JP2011236385A - Heat-resistant resin composition and paint - Google Patents

Heat-resistant resin composition and paint Download PDF

Info

Publication number
JP2011236385A
JP2011236385A JP2010111059A JP2010111059A JP2011236385A JP 2011236385 A JP2011236385 A JP 2011236385A JP 2010111059 A JP2010111059 A JP 2010111059A JP 2010111059 A JP2010111059 A JP 2010111059A JP 2011236385 A JP2011236385 A JP 2011236385A
Authority
JP
Japan
Prior art keywords
resin composition
resistant resin
component
water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111059A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
篤 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010111059A priority Critical patent/JP2011236385A/en
Publication of JP2011236385A publication Critical patent/JP2011236385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant resin composition capable of forming a water-soluble highly-strong coating.SOLUTION: This heat-resistant resin composition is formed by blending a polyamideimide resin obtained by reacting (A) 3, 3'-dimethylbiphenyl-4, 4'-diisocyanate with an aromatic tribasic acid anhydride in a polar solvent, (B) a basic compound and (C) water.

Description

本発明は耐熱性樹脂組成物および塗料に関する。   The present invention relates to a heat resistant resin composition and a paint.

近年、環境保全面、安全衛生面、経済性及び塗装作業性等の面から有機溶剤に代わり媒体に水を使用する水性樹脂溶液が注目され、樹脂末端に残存するカルボキシル基と塩基性化合物を作用させるポリアミドイミド樹脂の水溶化方法が報告されており(例えば、特許文献1)、様々な用途に適用されている。   In recent years, water-based resin solutions that use water as a medium instead of organic solvents have attracted attention in terms of environmental protection, safety and health, economy, and painting workability, and act on carboxyl groups and basic compounds remaining at the end of the resin. A method for water-solubilizing a polyamideimide resin to be used has been reported (for example, Patent Document 1) and applied to various applications.

この水溶性ポリアミドイミド樹脂が様々な用途へと展開していくにつれ、用途に応じて様々な特性が要求され始めている。例えば、高強度の塗膜を形成できる、高温焼成時に高密着性を有する等が挙げられる。   As this water-soluble polyamideimide resin is developed for various uses, various characteristics are being required depending on the use. For example, it is possible to form a high-strength coating film and to have high adhesion during high-temperature firing.

特許第3491624号公報Japanese Patent No. 3491624

しかし、従来の水溶性ポリアミドイミド樹脂は、ポリアミドイミド樹脂骨格中のほとんどは疎水性であり、水溶性にするために構造、モノマ配合量及び数平均分子量が限定されてきた。そのため、差別化できる特性を有する水溶性ポリアミドイミド樹脂は困難とされてきた。本発明の目的は、水溶性でかつ高強度の塗膜を形成できる耐熱性樹脂組成物を提供することにある。   However, most of the conventional water-soluble polyamideimide resins are hydrophobic in the polyamideimide resin skeleton, and the structure, monomer blending amount, and number average molecular weight have been limited to make them water-soluble. Therefore, water-soluble polyamide-imide resins having characteristics that can be differentiated have been considered difficult. An object of the present invention is to provide a heat-resistant resin composition capable of forming a water-soluble and high-strength coating film.

上記の水溶性でかつ高強度の塗膜を形成できる耐熱性樹脂組成物に関して検討した結果、ポリアミドイミド樹脂に対し特定のモノマを含有させ適正な分子量を持たせる事及び水溶化する際の塩基性化合物及び水を適正量配合する事により、従来の水系ポリアミドイミド樹脂から得られた塗膜と比較して水溶性でかつ高強度の塗膜を形成する事が可能であることを見出して本発明に至った。
すなわち本発明は、以下に関する。
1. (A)極性溶媒中で、3,3’−ジメチルビフェニル−4,4’ジイソシアネートと芳香族三塩基酸無水物とを反応させて得られるポリアミドイミド樹脂と(B)塩基性化合物と(C)水とを配合してなる耐熱性樹脂組成物。
2. (A)ポリアミドイミド樹脂の数平均分子量が10,000〜35,000で、かつカルボキシル基及び酸塩基酸無水物基を開環させてカルボキシル基を合わせた酸価が20〜60である項1に記載の耐熱性樹脂組成物。
3. (B)成分の配合量が、(A)ポリアミドイミド樹脂中に含まれるカルボキシル基及び開環させた酸無水物基を合わせた酸価に対して、3〜10当量である項1又は2のいずれかに記載の耐熱性樹脂組成物。
4. (C)成分の水の含有量が(A)成分、(B)成分及び(C)成分の合計量に対して、30〜80重量%である項1〜3のいずれかに記載の耐熱性樹脂組成物。
5. 項1〜4のいずれかに記載の耐熱性樹脂組成物を塗膜成分としてなる塗料。
6. 項1〜5のいずれかに記載の耐熱性樹脂組成物を塗布、硬化させた基材。
As a result of examining the heat-resistant resin composition capable of forming a water-soluble and high-strength coating film as described above, the polyamideimide resin contains a specific monomer and has an appropriate molecular weight and is basic when water-solubilized. The present invention finds that it is possible to form a water-soluble and high-strength coating film in comparison with a coating film obtained from a conventional water-based polyamideimide resin by blending an appropriate amount of a compound and water. It came to.
That is, the present invention relates to the following.
1. (A) Polyamideimide resin obtained by reacting 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate with an aromatic tribasic acid anhydride in a polar solvent, (B) a basic compound, and (C) A heat resistant resin composition comprising water.
2. Item (A) The number average molecular weight of the polyamideimide resin is 10,000 to 35,000, and the acid value obtained by ring opening of the carboxyl group and the acid-base acid anhydride group to combine the carboxyl groups is 20 to 60. The heat resistant resin composition described in 1.
3. Item (1) or (2) wherein the blending amount of component (B) is 3 to 10 equivalents with respect to the acid value of the combined carboxyl group and ring-opened acid anhydride group contained in (A) polyamideimide resin. The heat resistant resin composition according to any one of the above.
4). Item 4. The heat resistance according to any one of Items 1 to 3, wherein the water content of the component (C) is 30 to 80% by weight based on the total amount of the components (A), (B), and (C). Resin composition.
5). Item 5. A paint comprising the heat-resistant resin composition according to any one of Items 1 to 4 as a coating film component.
6). Claim | item 1-5 base material which apply | coated and hardened the heat resistant resin composition in any one.

本発明の耐熱性樹脂組成物を用いることで、従来の耐熱性樹脂組成物から得られた塗膜と比較して高強度の塗膜を得ることが可能となる。これらは、塗膜硬度を要求される様々な用途向けに、多大な有益性を有している。   By using the heat resistant resin composition of the present invention, it becomes possible to obtain a coating film having a higher strength than a coating film obtained from a conventional heat resistant resin composition. These have great benefits for various applications that require coating hardness.

(A)極性溶媒中で、3,3’−ジメチルビフェニル−4,4’ジイソシアネートと芳香族三塩基酸無水物とを反応させて得られるポリアミドイミド樹脂と(B)塩基性化合物と(C)水とを含む事を特徴とする。上記のような組成にする事で、水溶性でかつ高強度の塗膜を形成する事が可能となる。 (A) Polyamideimide resin obtained by reacting 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate with an aromatic tribasic acid anhydride in a polar solvent, (B) a basic compound, and (C) It is characterized by containing water. By setting it as the above compositions, it becomes possible to form a water-soluble and high-strength coating film.

本発明で用いる(A)ポリアミドイミド樹脂の重合に使用される極性溶媒としては、N‐メチル‐2‐ピロリドン、γ‐ブチロラクトン、ジメチルアセトアミド又はジメチルホルムアミドなどを用いることが出来るが、アミドイミド化反応を高温で短時間に行うためには、N‐メチル‐2‐ピロリドンなどの高沸点溶媒を用いることが好ましい。また、溶媒の使用量には得に制限はないが、イソシアネート成分又はアミン成分と酸成分の総量100重量部に対して50〜500重量部とすることが樹脂の溶解性の観点から好ましい。ポリアミドイミド樹脂の合成条件は多様であり、一概に特定できないが、通常、80〜180℃の温度で行われ、空気中の水分の影響を低減するため、窒素などの雰囲気下で行うことが好ましい。   N-methyl-2-pyrrolidone, γ-butyrolactone, dimethylacetamide or dimethylformamide can be used as the polar solvent used in the polymerization of the (A) polyamideimide resin used in the present invention. In order to carry out at high temperature for a short time, it is preferable to use a high boiling point solvent such as N-methyl-2-pyrrolidone. Moreover, although there is no restriction | limiting in the usage-amount of a solvent, it is preferable from a soluble viewpoint of resin to set it as 50-500 weight part with respect to 100 weight part of total amounts of an isocyanate component or an amine component, and an acid component. The conditions for synthesizing the polyamide-imide resin are various and cannot be specified in general, but it is usually performed at a temperature of 80 to 180 ° C., and is preferably performed in an atmosphere such as nitrogen in order to reduce the influence of moisture in the air. .

(A)ポリアミドイミド樹脂の重合に使用されるイソシアネート成分として、3,3’−ジメチルビフェニル−4,4’ジイソシアネートに加えて他のジイソシアネート化合物、例えば4,4′−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3′−ジフェニルメタンジイソシアネート、3,3′−ジメトキシビフェニル−4,4′−ジイソシアネート、パラフェニレンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、トリレンジイソシアレート等を併用しても良い。この場合、本発明のポリアミドイミド樹脂の特性を損なわないように、全イソシアネート成分の90当量%以下とする事が好ましい。   (A) In addition to 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate, other diisocyanate compounds such as 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate are used as isocyanate components used for polymerization of polyamideimide resin. 3,3′-diphenylmethane diisocyanate, 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, paraphenylene diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, tolylene diisocyanate and the like may be used in combination. In this case, it is preferable to set it to 90 equivalent% or less of the total isocyanate component so as not to impair the properties of the polyamideimide resin of the present invention.

芳香族三塩基酸無水物としては、例えばトリメリット酸無水物等が挙げられる。本発明においては、ポリアミドイミド樹脂を合成する際に、ジカルボン酸、テトラカルボン酸二無水物等をポリアミドイミド樹脂の特性を損なわない範囲で同時に反応させる事が出来る。
ジカルボン酸としては、テレフタル酸、イソフタル酸、アジピン酸等が挙げられ、テトラカルボン酸二無水物としては、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物等が挙げられる。
Examples of the aromatic tribasic acid anhydride include trimellitic acid anhydride. In the present invention, when a polyamideimide resin is synthesized, dicarboxylic acid, tetracarboxylic dianhydride, and the like can be reacted at the same time as long as the properties of the polyamideimide resin are not impaired.
Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, and adipic acid. Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and biphenyltetracarboxylic dianhydride. Is mentioned.

前記ジイソシアネート化合物と三塩基酸無水物と必要に応じて使用するジカルボン酸及びテトラカルボン酸二無水物の使用量は、生成されるポリアミドイミド樹脂の分子量、架橋度の観点から酸成分の総量1.0モルに対してジイソシアネート化合物を0.8〜1.1モルとすることが好ましく、0.95〜1.08モルとすることがより好ましく、特に、1.0〜1.08モル使用されることが好ましい。 The amount of the diisocyanate compound, tribasic acid anhydride, and dicarboxylic acid and tetracarboxylic dianhydride used as required is the total amount of acid components from the viewpoint of the molecular weight of the polyamideimide resin produced and the degree of crosslinking. The diisocyanate compound is preferably 0.8 to 1.1 mol, more preferably 0.95 to 1.08 mol, particularly 1.0 to 1.08 mol based on 0 mol. It is preferable.

また、酸成分中、ジカルボン酸及びテトラカルボン酸二無水物は、ポリアミドイミド樹脂の特性を保つ観点から、これらの総量が0〜50モル%の範囲で使用されるのが好ましい。   In the acid component, dicarboxylic acid and tetracarboxylic dianhydride are preferably used in a total amount of 0 to 50 mol% from the viewpoint of maintaining the properties of the polyamideimide resin.

本発明で用いる(A)ポリアミドイミド樹脂は、数平均分子量が10,000から35,000のものが好ましい。数平均分子量が10,000未満では塗膜の強度が低下する傾向があり、35,000を超えると水への溶解性が低下する傾向がある。これらの観点から、ポリアミドイミド樹脂の数平均分子量は20,000から30,000とすることが好ましく、23,000から27,000とすることがより好ましい。   The (A) polyamideimide resin used in the present invention preferably has a number average molecular weight of 10,000 to 35,000. If the number average molecular weight is less than 10,000, the strength of the coating film tends to decrease, and if it exceeds 35,000, the solubility in water tends to decrease. From these viewpoints, the number average molecular weight of the polyamideimide resin is preferably 20,000 to 30,000, and more preferably 23,000 to 27,000.

なお、(A)ポリアミドイミド樹脂の数平均分子量は、樹脂合成時にサンプルリングしてゲルパーミエーションクロマトグラフ(GPC)により、標準ポリスチレンの検量線を用いて測定し、目的の数平均分子量になるまで合成を継続することにより上記範囲に管理される。   The number average molecular weight of the (A) polyamideimide resin is sampled during resin synthesis and measured by gel permeation chromatograph (GPC) using a standard polystyrene calibration curve until the target number average molecular weight is reached. The range is managed by continuing the synthesis.

本発明で用いる(A)ポリアミドイミド樹脂は、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価が20〜60mgKOH/gであることが好ましい。20mgKOH/g以上であると塩基性化合物と反応するカルボキシル基が十分となり、水溶化が容易になる傾向にある。また、60mgKOH/g以下であると最終的に得られる耐熱性樹脂組成物が経日にてゲル化しにくくなる。これらの観点から、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価が25〜40mgKOH/gとすることがより好ましい。   The (A) polyamideimide resin used in the present invention preferably has an acid value of 20 to 60 mgKOH / g, which is a combination of carboxyl groups obtained by ring opening of carboxyl groups and acid anhydride groups. When it is 20 mgKOH / g or more, the carboxyl group that reacts with the basic compound is sufficient, and water-solubilization tends to be facilitated. Moreover, the heat resistant resin composition finally obtained as it is 60 mgKOH / g or less becomes difficult to gelatinize by passage of time. From these viewpoints, it is more preferable that the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group is 25 to 40 mgKOH / g.

なお、(A)ポリアミドイミド樹脂のカルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は、以下の方法で得ることができる。まず、(A)ポリアミドイミド樹脂を約0.5gとり、これに1,4−ジアザビシクロ[2,2,2]オクタンを約0.15g加え、さらにN−メチル−2−ピロリドンを約60g及びイオン交換水を約1ml加え、(A)ポリアミドイミド樹脂が完全に溶解するまで攪拌する。これを0.05モル/lエタノール性水酸化カリウム溶液を使用して電位差滴定装置で滴定し、ポリアミドイミド樹脂のカルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価を得る。   In addition, the acid value which combined the carboxyl group which ring-opened the carboxyl group and acid anhydride group of (A) polyamide-imide resin can be obtained with the following method. First, (A) about 0.5 g of polyamideimide resin is added, about 0.15 g of 1,4-diazabicyclo [2,2,2] octane is added thereto, and about 60 g of N-methyl-2-pyrrolidone and ions are added. Add about 1 ml of exchange water and stir until (A) the polyamideimide resin is completely dissolved. This is titrated with a potentiometric titrator using a 0.05 mol / l ethanolic potassium hydroxide solution to obtain an acid value that combines the carboxyl groups of the polyamideimide resin and the carboxyl groups obtained by ring opening of the acid anhydride groups. .

本発明において(B)塩基性化合物としては、トリエチルアミン、トリブチルアミン、N,N−ジメチルシクロヘキシルアミン、N,N−ジメチルベンジルアミン、トリエチレンジアミン、N−メチルモルフォリン、N,N,N′,N′−テトラメチルエチレンジアミン、N,N,N′,N”,N”−ペンタメチルジエチレントリアミン、N,N′,N′−トリメチルアミノエチルピペラジン、ジエチルアミン、ジイソプロピルアミン、ジブチルアミン、エチルアミン、イソプロピルアミン、ブチルアミン等のアルキルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジプロパノールアミン、トリプロパノールアミン、N−エチルエタノールアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、シクロヘキサノールアミン、N−メチルシクロヘキサノールアミン、N−ベンジルエタノールアミン等のアルカノールアミン類が適している。上記の塩基性化合物以外に、例えば水酸化ナトリウムや水酸化カリウム等の苛性アルカリ又はアンモニア水等を併用してもよい。   In the present invention, as the basic compound (B), triethylamine, tributylamine, N, N-dimethylcyclohexylamine, N, N-dimethylbenzylamine, triethylenediamine, N-methylmorpholine, N, N, N ′, N '-Tetramethylethylenediamine, N, N, N', N ", N" -pentamethyldiethylenetriamine, N, N ', N'-trimethylaminoethylpiperazine, diethylamine, diisopropylamine, dibutylamine, ethylamine, isopropylamine, butylamine Alkylamine, monoethanolamine, diethanolamine, triethanolamine, dipropanolamine, tripropanolamine, N-ethylethanolamine, N, N-dimethylethanolamine, N, N-diethylethane Ruamin, cyclohexanol amine, N- methyl-cyclohexanol, alkanolamines such as N- benzyl ethanolamine are suitable. In addition to the above basic compound, for example, a caustic alkali such as sodium hydroxide or potassium hydroxide or aqueous ammonia may be used in combination.

また、(B)塩基性化合物は、(A)ポリアミドイミド樹脂中に含まれるカルボキシル基及び開環させた酸無水物基を合わせた酸価に対して、3〜10当量用いると好ましい。3当量以上では樹脂の水溶化が容易となり、10当量以下であると塗膜の強度が向上する傾向にある。これらの観点から、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価に対して、4〜8当量とすることが好ましい。   Moreover, it is preferable to use 3-10 equivalent of (B) basic compound with respect to the acid value which combined the carboxyl group and ring-opened acid anhydride group which are contained in (A) polyamide-imide resin. If it is 3 equivalents or more, water-solubilization of the resin becomes easy, and if it is 10 equivalents or less, the strength of the coating film tends to be improved. From these viewpoints, the acid value is preferably 4 to 8 equivalents relative to the combined acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group.

(B)塩基性化合物は、(A)ポリアミドイミド樹脂の末端にあるカルボキシル基と塩を形成して親水性基となる。塩形成する手法としては(A)成分、(B)成分及び後述の(C)水を、10℃〜150℃にて混ぜ合わせても良いし、(A)成分、(B)成分を混ぜ合わせた後に上記温度にて後述の(C)水を加えても良い。塩を形成させる温度は30℃〜100℃がより好ましい。   (B) The basic compound forms a salt with the carboxyl group at the end of (A) the polyamideimide resin to become a hydrophilic group. As a method for forming a salt, (A) component, (B) component and (C) water described later may be mixed at 10 ° C. to 150 ° C., or (A) component and (B) component may be mixed. After that, (C) water described later may be added at the above temperature. As for the temperature which forms a salt, 30 to 100 degreeC is more preferable.

本発明の耐熱性樹脂組成物としては(C)を含有するが、(C)としてはイオン交換水が好ましく用いられる。(C)成分の配合量は、(A)成分、(B)成分及び(C)成分の合計量に対して、30〜80重量%が好ましい。この配合量が30重量%以上では含有する水が十分である事から水溶性が向上し、80重量%以下ではゲル化もしくは濁り等を生じにくくなる傾向がある。これらの観点から、40〜60重量%とすることがより好ましい。   The heat resistant resin composition of the present invention contains (C), and ion exchange water is preferably used as (C). (C) As for the compounding quantity of a component, 30-80 weight% is preferable with respect to the total amount of (A) component, (B) component, and (C) component. If the blending amount is 30% by weight or more, the water content is sufficient because the contained water is sufficient, and if it is 80% by weight or less, gelation or turbidity tends not to occur. From these viewpoints, the amount is more preferably 40 to 60% by weight.

この様にして得られた耐熱性樹脂組成物は使用する際に必要に応じて適当な濃度に希釈される。希釈溶剤としてはN‐メチル‐2‐ピロリドン、γ‐ブチロラクトン、ジメチルスルフォキシド、ジメチルアセトアミド又はジメチルホルムアミド等の極性溶媒の他に、助溶媒として、アニソール、ジエチルエーテル、エチレングリコール等のエーテル化合物類やアセトフェノン、メチルエチルケトン、メチルイソブチルケトン等のケトン化合物類、エタノール、2−プロパノール等のアルコール類を用いても良い。   The heat-resistant resin composition obtained in this way is diluted to an appropriate concentration as necessary when used. In addition to polar solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, dimethyl sulfoxide, dimethylacetamide or dimethylformamide as diluent solvents, ether compounds such as anisole, diethyl ether and ethylene glycol as cosolvents Alternatively, ketone compounds such as acetophenone, methyl ethyl ketone, and methyl isobutyl ketone, and alcohols such as ethanol and 2-propanol may be used.

本発明による耐熱性樹脂組成物又はこの耐熱性樹脂組成物を塗膜成分としてなる塗料は、被塗物に塗布し硬化させて被塗物表面に塗膜を形成する。特に本発明による耐熱性樹脂組成物は、従来の耐熱性樹脂組成物と比較して高強度の塗膜を形成することが可能であることから、家電、厨房器具及びOA部材のように塗膜に耐久性が要求される様々な用途向けに、多大な有益性を有している。また水を含有しているため、水系、溶剤系いずれの材料とも容易に混合する事ができ、塗膜形成の際に系外に揮発する有機溶剤量を低減できる事からも本発明による耐熱性樹脂組成物の有益性は高い。   The heat-resistant resin composition according to the present invention or a coating material comprising the heat-resistant resin composition as a coating film component is applied to a coating object and cured to form a coating film on the surface of the coating object. In particular, the heat-resistant resin composition according to the present invention can form a high-strength coating film as compared with the conventional heat-resistant resin composition, so that the coating film can be used like home appliances, kitchen appliances, and OA members. It has great benefits for various applications that require high durability. In addition, since it contains water, it can be easily mixed with both water-based and solvent-based materials, and the amount of organic solvent that volatilizes outside the system during coating film formation can also be reduced. The benefit of the resin composition is high.

次に本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではなく、発明の主旨に基づいたこれら以外の多くの実施態様を含むことは言うまでもない。   EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to these examples, and it is needless to say that many other embodiments based on the gist of the invention are included.

無水トリメリット酸518.7g、3,3’−ジメチルビフェニル−4,4’ジイソシアネート713.6g、N−メチル−2−ピロリドン1848.5gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら2時間かけて徐々に昇温して140℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら140℃を保持し、このまま6時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。   Put 518.7 g of trimellitic anhydride, 713.6 g of 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate, and 1848.5 g of N-methyl-2-pyrrolidone in a flask equipped with a thermometer, stirrer, and condenser. While stirring in a dried nitrogen stream, the temperature was gradually raised over 2 hours to 140 ° C. The temperature was kept at 140 ° C. while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction, and the reaction was stopped after continuing the heating for 6 hours to obtain a polyamideimide resin solution.

このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は40重量%で、粘度(30℃)は85.4Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は20,000で、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は45であった。なお、数平均分子量は次の条件にて測定した。
機種:日立 L6000
検出器:日立 L4000型UV
波長:270nm
データ処理機:ATT 8
カラム:Gelpack GL−S300MDT−5×2
カラムサイズ:8mmφ×300mm
溶媒:DMF/THF=1/1(リットル)+リン酸0.06M+臭化リチウム0.06M 試料濃度:5mg/1ml
注入量:5μl
圧力:49kgf/cm(4.8×10Pa)
流量:1.0ml/min
This polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of 40% by weight and a viscosity (30 ° C.) of 85.4 Pa · s. The number average molecular weight of the polyamideimide resin was 20,000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group was 45. The number average molecular weight was measured under the following conditions.
Model: Hitachi L6000
Detector: Hitachi L4000 type UV
Wavelength: 270nm
Data processor: ATT 8
Column: Gelpack GL-S300MDT-5 × 2
Column size: 8mmφ × 300mm
Solvent: DMF / THF = 1/1 (liter) + phosphoric acid 0.06M + lithium bromide 0.06M Sample concentration: 5 mg / 1 ml
Injection volume: 5 μl
Pressure: 49 kgf / cm 2 (4.8 × 10 6 Pa)
Flow rate: 1.0 ml / min

このポリアミドイミド樹脂溶液2,500gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して70℃まで上げた。70℃に達したところでトリエチルアミンを324.7g(4当量)添加し、70℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が1502.2g(溶剤比50重量%)となるまで加えて、透明で均一な耐熱性樹脂組成物を得た。   2,500 g of this polyamideimide resin solution was put into a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 70 ° C. while stirring in a dried nitrogen stream. When the temperature reached 70 ° C., 324.7 g (4 equivalents) of triethylamine was added, and after sufficiently stirring while maintaining at 70 ° C., ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added until the amount reached 1502.2 g (solvent ratio 50% by weight) to obtain a transparent and uniform heat-resistant resin composition.

無水トリメリット酸960.6g、3,3’−ジメチルビフェニル−4,4’ジイソシアネート800.8g、4,4′−ジフェニルメタンジイソシアネート505.5g、N−メチル−2−ピロリドン2770.7gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら1時間かけて徐々に昇温して90℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら90℃を保ち、加熱開始から8時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は45重量%で、粘度(30℃)は130.0Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は27,000で、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は38であった。
このポリアミドイミド樹脂溶液3,200gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して90℃まで上げた。90℃に達したところでN,N−ジメチルエタノールアミンを521.6g(6当量)添加し、90℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が1174.5g(溶剤比50重量%)となるまで加えて、透明で均一な耐熱性樹脂組成物を得た。
960.6 g of trimellitic anhydride, 800.8 g of 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate, 505.5 g of 4,4′-diphenylmethane diisocyanate, 2770.7 g of N-methyl-2-pyrrolidone, The mixture was placed in a flask equipped with a stirrer and a condenser, and gradually heated to 90 ° C. over 1 hour while stirring in a dried nitrogen stream. The temperature was kept at 90 ° C. while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction, and after continuing the heating for 8 hours from the start of the heating, the reaction was stopped to obtain a polyamideimide resin solution.
This polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of 45% by weight and a viscosity (30 ° C.) of 130.0 Pa · s. The number average molecular weight of the polyamideimide resin was 27,000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group was 38.
3,200 g of this polyamideimide resin solution was put into a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 90 ° C. while stirring in a dried nitrogen stream. When the temperature reached 90 ° C., 521.6 g (6 equivalents) of N, N-dimethylethanolamine was added, and after sufficiently stirring while maintaining at 90 ° C., ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added until the amount reached 1174.5 g (solvent ratio 50% by weight) to obtain a transparent and uniform heat-resistant resin composition.

無水トリメリット酸379.6g、3,3’−ジメチルビフェニル−4,4’ジイソシアネート156.8g、4,4′−ジフェニルメタンジイソシアネート352.6g、N−メチル−2−ピロリドン1217.8gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら1時間かけて徐々に昇温して120℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら徐々に昇温して130℃まで上げ、加熱開始から5時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は42重量%で、粘度(30℃)は120.6Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は35,000で、カルボキシル基及び酸無水物基を合わせた酸価は30であった。
このポリアミドイミド樹脂溶液800gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して50℃まで上げた。50℃に達したところでN,N−ジエチルエタノールアミンを168.5g(8当量)添加し、50℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が695.3g(溶剤比60重量%)となるまで加えて、透明で均一な耐熱性樹脂組成物を得た。
379.6 g of trimellitic anhydride, 156.8 g of 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate, 352.6 g of 4,4′-diphenylmethane diisocyanate, 1217.8 g of N-methyl-2-pyrrolidone, The mixture was placed in a flask equipped with a stirrer and a condenser, and gradually heated to 120 ° C. over 1 hour with stirring in a dried nitrogen stream. The temperature was gradually raised to 130 ° C. while paying attention to the sudden bubbling of carbon dioxide gas generated by the reaction, and after 5 hours from the start of heating, the reaction was stopped to obtain a polyamideimide resin solution.
This polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of 42% by weight and a viscosity (30 ° C.) of 120.6 Pa · s. The number average molecular weight of the polyamideimide resin was 35,000, and the acid value of the carboxyl group and the acid anhydride group combined was 30.
800 g of this polyamideimide resin solution was placed in a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 50 ° C. while stirring in a dried nitrogen stream. When the temperature reached 50 ° C., 168.5 g (8 equivalents) of N, N-diethylethanolamine was added, and the mixture was sufficiently stirred while being kept at 50 ° C. Then, ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added until 695.3 g (solvent ratio 60 wt%) to obtain a transparent and uniform heat-resistant resin composition.

比較例1
無水トリメリット酸1106.2g、4,4−ジフェニルメタンジイソシアネート1455.8g、N−メチル−2−ピロリドン2562.0gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら2時間かけて徐々に昇温して130℃まで上げた。反応により生ずる炭酸ガスの急激な発泡に注意しながら130℃を保持し、このまま6時間加熱を続けた後反応を停止させ、ポリアミドイミド樹脂溶液を得た。
このポリアミドイミド樹脂溶液の不揮発分(200℃−2h)は50重量%で、粘度(30℃)は85.0Pa・sであった。また、ポリアミドイミド樹脂の数平均分子量は17000で、カルボキシル基及び酸無水物基を開環させたカルボキシル基を合わせた酸価は40であった。
このポリアミドイミド樹脂溶液2,700gを温度計、攪拌機、冷却管を備えたフラスコに入れ、乾燥させた窒素気流中で攪拌しながら徐々に昇温して50℃まで上げた。50℃に達したところでトリエチルアミンを447.1g(4当量)添加し、50℃に保ちながら十分に攪拌した後、攪拌しながら徐々にイオン交換水を加えた。最終的にイオン交換水が1348.8g(溶剤比50重量%)となるまで加えて、透明で均一な耐熱性樹脂組成物を得た。
Comparative Example 1
106.2 g of trimellitic anhydride, 1455.8 g of 4,4-diphenylmethane diisocyanate, and 2562.0 g of N-methyl-2-pyrrolidone were placed in a flask equipped with a thermometer, a stirrer, and a cooling tube, and dried in a nitrogen stream. The temperature was gradually raised to 130 ° C. over 2 hours with stirring. The temperature was kept at 130 ° C. while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction, and the heating was continued for 6 hours, and the reaction was stopped to obtain a polyamideimide resin solution.
The polyamideimide resin solution had a nonvolatile content (200 ° C.-2 h) of 50% by weight and a viscosity (30 ° C.) of 85.0 Pa · s. The number average molecular weight of the polyamideimide resin was 17000, and the acid value of the carboxyl group obtained by ring-opening the carboxyl group and the acid anhydride group was 40.
2,700 g of this polyamideimide resin solution was put into a flask equipped with a thermometer, a stirrer, and a cooling tube, and gradually heated to 50 ° C. while stirring in a dried nitrogen stream. When the temperature reached 50 ° C., 447.1 g (4 equivalents) of triethylamine was added, and after sufficiently stirring while maintaining the temperature at 50 ° C., ion-exchanged water was gradually added while stirring. Finally, ion-exchanged water was added until it reached 1348.8 g (solvent ratio: 50% by weight) to obtain a transparent and uniform heat-resistant resin composition.

試験例
実施例1、2及び3ならびに比較例1で得られた耐熱性樹脂組成物をガラス基板の上に塗布して、機械的特性を測定した。
Test Example The heat resistant resin composition obtained in Examples 1, 2, and 3 and Comparative Example 1 was applied on a glass substrate, and the mechanical properties were measured.

鉛筆硬度
実施例1、2及び3ならびに比較例1で得られた耐熱性樹脂組成物を塗布した基板を80℃で10分間予備乾燥させた後、270℃で30分間加熱硬化し、塗膜厚が5ヶ所の平均値が20μmの塗膜を得た。この塗膜を鉛筆で削り、傷発生時の鉛筆の硬さを記録した。
[機械的特性]
実施例1、2及び3ならびに比較例1で得られた耐熱性樹脂組成物を塗布した基板を80℃で10分間予備乾燥させた後、270℃で30分間加熱硬化し、塗膜厚が5ヶ所の平均値が20μm、幅10mm、長さが60mmの塗膜を得た。得られた塗膜を、引張試験機(島津製作所製オートグラフAGS−5kG)を用いてチャック間長さ20mm、引張速度5mm/分の条件で引張試験を行い、機械的特性を求めた。
Pencil Hardness The substrates coated with the heat-resistant resin compositions obtained in Examples 1, 2, and 3 and Comparative Example 1 were pre-dried at 80 ° C. for 10 minutes, and then heat-cured at 270 ° C. for 30 minutes to obtain a coating thickness. A coating film having an average value of 20 μm at five locations was obtained. The coating film was shaved with a pencil, and the hardness of the pencil at the time of scratching was recorded.
[Mechanical properties]
The substrates coated with the heat-resistant resin compositions obtained in Examples 1, 2, and 3 and Comparative Example 1 were pre-dried at 80 ° C. for 10 minutes and then heat-cured at 270 ° C. for 30 minutes. A coating film having an average value of 20 μm, a width of 10 mm, and a length of 60 mm was obtained. The obtained coating film was subjected to a tensile test using a tensile tester (Autograph AGS-5 kG manufactured by Shimadzu Corporation) under the conditions of a length between chucks of 20 mm and a tensile speed of 5 mm / min, and mechanical characteristics were obtained.

結果を表1に示す。

Figure 2011236385
The results are shown in Table 1.
Figure 2011236385

表1より実施例1、2及び3で得られた耐熱性樹脂組成物から作製された塗膜は、比較例1で得られた耐熱性樹脂組成物から作製された塗膜と比較して、硬化後の強度が大きく向上していることが分かった。本結果より、本発明の耐熱性樹脂組成物を用いることで、従来の水溶性耐熱性樹脂組成物と比較して、強度に優れる塗膜を得ることが可能となることが分かる。このことから、家電、厨房器具及びOA部材のように塗膜に耐久性が要求される様々な用途向けに、多大な有益性を有していることは明らかである。   Compared with the coating film produced from the heat resistant resin composition obtained in Comparative Example 1, the coating film produced from the heat resistant resin composition obtained in Examples 1, 2, and 3 from Table 1, It was found that the strength after curing was greatly improved. From these results, it can be seen that by using the heat-resistant resin composition of the present invention, it is possible to obtain a coating film having excellent strength as compared with the conventional water-soluble heat-resistant resin composition. From this, it is clear that it has a great benefit for various uses such as home appliances, kitchen appliances, and OA members that require durability of the coating film.

Claims (6)

(A)極性溶媒中で、3,3’−ジメチルビフェニル−4,4’ジイソシアネートと芳香族三塩基酸無水物とを反応させて得られるポリアミドイミド樹脂と(B)塩基性化合物と(C)水とを配合してなる耐熱性樹脂組成物。   (A) Polyamideimide resin obtained by reacting 3,3′-dimethylbiphenyl-4,4 ′ diisocyanate with an aromatic tribasic acid anhydride in a polar solvent, (B) a basic compound, and (C) A heat resistant resin composition comprising water. (A)ポリアミドイミド樹脂の数平均分子量が10,000〜35,000で、かつカルボキシル基及び酸塩基酸無水物基を開環させてカルボキシル基を合わせた酸価が20〜60である請求項1に記載の耐熱性樹脂組成物。   (A) The number average molecular weight of the polyamideimide resin is 10,000 to 35,000, and the acid value obtained by ring opening of the carboxyl group and the acid-base acid anhydride group to combine the carboxyl groups is 20 to 60. 1. The heat resistant resin composition according to 1. (B)成分の配合量が、(A)ポリアミドイミド樹脂中に含まれるカルボキシル基及び開環させた酸無水物基を合わせた酸価に対して、3〜10当量である請求項1又は2のいずれかに記載の耐熱性樹脂組成物。   (B) The compounding quantity of a component is 3-10 equivalent with respect to the acid value which match | combined the carboxyl group and ring-opened acid anhydride group which are contained in (A) polyamidoimide resin, The claim 1 or 2 The heat resistant resin composition according to any one of the above. (C)成分の水の含有量が(A)成分、(B)成分及び(C)成分の合計量に対して、30〜80重量%である請求項1〜3のいずれかに記載の耐熱性樹脂組成物。   The water content of the component (C) is 30 to 80% by weight based on the total amount of the component (A), the component (B) and the component (C). Resin composition. 請求項1〜4のいずれかに記載の耐熱性樹脂組成物を塗膜成分としてなる塗料。   The coating material which uses the heat resistant resin composition in any one of Claims 1-4 as a coating-film component. 請求項1〜5のいずれかに記載の耐熱性樹脂組成物を塗布、硬化させた基材。   The base material which apply | coated and hardened the heat resistant resin composition in any one of Claims 1-5.
JP2010111059A 2010-05-13 2010-05-13 Heat-resistant resin composition and paint Pending JP2011236385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111059A JP2011236385A (en) 2010-05-13 2010-05-13 Heat-resistant resin composition and paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111059A JP2011236385A (en) 2010-05-13 2010-05-13 Heat-resistant resin composition and paint

Publications (1)

Publication Number Publication Date
JP2011236385A true JP2011236385A (en) 2011-11-24

Family

ID=45324714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111059A Pending JP2011236385A (en) 2010-05-13 2010-05-13 Heat-resistant resin composition and paint

Country Status (1)

Country Link
JP (1) JP2011236385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089016A (en) * 2014-11-04 2016-05-23 日立化成株式会社 Aqueous heat resistant resin composition and substrate
WO2016175099A1 (en) * 2015-04-30 2016-11-03 日立化成株式会社 Polyamideimide resin composition and coating material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089016A (en) * 2014-11-04 2016-05-23 日立化成株式会社 Aqueous heat resistant resin composition and substrate
WO2016175099A1 (en) * 2015-04-30 2016-11-03 日立化成株式会社 Polyamideimide resin composition and coating material
CN107429056A (en) * 2015-04-30 2017-12-01 日立化成株式会社 Polyamide-imide resin composition and coating
JPWO2016175099A1 (en) * 2015-04-30 2018-01-18 日立化成株式会社 Polyamideimide resin composition and paint
JP2019026852A (en) * 2015-04-30 2019-02-21 日立化成株式会社 Polyamideimide resin composition and coating material
JP2019026853A (en) * 2015-04-30 2019-02-21 日立化成株式会社 Polyamideimide resin composition and coating material

Similar Documents

Publication Publication Date Title
JP6476764B2 (en) Water-based heat-resistant resin composition and substrate
JP6414325B2 (en) Polyamideimide resin composition and paint
JP2016017084A (en) Heat-resistant resin composition and coating
JP5359495B2 (en) Water-based heat-resistant resin composition, paint using this water-based heat-resistant resin composition, home appliances and kitchen appliances using this paint
US11674039B2 (en) Polyamideimide resin composition and flourine-based coating material
JP6741020B2 (en) Polyamideimide resin composition and fluorine coating
JP3491624B2 (en) Heat resistant resin composition and paint
JP2011236385A (en) Heat-resistant resin composition and paint
JP2009091511A (en) Water-based heat-resistant resin composition and coating
JP2012172130A (en) Heat-resistant resin composition and coating material
JP2013256625A (en) Water-based polyamide-imide varnish and coating
JP7509512B2 (en) Polyamide-imide resin composition for producing nonwoven fabric
JP2008260800A (en) Heat resistant resin composition, coating material containing the heat resistant resin composition as coating film component, coating using the same, and can or tube using the coating
JP7226507B2 (en) Polyamideimide resin composition, fluorine paint, and conductive composition
JP2008094946A (en) Heat-resistant resin composition and coating material using heat-resistant resin composition
JP2011079963A (en) Aqueous heat-resistant resin composition and coating material
JP2019053880A (en) Insulated wire and method for manufacturing the same, and aqueous heat-resistant resin composition for film formation of insulated wire and insulating coating material
JP2019026770A (en) Polyamide-imide resin composition, fluorine coating, and conductive composition
JP2002348470A (en) Heat-resistant resin composition and paint
JP7251478B2 (en) Polyamideimide resin composition and fluorine paint
JP2005120134A (en) Heat-resistant resin composition and coating
JP2006008848A (en) Heat-resistant resin composition and coating material
JP2006348103A (en) Water-based heat resistant resin composition and coating using it
JP2010095648A (en) Heat-resistant resin composition and coating using the same
JP4888679B2 (en) Heat resistant resin composition and paint