JP2009249567A - Heat resistant resin composition and coating - Google Patents

Heat resistant resin composition and coating Download PDF

Info

Publication number
JP2009249567A
JP2009249567A JP2008101573A JP2008101573A JP2009249567A JP 2009249567 A JP2009249567 A JP 2009249567A JP 2008101573 A JP2008101573 A JP 2008101573A JP 2008101573 A JP2008101573 A JP 2008101573A JP 2009249567 A JP2009249567 A JP 2009249567A
Authority
JP
Japan
Prior art keywords
resin composition
component
resistant resin
acid anhydride
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008101573A
Other languages
Japanese (ja)
Inventor
Takehiko Saotome
毅彦 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008101573A priority Critical patent/JP2009249567A/en
Publication of JP2009249567A publication Critical patent/JP2009249567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant resin composition that is reduced in the content of an organic solvent, does not cause environmental pollution or aggravation of working environment, is advantageous to safety and sanitation, and has an excellent adhesiveness to tin plate substrates even when exposed to an elevated temperature, and to provide a coating comprised of the same as a paint component. <P>SOLUTION: The heat resistant resin composition comprises (A) a polyamide resin obtained by reaction of a diisocyanate compound or diamine compound with a tribasic acid anhydride or tribasic acid anhydride chloride, (B) a basic compound, (C) water, and (D) tin acetylacetonate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐熱性樹脂組成物及び塗料に関する。   The present invention relates to a heat resistant resin composition and a paint.

環境保全面、安全衛生面、経済性及び塗装作業性等の面から有機溶剤に代わり媒体に水を使用する水性樹脂溶液が注目され、樹脂末端に残存するカルボキシル基と塩基性化合物を作用させるポリアミドイミド樹脂の水溶化方法が報告されている(例えば特開2002−284993等)。しかし、上記方法で作製された水溶性のポリアミドイミド樹脂は高温にさらされるとブリキ基板への密着力が低下するため、この点の改善が強く望まれている。
特開2002−284993号公報
Aqueous resin solutions that use water as a medium instead of organic solvents in terms of environmental protection, safety and health, economy, and painting workability have attracted attention, and polyamides that act on carboxyl groups remaining at the resin ends and basic compounds A method for water-solubilizing an imide resin has been reported (for example, JP-A No. 2002-284993). However, since the water-soluble polyamide-imide resin produced by the above method has a low adhesion to the tin substrate when exposed to high temperatures, improvement of this point is strongly desired.
JP 2002-284993 A

本発明の目的は、有機溶剤含有量を低減させ、環境汚染や作業環境の悪化がなく、安全衛生面に対して有利であり、かつ高温にさらされてもブリキ基板に対して優れた密着性を有する耐熱性樹脂組成物及びこれを塗膜成分としてなる塗料を提供することにある。   The object of the present invention is to reduce the organic solvent content, to prevent environmental pollution and work environment deterioration, is advantageous for health and safety, and has excellent adhesion to tinplate substrates even when exposed to high temperatures. It is in providing the heat resistant resin composition which has this, and the coating material which uses this as a coating-film component.

上述の高温にさらされた後のブリキ基板に対する密着性に関して検討した結果、ジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドとを反応させて得られるポリアミドイミド樹脂と塩基性化合物によって得られる耐熱性樹脂組成物にアセチルアセトン錫を添加することによって、ブリキ基板に対する密着性の低下が改善され、かつ有機溶剤の低減により環境にも寄与できることを見出して本発明に至った。
すなわち本発明は、(A)塩基性極性溶媒中で、ジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドとを反応させて得られるポリアミドイミド樹脂と(B)塩基性化合物、(C)水及び(D)アセチルアセトン錫を配合してなる耐熱性樹脂組成物に関する。
また、本発明は、前記の(B)成分の塩基性化合物が(A)成分のポリアミドイミド樹脂中に含まれるカルボキシル基及びポリアミドイミド樹脂中の酸無水物基を開環させたカルボキシル基を合わせた酸価1当量に対して、1〜20当量配合されている耐熱性樹脂組成物に関する。
また、本発明は、前記の(C)成分の水が(A)成分、(B)成分及び(C)成分の合計量に対して、5〜99重量%配合されている耐熱性樹脂組成物に関する。
また、本発明は、前記のポリアミドイミド樹脂の数平均分子量が5,000〜50,000で、かつ、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価が10〜100mgKOH/gである耐熱性樹脂組成物に関する。
また、本発明は、前記の(B)成分の塩基性化合物がアルキルアミン又はアルカノールアミンである耐熱性樹脂組成物に関する。
また、本発明は、前記の(D)成分のアセチルアセトン錫が、(A)ポリアミドイミド樹脂100重量部に対して、0.01〜20重量部配合されている耐熱性樹脂組成物に関する。
さらに、本発明は前記の耐熱性樹脂組成物を塗膜成分としてなる塗料に関する。
As a result of examining the adhesion to the tinplate substrate after being exposed to the above-mentioned high temperature, the polyamideimide resin obtained by reacting the diisocyanate compound or diamine compound with tribasic acid anhydride or tribasic acid chloride and basicity It was found that by adding acetylacetone tin to the heat-resistant resin composition obtained from the compound, the decrease in the adhesion to the tinplate substrate was improved, and it was also possible to contribute to the environment by reducing the organic solvent, thereby reaching the present invention.
That is, the present invention provides (A) a polyamideimide resin obtained by reacting a diisocyanate compound or diamine compound with a tribasic acid anhydride or tribasic acid anhydride chloride in a basic polar solvent, and (B) a basic compound. , (C) water and (D) a heat resistant resin composition comprising acetylacetone tin.
In the present invention, the basic compound of the component (B) is combined with the carboxyl group contained in the polyamideimide resin of the component (A) and the carboxyl group obtained by ring opening of the acid anhydride group in the polyamideimide resin. In addition, the present invention relates to a heat resistant resin composition containing 1 to 20 equivalents per 1 equivalent of acid value.
Further, the present invention provides a heat resistant resin composition in which the water of the component (C) is blended in an amount of 5 to 99% by weight based on the total amount of the component (A), the component (B) and the component (C). About.
In the present invention, the polyamideimide resin has a number average molecular weight of 5,000 to 50,000, and an acid value of 10 to 100 mgKOH combined with a carboxyl group obtained by ring opening of a carboxyl group and an acid anhydride group. It is related with the heat resistant resin composition which is / g.
Moreover, this invention relates to the heat resistant resin composition whose basic compound of said (B) component is an alkylamine or an alkanolamine.
The present invention also relates to a heat resistant resin composition in which 0.01 to 20 parts by weight of the acetylacetone tin as the component (D) is blended with respect to 100 parts by weight of the (A) polyamideimide resin.
Furthermore, this invention relates to the coating material which uses the said heat resistant resin composition as a coating-film component.

本発明の耐熱性樹脂組成物は、塗膜としたとき、高温にさらされてもブリキ基板に対して密着性が低下せず、かつ有機溶剤含有量を低減させていることより、各種の用途の中でも特に高耐熱用途に有用であり、かつ環境汚染や作業環境の悪化がなく、安全衛生面に対して有利であることから、工業的に多大な有効性を有するものである。   When the heat-resistant resin composition of the present invention is used as a coating film, the adhesiveness to the tinplate substrate does not decrease even when exposed to high temperatures, and the organic solvent content is reduced. Among them, it is particularly useful for high heat resistance applications, has no environmental pollution or deterioration of the work environment, and is advantageous for safety and hygiene, and thus has great industrial effectiveness.

本発明のポリアミドイミド樹脂は、前記のようにジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドとを反応させて得られるものである。ジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドは、それぞれ芳香族化合物を使用することが好ましい。以下、ポリアミドイミド樹脂の製造法に用いられる代表的な化合物を次に列挙する。   The polyamideimide resin of the present invention is obtained by reacting a diisocyanate compound or diamine compound with a tribasic acid anhydride or tribasic acid chloride as described above. The diisocyanate compound or diamine compound and the tribasic acid anhydride or tribasic acid anhydride chloride are preferably aromatic compounds. Hereinafter, typical compounds used in the method for producing the polyamideimide resin are listed below.

まず、ジイソシアネート化合物としては、4,4′−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3′−ジフェニルメタンジイソシアネート、パラフェニレンジイソシアネート等が挙げられる。
また、ジアミンとしては、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルスルホン、3,3′−ジアミノジフェニルスルホン、キシリレンジアミン、フェニレンジアミン等が挙げられる。
また、三塩基酸無水物としては、トリメリット酸無水物等が挙げられ、三塩基酸無水物クロライドとしては、トリメリット酸無水物クロライド等が挙げられる。
ポリアミドイミド樹脂を合成する際に、ジカルボン酸、テトラカルボン酸二無水物等をポリアミドイミド樹脂の特性を損なわない範囲で同時に反応させることができる。
First, examples of the diisocyanate compound include 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3′-diphenylmethane diisocyanate, and paraphenylene diisocyanate.
Examples of the diamine include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, xylylenediamine, phenylenediamine, and the like.
Examples of the tribasic acid anhydride include trimellitic acid anhydride and the like, and examples of the tribasic acid anhydride chloride include trimellitic acid anhydride chloride and the like.
When synthesizing the polyamideimide resin, dicarboxylic acid, tetracarboxylic dianhydride, and the like can be reacted at the same time as long as the properties of the polyamideimide resin are not impaired.

ジカルボン酸としては、テレフタル酸、イソフタル酸、アジピン酸等が挙げられ、テトラカルボン酸二無水物としては、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物等が挙げられる。
前記ジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドと必要に応じて使用するジカルボン酸及びテトラカルボン酸二無水物の使用量は、生成されるポリアミドイミド樹脂の分子量、架橋度の観点から酸成分の総量1.0モルに対してジイソシアネート化合物又はジアミン化合物を0.8〜1.1モルとすることが好ましく、0.95〜1.08モルとすることがより好ましく、特に、1.0〜1.08モル使用されることが好ましい。また、酸成分中、ジカルボン酸及びテトラカルボン酸二無水物は、これらの総量が0〜50モル%の範囲で使用されるのが好ましい。
Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, and adipic acid. Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and biphenyltetracarboxylic dianhydride. Is mentioned.
The diisocyanate compound or diamine compound, tribasic acid anhydride or tribasic acid anhydride chloride, and the amount of dicarboxylic acid and tetracarboxylic dianhydride used as required are the molecular weight of the polyamideimide resin produced, cross-linking From the viewpoint of the degree, the diisocyanate compound or the diamine compound is preferably 0.8 to 1.1 mol, more preferably 0.95 to 1.08 mol, with respect to 1.0 mol of the total amount of the acid component, In particular, it is preferable to use 1.0 to 1.08 mol. Moreover, it is preferable that dicarboxylic acid and tetracarboxylic dianhydride are used in the acid component in the range whose total amount is 0-50 mol%.

本発明のポリアミドイミド樹脂は、ジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドとを塩基性極性溶媒中で反応させる。ここで、塩基性極性溶媒としては、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなどを用いることができるが、ポリアミドイミド化反応を高温で短時間に行うためには、N−メチル−2−ピロリドン等の高沸点溶媒を用いるのが好ましい。また、溶媒の使用量に特に制限はないが、ジイソシアネート成分と酸成分の総量100重量部に対して100〜500重量部とするのが好ましい。ポリアミドイミド樹脂の合成条件は、多様であり、一概に特定できないが、通常、120〜155℃の温度で行われ、空気中の水分の影響を低減するため、窒素などの雰囲気下で行うのが好ましい。   The polyamideimide resin of the present invention reacts a diisocyanate compound or a diamine compound with a tribasic acid anhydride or tribasic acid chloride in a basic polar solvent. Here, as the basic polar solvent, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, and the like can be used. In order to perform the polyamide imidization reaction at a high temperature in a short time, N-methyl- It is preferable to use a high boiling point solvent such as 2-pyrrolidone. Moreover, there is no restriction | limiting in particular in the usage-amount of a solvent, However, It is preferable to set it as 100-500 weight part with respect to 100 weight part of total amounts of a diisocyanate component and an acid component. The conditions for synthesizing the polyamide-imide resin are various and cannot be specified in general. Usually, the reaction is performed at a temperature of 120 to 155 ° C., and in an atmosphere of nitrogen or the like in order to reduce the influence of moisture in the air. preferable.

なお、ポリアミドイミド樹脂の数平均分子量は、樹脂合成時にサンプリングしてゲルパーミエーションクロマトグラフ(GPC)により、標準ポリスチレンの検量線を用いて測定し、目的の数平均分子量になるまで合成を継続することにより上記範囲に管理される。
本発明に用いられるポリアミドイミド樹脂は、数平均分子量が5,000〜50,000のものが好ましい。数平均分子量が5,000未満では、塗膜としたときの、塗膜の耐熱性や機械的特性等の諸特性が低下する傾向があり、50,000を超えると、塗料として適正な濃度で溶媒に溶解したときに粘度が高くなり、塗装時の作業性に劣る傾向がある。このことから、ポリアミドイミド樹脂の数平均分子量は10,000〜30,000とすることがより好ましく、15,000〜25,000とすることが特に好ましい。
The number average molecular weight of the polyamideimide resin is sampled at the time of resin synthesis, measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve, and the synthesis is continued until the target number average molecular weight is reached. Therefore, it is managed within the above range.
The polyamideimide resin used in the present invention preferably has a number average molecular weight of 5,000 to 50,000. When the number average molecular weight is less than 5,000, various properties such as heat resistance and mechanical properties of the coating film tend to decrease when it is used as a coating film. When dissolved in a solvent, the viscosity increases and the workability during coating tends to be poor. Therefore, the number average molecular weight of the polyamideimide resin is more preferably 10,000 to 30,000, and particularly preferably 15,000 to 25,000.

また、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価が10〜100mgKOH/gであることが好ましく、10mgKOH/g未満であると塩基性化合物と反応するカルボキシル基が不足するため、水溶化が困難となり、100mgKOH/gを超えると最終的に得られる水系耐熱性樹脂組成物が経日にてゲル化しやすくなる。このことから、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価が20〜80mgKOH/gとすることがより好ましく、30〜60mgKOH/gとすることが特に好ましい。   The acid value of the carboxyl group obtained by opening the carboxyl group and the acid anhydride group is preferably 10 to 100 mgKOH / g, and if it is less than 10 mgKOH / g, the carboxyl group that reacts with the basic compound is insufficient. Therefore, water-solubilization becomes difficult, and when it exceeds 100 mgKOH / g, the finally obtained water-based heat-resistant resin composition is easily gelled over time. Therefore, the acid value of the combined carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group is more preferably 20 to 80 mgKOH / g, and particularly preferably 30 to 60 mgKOH / g.

なお、ポリアミドイミド樹脂のカルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は、以下の方法で得ることができる。ます、ポリアミドイミド樹脂を約0.5gとり、これに1,4−ジアザビシクロ[2,2,2]オクタンを約0.15g加え、さらにN−メチル−2−ピロリドンを約60g及びイオン交換水を約1ml加え、ポリアミドイミド樹脂が完全に溶解するまで攪拌する。これを0.05モル/lエタノール性水酸化カリウム溶液を使用して電位差滴定装置で滴定し、ポリアミドイミド樹脂のカルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価を得る。   In addition, the acid value combining the carboxyl group of the polyamideimide resin and the carboxyl group obtained by ring opening of the acid anhydride group can be obtained by the following method. First, about 0.5 g of polyamideimide resin is taken, about 0.15 g of 1,4-diazabicyclo [2,2,2] octane is added thereto, and about 60 g of N-methyl-2-pyrrolidone and ion-exchanged water are added. Add about 1 ml and stir until the polyamideimide resin is completely dissolved. This is titrated with a potentiometric titrator using a 0.05 mol / l ethanolic potassium hydroxide solution to obtain an acid value that combines the carboxyl groups of the polyamideimide resin and the carboxyl groups obtained by ring opening of the acid anhydride groups. .

本発明において、塩基性化合物としてはトリエチルアミン、トリブチルアミン、トリエチレンジアミン、N−メチルモルフォリン等のアルキルアミン、メチルアニリン、ジメチルアニリン等のアルキルアニリン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジプロパノールアミン、トリプロパノールアミン、N−エチルエタノールアミン、N,N−ジメチルエタノールアミン、シクロヘキサノールアミン、N−メチルシクロヘキサノールアミン、N−ベンジルエタノールアミン等のアルカノールアミン類が適しているが、これら以外の塩基性化合物、例えば水酸化ナトリウムや水酸化カリウム等の苛性アルカリ又はアンモニア水等を使用してもよく特に制限はない。好ましくは、トリエチルアミン、N−メチルモルフォリン、トリエチレンジアミン、N,N−ジメチルエタノールアミンが使用される。   In the present invention, basic compounds include triethylamine, tributylamine, triethylenediamine, alkylamines such as N-methylmorpholine, alkylanilines such as methylaniline, dimethylaniline, monoethanolamine, diethanolamine, triethanolamine, dipropanolamine. Alkanolamines such as tripropanolamine, N-ethylethanolamine, N, N-dimethylethanolamine, cyclohexanolamine, N-methylcyclohexanolamine, and N-benzylethanolamine are suitable. There may be no particular limitation, for example, a caustic compound such as caustic such as sodium hydroxide or potassium hydroxide or aqueous ammonia may be used. Preferably, triethylamine, N-methylmorpholine, triethylenediamine, N, N-dimethylethanolamine is used.

塩基性化合物は、上記の有機溶媒中で反応させて得られるポリアミドイミド樹脂中に含まれるカルボキシル基及び開環させた酸無水物基を合わせた酸価1当量に対して、1〜20当量用いられる。1当量未満では樹脂の水溶化が困難となり、20当量を超えると樹脂の加水分解が促進され、長期の保存により粘度又は特性低下をきたすことがある。このことから、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価に対して、2〜10当量とすることが好ましく、3〜8当量とすることが特に好ましい。
塩基性化合物はポリアミドイミド樹脂の末端にあるカルボキシル基と塩を形成して親水性基となる。塩形成に際しては水の共存下に行ってもよいし、塩基性化合物を添加した後、水を加えてもよい。塩を形成させる温度は0℃〜200℃、好ましくは40℃〜130℃の範囲で行われる。
The basic compound is used in an amount of 1 to 20 equivalents per 1 equivalent of the acid value of the carboxyl group and ring-opened acid anhydride group contained in the polyamideimide resin obtained by reacting in the organic solvent. It is done. If the amount is less than 1 equivalent, water-solubilization of the resin becomes difficult. If the amount exceeds 20 equivalents, hydrolysis of the resin is promoted, and the viscosity or properties may be lowered by long-term storage. From this, it is preferable to set it as 2-10 equivalent with respect to the acid value which match | combined the carboxyl group which ring-opened the carboxyl group and the acid anhydride group, and it is especially preferable to set it as 3-8 equivalent.
The basic compound forms a salt with the carboxyl group at the end of the polyamideimide resin to become a hydrophilic group. The salt may be formed in the presence of water, or water may be added after adding the basic compound. The temperature for forming the salt is 0 ° C to 200 ° C, preferably 40 ° C to 130 ° C.

塩基性化合物の種類と量及び水の添加方法によって、得られる水性樹脂組成物の形態はエマルジョン状、半透明溶液、透明溶液等となるが、貯蔵安定性、塗装作業性の点から、半透明あるいは透明溶液にすることが好ましい。
水としてはイオン交換水が好ましく用いられ、(A)成分、(B)成分、(C)成分の合計量に対して好ましくは5〜99重量%、より好ましくは20〜60重量%配合される。この配合量が5重量%未満では含有する水が少ないことから一般に水溶性ポリマーとして称されず、99重量%を超えると塗料として機能しなくなる傾向がある。
Depending on the type and amount of the basic compound and the method of adding water, the resulting aqueous resin composition is in the form of an emulsion, a translucent solution, a transparent solution, etc., but it is translucent from the viewpoint of storage stability and coating workability. Or it is preferable to make it a clear solution.
As the water, ion-exchanged water is preferably used, and is preferably blended in an amount of 5 to 99% by weight, more preferably 20 to 60% by weight based on the total amount of the components (A), (B) and (C). . If the blending amount is less than 5% by weight, it is not generally referred to as a water-soluble polymer because it contains less water. If it exceeds 99% by weight, it tends not to function as a paint.

アセチルアセトン錫の配合量は、ポリアミドイミド樹脂100重量部に対し、好ましくは0.01〜20重量部の範囲とされる。0.01重量部未満となると、密着性向上効果が小さくなり、20重量部を超えると塗膜の耐熱性が漸次低下する傾向を示す。このことから、アセチルアセトン錫の配合量は、ポリアミドイミド樹脂100重量部に対し、0.05〜10重量部とすることがより好ましく、0.1〜8重量部とすることが特に好ましい。アセチルアセトン錫は、塩基性極性溶媒に溶解した溶液としてポリアミドイミド樹脂と混合することができる。塩基性極性溶媒としては、N‐メチル‐2‐ピロリドン、N,N‐ジメチルホルムアミドなどを用いることができる。溶液の濃度については、特に制限はないが、例えば、アセチルアセトン錫100重量部を塩基性極性溶媒900〜4000重量部に溶解される。アセチルアセトン錫の配合方法についてはこれに限られるものではなく、他の適宜の方法によってもよい。   The blending amount of acetylacetone tin is preferably in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the polyamideimide resin. When the amount is less than 0.01 parts by weight, the effect of improving the adhesion is reduced, and when the amount exceeds 20 parts by weight, the heat resistance of the coating film tends to gradually decrease. Accordingly, the blending amount of acetylacetone tin is more preferably 0.05 to 10 parts by weight, and particularly preferably 0.1 to 8 parts by weight with respect to 100 parts by weight of the polyamideimide resin. Acetylacetone tin can be mixed with the polyamideimide resin as a solution dissolved in a basic polar solvent. As the basic polar solvent, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used. Although there is no restriction | limiting in particular about the density | concentration of a solution, For example, 100 weight part of acetylacetone tin is melt | dissolved in 900-4000 weight part of basic polar solvents. The method of blending acetylacetone tin is not limited to this, and other appropriate methods may be used.

このようにして得られた水系耐熱性樹脂組成物は使用する際に必要に応じて適当な濃度に希釈される。希釈溶媒としては、水、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルフォキシド、N−メチル−2−ピロリドン等の極性溶媒の他に、助溶媒として、ポリオール類、これらの低級アルキルエーテル化物、アセチル化物等を用いてもよい。例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリン、トリメチロールプロパン、イソプロピルアルコール、又はそれらのモノメチルエーテル化物、モノエチルエーテル、モノイソプロピルエーテル化物、モノブチルエーテル化物、ジメチルエーテル化物及びこれらのモノアセチル化物等が使用される。
本発明による耐熱性樹脂組成物は、被塗物に塗布、硬化させて、被塗物表面に塗膜を形成する。ブリキ基板を被塗物としたとき、特に著しい効果を挙げることができる。
The water-based heat-resistant resin composition thus obtained is diluted to an appropriate concentration as needed when used. Diluent solvents include polar solvents such as water, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, as cosolvents, polyols, their lower alkyl etherified products, acetylated products, etc. May be used. For example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, glycerin, trimethylolpropane, isopropyl alcohol, or monomethyl etherified products thereof, monoethyl ether, monoisopropyl etherified products, monobutyl etherified products, dimethyl etherified products, and monofunctionalized products thereof. An acetylated product or the like is used.
The heat-resistant resin composition according to the present invention is applied to an object to be coated and cured to form a coating film on the surface of the object to be coated. When the tinplate substrate is used as an object to be coated, a particularly remarkable effect can be obtained.

次に本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではなく、発明の主旨に基づいたこれら以外の多くの実施態様を含むことは言うまでもない。
実施例1
無水トリメリット酸1106.2g、4,4−ジフェニルメタンジイソシアネート1455.8g、N−メチル−2−ピロリドン2562.0gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら約2時間かけて徐々に昇温して130℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら130℃を保持し、このまま約6時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
EXAMPLES Next, examples of the present invention will be described, but it is needless to say that the present invention is not limited to these examples and includes many other embodiments based on the gist of the invention.
Example 1
106.2 g of trimellitic anhydride, 1455.8 g of 4,4-diphenylmethane diisocyanate, and 2562.0 g of N-methyl-2-pyrrolidone were placed in a flask equipped with a thermometer, a stirrer, and a cooling tube, and dried in a nitrogen stream. The temperature was gradually raised to 130 ° C. over about 2 hours with stirring. The temperature was kept at 130 ° C. while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction, and heating was continued for about 6 hours, and the reaction was stopped to obtain a polyamideimide resin solution.

このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は約50重量%で、粘度(30℃)は約85.0Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は約17,000で、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は約40mgKOH/gであった。なお、数平均分子量は次の条件にて測定した。
機種:日立 L6000
検出器:日立 L4000型UV
波長:270nm
データ処理機:ATT 8
カラム:Gelpack GL−S300MDT−5×2
カラムサイズ:8mmφ×300mm
溶媒:DMF/THF=1/1(リットル)+リン酸0.06M+臭化リチウム0.06M
試料濃度:5mg/1ml
注入量:5μl
圧力:49kgf/cm(4.8×10Pa)
流量:1.0ml/min
The polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of about 50% by weight and a viscosity (30 ° C.) of about 85.0 Pa · s. The number average molecular weight of the polyamideimide resin was about 17,000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group was about 40 mgKOH / g. The number average molecular weight was measured under the following conditions.
Model: Hitachi L6000
Detector: Hitachi L4000 type UV
Wavelength: 270nm
Data processor: ATT 8
Column: Gelpack GL-S300MDT-5 × 2
Column size: 8mmφ × 300mm
Solvent: DMF / THF = 1/1 (liter) + phosphoric acid 0.06M + lithium bromide 0.06M
Sample concentration: 5mg / 1ml
Injection volume: 5 μl
Pressure: 49 kgf / cm 2 (4.8 × 10 6 Pa)
Flow rate: 1.0 ml / min

このポリアミドイミド樹脂溶液2,700gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して50℃まで上げた。50℃に達したところでトリエチルアミンを447.1g(4当量)添加し、50℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が1348.8g(30重量%)となるまで加えて、透明で均一な樹脂組成物を得た。
上記方法で作製された樹脂組成物100重量部(不揮発分30重量%)に対し、アセチルアセトン錫のN‐メチル‐2‐ピロリドン溶液(不揮発分10重量%)1.7重量部を配合し、耐熱性樹脂組成物を得た。
2,700 g of this polyamideimide resin solution was put into a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 50 ° C. while stirring in a dried nitrogen stream. When the temperature reached 50 ° C., 447.1 g (4 equivalents) of triethylamine was added, and after sufficiently stirring while maintaining the temperature at 50 ° C., ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added until it reached 1348.8 g (30 wt%) to obtain a transparent and uniform resin composition.
To 100 parts by weight (non-volatile content: 30% by weight) of the resin composition prepared by the above method, 1.7 parts by weight of N-methyl-2-pyrrolidone solution of acetylacetone tin (non-volatile content: 10% by weight) is blended. A functional resin composition was obtained.

実施例2
無水トリメリット酸382.9g、4,4′−ジフェニルメタンジイソシアネート503.9g、N−メチル−2−ピロリドン886.8gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら約1時間かけて徐々に昇温して80℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら80℃を保ち、加熱開始から約7時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は約50重量%で、粘度(30℃)は約80.0Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は約15,000で、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は約50mgKOH/gであった。
Example 2
In a dry nitrogen stream, 382.9 g of trimellitic anhydride, 503.9 g of 4,4′-diphenylmethane diisocyanate and 886.8 g of N-methyl-2-pyrrolidone were placed in a flask equipped with a thermometer, stirrer and condenser. The temperature was gradually raised to 80 ° C. over about 1 hour with stirring. The temperature was kept at 80 ° C. while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction, and the heating was continued for about 7 hours from the start of heating, and then the reaction was stopped to obtain a polyamideimide resin solution.
The polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of about 50% by weight and a viscosity (30 ° C.) of about 80.0 Pa · s. The number average molecular weight of the polyamideimide resin was about 15,000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group was about 50 mgKOH / g.

このポリアミドイミド樹脂溶液200gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して90℃まで上げた。90℃に達したところでN−メチルモルホリンを70.8g(8当量)添加し、90℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が180.5g(40重量%)となるまで加えて、透明で均一な樹脂組成物を得た。
上記方法で作製された樹脂組成物100重量部(不揮発分22重量%)に対し、アセチルアセトン錫のN‐メチル‐2‐ピロリドン溶液(不揮発分5重量%)4.4重量部を配合し、耐熱性樹脂組成物を得た。
200 g of this polyamideimide resin solution was put into a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 90 ° C. while stirring in a dried nitrogen stream. When the temperature reached 90 ° C., 70.8 g (8 equivalents) of N-methylmorpholine was added, and the mixture was sufficiently stirred while maintaining at 90 ° C., and then ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added until the amount reached 180.5 g (40% by weight) to obtain a transparent and uniform resin composition.
To 100 parts by weight of the resin composition prepared by the above method (nonvolatile content: 22% by weight), 4.4 parts by weight of N-methyl-2-pyrrolidone solution of acetylacetone tin (nonvolatile content: 5% by weight) A functional resin composition was obtained.

実施例3
無水トリメリット酸233.8g、無水ベンゾフェノンテトラカルボン酸98.0g、4,4′−ジフェニルメタンジイソシアネート384.6g、N−メチル−2−ピロリドン1671.6gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら約1時間かけて徐々に昇温して120℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら徐々に昇温して150℃まで上げ、加熱開始から5時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は約30重量%で、粘度(30℃)は約2.1Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は約23,000で、カルボキシル基及び酸無水物基を合わせた酸価は約30mgKOH/gであった。
Example 3
A flask equipped with 233.8 g of trimellitic anhydride, 98.0 g of benzophenone tetracarboxylic anhydride, 384.6 g of 4,4′-diphenylmethane diisocyanate and 1671.6 g of N-methyl-2-pyrrolidone, equipped with a thermometer, a stirrer and a condenser The mixture was gradually heated to 120 ° C. over about 1 hour with stirring in a dried nitrogen stream. The temperature was gradually raised to 150 ° C. while paying attention to the sudden bubbling of carbon dioxide gas generated by the reaction, and after 5 hours from the start of heating, the reaction was stopped to obtain a polyamideimide resin solution.
The polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of about 30% by weight and a viscosity (30 ° C.) of about 2.1 Pa · s. The number average molecular weight of the polyamideimide resin was about 23,000, and the acid value of the combined carboxyl group and acid anhydride group was about 30 mgKOH / g.

このポリアミドイミド樹脂溶液200gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して110℃まで上げた。110℃に達したところでN,N−ジメチルエタノールアミンを17.6g(6当量)添加し、110℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が217.6g(50重量%)となるまで加えて、透明で均一な樹脂組成物を得た。
上記方法で作製された樹脂組成物100重量部(不揮発分14重量%)に対し、アセチルアセトン錫のN‐メチル‐2‐ピロリドン溶液(不揮発分10重量%)7.0重量部を配合し、耐熱性樹脂組成物を得た。
200 g of this polyamideimide resin solution was put into a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 110 ° C. while stirring in a dried nitrogen stream. When the temperature reached 110 ° C., 17.6 g (6 equivalents) of N, N-dimethylethanolamine was added, and after sufficiently stirring while maintaining at 110 ° C., ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added to 217.6 g (50 wt%) to obtain a transparent and uniform resin composition.
To 100 parts by weight of the resin composition prepared by the above method (non-volatile content: 14% by weight), 7.0 parts by weight of N-methyl-2-pyrrolidone solution of acetylacetone tin (non-volatile content: 10% by weight) A functional resin composition was obtained.

比較例1
無水トリメリット酸876.9g、4,4′−ジフェニルメタンジイソシアネート1153.8g、N−メチル−2−ピロリドン4,738.3gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら約1時間かけて徐々に昇温して110℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら徐々に昇温して120℃まで上げた。加熱開始から約8時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は約30重量%で、粘度(30℃)は約1.8Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は約21,000で、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は約35mgKOH/gであった。
Comparative Example 1
Nitrogen obtained by adding 876.9 g of trimellitic anhydride, 1153.8 g of 4,4′-diphenylmethane diisocyanate and 4,738.3 g of N-methyl-2-pyrrolidone to a flask equipped with a thermometer, a stirrer and a condenser. The temperature was gradually raised to 110 ° C. over about 1 hour with stirring in an air stream. The temperature was gradually raised to 120 ° C. while paying attention to the sudden foaming of carbon dioxide generated by the reaction. After continuing the heating for about 8 hours from the start of heating, the reaction was stopped to obtain a polyamideimide resin solution.
The polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of about 30% by weight and a viscosity (30 ° C.) of about 1.8 Pa · s. The number average molecular weight of the polyamideimide resin was about 21,000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group was about 35 mgKOH / g.

試験例
実施例1、2及び3、及び比較例1で得られた塗料をブリキ基板に塗布した後、300℃で30分間焼付けて膜厚10μmの塗膜板を形成した。塗膜を形成したブリキ基板について、初期及び300℃に所定の時間さらした後の密着性を旧JIS K5400に準じて測定した(%、クロスカット残率)。その結果を表1に示す。
Test Example After the paints obtained in Examples 1, 2, and 3 and Comparative Example 1 were applied to a tinplate substrate, they were baked at 300 ° C. for 30 minutes to form a 10 μm-thick coating film plate. About the tinplate board | substrate which formed the coating film, the adhesiveness after exposing to the initial stage and 300 degreeC for a predetermined time was measured according to old JISK5400 (%, crosscut residual rate). The results are shown in Table 1.

Figure 2009249567
Figure 2009249567

比較例1の初期において、密着性の数値に幅があるのは初期密着性にロット間のばらつきがあるためであり、実施例1、2及び3の数値に幅がないのはロット間のばらつきがないことを示す。
表1から、実施例1、2及び3で得られた塗料は、比較例の塗料と比較して、有機溶剤含有量が低減され、かつ、実施例1、2及び3で得られた塗料から得られた塗膜は、比較例の塗料から得られた塗膜と比較して、初期及び300℃劣化後の密着性が著しく優れていることがわかる。
In the initial stage of Comparative Example 1, the numerical value of the adhesion has a width because the initial adhesiveness varies among lots, and the numerical values of Examples 1, 2, and 3 have no width between the lots. Indicates that there is no.
From Table 1, the paints obtained in Examples 1, 2, and 3 have a reduced organic solvent content compared to the paints of Comparative Examples, and the paints obtained in Examples 1, 2, and 3 It can be seen that the obtained coating film is remarkably superior in adhesion at the initial stage and after 300 ° C. deterioration as compared with the coating film obtained from the coating material of the comparative example.

Claims (7)

(A)塩基性極性溶媒中で、ジイソシアネート化合物又はジアミン化合物と三塩基酸無水物又は三塩基酸無水物クロライドとを反応させて得られるポリアミドイミド樹脂と、(B)塩基性化合物と、(C)水と、(D)アセチルアセトン錫とを配合してなる耐熱性樹脂組成物。   (A) a polyamideimide resin obtained by reacting a diisocyanate compound or diamine compound with a tribasic acid anhydride or tribasic acid anhydride chloride in a basic polar solvent, (B) a basic compound, and (C ) A heat resistant resin composition comprising water and (D) acetylacetone tin. (B)成分の塩基性化合物が、(A)成分のポリアミドイミド樹脂中に含まれるカルボキシル基及びポリアミドイミド樹脂中の酸無水物基を開環させたカルボキシル基を合わせた酸価1当量に対して、1〜20当量配合されている請求項1記載の耐熱性樹脂組成物。   (B) With respect to 1 equivalent of the acid value of the basic compound of the component, the carboxyl group contained in the polyamideimide resin of the component (A) and the carboxyl group obtained by ring opening of the acid anhydride group in the polyamideimide resin The heat resistant resin composition according to claim 1, wherein 1 to 20 equivalents are blended. (C)成分の水が、(A)成分、(B)成分及び(C)成分の合計量に対して、5〜99重量%配合されている請求項1または2記載の耐熱性樹脂組成物。   The heat-resistant resin composition according to claim 1 or 2, wherein water of component (C) is blended in an amount of 5 to 99% by weight based on the total amount of component (A), component (B) and component (C). . (A)成分のポリアミドイミド樹脂の数平均分子量が、5,000〜50,000で、かつ、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価が10〜100mgKOH/gである請求項1〜3いずれかに記載の耐熱性樹脂組成物。   The number average molecular weight of the (A) component polyamideimide resin is 5,000 to 50,000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group is 10 to 100 mgKOH / g. The heat-resistant resin composition according to any one of claims 1 to 3. (B)成分の塩基性化合物が、アルキルアミン又はアルカノールアミンである請求項1〜4いずれかに記載の耐熱性樹脂組成物。   The basic compound as the component (B) is an alkylamine or an alkanolamine. The heat-resistant resin composition according to any one of claims 1 to 4. (D)成分のアセチルアセトン錫が、(A)ポリアミドイミド樹脂100重量部に対して、0.01〜20重量部配合されている請求項1〜5いずれかに記載の耐熱性樹脂組成物。   The heat resistant resin composition according to any one of claims 1 to 5, wherein 0.01 to 20 parts by weight of component (D) acetylacetone tin is blended with respect to 100 parts by weight of (A) polyamideimide resin. 請求項1〜6いずれかに記載の耐熱性樹脂組成物を塗膜成分としてなる塗料。   The coating material which uses the heat resistant resin composition in any one of Claims 1-6 as a coating-film component.
JP2008101573A 2008-04-09 2008-04-09 Heat resistant resin composition and coating Pending JP2009249567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101573A JP2009249567A (en) 2008-04-09 2008-04-09 Heat resistant resin composition and coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101573A JP2009249567A (en) 2008-04-09 2008-04-09 Heat resistant resin composition and coating

Publications (1)

Publication Number Publication Date
JP2009249567A true JP2009249567A (en) 2009-10-29

Family

ID=41310562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101573A Pending JP2009249567A (en) 2008-04-09 2008-04-09 Heat resistant resin composition and coating

Country Status (1)

Country Link
JP (1) JP2009249567A (en)

Similar Documents

Publication Publication Date Title
JP6476764B2 (en) Water-based heat-resistant resin composition and substrate
JP6414325B2 (en) Polyamideimide resin composition and paint
KR20140111038A (en) Use of improved n-alkyl pyrrolidone solvents
WO2013106488A1 (en) Aqueous binder solutions
JP5359495B2 (en) Water-based heat-resistant resin composition, paint using this water-based heat-resistant resin composition, home appliances and kitchen appliances using this paint
JP2016017084A (en) Heat-resistant resin composition and coating
WO2018150566A1 (en) Polyamide imide resin composition and fluorine coating
JP6741020B2 (en) Polyamideimide resin composition and fluorine coating
JP3491624B2 (en) Heat resistant resin composition and paint
CA1099421A (en) Method for stabilizing a water-soluble composition
JP2011079963A (en) Aqueous heat-resistant resin composition and coating material
JP2013256625A (en) Water-based polyamide-imide varnish and coating
JP2010095648A (en) Heat-resistant resin composition and coating using the same
JP2009091511A (en) Water-based heat-resistant resin composition and coating
JP2009249567A (en) Heat resistant resin composition and coating
JP2002348470A (en) Heat-resistant resin composition and paint
JP2005120134A (en) Heat-resistant resin composition and coating
JP6542472B2 (en) Polyimide precursor composition and method for producing polyimide resin
JP2011236385A (en) Heat-resistant resin composition and paint
JP2012172130A (en) Heat-resistant resin composition and coating material
JP2006008848A (en) Heat-resistant resin composition and coating material
JP2008094946A (en) Heat-resistant resin composition and coating material using heat-resistant resin composition
JP4888679B2 (en) Heat resistant resin composition and paint
JP2008260800A (en) Heat resistant resin composition, coating material containing the heat resistant resin composition as coating film component, coating using the same, and can or tube using the coating
JP2006348103A (en) Water-based heat resistant resin composition and coating using it