°C, and the total draft at ≤890°C is limited to <50% is performed, and, after cold rolling at a draft of 20 to 80%, final annealing in which the maximum temperature is ≥850°C is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車や建材などに用いられる高剛性鋼板およびその製造方法に関するものである。   The present invention relates to a high-rigidity steel plate used for automobiles and building materials, and a method for manufacturing the same.

近年、環境問題への対応のため炭酸ガス排出抑制や燃費低減を目的に自動車の軽量化が望まれている。自動車の軽量化のためには鋼材の高強度化が有効であるが、板厚を減ずると部材の剛性が低下することがある。そのため、高い剛性が要求される部材では、鋼材を高強度化しても板厚を減ずることができない場合があり、軽量化が困難であった。
このような、剛性が要求される部材を軽量化する手段としては、鋼材に比べて比重の低いアルミ合金板の使用が有効である。しかし、アルミ合金板は高価格であることに加え、鋼材に比べて加工性が劣ることや、鋼板との溶接が困難である等の欠点があり、自動車部材への適用は限定されたものとなっている。そこで、鋼板とアルミ合金板の長所を兼ね備えた材料として、鉄にアルミを多量に添加した高Al含有鋼板が提案されている(例えば、特許文献1〜5)。
また、{110}<001>を発達させて、鋼板のねじり剛性を高める技術が提案されている(例えば、特許文献6)。しかし、特許文献6の技術は、Alの含有量を制限しており、部材の軽量化の効果が十分であるとはいえない。
In recent years, in order to cope with environmental problems, it has been desired to reduce the weight of automobiles for the purpose of suppressing carbon dioxide emission and reducing fuel consumption. In order to reduce the weight of automobiles, it is effective to increase the strength of steel, but reducing the plate thickness may reduce the rigidity of the member. Therefore, in a member that requires high rigidity, the plate thickness may not be reduced even if the strength of the steel material is increased, and it is difficult to reduce the weight.
As a means for reducing the weight of such a member that requires rigidity, it is effective to use an aluminum alloy plate having a specific gravity lower than that of steel. However, in addition to being expensive, aluminum alloy plates have disadvantages such as inferior workability compared to steel materials and difficulty in welding with steel plates, and application to automobile parts is limited. It has become. Therefore, as a material having the advantages of a steel plate and an aluminum alloy plate, a high Al-containing steel plate in which a large amount of aluminum is added to iron has been proposed (for example, Patent Documents 1 to 5).
Moreover, the technique which raises {110} <001> and raises the torsional rigidity of a steel plate is proposed (for example, patent document 6). However, the technique of Patent Document 6 limits the Al content, and it cannot be said that the effect of reducing the weight of the member is sufficient.

特表2000−517001号公報JP 2000-51001 Gazette 特開2005−015909号公報Japanese Patent Laid-Open No. 2005-015909 特開2005−273004号公報JP 2005-273004 A 特開2006−176844号公報JP 2006-176844 A 特開2007−321168号公報JP2007-32168A 特開2006−257488号公報JP 2006-257488 A

自動車や建材などの部材は、鋼板の圧延方向を長手方向することが多い。従来、部材の剛性を高めるには、鋼材のヤング率が高い方向を部材の長手方向とすることが有効であるとされていた。特許文献5には、{001}<010>を発達させて、圧延方向および圧延方向に対して直角方向の剪断弾性率を高めた鋼板が提案されている。
しかし、本発明者の検討の結果、部材の用途や形状によっては、部材の長手方向ではなく、長手方向に対して斜め、具体的には35〜75°方向の範囲のヤング率を高めることが、部材の剛性の向上に有効であることがわかった。本発明は、このような実情に鑑みてなされたものであり、鋼板の圧延方向やそれと直角の幅方向ではなく、圧延方向に対して斜め方向のヤング率を高めた高剛性鋼板およびその製造方法の提供を課題とするものである。
In members such as automobiles and building materials, the rolling direction of the steel sheet is often in the longitudinal direction. Conventionally, in order to increase the rigidity of a member, it has been considered effective to set the direction in which the Young's modulus of the steel material is high as the longitudinal direction of the member. Patent Document 5 proposes a steel sheet in which {001} <010> is developed and the shear elastic modulus in the direction perpendicular to the rolling direction and the rolling direction is increased.
However, as a result of the study by the present inventors, depending on the use and shape of the member, the Young's modulus can be increased not in the longitudinal direction of the member but obliquely with respect to the longitudinal direction, specifically in the range of 35 to 75 °. It was found that this is effective in improving the rigidity of the member. The present invention has been made in view of such circumstances, and a high-rigidity steel sheet having an increased Young's modulus in an oblique direction with respect to the rolling direction, rather than the rolling direction of the steel sheet and the width direction perpendicular thereto, and a method for producing the same The issue is to provide

本発明者は、鋼板の圧延方向ではなく、鋼板の圧延方向に対して35〜75°方向の範囲のヤング率を高める方法について鋭意検討した。その結果、鋼板の圧延方向に対して35〜75°方向の範囲のヤング率を向上させるには、板厚1/4層における{110}<001>の極密度を高めることが有効であること、これには、Alの含有量を高め、MnおよびSの含有量を制御して、MnSを活用することが有効であることを見出した。
さらに、鋼片を高温に加熱し、仕上温度および巻取温度を低下させて熱間圧延を行った後に熱延板焼鈍を行うか、熱間圧延の仕上温度および巻取温度を高め、冷間圧延後に最終焼鈍を行うことにより、板厚1/4層における{110}<001>の極密度を6以上にすることに成功し、圧延方向に対して30〜75°方向のヤング率が高い鋼板を得ることができた。
本発明はこのような知見に基づいて構成したものであり、その要旨は、以下のとおりである。
This inventor earnestly examined about the method of raising the Young's modulus of the range of 35-75 degree direction with respect to the rolling direction of a steel plate instead of the rolling direction of a steel plate. As a result, in order to improve the Young's modulus in the range of 35 to 75 ° with respect to the rolling direction of the steel sheet, it is effective to increase the pole density of {110} <001> in the ¼ layer thickness. For this, it has been found that it is effective to utilize MnS by increasing the Al content and controlling the Mn and S contents.
Furthermore, the steel slab is heated to a high temperature, and the finish temperature and the coiling temperature are lowered to perform hot rolling, followed by hot-rolled sheet annealing, or the hot rolling finish temperature and coiling temperature are increased, By performing final annealing after rolling, the pole density of {110} <001> in the 1/4 layer thickness is successfully increased to 6 or more, and the Young's modulus in the direction of 30 to 75 ° is high with respect to the rolling direction. A steel plate could be obtained.
The present invention is configured based on such knowledge, and the gist thereof is as follows.

(1) 質量%で、C:0.0003〜0.250%、Mn:0.03〜0.20%未満、S:0.0010〜0.0500%、Al:1.50%超、5.00%未満を含有し、Si:2.20%以下、P:0.200%以下、N:0.0500%以下に制限し、残部がFeおよび不可避的不純物からなり、板厚1/4層における{110}<001>の極密度が6以上であり、板厚が0.5mm以上であることを特徴とする高剛性鋼板。
(2) 圧延方向に対して55°方向のヤング率が235GPa以上であることを特徴とする(1)記載の高剛性鋼板。
(3) さらに質量%で、Ti:0.003〜0.150%、Nb:0.003〜0.150%、V:0.003〜0.150%の1種または2種を含有することを特徴とする(1)または(2)記載の高剛性鋼板。
(4) さらに質量%で、Cr:0.01〜3.00%、Ni:0.01〜3.00%、Mo:0.01〜3.00%、Cu:0.01〜3.00%の1種または2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の高剛性鋼板。
(5) さらに質量%で、B:0.0001〜0.0060%を含有することを特徴とする(1)〜(4)のいずれか1項に記載の高剛性鋼板。
(6) さらに質量%で、Ca:0.001〜0.010%、Mg:0.0005〜0.050%、Zr:0.001〜0.200%、REM:0.001〜0.050%
の1種または2種以上を含有することを特徴とする(1)〜(5)のいずれか1項に記載の高剛性鋼板。
(7) さらに質量%で、Bi:0.0005〜0.300%、Pb:0.0005〜0.300%、Sb:0.0005〜0.300%、Sn:0.0001〜0.300%
の1種または2種以上を含有することを特徴とする(1)〜(6)のいずれか1項に記載の高剛性鋼板。
(1) By mass%, C: 0.0003 to 0.250%, Mn: 0.03 to less than 0.20%, S: 0.0010 to 0.0500%, Al: more than 1.50%, 5 0.002% or less, Si: 2.20% or less, P: 0.200% or less, N: 0.0500% or less, the balance is made of Fe and inevitable impurities, and the thickness is 1/4. A high-rigidity steel plate having a pole density of {110} <001> in the layer of 6 or more and a plate thickness of 0.5 mm or more.
(2) The high-rigidity steel sheet according to (1), wherein the Young's modulus in the direction of 55 ° with respect to the rolling direction is 235 GPa or more.
(3) Further, by mass%, one or two of Ti: 0.003-0.150%, Nb: 0.003-0.150%, V: 0.003-0.150% should be contained. The high-rigidity steel plate according to (1) or (2).
(4) Further, by mass%, Cr: 0.01 to 3.00%, Ni: 0.01 to 3.00%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.00 % Of 1 type or 2 types or more, The high-rigidity steel plate of any one of (1)-(3) characterized by the above-mentioned.
(5) The high-rigidity steel sheet according to any one of (1) to (4), further containing B: 0.0001 to 0.0060% by mass%.
(6) Further, by mass%, Ca: 0.001 to 0.010%, Mg: 0.0005 to 0.050%, Zr: 0.001 to 0.200%, REM: 0.001 to 0.050 %
The high-rigidity steel sheet according to any one of (1) to (5), characterized by containing one or more of the following.
(7) Further, by mass%, Bi: 0.0005 to 0.300%, Pb: 0.0005 to 0.300%, Sb: 0.0005 to 0.300%, Sn: 0.0001 to 0.300 %
The high-rigidity steel plate according to any one of (1) to (6), comprising one or more of the following.

(8) (1)〜(7)の何れか1項に記載の高剛性鋼板を製造する方法であって、(1)、(3)〜(7)の何れか1項に記載の成分を有する鋼片を1220℃超の温度に加熱し、仕上温度を850℃未満とし、巻取温度を600℃未満とする熱間圧延を行い、冷間圧延を行うことなく、最高温度を800℃以上とする熱延板焼鈍を施すことを特徴とする高剛性鋼板の製造方法。
(9) (1)〜(7)の何れか1項に記載の高剛性鋼板を製造する方法であって、(1)、(3)〜(7)の何れか1項に記載の成分を有する鋼片を1220℃超の温度に加熱し、890℃以下での総圧下量を50%未満に制限して、仕上温度を850〜1100℃とし、巻取温度を550℃以上とする熱間圧延を行い、20〜80%の圧下率で冷間圧延を施し、最高温度を850℃以上とする最終焼鈍を施すことを特徴とする高剛性鋼板の製造方法。
(8) A method for producing the high-rigidity steel sheet according to any one of (1) to (7), wherein the component according to any one of (1) and (3) to (7) is used. The steel piece is heated to a temperature exceeding 1220 ° C., the finishing temperature is set to less than 850 ° C., the rolling temperature is set to less than 600 ° C., and the maximum temperature is set to 800 ° C. or higher without cold rolling. A method for producing a high-rigidity steel sheet, characterized by performing hot-rolled sheet annealing.
(9) A method for producing the high-rigidity steel plate according to any one of (1) to (7), wherein the component according to any one of (1) and (3) to (7) is used. The steel slab is heated to a temperature exceeding 1220 ° C, the total reduction at 890 ° C or lower is limited to less than 50%, the finishing temperature is 850 to 1100 ° C, and the coiling temperature is 550 ° C or higher. A method for producing a high-rigidity steel sheet, comprising rolling, performing cold rolling at a rolling reduction of 20 to 80%, and performing final annealing with a maximum temperature of 850 ° C or higher.

本発明によれば、成形性に優れた高剛性鋼板、より具体的には、鋼板の圧延方向に対して35〜75°方向のヤング率が高い鋼板およびその製造方法の提供が可能になり、剛性が要求される部材を軽量化することができるなど、産業上の貢献が極めて顕著である。   According to the present invention, it is possible to provide a high-rigidity steel plate excellent in formability, more specifically, a steel plate having a high Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel plate, and a method for producing the same. The contribution to the industry is extremely remarkable, such as the weight reduction of the member that requires rigidity.

鋼板の圧延方向に対して35〜75°方向のヤング率が高い鋼板としては、方向性電磁鋼板が挙げられる。しかし、電磁鋼板はSi量が極端に多いために、延性に乏しく、自動車部品のように、成形性が必要とされる用途には適用することができない。
そこで、本発明者は、新たな高剛性鋼板を開発するために鋭意検討を行った。その結果、Alの含有量を高め、MnおよびSの含有量を制御し、熱間圧延の加熱温度を高め、仕上温度および巻取温度を低下させると、その後の熱延板焼鈍により、方向性電磁鋼板と同様の集合組織を有する鋼板を得ることができることを知見した。すなわち、圧延方向に対して35〜75°方向のヤング率の向上に有効な結晶方位である{110}<001>の極密度が6以上になる。また、熱間圧延後、冷間圧延および最終焼鈍を施す場合は、仕上温度および巻取温度を高めることが必要であることがわかった。
As a steel sheet having a high Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet, a grain-oriented electrical steel sheet is exemplified. However, since the electrical steel sheet has an extremely large amount of Si, it is poor in ductility and cannot be applied to uses that require formability, such as automobile parts.
Therefore, the present inventor has intensively studied to develop a new high-rigidity steel plate. As a result, the content of Al is increased, the content of Mn and S is controlled, the heating temperature of hot rolling is increased, and the finishing temperature and the coiling temperature are decreased. It has been found that a steel sheet having a texture similar to that of an electromagnetic steel sheet can be obtained. That is, the pole density of {110} <001>, which is a crystal orientation effective for improving the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction, is 6 or more. Moreover, it turned out that it is necessary to raise finishing temperature and coiling temperature, when performing cold rolling and final annealing after hot rolling.

以下、本発明について詳細に説明する。
Alは、本発明において{110}<001>の極密度を高めるために極めて重要な元素である。鋼板の圧延方向に対して35〜75°方向のヤング率を高めるためには、1.50%超のAlを添加することが必要である。Alは、鋼材の比重を低下させるためにも有効な元素であり、2.00%以上を添加することが好ましい。一方、集合組織の制御にMnSを利用する本発明では、Al量が5.00%以上になると、熱間加工性および冷間加工性が劣化する。延性の低下を抑制するには、Al量を4.60%以下にすることが好ましい。Al添加量のさらに好ましい範囲は、2.50〜4.00%である。また、Al量が2.50%未満である場合には、{110}<001>の極密度を高めるために、
(Al+Si)≧2.50%
を満足するようにSiを同時に添加することが好ましい。
Hereinafter, the present invention will be described in detail.
Al is an extremely important element for increasing the pole density of {110} <001> in the present invention. In order to increase the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet, it is necessary to add more than 1.50% Al. Al is an effective element for reducing the specific gravity of the steel material, and it is preferable to add 2.00% or more. On the other hand, in the present invention using MnS for texture control, hot workability and cold workability deteriorate when the Al content is 5.00% or more. In order to suppress the decrease in ductility, the Al content is preferably 4.60% or less. A more preferable range of the Al addition amount is 2.50 to 4.00%. Further, when the Al content is less than 2.50%, in order to increase the pole density of {110} <001>,
(Al + Si) ≧ 2.50%
It is preferable to simultaneously add Si so as to satisfy the above.

本発明において、MnSを形成するMnおよびSは、集合組織の制御のために極めて重要な元素である。
Mnは、0.03%以上を含有させると微細なMnSを生じて、{110}<001>の極密度を高め、鋼板の圧延方向に対して35〜75°方向のヤング率を高める効果を発現する。また、MnSの形成は、固溶Sによる粒界脆化の抑制にも有効であり、0.04%以上のMnの添加が好ましい。一方、0.20%以上のMnを添加すると、MnSを微細に分散させることが難しくなり、{110}<001>の極密度が低下するため、0.20%未満を上限とする。鋼板の圧延方向に対して35〜75°方向のヤング率を高めるには、上限を0.15%未満とすることが好ましい。さらには、Mn量を0.05%以上、0.12%未満とすることが好ましい。
In the present invention, Mn and S forming MnS are extremely important elements for controlling the texture.
When Mn is contained in an amount of 0.03% or more, fine MnS is produced, and the effect of increasing the pole density of {110} <001> and increasing the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet. To express. The formation of MnS is also effective in suppressing grain boundary embrittlement due to solute S, and the addition of 0.04% or more of Mn is preferable. On the other hand, if 0.20% or more of Mn is added, it becomes difficult to finely disperse MnS, and the extreme density of {110} <001> decreases, so the upper limit is made less than 0.20%. In order to increase the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet, the upper limit is preferably less than 0.15%. Furthermore, the Mn content is preferably 0.05% or more and less than 0.12%.

Sは、微細なMnSの活用により{110}<001>の極密度を高め、鋼板の圧延方向に対して35〜75°方向のヤング率を高める効果を発現させるため、0、0010%以上を含有させる。また、MnSの形成は、固溶Sによる粒界脆化の抑制にも有効であり、0、0060%以上のSを含有させることが好ましい。S量のより好ましい下限は、0.0090%以上である。一方、Sを過剰に含有させると熱間加工性が低下するため、0.0500%を上限とする。靭性の低下を抑制し、冷間加工性を向上させるためには、S量を0.0200%以下にすることが好ましい。   S increases the pole density of {110} <001> by utilizing fine MnS, and expresses the effect of increasing the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet. Contain. The formation of MnS is also effective for suppressing grain boundary embrittlement due to solute S, and it is preferable to contain 0,0060% or more of S. A more preferable lower limit of the amount of S is 0.0090% or more. On the other hand, if S is contained excessively, the hot workability deteriorates, so 0.0500% is made the upper limit. In order to suppress a decrease in toughness and improve cold workability, the S content is preferably 0.0200% or less.

Cは、強度を向上させるために有効な元素であり、効果を得るには含有量の下限を0.0003%以上にすることが必要である。一方、0.250%を超えるCを添加すると加工性が劣化するため、C量の上限を0.250%とする。なお、冷間圧延性や鋼板の成形性の観点からは、C量が少ない方が良く、0.100%以下とすることが好ましい。0.050%以下であればより好ましく、0.020%以下であれば一層好ましい。   C is an element effective for improving the strength, and in order to obtain the effect, the lower limit of the content needs to be 0.0003% or more. On the other hand, if more than 0.250% of C is added, workability deteriorates, so the upper limit of the C amount is 0.250%. From the viewpoint of cold rollability and formability of the steel sheet, it is better that the amount of C is smaller, and it is preferably 0.100% or less. It is more preferable if it is 0.050% or less, and it is still more preferable if it is 0.020% or less.

Siは、脱酸元素であるが、2.20%超を添加すると、熱間加工性が低下するため、Si量の上限を2.20%とする。また、Si量の上限は、熱間圧延で生じるスケールの剥離性の観点から2.00%以下が好ましく、化成処理性の観点からは0.80%以下が好ましい。一方、脱酸を有効に行うためには、0.003%以上のSiの添加が好ましい。また、Siは、固溶強化により鋼板の強度を増大させるのに有用な元素であり、0.005%以上を含有させることが好ましい。
さらに、Siは、Alと同時に含有させると、{110}<001>の極密度を高める効果を発現する。したがって、特にAl量が少ない場合には、AlとSiの合計量が2.50%以上になるように添加することが好ましい。
Si is a deoxidizing element, but if over 2.20% is added, the hot workability decreases, so the upper limit of Si content is 2.20%. In addition, the upper limit of the Si amount is preferably 2.00% or less from the viewpoint of peelability of scale generated by hot rolling, and is preferably 0.80% or less from the viewpoint of chemical conversion treatment. On the other hand, in order to effectively perform deoxidation, 0.003% or more of Si is preferably added. Moreover, Si is an element useful for increasing the strength of the steel sheet by solid solution strengthening, and it is preferable to contain 0.005% or more.
Furthermore, when Si is contained at the same time as Al, the effect of increasing the extreme density of {110} <001> is exhibited. Therefore, when the amount of Al is particularly small, it is preferable to add so that the total amount of Al and Si is 2.50% or more.

Pは、不純物であり、結晶粒界に偏析して粒界強度を低下させるため、上限を0.200%とする。P量の下限は限定しないが、0.001%未満に低減すると、製造コストが上昇する。また、Pは強化に有効な元素であるので、強度を高めるには、0.005%以上のPを含有させることが好ましい。Pの偏析による耐2次加工脆性や靱性の劣化を抑制するには、上限を0.080%以下にすることが好ましい。さらに加工性の低下を抑制するためには、0.040%以下にすることが好ましい。   P is an impurity, and segregates at the crystal grain boundaries to lower the grain boundary strength, so the upper limit is made 0.200%. The lower limit of the amount of P is not limited, but if it is reduced to less than 0.001%, the manufacturing cost increases. Further, since P is an element effective for strengthening, it is preferable to contain 0.005% or more of P in order to increase the strength. In order to suppress secondary work brittleness resistance and toughness deterioration due to P segregation, the upper limit is preferably made 0.080% or less. Furthermore, in order to suppress the deterioration of workability, it is preferable to make it 0.040% or less.

Nは、不純物元素であり、0.0500%を超えて含有させると靭性が劣化する。特に、本発明の鋼板は、Alの含有量が多く、Al系窒化物が粗大化しやすいため、N量の好ましい上限は、0.0150%以下であり、0.0040%以下がさらに好ましい。一方、微細なAl系の窒化物は{110}<001>の極密度を高めるには有効であり、0.0005%以上のNを含有させることが好ましい。鋼板の圧延方向に対して35〜75°方向のヤング率を高めるために、Al系窒化物を活用する場合、N量の特に好ましい範囲は0.0010〜0.0030%である。   N is an impurity element, and when it exceeds 0.0500%, toughness deteriorates. In particular, since the steel sheet of the present invention has a high Al content and Al-based nitrides are likely to be coarsened, the preferable upper limit of the N content is 0.0150% or less, and more preferably 0.0040% or less. On the other hand, fine Al-based nitrides are effective in increasing the pole density of {110} <001>, and it is preferable to contain 0.0005% or more of N. In order to increase the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet, when an Al-based nitride is used, a particularly preferable range of the N amount is 0.0010 to 0.0030%.

さらに、強度、延性、靭性や製造性を高めるために、必要特性に応じて、Ti、Nb、V、Cr、Ni、Mo、Cu、B、Ca、Mg、Zr、REM、Bi、Pb、Sb、Snの1種または2種以上を添加しても良い。   Furthermore, in order to increase strength, ductility, toughness and manufacturability, depending on the required properties, Ti, Nb, V, Cr, Ni, Mo, Cu, B, Ca, Mg, Zr, REM, Bi, Pb, Sb One or more of Sn may be added.

Ti、Nb、Vは、析出物を生じて強化に寄与する元素であり、1種または2種以上を、それぞれ、0.003%以上添加することが好ましい。また、Ti、Nb、Vは、鋳造性を改善する効果も有するので、添加量の好ましい下限は、それぞれ、0.012%以上である。一方、Ti、Nb、Vは、それぞれ、0.150%超を添加すると結晶粒が微細化し、加工性が低下することがある。また、鋼板の圧延方向に対して35〜75°方向のヤング率の低下を防止するには、Ti、Nb、V、それぞれの上限を0.050%にすることがより好ましい。なお、Tiは、Sと硫化物を形成する元素であるため、Ti/S<1となるように添加することが好ましい。   Ti, Nb, and V are elements that generate precipitates and contribute to strengthening, and it is preferable to add one or two or more of each in an amount of 0.003% or more. Moreover, since Ti, Nb, and V also have the effect of improving castability, the preferable lower limit of the addition amount is 0.012% or more, respectively. On the other hand, when Ti, Nb, and V are added in excess of 0.150%, the crystal grains may be refined and the workability may be reduced. Further, in order to prevent a decrease in Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet, it is more preferable that the upper limit of each of Ti, Nb, and V is 0.050%. Since Ti is an element that forms sulfide with S, it is preferably added so that Ti / S <1.

Cr、Ni、Mo、Cuは、延性および靭性の向上に有効な元素であり、1種または2種以上を、それぞれ、0.01%以上添加することが好ましい。一方、Cr、Ni、Mo、Cuを、それぞれ、3.00%超添加すると、延性と靭性が劣化することがあるため、各元素の含有量の上限を3.00%とすることが好ましい。Cr、Ni、Mo、Cuのさらに好ましい範囲は、それぞれ、0.10%〜1.40%である。   Cr, Ni, Mo, and Cu are effective elements for improving ductility and toughness, and it is preferable to add one or more elements each in an amount of 0.01% or more. On the other hand, if adding more than 3.00% of Cr, Ni, Mo and Cu, respectively, ductility and toughness may be deteriorated, so the upper limit of the content of each element is preferably set to 3.00%. More preferable ranges of Cr, Ni, Mo, and Cu are 0.10% to 1.40%, respectively.

Bは、粒界に偏析し、粒界結合力を向上させる元素である。PおよびSの粒界偏析を抑制し、粒界強度を高めるためには、0.0001%以上のBの添加が好ましい。さらに延性、靭性、および熱間加工性を向上させるためには、0.0003%以上の添加が好ましい。一方、0.0060%を超えるBを添加しても効果が飽和する。また、粒界に粗大な析出物が生成し熱間加工性が劣化する場合があるため、Bの含有量の上限は、0.0025%以下とすることが好ましい。   B is an element that segregates at the grain boundary and improves the grain boundary bonding force. In order to suppress grain boundary segregation of P and S and increase grain boundary strength, 0.0001% or more of B is preferably added. Furthermore, in order to improve ductility, toughness, and hot workability, 0.0003% or more is preferably added. On the other hand, the effect is saturated even if B exceeding 0.0060% is added. Moreover, since coarse precipitates may be generated at the grain boundaries and the hot workability may deteriorate, the upper limit of the B content is preferably 0.0025% or less.

Ca、Mg、Zr、REMは、いずれも硫化物の形態を制御し、熱間加工性や靭性の劣化の抑制に有効な元素であり、1種または2種以上を添加することが好ましい。この効果を得るには、Caは0.001%以上、Mgは0.0005%以上、Zrは0.001%以上、REMは0.001%以上を添加することが好ましい。一方、Caは0.010%、Mgは0.050%、Zrは0.200%、REMは0.050%を超えて過剰に添加すると靭性が劣化することがある。   Ca, Mg, Zr, and REM are all elements that control the form of sulfides and are effective for suppressing deterioration of hot workability and toughness, and it is preferable to add one or more of them. In order to obtain this effect, it is preferable to add 0.001% or more of Ca, 0.0005% or more of Mg, 0.001% or more of Zr, and 0.001% or more of REM. On the other hand, if Ca is added in excess of 0.010%, Mg is 0.050%, Zr is 0.200%, and REM exceeds 0.050%, toughness may deteriorate.

Bi、Pb、Sb、Snは、Alと同時に添加することにより、{110}<001>の極密度を高める効果が顕著になる。鋼板の圧延方向に対して35〜75°方向のヤング率を高めるためには、Bi、Pb、Sbは、それぞれ、0.0005%以上、Snは0.0001%以上の添加が好ましい。また、Bi、Pb、Sb、Snは、いずれも、0.300%超を添加してもその効果が飽和する。Bi、Pb、Sb、Snの添加量のより好ましい範囲は、それぞれ、Bi:0.010〜0.150%、Pb:0.010〜0.150%、Sb:0.020〜0.150%、Sn:0.050〜0.150%である。   By adding Bi, Pb, Sb, and Sn simultaneously with Al, the effect of increasing the pole density of {110} <001> becomes remarkable. In order to increase the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction of the steel sheet, it is preferable to add Bi, Pb, and Sb in an amount of 0.0005% or more and Sn in an amount of 0.0001% or more, respectively. In addition, Bi, Pb, Sb, and Sn all have their effects saturated even if over 0.300% is added. More preferable ranges of the addition amount of Bi, Pb, Sb, and Sn are Bi: 0.010 to 0.150%, Pb: 0.010 to 0.150%, and Sb: 0.020 to 0.150%, respectively. , Sn: 0.050 to 0.150%.

次に、本発明の高剛性鋼板の組織について説明する。
本発明の高剛性鋼板は、1.50%超のAlを含有するため、フェライトが安定になる。フェライト以外の組織、オーステナイト、ベイナイト、マルテンサイト、パーライト、炭化物、その他化合物など、第2相の面積率の合計が20%を超えると、板厚1/4層における{110}<001>の極密度が低下することがある。したがって、本発明では、フェライトの面積率を80%以上にすることが好ましい。フェライトの面積率は、90%以上が好ましく、98%以上であればさらに好ましい。
Next, the structure of the high-rigidity steel plate of the present invention will be described.
Since the high-rigidity steel sheet of the present invention contains more than 1.50% Al, ferrite becomes stable. When the total area ratio of the second phase of the structure other than ferrite, such as austenite, bainite, martensite, pearlite, carbide, and other compounds exceeds 20%, the {110} <001> pole in the ¼ layer thickness The density may decrease. Therefore, in the present invention, the area ratio of ferrite is preferably 80% or more. The area ratio of ferrite is preferably 90% or more, and more preferably 98% or more.

フェライト以外の組織、すなわち残部は、オーステナイト、ベイナイト、マルテンサイト、パーライト、セメンタイト、炭化物、窒化物、AlとFeを主成分とする金属間化合物、その他化合物の1種または2種以上から構成される。フェライトおよび残部の組織の面積率は、光学顕微鏡や走査型電子顕微鏡により観察し、点算法によって測定することができる。また、炭化物、窒化物、AlとFeを主成分とする金属間化合物、その他化合物については、電解抽出法により抽出した残渣量を分析する方法やX線回折などにより同定することも可能である。   The structure other than ferrite, that is, the balance is composed of one or more of austenite, bainite, martensite, pearlite, cementite, carbide, nitride, an intermetallic compound mainly composed of Al and Fe, and other compounds. . The area ratio of the ferrite and the remaining structure can be observed by an optical microscope or a scanning electron microscope, and can be measured by a point calculation method. In addition, carbides, nitrides, intermetallic compounds mainly composed of Al and Fe, and other compounds can be identified by a method of analyzing the amount of residue extracted by an electrolytic extraction method, X-ray diffraction, or the like.

なお、本発明において、フェライトの面積率は、鋼板の圧延方向に平行な板厚断面(L断面)における板厚の1/4部分を光学顕微鏡または走査型電子顕微鏡により200〜5000倍で10視野観察した場合の平均値と定義する。   In addition, in this invention, the area ratio of a ferrite is 10 visual fields by the optical microscope or a scanning electron microscope about 1/4 part of the plate | board thickness in the plate | board thickness cross section (L cross section) parallel to the rolling direction of a steel plate. It is defined as the average value when observed.

フェライトの平均結晶粒径は、特に限定しないが、板厚1/4層において{110}<001>の極密度を高めるためには、結晶粒を成長させて100μm以上にすることが好ましい。{110}<001>を有する結晶粒を成長させると、その方位の極密度が高くなるので、フェライトの平均結晶粒径は大きいほど好ましく、具体的には、200μm以上、さらには500μm以上にすることが好ましい。   The average crystal grain size of ferrite is not particularly limited, but in order to increase the pole density of {110} <001> in the 1/4 layer thickness, it is preferable that the crystal grains are grown to 100 μm or more. When crystal grains having {110} <001> are grown, the pole density in the orientation becomes higher. Therefore, it is preferable that the average crystal grain size of ferrite is larger, specifically, 200 μm or more, further 500 μm or more. It is preferable.

{110}<001>は、圧延方向に対して35〜75°方向のヤング率を高める方位である。板厚1/4層における{110}<001>の極密度を6以上にすると、圧延方向に対して55°方向のヤング率を235GPa以上に高めることができる。これは、{110}<001>が発達すると圧延方向に対して35〜75°方向に<111>方位が集積するためである。そのため、35〜75°方向のほぼ中央である55°の方向のヤング率を、確実に235GPa以上にすることができる。板厚1/4層における{110}<001>の極密度の好ましい下限は8以上であり、さらに好ましくは10以上である。   {110} <001> is an orientation that increases the Young's modulus in the direction of 35 to 75 ° with respect to the rolling direction. When the pole density of {110} <001> in the ¼ layer thickness is 6 or more, the Young's modulus in the 55 ° direction with respect to the rolling direction can be increased to 235 GPa or more. This is because when <110} <001> develops, <111> orientations accumulate in the direction of 35 to 75 ° with respect to the rolling direction. Therefore, the Young's modulus in the direction of 55 °, which is substantially the center in the direction of 35 to 75 °, can be reliably set to 235 GPa or more. The preferable lower limit of the pole density of {110} <001> in the 1/4 layer thickness is 8 or more, more preferably 10 or more.

{110}<001>の極密度(X線ランダム強度比)は、X線回折によって測定される{110}、{100}、{211}、{310}極点図のうち複数の極点図を基に級数展開法で計算した3次元集合組織(ODF)から求めればよい。すなわち、各結晶方位の極密度を求めるには、3次元集合組織のφ2=45°断面における(110)[001]の強度で代表させる。   The pole density (X-ray random intensity ratio) of {110} <001> is based on a plurality of pole figures among {110}, {100}, {211}, {310} pole figures measured by X-ray diffraction. It can be obtained from the three-dimensional texture (ODF) calculated by the series expansion method. That is, in order to obtain the pole density of each crystal orientation, it is represented by the intensity of (110) [001] in the φ2 = 45 ° cross section of the three-dimensional texture.

X線回折用試料の作製は次のようにして行う。鋼板を機械研磨や化学研磨などによって板厚方向に所定の位置まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に板厚1/4層が測定面となるように調整する。なお、正確に板厚1/4層を測定面とすることは困難であるので、これら目標とする層を中心として板厚に対して±5%の範囲が測定面となるように試料を作製すればよい。   The sample for X-ray diffraction is manufactured as follows. The steel plate is polished to a predetermined position in the plate thickness direction by mechanical polishing or chemical polishing, and finished to a mirror surface by buffing, and then the distortion is removed by electrolytic polishing or chemical polishing, and at the same time, the 1/4 layer thickness is measured as the measurement surface. Adjust so that In addition, since it is difficult to accurately set a ¼ layer thickness as a measurement surface, samples are prepared so that the measurement surface is within a range of ± 5% of the plate thickness with these target layers as the center. do it.

さらにX線測定が困難な場合には、電子後方散乱パターン(EBSP)やエレクトロンチャネリングパターン(ECP)により統計的に十分な数の測定を行う。なお、{hkl}<uvw>とは上述の方法でX線用試料を採取したとき、板面に垂直な結晶方位が<hkl>で圧延方向が<uvw>であることを意味する。   Further, when X-ray measurement is difficult, a statistically sufficient number of measurements are performed using an electron backscattering pattern (EBSP) or an electron channeling pattern (ECP). In addition, {hkl} <uvw> means that when an X-ray sample is collected by the above-described method, the crystal orientation perpendicular to the plate surface is <hkl> and the rolling direction is <uvw>.

また、板厚1/4層における{111}<112>および{111}<110>の極密度、すなわち、ODFのφ2=45°断面における(111)[1−21]および(111)[0−11]の極密度は、平均ヤング率を向上させる方位であり、1.5以上とすることが好ましい。さらに、{110}<110>の極密度は、圧延方向のヤング率を高める方位であり、1.5以上とすることが好ましい。   Further, the pole density of {111} <112> and {111} <110> in the 1/4 layer thickness, that is, (111) [1-21] and (111) [0] in the φ2 = 45 ° cross section of the ODF. −11] is an orientation that improves the average Young's modulus, and is preferably 1.5 or more. Furthermore, the pole density of {110} <110> is an orientation that increases the Young's modulus in the rolling direction, and is preferably 1.5 or more.

一方、{001}<010>の極密度、すなわち、ODFのφ2=45°断面における(001)[0−10]の極密度は、特に限定しないが、圧延方向と直角方向のヤング率を低下させるので、2.5未満であることが好ましく、2.0以下であればさらに好ましい。   On the other hand, the pole density of {001} <010>, that is, the pole density of (001) [0-10] in the ODF φ2 = 45 ° cross section is not particularly limited, but decreases the Young's modulus in the direction perpendicular to the rolling direction. Therefore, it is preferably less than 2.5, more preferably 2.0 or less.

上記の極密度に関する限定は少なくとも板厚1/4層については満足し、実際には1/4層のみならず、板厚表層から中心層までの広い範囲で成り立つことが好ましい。   The above-mentioned limitation regarding the pole density is satisfied at least for a quarter-thickness layer, and in practice, it is preferable to hold not only the quarter-layer but also a wide range from the thickness-thickness surface layer to the central layer.

本発明の鋼板は、高い剛性を有し、主に自動車や建材に用いられ、自動車の部材や建築物の剛性の向上に寄与するため、鋼板の板厚を0.5mm以上にすることが必要である。上限は限定しないが、用途からすると、せいぜい8.0mm以下である。また、熱間圧延では、板厚を0.5mm未満にすることが困難であり、冷間圧延の圧下率を高めると、{110}<001>を集積させることが難しくなる。なお、製造性の観点から、冷間圧延を施さない熱延鋼板の板厚は2.0mm以上が好ましく、これよりも薄い板厚が要求される場合は、冷間圧延および最終焼鈍により製造することが好ましい。   The steel plate of the present invention has high rigidity, is mainly used for automobiles and building materials, and contributes to improving the rigidity of automobile members and buildings. Therefore, it is necessary to make the steel sheet thickness 0.5 mm or more. It is. The upper limit is not limited, but it is 8.0 mm or less at best from the viewpoint of use. Further, in hot rolling, it is difficult to make the plate thickness less than 0.5 mm, and it is difficult to accumulate {110} <001> when the rolling reduction ratio of cold rolling is increased. In addition, from the viewpoint of manufacturability, the thickness of the hot-rolled steel sheet not subjected to cold rolling is preferably 2.0 mm or more, and when a thinner thickness is required, it is manufactured by cold rolling and final annealing. It is preferable.

鋼板の板厚1/4層における{110}<001>の極密度を6以上に高めると、圧延方向に対して55°方向(55°方向という)のヤング率を235GPa以上にすることができる。55°方向のヤング率は、部材としての剛性を高めるために、245GPa以上にすることが好ましく、260GPa以上がさらに好ましい。   When the pole density of {110} <001> in the ¼ layer thickness of the steel sheet is increased to 6 or more, the Young's modulus in the 55 ° direction (referred to as the 55 ° direction) with respect to the rolling direction can be set to 235 GPa or more. . The Young's modulus in the 55 ° direction is preferably 245 GPa or more, and more preferably 260 GPa or more in order to increase the rigidity of the member.

また、{110}<001>は、55°方向のヤング率を高めるが、圧延方向のヤング率を低下させる方位である。そのため、55°方向のヤング率が235GPa以上になると、圧延方向のヤング率が相対的に低下し、210GPa未満になることがある。さらに、55°方向のヤング率を245GPa以上、260GPa以上に高めると、圧延方向のヤング率は、それぞれ、190GPa未満、170GPa未満に低下することがある。   {110} <001> is an orientation that increases the Young's modulus in the 55 ° direction but decreases the Young's modulus in the rolling direction. Therefore, when the Young's modulus in the 55 ° direction is 235 GPa or more, the Young's modulus in the rolling direction is relatively lowered and may be less than 210 GPa. Furthermore, when the Young's modulus in the 55 ° direction is increased to 245 GPa or more and 260 GPa or more, the Young's modulus in the rolling direction may decrease to less than 190 GPa or less than 170 GPa, respectively.

圧延方向と直角方向(C方向という)のヤング率は特に限定しないが、55°方向のヤング率が235GPa以上になると、C方向のヤング率は180GPa以上になる。C方向のヤング率は、55°方向のヤング率を245GPa以上、さらには、260GPa以上と向上させるにしたがって、190GPa以上、200GPa以上と大きくなる。なお、ヤング率は、面内異方性により、圧延方向に対して、45〜65°の範囲内で最大となる。   The Young's modulus in the direction perpendicular to the rolling direction (referred to as the C direction) is not particularly limited. However, when the Young's modulus in the 55 ° direction is 235 GPa or more, the Young's modulus in the C direction is 180 GPa or more. The Young's modulus in the C direction increases to 190 GPa or more and 200 GPa or more as the Young's modulus in the 55 ° direction is improved to 245 GPa or more, and further to 260 GPa or more. In addition, Young's modulus becomes the maximum within the range of 45-65 degrees with respect to a rolling direction by in-plane anisotropy.

ヤング率の測定はJIS Z 2280に準拠した常温での横共振法にて行う。すなわち試料を固定せずに振動を加え、発振機の振動数を徐々に変化させて一次共振振動数を測定して下式よりヤング率を算出する。
E=0.946×(l/h)3×m/w×f2
ここで、E:動的ヤング率[GPa]、l:試験片の長さ[m]、h:試験片の厚さ[m]、m:質量[kg]、w:試験片の幅[m]、f:横共振法の一次共振振動数[s-1]、である。
The Young's modulus is measured by a transverse resonance method at room temperature in accordance with JIS Z 2280. In other words, vibration is applied without fixing the sample, the frequency of the oscillator is gradually changed, the primary resonance frequency is measured, and the Young's modulus is calculated from the following equation.
E = 0.946 x (l / h) 3 x m / w x f 2
Here, E: dynamic Young's modulus [GPa], l: length of test piece [m], h: thickness of test piece [m], m: mass [kg], w: width of test piece [m] ], F: primary resonance frequency [s −1 ] of the transverse resonance method.

剪断弾性率G[GPa]は特に限定するものではないが、圧延方向および圧延方向と直角方向の剪断弾性率が、いずれも90GPa以上であることが好ましく、100GPa超であればなお一層好ましい。なお、剪断弾性率は、特許文献5および6に記述されているように、米国材料試験協会(American Society For Testing and Materials、ASTM)の基準(C1259)に従って計算することができる。   The shear modulus G [GPa] is not particularly limited, but the shear modulus in the rolling direction and the direction perpendicular to the rolling direction is preferably 90 GPa or more, and more preferably 100 GPa. The shear modulus can be calculated according to the American Society for Testing and Materials (ASTM) standard (C1259) as described in Patent Documents 5 and 6.

なお、鋼板の引張強度については特に限定しないが、1300MPa以上では靭性が低下するので、1300MPa未満とすることが好ましい。   In addition, although it does not specifically limit about the tensile strength of a steel plate, Since toughness will fall if it is 1300 Mpa or more, it is preferable to set it as less than 1300 Mpa.

次に、本発明の高剛性鋼板の製造方法について説明する。
本発明の鋼板は、鋼片を熱間圧延し、得られた熱延板に焼鈍を施すか、熱間圧延後、さらに冷間圧延を施して、最終焼鈍を行って製造される。本発明において熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉、転炉や電炉等による溶製に引き続き、各種の2次精練で目的の成分含有量になるように成分調整を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料にはスクラップを使用しても構わない。連続鋳造によって得たスラブの場合には高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。
また、熱間圧延では、粗圧延と仕上圧延の間でシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。
Next, the manufacturing method of the highly rigid steel plate of this invention is demonstrated.
The steel sheet of the present invention is manufactured by hot rolling a steel slab and annealing the obtained hot-rolled sheet, or after hot rolling and further cold rolling and final annealing. In the present invention, the production method preceding hot rolling is not particularly limited. In other words, following smelting with a blast furnace, converter, electric furnace, etc., the components are adjusted so that the desired component content is obtained by various secondary scouring, and then, in addition to normal continuous casting, casting by ingot method, thin slab What is necessary is just to cast by methods, such as casting. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be directly sent to a hot rolling mill as it is a high-temperature slab, or may be hot-rolled after being reheated in a heating furnace after being cooled to room temperature.
In hot rolling, a sheet bar may be joined between rough rolling and finish rolling, and finish rolling may be performed continuously. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.

熱間圧延の加熱温度は、MnS等の析出物を十分に固溶させて、熱延板焼鈍や最終焼鈍の前に微細なMnSを析出させ、{110}<001>を発達させるために、1220℃超にすることが必要である。55°方向のヤング率を高めるには、1250℃以上にすることがより好ましい。加熱温度の上限は特に限定しないが、1450℃超とするのは困難であり、設備上の制限から、実質的に1400℃が上限となる。鋼片を均質に加熱するためには、1250℃超〜1350℃がより好ましい範囲である。   The heating temperature of the hot rolling is to sufficiently precipitate precipitates such as MnS, precipitate fine MnS before hot-rolled sheet annealing and final annealing, and develop {110} <001> It is necessary to exceed 1220 ° C. In order to increase the Young's modulus in the 55 ° direction, the temperature is more preferably 1250 ° C or higher. The upper limit of the heating temperature is not particularly limited, but it is difficult to set the temperature above 1450 ° C., and the upper limit is substantially 1400 ° C. due to equipment limitations. In order to heat a steel piece uniformly, more than 1250 degreeC-1350 degreeC is a more preferable range.

熱間圧延の後に冷間圧延を施さずに熱延板焼鈍を行う場合は、熱間圧延により導入された歪が回復や再結晶によって消失しないように、熱間圧延の仕上温度を低下させる。熱間圧延の仕上温度を850℃未満とし、冷間圧延を行うことなく熱延板焼鈍すると、熱間圧延により導入された歪により{110}<001>が集積し、55°方向のヤング率を高めることができる。また、冷間圧延を施さない場合は、熱間圧延の仕上温度を低下させて歪を導入するために、仕上温度は800℃未満が好ましく、750℃未満がさらに好ましい。一方、500℃未満で圧延すると、圧延荷重が過大となり生産性を損なうので、仕上温度の下限は500℃以上が好ましい。   When hot-rolled sheet annealing is performed after hot rolling without performing cold rolling, the finishing temperature of hot rolling is lowered so that strain introduced by hot rolling does not disappear due to recovery or recrystallization. When the hot rolling finish temperature is less than 850 ° C. and hot rolled sheet annealing is performed without cold rolling, {110} <001> accumulates due to strain introduced by hot rolling, and Young's modulus in the 55 ° direction Can be increased. When cold rolling is not performed, the finishing temperature is preferably less than 800 ° C., and more preferably less than 750 ° C., in order to reduce the finishing temperature of hot rolling and introduce strain. On the other hand, when rolling at less than 500 ° C., the rolling load becomes excessive and the productivity is impaired, so the lower limit of the finishing temperature is preferably 500 ° C. or more.

850℃未満での圧下率は、30%以上にすると、{110}<001>をさらに発達させることができる。また、850℃未満での圧下率が過大になると、再結晶が促進されるため、80%以下にすることが好ましい。850℃未満での圧下率は、40〜70%であればなお一層好ましい。   If the rolling reduction below 850 ° C. is 30% or more, {110} <001> can be further developed. Moreover, since recrystallization will be accelerated | stimulated when the rolling reduction in less than 850 degreeC becomes excessive, it is preferable to set it as 80% or less. The rolling reduction at less than 850 ° C. is even more preferably 40 to 70%.

熱間圧延後の巻取温度は、600℃未満とする。これは、巻取温度が600℃以上では、熱間圧延で導入された歪が回復し、熱延板焼鈍で{110}<001>の集積を高めることが困難になるためである。巻取温度は、550℃未満であればなお好ましい。   The coiling temperature after hot rolling is less than 600 ° C. This is because when the coiling temperature is 600 ° C. or higher, the strain introduced by hot rolling is recovered and it is difficult to increase the accumulation of {110} <001> by hot-rolled sheet annealing. The coiling temperature is more preferably less than 550 ° C.

熱間圧延後、冷間圧延を施さない場合は、熱延板焼鈍の最高温度を800℃以上とする。この熱延板焼鈍によって、仕上温度を850℃未満とする熱間圧延で導入された歪を駆動力とする再結晶、それに引き続く粒成長が生じ、{110}<001>が発達した集合組織にすることが可能となる。粒成長を促進させて、{110}<001>の極密度を高めるためには、熱延板焼鈍の最高温度は850℃以上が好ましい。熱延板焼鈍の最高温度の上限は限定しないが、連続焼鈍を施す場合は、生産性の観点から1000℃以下が好ましい。   When not performing cold rolling after hot rolling, the maximum temperature of hot-rolled sheet annealing is set to 800 ° C. or higher. By this hot-rolled sheet annealing, recrystallization using a strain introduced by hot rolling with a finishing temperature of less than 850 ° C. as a driving force, followed by grain growth, and {110} <001> developed into a texture It becomes possible to do. In order to promote grain growth and increase the pole density of {110} <001>, the maximum temperature of hot-rolled sheet annealing is preferably 850 ° C. or higher. Although the upper limit of the maximum temperature of hot-rolled sheet annealing is not limited, when performing continuous annealing, 1000 degrees C or less is preferable from a viewpoint of productivity.

熱間圧延後に冷間圧延を施して最終焼鈍する場合は、熱間圧延で過剰に歪が導入されないように、仕上温度を850℃以上とする。一方、仕上温度の上限は、微細なMnSを析出させるために1100℃以下とする。仕上温度を850℃以上、1100℃以下にすれば、冷間圧延後の最終焼鈍で再結晶が過剰に促進されることがないため、{110}<001>の極密度を高めることができる。表面でのスケール生成を抑制するためには、仕上温度を1050℃以下にすることが好ましい。   When the final annealing is performed by performing cold rolling after hot rolling, the finishing temperature is set to 850 ° C. or higher so that excessive strain is not introduced by hot rolling. On the other hand, the upper limit of the finishing temperature is 1100 ° C. or lower in order to precipitate fine MnS. If the finishing temperature is 850 ° C. or higher and 1100 ° C. or lower, recrystallization is not excessively promoted by the final annealing after cold rolling, so that the extreme density of {110} <001> can be increased. In order to suppress the generation of scale on the surface, the finishing temperature is preferably 1050 ° C. or lower.

また、本発明では、熱間圧延での歪の導入を抑制するため、890℃以下での総圧下量を50%未満に制限する。さらに890℃以下での総圧下量は、40%未満とすることが好ましい。ただし、熱間圧延の仕上圧延は、歪の導入を抑制するため、900℃以上にすることが好ましく、このように、仕上温度を890℃超とする場合は、890℃以下での総圧下量は0%である。なお、890℃以下での総圧下量は、890℃での板厚t0、熱間圧延完了後の板厚t1のとき、
{(t0−t1)/t0}×100(%)
で求められる。
Moreover, in this invention, in order to suppress introduction | transduction of the distortion by hot rolling, the total amount of rolling reduction below 890 degreeC is restrict | limited to less than 50%. Furthermore, the total amount of reduction at 890 ° C. or lower is preferably less than 40%. However, the finish rolling of the hot rolling is preferably 900 ° C. or higher in order to suppress the introduction of strain. Thus, when the finishing temperature is higher than 890 ° C., the total reduction amount at 890 ° C. or lower Is 0%. Note that the total amount of reduction at 890 ° C. or lower is the plate thickness t 0 at 890 ° C., the plate thickness t 1 after completion of hot rolling,
{(T 0 −t 1 ) / t 0 } × 100 (%)
Is required.

熱間圧延後に冷間圧延を施して最終焼鈍する場合は、熱間圧延の巻取温度を550℃以上とする。これは、巻取温度を550℃未満にすると、熱間圧延で導入した歪が残存し、冷延後に蓄積される歪が過大になりやすく、結晶方位への集積にばらつきが生じやすくなり、{110}<001>の極密度が低下するためである。巻取温度は、600℃以上がさらに好ましい。   When cold rolling is performed after hot rolling and final annealing is performed, the coiling temperature of hot rolling is set to 550 ° C or higher. This is because when the coiling temperature is less than 550 ° C., the strain introduced by hot rolling remains, the strain accumulated after cold rolling tends to be excessive, and the accumulation in the crystal orientation tends to vary, { This is because the pole density of 110} <001> decreases. The winding temperature is more preferably 600 ° C. or higher.

冷間圧延の圧下率は、20%未満であると歪の導入が不十分であり、焼鈍後、{110}<001>の極密度が低下する。一方、冷間圧延の圧下率が80%を超えると、歪の導入が過剰になり、再結晶が促進されて、最終焼鈍後、{110}<001>の極密度が低下する。{110}<001>の極密度を高め、55°方向のヤング率を高めるには、冷間圧延の圧下率を30〜70%とすることがより好ましく、35〜65%がさらに好ましい。なお、冷間圧延中には鋼板の温度が上昇する場合があるが、この温度は通常は100℃未満であり、大圧下などを施した場合でも200℃未満である。   If the rolling reduction of the cold rolling is less than 20%, the introduction of strain is insufficient, and the pole density of {110} <001> decreases after annealing. On the other hand, when the rolling reduction of cold rolling exceeds 80%, the introduction of strain becomes excessive, recrystallization is promoted, and the final density of {110} <001> is lowered after the final annealing. In order to increase the pole density of {110} <001> and increase the Young's modulus in the 55 ° direction, the rolling reduction of cold rolling is more preferably 30 to 70%, and further preferably 35 to 65%. Note that the temperature of the steel sheet may rise during cold rolling, but this temperature is usually less than 100 ° C. and is less than 200 ° C. even when subjected to a large reduction.

冷間圧延に続く最終焼鈍の加熱温度は、粒成長を促して、{110}<001>を発達させるために850℃以上とする。{110}<001>の極密度を高めるためには、最終焼鈍の加熱温度を900℃以上とすることが好ましく、950℃以上であればなお好ましい。最終焼鈍の最高温度の上限は限定しないが、連続焼鈍を施す場合は、生産性の観点から1100℃以下が好ましい。   The heating temperature of the final annealing following the cold rolling is set to 850 ° C. or higher in order to promote grain growth and develop {110} <001>. In order to increase the pole density of {110} <001>, the heating temperature of the final annealing is preferably 900 ° C. or higher, and more preferably 950 ° C. or higher. Although the upper limit of the maximum temperature of final annealing is not limited, when performing continuous annealing, 1100 degrees C or less is preferable from a viewpoint of productivity.

なお、冷間圧延を行う場合は、冷間圧延の前に冷延前焼鈍を行うか、冷間圧延の途中に一回または複数回の中間焼鈍を行っても構わない。これによって冷間圧延の荷重を低下したり、冷間圧延時の割れなどのトラブルを回避したりする効果のほか、{110}<001>集合組織の発達を促す効果も有する。   In the case of performing cold rolling, annealing before cold rolling may be performed before cold rolling, or one or more intermediate annealings may be performed during the cold rolling. This has the effect of reducing the cold rolling load and avoiding troubles such as cracks during cold rolling, as well as promoting the development of {110} <001> texture.

冷間圧延前焼鈍および中間焼鈍の最高温度は、700〜1200℃が好ましく、800〜1000℃がさらに好ましい。また、経済性の観点からは、冷間圧延前焼鈍および中間焼鈍は、最高温度を900℃以下として行うことが好ましい。
また、冷間圧延の前に、最高温度を700〜1200℃以下とする冷延前焼鈍を行っても構わない。これによって冷間圧延の荷重を低下したり、冷間圧延時の割れなどのトラブルを回避したりする効果のほか、{110}<001>の発達を促すことができる。冷延前焼鈍の最高温度の好ましい範囲は、800〜1000℃である。
700-1200 degreeC is preferable and, as for the highest temperature of annealing before cold rolling and intermediate annealing, 800-1000 degreeC is more preferable. Further, from the economical viewpoint, it is preferable to perform the annealing before cold rolling and the intermediate annealing at a maximum temperature of 900 ° C. or less.
Moreover, you may perform the annealing before cold rolling which makes a maximum temperature 700-1200 degrees C or less before cold rolling. Thus, in addition to the effect of reducing the cold rolling load and avoiding troubles such as cracks during cold rolling, the development of {110} <001> can be promoted. The preferable range of the maximum temperature of annealing before cold rolling is 800-1000 degreeC.

なお、冷延前焼鈍、中間焼鈍を施す場合は、最終焼鈍の直前の冷間圧延の圧下率を上述の範囲内、すなわち20〜80%、好ましくは30〜70%とする。   In addition, when performing annealing before cold rolling and intermediate annealing, let the rolling reduction of the cold rolling immediately before the last annealing be in the above-mentioned range, that is, 20 to 80%, preferably 30 to 70%.

熱間圧延の後に冷間圧延を施さずに熱延板焼鈍する場合も、熱間圧延後に冷間圧延を施して最終焼鈍する場合も、熱延後に酸洗を施すことが好ましい。また、熱延板焼鈍および最終焼鈍の加熱速度については特に限定しないが、{110}<001>の極密度を高め、55°方向のヤング率を高めるためには、500〜800℃の間の平均加熱速度を100℃/h以下とすることが好ましい。   It is preferable to perform pickling after hot rolling both when hot-rolled sheet annealing is performed after hot rolling without performing cold rolling, and when cold rolling is performed after hot rolling and final annealing is performed. Moreover, although it does not specifically limit about the heating rate of hot-rolled sheet annealing and final annealing, In order to raise the extreme density of {110} <001> and to raise the Young's modulus of a 55 degree direction, between 500-800 degreeC. The average heating rate is preferably 100 ° C./h or less.

さらに、鋼板の表面には種々のめっきを施しても構わない。亜鉛系めっきのほか、Al系のめっきを必要に応じて施せばよい。溶融めっきの場合には、鋼板を最終焼鈍した後の冷却仮定で、所定のめっき浴に浸漬し、必要に応じて再加熱して合金化すればよい。または、焼鈍の後、冷却完了後に、再度鋼板を加熱した後、めっき浴に浸漬しても良い。電気めっきは最終焼鈍の後に行えばよい。   Furthermore, you may give various plating to the surface of a steel plate. In addition to zinc-based plating, Al-based plating may be applied as necessary. In the case of hot dip plating, the steel sheet may be immersed in a predetermined plating bath on the assumption of cooling after the final annealing, and reheated as necessary to be alloyed. Alternatively, after annealing, after completion of cooling, the steel plate may be heated again and then immersed in a plating bath. Electroplating may be performed after the final annealing.

表1に示す組成を有する鋼を溶製し、鋳造して鋼片とした。これらのうち、鋼A、B、C、E、F、Qを用いて、表2に示す条件にて熱間圧延とそれに引き続く焼鈍を施した。得られた板厚3.0mmの鋼板に圧下率0.5%のスキンパス圧延を施した後、圧延方向と直角方向(C方向)の引張特性、{110}<001>の極密度、および種々の方向のヤング率を測定した。

Figure 2009249698
引張試験は、JIS Z 2241に準拠して行った。{110}<001>の極密度は、板厚1/4が測定面になるように試験片を採取して、X線回折法によって測定した。ヤング率の測定は、JIS Z 2280に準拠した横共振法によって行った。
結果を表2に示す。
Figure 2009249698
表2から明らかなように、本発明の成分を有する鋼を適切な条件で熱延、焼鈍した場合には、{110}<001>の極密度が高くなり、圧延方向から斜めの方向、特に55°方向のヤング率が高くなっている。
一方、鋼No.AはMn量が少なく、鋼No.EはAl量が少ないため、{110}<001>の極密度が低い。また、製造No.B−1は熱間圧延の加熱温度が低く、製造No.B−2はさらに巻取温度も高いため、{110}<001>の極密度が低下している。製造No.C−5は熱間圧延の仕上温度が高く、製造No.F−3はさらに熱延板焼鈍温度も低く、{110}<001>の極密度が低下している。製造No.Q−2は巻取温度が高く、製造No.C−4はさらに熱延板焼鈍の最高温度が低く、{110}<001>の極密度が低下している。製造No.Q−3は熱延板焼鈍の最高温度が低く、{110}<001>の極密度が低下している。 Steel having the composition shown in Table 1 was melted and cast into steel pieces. Among these, steel A, B, C, E, F, and Q were used, and hot rolling and subsequent annealing were performed under the conditions shown in Table 2. The obtained steel plate having a thickness of 3.0 mm was subjected to skin pass rolling with a reduction ratio of 0.5%, and then tensile properties in the direction perpendicular to the rolling direction (C direction), pole density of {110} <001>, and various The Young's modulus in the direction of was measured.
Figure 2009249698
The tensile test was conducted in accordance with JIS Z 2241. The pole density of {110} <001> was measured by an X-ray diffraction method by collecting a test piece so that the plate thickness ¼ becomes the measurement surface. The Young's modulus was measured by a transverse resonance method based on JIS Z 2280.
The results are shown in Table 2.
Figure 2009249698
As is apparent from Table 2, when the steel having the components of the present invention is hot-rolled and annealed under appropriate conditions, the pole density of {110} <001> increases, and the direction oblique from the rolling direction, particularly The Young's modulus in the 55 ° direction is high.
On the other hand, Steel No. A has a small amount of Mn. Since E has a small amount of Al, the polar density of {110} <001> is low. In addition, production No. B-1 has a low heating temperature for hot rolling. Since B-2 also has a higher coiling temperature, the pole density of {110} <001> is lowered. Production No. C-5 has a high hot rolling finishing temperature. In F-3, the hot-rolled sheet annealing temperature is also low, and the pole density of {110} <001> is lowered. Production No. Q-2 has a high winding temperature. In C-4, the maximum temperature of hot-rolled sheet annealing is lower, and the pole density of {110} <001> is lowered. Production No. In Q-3, the maximum temperature of hot-rolled sheet annealing is low, and the pole density of {110} <001> is lowered.

表1に示す組成を有する鋼片を、表3および4(表3のつづき)に示す条件にて熱間圧延後、冷間圧延および最終焼鈍を施した。一部の鋼板には、引き続き溶融亜鉛めっきを施した。このとき溶融亜鉛めっき浴の温度は460℃とした。得られた板厚1.2mmの鋼板の圧延方向と直角方向の引張特性、{110}<001>の極密度、および種々の方向のヤング率は、実施例1と同様にして測定した。
結果を表3および4(表3のつづき)に示す。

Figure 2009249698
Figure 2009249698
表3および4から明らかなように、本発明の成分を有する鋼を適切な条件で熱延、焼鈍した場合には、{110}<001>の極密度が高くなり、圧延方向から斜めの方向、特に55°方向のヤング率が高くなっている。
一方、鋼No.AおよびDはMn量が範囲外であり、鋼No.EはAl量が少なく、鋼No.RはS量が少ないため、いずれも{110}<001>の極密度が低下している。また、鋼No.JはSi量が多く、冷間圧延時に割れが生じ、鋼No.GはAl量が多く、熱間圧延にて割れが生じたため、以後の試験を中止した。
製造No.L−3、N−1およびQ−4は熱間圧延の加熱温度が低く、製造No.C−6はさらに巻取温度も低いため、{110}<001>の極密度が低下している。製造No.K−2は、熱間圧延の仕上温度が低く、890℃以下での総圧下量が大きいため、製造No.H−1はさらに巻取温度および最終焼鈍の最高温度も低いため、{110}<001>の極密度が低下している。製造No.B−4およびS−1は890℃以下での総圧下量が大きく、製造No.N−2は巻取温度が低いため、{110}<001>の極密度が低下している。
製造No.B−6、F−6およびO−2は、冷間圧延の圧下率が範囲外であり、製造No.Q−5はさらに最終焼鈍の最高温度が低いため、{110}<001>の極密度が低下している。製造No.F−4およびP−2は、最終焼鈍の最高温度が低いため、{110}<001>の極密度が低下している。 Steel strips having the compositions shown in Table 1 were subjected to cold rolling and final annealing after hot rolling under the conditions shown in Tables 3 and 4 (continued in Table 3). Some steel plates were subsequently hot dip galvanized. At this time, the temperature of the hot dip galvanizing bath was set to 460 ° C. The tensile properties in the direction perpendicular to the rolling direction of the obtained steel plate having a thickness of 1.2 mm, the pole density of {110} <001>, and the Young's modulus in various directions were measured in the same manner as in Example 1.
The results are shown in Tables 3 and 4 (continued in Table 3).
Figure 2009249698
Figure 2009249698
As is apparent from Tables 3 and 4, when the steel having the components of the present invention is hot-rolled and annealed under appropriate conditions, the pole density of {110} <001> increases, and the direction oblique from the rolling direction. In particular, the Young's modulus in the 55 ° direction is high.
On the other hand, Steel No. A and D have Mn amounts outside the range, and steel No. E has a small amount of Al. Since R has a small amount of S, the extreme density of {110} <001> is reduced in all cases. Steel No. J has a large amount of Si and cracks occur during cold rolling. Since G had a large amount of Al and cracking occurred during hot rolling, the subsequent test was stopped.
Production No. L-3, N-1 and Q-4 have a low heating temperature for hot rolling. Since C-6 also has a lower coiling temperature, the pole density of {110} <001> is lowered. Production No. K-2 has a low finishing temperature in hot rolling and a large total rolling reduction at 890 ° C. or lower, so Since H-1 also has a low coiling temperature and a maximum temperature of final annealing, the pole density of {110} <001> is lowered. Production No. B-4 and S-1 have a large total rolling reduction at 890 ° C. or lower. Since N-2 has a low winding temperature, the pole density of {110} <001> is lowered.
Production No. B-6, F-6 and O-2 have cold rolling reduction ratios outside the range. In Q-5, since the maximum temperature of the final annealing is lower, the extreme density of {110} <001> is lowered. Production No. In F-4 and P-2, since the maximum temperature of the final annealing is low, the extreme density of {110} <001> is lowered.

Claims (9)

質量%で、
C:0.0003〜0.250%、
Mn:0.03〜0.20%未満、
S:0.0010〜0.0500%、
Al:1.50%超、5.00%未満
を含有し、
Si:2.20%以下、
P:0.200%以下、
N:0.0500%以下
に制限し、残部がFeおよび不可避的不純物からなり、板厚1/4層における{110}<001>の極密度が6以上であり、板厚が0.5mm以上であることを特徴とする高剛性鋼板。
% By mass
C: 0.0003 to 0.250%,
Mn: 0.03 to less than 0.20%,
S: 0.0010 to 0.0500%,
Al: more than 1.50%, less than 5.00%,
Si: 2.20% or less,
P: 0.200% or less,
N: limited to 0.0500% or less, the balance is Fe and inevitable impurities, the {110} <001> pole density in the 1/4 layer thickness is 6 or more, and the plate thickness is 0.5 mm or more A high-rigidity steel sheet characterized by
圧延方向に対して55°方向のヤング率が235GPa以上であることを特徴とする請求項1記載の高剛性鋼板。   The high-rigidity steel sheet according to claim 1, wherein the Young's modulus in the 55 ° direction with respect to the rolling direction is 235 GPa or more. さらに質量%で、
Ti:0.003〜0.150%、
Nb:0.003〜0.150%、
V:0.003〜0.150%
の1種または2種を含有することを特徴とする請求項1または2記載の高剛性鋼板。
In addition,
Ti: 0.003 to 0.150%,
Nb: 0.003 to 0.150%,
V: 0.003-0.150%
The high-rigidity steel plate according to claim 1 or 2, comprising one or two of the following.
さらに質量%で、
Cr:0.01〜3.00%、
Ni:0.01〜3.00%、
Mo:0.01〜3.00%、
Cu:0.01〜3.00%
の1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の高剛性鋼板。
In addition,
Cr: 0.01 to 3.00%,
Ni: 0.01 to 3.00%,
Mo: 0.01 to 3.00%
Cu: 0.01 to 3.00%
The high-rigidity steel plate according to any one of claims 1 to 3, comprising one or more of the following.
さらに質量%で、
B:0.0001〜0.0060%
を含有することを特徴とする請求項1〜4のいずれか1項に記載の高剛性鋼板。
In addition,
B: 0.0001 to 0.0060%
The high-rigidity steel plate according to claim 1, comprising:
さらに質量%で、
Ca:0.001〜0.010%、
Mg:0.0005〜0.050%、
Zr:0.001〜0.200%、
REM:0.001〜0.050%
の1種または2種以上を含有することを特徴とする請求項1〜5のいずれか1項に記載の高剛性鋼板。
In addition,
Ca: 0.001 to 0.010%,
Mg: 0.0005 to 0.050%,
Zr: 0.001 to 0.200%,
REM: 0.001 to 0.050%
The high-rigidity steel plate according to any one of claims 1 to 5, comprising one or more of the following.
さらに質量%で、
Bi:0.0005〜0.300%、
Pb:0.0005〜0.300%、
Sb:0.0005〜0.300%、
Sn:0.0001〜0.300%
の1種または2種以上を含有することを特徴とする請求項1〜6のいずれか1項に記載の高剛性鋼板。
In addition,
Bi: 0.0005 to 0.300%,
Pb: 0.0005 to 0.300%,
Sb: 0.0005 to 0.300%,
Sn: 0.0001 to 0.300%
1 type or 2 types or more of these are contained, The high rigidity steel plate of any one of Claims 1-6 characterized by the above-mentioned.
請求項1〜7の何れか1項に記載の高剛性鋼板を製造する方法であって、請求項1、3〜7の何れか1項に記載の成分を有する鋼片を1220℃超の温度に加熱し、仕上温度を850℃未満とし、巻取温度を600℃未満とする熱間圧延を行い、冷間圧延を行うことなく、最高温度を800℃以上とする熱延板焼鈍を施すことを特徴とする高剛性鋼板の製造方法。   It is a method of manufacturing the highly rigid steel plate of any one of Claims 1-7, Comprising: The steel slab which has the component of any one of Claims 1 and 3-7 is temperature exceeding 1220 degreeC. And hot rolling with a finishing temperature of less than 850 ° C. and a coiling temperature of less than 600 ° C., and hot-rolled sheet annealing with a maximum temperature of 800 ° C. or higher without cold rolling. A method for producing a high-rigidity steel sheet characterized by 請求項1〜7の何れか1項に記載の高剛性鋼板を製造する方法であって、請求項1、3〜7の何れか1項に記載の成分を有する鋼片を1220℃超の温度に加熱し、890℃以下での総圧下量を50%未満に制限して、仕上温度を850〜1100℃とし、巻取温度を550℃以上とする熱間圧延を行い、20〜80%の圧下率で冷間圧延を施し、最高温度を850℃以上とする最終焼鈍を施すことを特徴とする高剛性鋼板の製造方法。   It is a method of manufacturing the highly rigid steel plate of any one of Claims 1-7, Comprising: The steel slab which has the component of any one of Claims 1 and 3-7 is temperature exceeding 1220 degreeC. The total rolling amount at 890 ° C. or lower is limited to less than 50%, the finishing temperature is set to 850 to 1100 ° C., and the coiling temperature is set to 550 ° C. or higher to perform hot rolling to 20 to 80%. A method for producing a high-rigidity steel sheet, which is subjected to cold rolling at a rolling reduction and final annealing at a maximum temperature of 850 ° C. or higher.
JP2008100479A 2008-04-08 2008-04-08 High-stiffness steel plate and method for manufacturing the same Active JP5251221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100479A JP5251221B2 (en) 2008-04-08 2008-04-08 High-stiffness steel plate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100479A JP5251221B2 (en) 2008-04-08 2008-04-08 High-stiffness steel plate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009249698A true JP2009249698A (en) 2009-10-29
JP5251221B2 JP5251221B2 (en) 2013-07-31

Family

ID=41310669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100479A Active JP5251221B2 (en) 2008-04-08 2008-04-08 High-stiffness steel plate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5251221B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125824A (en) * 2010-12-17 2012-07-05 Sumitomo Metal Ind Ltd Continuously cast slab for high strength steel plate, continuous casting method therefor, and high strength steel plate
KR101263790B1 (en) 2009-12-04 2013-05-13 주식회사 포스코 High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR101308716B1 (en) 2009-12-04 2013-09-13 주식회사 포스코 High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof
US20180371572A1 (en) * 2015-12-23 2018-12-27 Posco Grain-oriented electrical steel sheet and method for manufacturing the same
WO2019093399A1 (en) 2017-11-10 2019-05-16 国立研究開発法人物質・材料研究機構 Steel material having high toughness, method for producing same, and structural steel plate using said steel material
WO2020149405A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073397A (en) * 1993-06-16 1995-01-06 Kawasaki Steel Corp High damping alloy thin steel sheet and production thereof
JP2004332042A (en) * 2003-05-07 2004-11-25 Nippon Steel Corp Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073397A (en) * 1993-06-16 1995-01-06 Kawasaki Steel Corp High damping alloy thin steel sheet and production thereof
JP2004332042A (en) * 2003-05-07 2004-11-25 Nippon Steel Corp Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263790B1 (en) 2009-12-04 2013-05-13 주식회사 포스코 High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR101308716B1 (en) 2009-12-04 2013-09-13 주식회사 포스코 High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof
JP2012125824A (en) * 2010-12-17 2012-07-05 Sumitomo Metal Ind Ltd Continuously cast slab for high strength steel plate, continuous casting method therefor, and high strength steel plate
US20180371572A1 (en) * 2015-12-23 2018-12-27 Posco Grain-oriented electrical steel sheet and method for manufacturing the same
WO2019093399A1 (en) 2017-11-10 2019-05-16 国立研究開発法人物質・材料研究機構 Steel material having high toughness, method for producing same, and structural steel plate using said steel material
US11767582B2 (en) 2017-11-10 2023-09-26 National Institute For Materials Science Steel material exhibiting high toughness, method for manufacturing the same, and structural steel plate fabricated using steel material
WO2020149405A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
CN113272455A (en) * 2019-01-17 2021-08-17 日本制铁株式会社 Non-oriented electromagnetic steel sheet, split stator, and rotating electrical machine
JPWO2020149405A1 (en) * 2019-01-17 2021-09-30 日本製鉄株式会社 Non-oriented electrical steel sheets, split stators and rotary electric machines
EP3913079A4 (en) * 2019-01-17 2022-08-31 Nippon Steel Corporation Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
JP7192887B2 (en) 2019-01-17 2022-12-20 日本製鉄株式会社 Non-oriented electrical steel sheet, split type stator and rotating electric machine

Also Published As

Publication number Publication date
JP5251221B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP6179677B2 (en) High strength steel plate and manufacturing method thereof
JP6443592B1 (en) High strength steel sheet
JP6194951B2 (en) Hot rolled steel sheet
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5896085B1 (en) High-strength cold-rolled steel sheet with excellent material uniformity and manufacturing method thereof
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP5157375B2 (en) High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JPWO2012014926A1 (en) Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and production methods thereof
JP4665692B2 (en) High-strength steel sheet with excellent bending rigidity and method for producing the same
KR20140026608A (en) High-strength steel sheet for warm forming and process for producing same
JP5026327B2 (en) High-stiffness steel plate and method for manufacturing the same
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP6763479B2 (en) High-strength hot-dip galvanized steel sheet and its manufacturing method
KR20140048348A (en) Thin steel sheet and process for producing same
JP5251221B2 (en) High-stiffness steel plate and method for manufacturing the same
JP5641086B2 (en) High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
JP2014148696A (en) High strength hot rolled steel sheet excellent in burring workability and its manufacturing method
JP4003401B2 (en) Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same
JP5821864B2 (en) High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350