JP2009249406A - Photochromic liquid crystal material - Google Patents

Photochromic liquid crystal material Download PDF

Info

Publication number
JP2009249406A
JP2009249406A JP2008095506A JP2008095506A JP2009249406A JP 2009249406 A JP2009249406 A JP 2009249406A JP 2008095506 A JP2008095506 A JP 2008095506A JP 2008095506 A JP2008095506 A JP 2008095506A JP 2009249406 A JP2009249406 A JP 2009249406A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal material
formula
group
photochromic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095506A
Other languages
Japanese (ja)
Inventor
Kunihiko Okano
久仁彦 岡野
Takashi Yamashita
俊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2008095506A priority Critical patent/JP2009249406A/en
Publication of JP2009249406A publication Critical patent/JP2009249406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photochromic liquid crystal material which is a liquid crystal state at a room temperature and can exhibit photoinduced elongation-contraction response by the irradiation of light rays at a room temperature. <P>SOLUTION: The photochromic liquid crystal material represented by, for example, formula (I) (In the formula (I), R denotes H and the like, n denotes an integer of 1 to 20, X respectively denote substituents such as a hydrogen atom and an alkoxy group) is provided. Since the liquid crystal material can maintain a liquid crystal state at the room temperature (20°C), elongation or contraction behavior is exhibited at the room temperature. Thereby, the liquid crystal material can be used for various optical recording materials and various optical elements. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フォトクロミック液晶材料に関する。さらに詳しくは、室温で液晶状を呈する(液晶相を保持する)とともに、室温での光の照射により液晶の光伸張−収縮応答挙動等を発現するフォトクロミック液晶材料に関する。   The present invention relates to a photochromic liquid crystal material. More specifically, the present invention relates to a photochromic liquid crystal material that exhibits a liquid crystal state at room temperature (holds a liquid crystal phase) and exhibits a light expansion / contraction response behavior of liquid crystal by irradiation with light at room temperature.

液晶材料は、液体の流動性と結晶の配向性を兼ね備えた材料であり、電界によって配向を変えることが知られており、例えば、液晶ディスプレイ等の表示装置として広く用いられている。近年、光で光を制御する技術としてフォトクロミック技術が提案されており、また、液晶は電界以外に光等の外場によっても屈折率の大きな変化を誘起することができることから、液晶を基材として光で光を制御する素子が考案され、それに用いられる材料(フォトクロミック液晶材料)について検討されている。   A liquid crystal material is a material having both fluidity of liquid and crystal orientation, and is known to change orientation by an electric field. For example, it is widely used as a display device such as a liquid crystal display. In recent years, photochromic technology has been proposed as a technology for controlling light with light, and liquid crystal can induce a large change in refractive index not only by an electric field but also by an external field such as light. An element for controlling light with light has been devised, and a material (photochromic liquid crystal material) used for the element has been studied.

光で光を制御可能なフォトクロミック液晶材料は、例えば、光照射による刺激(光刺激)の効果が新たな刺激を与えるまで残存していれば光記録やホログラフィに利用でき、光刺激を極短パルスで与え、短い時間で出力が変調できれば光演算などに利用できることとなる。また、応答の時間スケールに応じて高速光スイッチングや光表示にも応用できる可能性がある。そして、光照射によって材料の形態が変化するので、光駆動モータやアクチュエータ等の力学運動の制御が可能となり、例えば、光照射によって屈曲−復元応答を示す液晶フィルムが提案されている(例えば、特許文献1及び特許文献2を参照。)。また、結晶の光駆動についても種々の報告がある(例えば、非特許文献1を参照。)。   Photochromic liquid crystal materials that can control light with light can be used for optical recording and holography, for example, as long as the effect of stimulation by light irradiation (light stimulation) remains until a new stimulus is applied. If the output can be modulated in a short time, it can be used for optical calculations. In addition, there is a possibility that it can be applied to high-speed optical switching and optical display according to the time scale of response. And since the form of the material changes due to light irradiation, it is possible to control the dynamic motion of a light drive motor, an actuator, etc. For example, a liquid crystal film that exhibits a bending-restoration response by light irradiation has been proposed (for example, patents) (See Reference 1 and Patent Reference 2.) There are also various reports on optical driving of crystals (see Non-Patent Document 1, for example).

特開2002−256031号公報JP 2002-256031 A 特開2005−255805号公報JP 2005-255805 A コバタケ(Kobatake)ら「光照射による分子結晶の高速かつ可逆的な形状変化(Rapid and reversible shape changes of molecular crystals on photoirradiation)」、Nature(英国)、Nature Publishing Group、2007年、Vol.446、No.7137、p778−781Kobatake et al., “Rapid and reversible shapes of molecular crystals on photoradiation”, Nature (UK), Nature Pu. 446, no. 7137, p778-781

しかしながら、これまでの液晶材料は室温では固体であり、液晶挙動を発現させるためには、100℃以上といった加熱条件下で光照射を行う必要があるので、用途的にも制限があった。一方、流動性のある液晶を光で自在に変形させることができれば、多様な用途が見込まれるため、室温で液晶状を示し、材料の形態が液状となるフォトクロミック液晶材料が望まれていた。   However, conventional liquid crystal materials are solid at room temperature, and in order to develop liquid crystal behavior, it is necessary to irradiate light under a heating condition of 100 ° C. or higher, so that there is a limitation in use. On the other hand, if a liquid crystal with fluidity can be freely deformed by light, various uses are expected. Therefore, a photochromic liquid crystal material that exhibits a liquid crystal state at room temperature and is in a liquid form has been desired.

本発明は、前記の課題に鑑みてなされたものであり、室温で液晶状を呈する(液晶相を保持する)とともに、液晶材料として室温での光の照射により光伸張−収縮応答挙動を発現することができるフォトクロミック液晶材料を提供することにある。   The present invention has been made in view of the above-described problems, and exhibits a liquid crystal form at room temperature (holds a liquid crystal phase), and exhibits a light stretch-contraction response behavior upon irradiation with light at room temperature as a liquid crystal material. It is to provide a photochromic liquid crystal material that can be used.

前記の課題を解決するために、本発明の請求項1に係るフォトクロミック液晶材料は、下記式(I)で表され、室温で液晶状を呈することを特徴とする。   In order to solve the above-mentioned problems, a photochromic liquid crystal material according to claim 1 of the present invention is represented by the following formula (I) and exhibits a liquid crystal form at room temperature.

(式(I)中、Rは水素原子またはメチル基、nは1〜20の整数、Xはそれぞれ水素原子、アルコキシ基、またはフッ素基、Yは水素原子、アルコキシ基、フッ素基、シアノ基またはニトロ基、を示す。) (In formula (I), R is a hydrogen atom or a methyl group, n is an integer of 1 to 20, X is a hydrogen atom, an alkoxy group, or a fluorine group, Y is a hydrogen atom, an alkoxy group, a fluorine group, a cyano group, or A nitro group.)

本発明の請求項2に係るフォトクロミック液晶材料は、下記式(II)で表され、室温で液晶状を呈することを特徴とする。   The photochromic liquid crystal material according to claim 2 of the present invention is represented by the following formula (II) and is characterized by exhibiting a liquid crystal form at room temperature.

(式(II)中、Rは水素原子またはメチル基、nは1〜20の整数、Xはそれぞれ水素原子、アルコキシ基、またはフッ素基、Yは水素原子、アルコキシ基、フッ素基、シアノ基またはニトロ基、を示す。) (In the formula (II), R is a hydrogen atom or a methyl group, n is an integer of 1 to 20, X is a hydrogen atom, an alkoxy group, or a fluorine group, Y is a hydrogen atom, an alkoxy group, a fluorine group, a cyano group, or A nitro group.)

本発明の請求項3に係るフォトクロミック液晶材料は、前記請求項1または請求項2において、前記Yがフッ素基、シアノ基またはニトロ基であることを特徴とする。   A photochromic liquid crystal material according to a third aspect of the present invention is characterized in that, in the first or second aspect, the Y is a fluorine group, a cyano group or a nitro group.

式(I)または式(II)で表される本発明の請求項1または請求項2に係るフォトクロミック液晶材料は、アゾベンゼンとフェニルエチニル基が結合した骨格に、アクリレート基あるいはメタクリレート基が付与された構造を基本構成としている。かかる構成からなる本材料の特徴として、室温(20℃)で液晶状を呈する(液晶相を保持する)ため、材料の形態が液状であることが挙げられ、本材料に光照射を行うことで伸張ないし収縮する挙動(光伸張−収縮応答挙動)を発現する。よって、かかる特徴を利用すれば、光学分野等において、記録素子等の書き換え可能な光記録材料のほか、光駆動型のモータ、光学素子、非線形光学素子、スイッチング素子、演算素子、表示素子、及び玩具等として有利に使用することができる。また、基材に塗布した場合に発現することができる光屈曲−復元挙動を利用して、汎用性プラスチック等を基板としたアクチュエータ等として使用することができる。   In the photochromic liquid crystal material according to claim 1 or claim 2 of the present invention represented by formula (I) or formula (II), an acrylate group or a methacrylate group is added to a skeleton in which azobenzene and a phenylethynyl group are bonded. The structure is the basic configuration. A characteristic of this material having such a structure is that it exhibits a liquid crystal form at room temperature (20 ° C.) (maintains a liquid crystal phase), so that the form of the material is liquid, and the material is irradiated with light. It develops a stretching or contracting behavior (light stretching-contraction response behavior). Therefore, by utilizing such characteristics, in the optical field and the like, in addition to a rewritable optical recording material such as a recording element, an optically driven motor, an optical element, a nonlinear optical element, a switching element, an arithmetic element, a display element, and It can be advantageously used as a toy or the like. Moreover, it can be used as an actuator using a general-purpose plastic or the like as a substrate by utilizing the light bending-restoration behavior that can be manifested when applied to a substrate.

本発明の請求項3に係るフォトクロミック液晶材料は、式(I)または式(II)において置換基Yとしてフッ素基、シアノ基またはニトロ基といった極性基を選択しているので、極性基に応じて液晶材料の応答速度や液晶性を調整することができる。   In the photochromic liquid crystal material according to claim 3 of the present invention, a polar group such as a fluorine group, a cyano group, or a nitro group is selected as the substituent Y in the formula (I) or the formula (II). The response speed and liquid crystallinity of the liquid crystal material can be adjusted.

以下、本発明の一態様を説明する。本発明のフォトクロミック液晶材料は、下記式(I)、あるいは式(II)で表される。   Hereinafter, one embodiment of the present invention will be described. The photochromic liquid crystal material of the present invention is represented by the following formula (I) or formula (II).

式(I)または式(II)において、Rは水素原子またはメチル基、nは1〜20の整数、Xはそれぞれ水素原子、アルコキシ基、またはフッ素基、Yは水素原子、アルコキシ基、フッ素基、シアノ基またはニトロ基、を示すものである。なお、式(I)または式(II)において、複数存在するXは、それぞれが同じ基である必要はない。   In formula (I) or formula (II), R is a hydrogen atom or a methyl group, n is an integer of 1 to 20, X is a hydrogen atom, an alkoxy group, or a fluorine group, respectively, Y is a hydrogen atom, an alkoxy group, or a fluorine group , A cyano group or a nitro group. In the formula (I) or the formula (II), plural Xs need not be the same group.

式(I)または式(II)で表される本発明のフォトクロミック液晶材料は、光応答挙動を示すアゾベンゼンとフェニルエチニル基が結合した骨格に対して、アクリレート基(Rが水素原子の場合)あるいはメタクリレート基(Rがメチル基の場合)が付与された構造を基本構成としているので、室温(20℃)で液晶状を示す(液晶相を保持する)ため、室温でも材料の形態は固体状とならず液状であるとともに、室温における光照射によって伸張ないし収縮する挙動(光伸張−収縮応答挙動)を発現する。   The photochromic liquid crystal material of the present invention represented by the formula (I) or the formula (II) has an acrylate group (when R is a hydrogen atom) or a skeleton in which azobenzene and a phenylethynyl group exhibiting photoresponsive behavior are bonded. Since the basic structure is a structure provided with a methacrylate group (when R is a methyl group), it exhibits a liquid crystal state at room temperature (20 ° C.) (holds a liquid crystal phase). In addition to being liquid, it develops a behavior that stretches or contracts by light irradiation at room temperature (light stretching-contraction response behavior).

本発明のフォトクロミック液晶材料における照射光の波長(照射波長)は、導入する置換基によって左右されるが、例えば300〜400nmの範囲の波長の照射光を採用することができる。また、適当な増感剤を添加すれば、照射波長の範囲を広げることができるため、例えば250〜700nmの波長の光を用いることが可能である。   Although the wavelength (irradiation wavelength) of irradiation light in the photochromic liquid crystal material of the present invention depends on the substituent to be introduced, for example, irradiation light having a wavelength in the range of 300 to 400 nm can be employed. Further, if an appropriate sensitizer is added, the range of the irradiation wavelength can be expanded, and thus, for example, light having a wavelength of 250 to 700 nm can be used.

照射光の照射光量としては、特に制限はなく、また、導入する置換基等によって適宜決定すればよいが、概ね1〜300mJ/cm程度の光量とすればよい。なお、照射光としては、例えば非偏光を使用することが好ましく、照射手段としては、例えば、ダイオードレーザ等の公知の照射手段を用いればよい。 There is no restriction | limiting in particular as irradiation light quantity of irradiation light, What is necessary is just to determine suitably by the substituent etc. to introduce | transduce, but what is necessary is just to be about 1-300 mJ / cm < 2 > light quantity. For example, non-polarized light is preferably used as the irradiation light, and a known irradiation means such as a diode laser may be used as the irradiation means.

本発明のフォトクロミック液晶材料において、光伸張−収縮応答挙動を制御する方法としては、例えば、前記した特定範囲の波長光を照射することが挙げられ、これにより伸張挙動が誘起される。かかる挙動は光異性化によって誘起される分子の配向に起因する。例えば、式(I)または式(II)に示す液晶材料がトランス−シス光異性化しうる構造を有する場合には、特定波長はトランス体の有する吸収帯に属するものである。   In the photochromic liquid crystal material of the present invention, as a method for controlling the light stretching-shrinking response behavior, for example, irradiation with light having a wavelength in the specific range described above can be mentioned, and thereby the stretching behavior is induced. Such behavior is due to molecular orientation induced by photoisomerization. For example, when the liquid crystal material represented by formula (I) or formula (II) has a structure capable of trans-cis photoisomerization, the specific wavelength belongs to the absorption band of the trans isomer.

一方、本発明のフォトクロミック液晶材料において、ジメチルホルムアミド(DMF)、等の有機溶媒と混合し、波長として、例えば300〜400nmの光(適当な増感剤を添加すれば、例えば250〜700nm)の波長の光を照射すると収縮挙動が誘起される。これは、アゾベンゼンの異性化に伴う液晶−溶媒間のアンカリングエネルギーの低下によるものである。有機溶媒としては、例えば前記したジメチルホルムアミド(DMF)のほか、テトラヒドロフラン(THF)、クロロホルム、ジクロロメタン、ジクロロエタン、ベンゼン、トルエン、キシレン、ジメトキシエタン、ジオキサン、アセトニトリル、ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等を使用することができ、フォトクロミック液晶材料と有機溶媒の混合比は、フォトクロミック液晶材料/有機溶媒=90/10〜40/60の範囲とすることが好ましい。   On the other hand, in the photochromic liquid crystal material of the present invention, it is mixed with an organic solvent such as dimethylformamide (DMF), and the wavelength is, for example, 300 to 400 nm (if a suitable sensitizer is added, for example, 250 to 700 nm). Shrinkage behavior is induced when light of a wavelength is irradiated. This is due to a decrease in the anchoring energy between the liquid crystal and the solvent accompanying the isomerization of azobenzene. Examples of the organic solvent include dimethylformamide (DMF), tetrahydrofuran (THF), chloroform, dichloromethane, dichloroethane, benzene, toluene, xylene, dimethoxyethane, dioxane, acetonitrile, dimethylacetamide, dimethylsulfoxide, and N-methylpyrrolidone. Etc., and the mixing ratio of the photochromic liquid crystal material and the organic solvent is preferably in the range of photochromic liquid crystal material / organic solvent = 90/10 to 40/60.

得られる液晶材料の応答速度を調整ないし向上するためには、式(I)または式(II)において、極性基を導入する等の分子設計によりスメクチック相を呈するようにするのが好適である。例えば、式(I)または式(II)における末端部であるY基として、フッ素基、シアノ基またはニトロ基を導入するようにすればよく、かかる基の導入により、極性基に応じて液晶材料の応答速度や液晶性を調整することができる。   In order to adjust or improve the response speed of the obtained liquid crystal material, it is preferable that the smectic phase is exhibited by molecular design such as introducing a polar group in formula (I) or formula (II). For example, a fluorine group, a cyano group, or a nitro group may be introduced as the Y group that is a terminal portion in the formula (I) or the formula (II), and the liquid crystal material can be obtained depending on the polar group by introducing such a group The response speed and liquid crystallinity can be adjusted.

また、得られる液晶材料の応答速度を向上させるための他の手段としては、式(I)または式(II)において、キラリティを付与することで、発現する強誘電液晶相によって応答速度を向上できる。キラリティを付与するためには、式(I)または式(II)のY基中に不斉炭素を存在させればよいが、例えば、(R)−(−)−2−オクタノールを不斉炭素とすればよい。   Further, as another means for improving the response speed of the obtained liquid crystal material, the response speed can be improved by applying the chirality in the formula (I) or the formula (II) by the ferroelectric liquid crystal phase that appears. . In order to impart chirality, an asymmetric carbon may be present in the Y group of formula (I) or formula (II). For example, (R)-(−)-2-octanol is converted to an asymmetric carbon. And it is sufficient.

式(I)で表される本発明のフォトクロミック液晶材料は、例えば、図1に示すスキームによって合成される。図1は、式(I)に示す本発明のフォトクロミック液晶材料の合成方法のスキームの一態様を示す。また、式(I)に表される本発明のフォトクロミック液晶材料の一例を下記式(I−a)に、及びかかる式(I−a)で表されるフォトクロミック液晶材料の合成方法のスキームの一例を図2に示す。   The photochromic liquid crystal material of the present invention represented by the formula (I) is synthesized by, for example, the scheme shown in FIG. FIG. 1 shows one embodiment of a scheme of a method for synthesizing the photochromic liquid crystal material of the present invention represented by the formula (I). Further, an example of the photochromic liquid crystal material of the present invention represented by the formula (I) is represented by the following formula (Ia), and an example of a scheme of a synthesis method of the photochromic liquid crystal material represented by the formula (Ia). Is shown in FIG.

同様に、式(II)で表される本発明のフォトクロミック液晶材料は、例えば、図3に示すスキームによって合成される。図3は、式(II)に示す本発明のフォトクロミック液晶材料の合成方法のスキームの一態様を示す。また、式(II)に表される本発明のフォトクロミック液晶材料の一例を下記式(II−a)に、及びかかる式(II−a)で表されるフォトクロミック液晶材料の合成方法のスキームの一例を図4に示す。   Similarly, the photochromic liquid crystal material of the present invention represented by the formula (II) is synthesized by, for example, the scheme shown in FIG. FIG. 3 shows one embodiment of the scheme of the method for synthesizing the photochromic liquid crystal material of the present invention represented by the formula (II). Further, an example of the photochromic liquid crystal material of the present invention represented by the formula (II) is represented by the following formula (II-a), and an example of a scheme of a synthesis method of the photochromic liquid crystal material represented by the formula (II-a). Is shown in FIG.

なお、本発明にあっては、例えば前記した図1ないし図4で得られた生成物は針状の結晶である一方、かかる針状の結晶を等方相状態となるまで加熱した後、室温まで冷却することにより、室温においても液晶状を呈する液晶材料となる。かかる針状の結晶を等方相状態とするには、例えば、150〜200℃程度まで加熱すればよいが、かかる温度は本発明のフォトクロミック材料の構造により適宜決定することができ、特に制限はない。   In the present invention, for example, the product obtained in FIGS. 1 to 4 described above is a needle-like crystal, and after heating the needle-like crystal to an isotropic phase state, By cooling to room temperature, it becomes a liquid crystal material exhibiting a liquid crystal state even at room temperature. In order to bring the acicular crystal into an isotropic phase state, for example, it may be heated to about 150 to 200 ° C., but such temperature can be appropriately determined depending on the structure of the photochromic material of the present invention, and is not particularly limited. Absent.

以上説明したように、本発明のフォトクロミック液晶材料は、室温で液晶状(液晶相状態)であり、室温で液状の形態を保持して流動性を備えた上で、前記のような光伸張−収縮応答挙動を室温領域で発現させることができるので、室温で光照射により形態を制御できる液晶材料として使用可能であり、例えば、光学分野等において、記録素子等の書き換え可能な光記録材料のほか、光駆動型のモータ、光学素子、非線形光学素子、スイッチング素子、演算素子、表示素子、及び玩具等として有利に使用することができる。   As described above, the photochromic liquid crystal material of the present invention is in a liquid crystal state (liquid crystal phase state) at room temperature, maintains a liquid form at room temperature, and has fluidity. Since the shrinkage response behavior can be expressed in the room temperature region, it can be used as a liquid crystal material whose form can be controlled by light irradiation at room temperature. For example, in the optical field, in addition to a rewritable optical recording material such as a recording element. It can be advantageously used as a light-driven motor, optical element, nonlinear optical element, switching element, arithmetic element, display element, toy, and the like.

本発明のフォトクロミック液晶材料を前記した用途に適用する場合には、通常、本材料をそのまま、あるいは、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、ジクロロエタン、ベンゼン、トルエン、キシレン、ジメトキシエタン、ジオキサン、アセトニトリル、ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等の有機溶媒と混合して、ガラス基板、ITO(Indium Tin Oxide)膜蒸着基板、シリコンウェハ等からなる基板上に塗布する。塗布方法としてはスピンコート法やキャスト法等の公知の製膜方法が一般的であるが、刷毛などを用いて直接基板に塗ることも可能である。塗布膜の厚さは、例えば0.1〜1.0μmとすることが好ましい。   When the photochromic liquid crystal material of the present invention is applied to the above-mentioned uses, the material is usually used as it is or tetrahydrofuran (THF), dimethylformamide (DMF), chloroform, dichloromethane, dichloroethane, benzene, toluene, xylene, dimethoxy. It is mixed with an organic solvent such as ethane, dioxane, acetonitrile, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, and coated on a substrate made of a glass substrate, an ITO (Indium Tin Oxide) film deposition substrate, a silicon wafer or the like. As a coating method, a known film forming method such as a spin coating method or a casting method is generally used, but it is also possible to apply directly to a substrate using a brush or the like. The thickness of the coating film is preferably 0.1 to 1.0 μm, for example.

また、フォトクロミック液晶材料の薄膜を形成させる基板上には、液晶配向膜等の液晶基の配向を促進させるものをあらかじめ塗布しておいて、いわゆるラビング処理等の方法で基板面を配向し易い状態にしてもよく、あるいは薄膜形成後に外部から電場あるいは磁場を印加する、等の方法により液晶分子を一定方向に配向させる処理を行うようにしてもよい。   In addition, on the substrate on which the thin film of the photochromic liquid crystal material is formed, a material that promotes the alignment of the liquid crystal group, such as a liquid crystal alignment film, is applied in advance, and the substrate surface is easily aligned by a so-called rubbing process or the like. Alternatively, a process of aligning liquid crystal molecules in a certain direction may be performed by applying an electric field or a magnetic field from the outside after forming a thin film.

本発明のフォトクロミック液晶材料を、既存の基材、デバイス、材料等に塗布すれば、当該基材等に対して、本発明のフォトクロミック液晶材料の形態制御を付与することができる。例えば、本発明のフォトクロミック液晶材料を、必要により前記した有機溶剤と前記した混合比により混合して、例えば1〜100μmの厚さのポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン等の汎用高分子材料からなるフィルム上に、厚さが、例えば0.1〜1.0μmとなるように塗布して、前記した特定範囲の波長の光を照射するとフィルムが屈曲する。そして、かかる光照射による光屈曲−復元挙動を利用して、汎用性プラスチックを基板としたアクチュエータとして使用することができる。   When the photochromic liquid crystal material of the present invention is applied to an existing base material, device, material or the like, the form control of the photochromic liquid crystal material of the present invention can be imparted to the base material or the like. For example, the photochromic liquid crystal material of the present invention is mixed with the above-described organic solvent according to the above-described mixing ratio as necessary, and a general-purpose polymer such as polyvinyl chloride, polyvinylidene chloride, polyethylene, or polypropylene having a thickness of 1 to 100 μm, for example. When a film made of a material is applied so as to have a thickness of, for example, 0.1 to 1.0 μm and irradiated with light having a wavelength in the specific range described above, the film is bent. And it can use as an actuator which used the versatile plastic as a board | substrate using the light bending-restoration behavior by this light irradiation.

なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記し
た実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる
範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。ま
た、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達
成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記した各実
施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本
発明に含まれるものである。
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the objects and effects. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. Further, the specific structure, shape, and the like in carrying out the present invention are not problematic as other structures, shapes, and the like as long as the objects and effects of the present invention can be achieved. The present invention is not limited to the above-described embodiments, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.

例えば、前記した実施形態では、式(I)で表されるフォトクロミック液晶材料を合成する方法として図1に示したスキームを、また、式(II)で表されるフォトクロミック液晶材料を合成する方法として図3に示したスキームをそれぞれ例として挙げたが、式(I)あるいは式(II)に表されるフォトクロミック液晶材料を合成する方法としては図1及び図3に示すスキームには限定されない。また、前記した実施形態では、式(I)で表されるフォトクロミック液晶材料の一例として式(I−a)を、式(II)で表されるフォトクロミック液晶材料の一例として式(II−a)をそれぞれ挙げたが、式(I−a)及び式(II−a)はあくまでも一例であり、式(I)及び式(II)はかかる式(I−a)及び式(II−a)には限定されない。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範
囲で他の構造としてもよい。
For example, in the above-described embodiment, the scheme shown in FIG. 1 is used as a method for synthesizing the photochromic liquid crystal material represented by the formula (I), and the method for synthesizing the photochromic liquid crystal material represented by the formula (II). Although the scheme shown in FIG. 3 is given as an example, the method for synthesizing the photochromic liquid crystal material represented by formula (I) or formula (II) is not limited to the scheme shown in FIGS. In the above-described embodiment, the formula (Ia) is an example of the photochromic liquid crystal material represented by the formula (I), and the formula (II-a) is an example of the photochromic liquid crystal material represented by the formula (II). However, the formula (Ia) and the formula (II-a) are merely examples, and the formula (I) and the formula (II) are expressed in the formula (Ia) and the formula (II-a). Is not limited.
In addition, the specific structure, shape, and the like when implementing the present invention may be other structures as long as the object of the present invention can be achieved.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明は、かかる実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this Example at all.

[実施例1]
フォトクロミック液晶材料の合成:
図2に示したスキームに従い、下記(1)〜(4)の方法を用いて、式(I−a)に表される本発明のフォトクロミック液晶材料を合成した。
[Example 1]
Synthesis of photochromic liquid crystal materials:
According to the scheme shown in FIG. 2, the photochromic liquid crystal material of the present invention represented by the formula (Ia) was synthesized using the following methods (1) to (4).

(1)2−メチル−4−ブロモ−4’ヒドロキシアゾベンゼンの合成:
容量が1000mlのビーカーに10.0gの4−ブロモ−2−メチルアニリン10.0gと22.0gのHBFを入れ、さらに550mlの氷水を加えて30分間撹拌した。50mlの水に溶解させた3.8gのNaNOと7.7gのフェノール、8.3gのKCOを加え、さらに10時間撹拌した。pH=4.0に調整した200mlの1N−HClを加え20分間撹拌した後、吸引濾過により固体状の物質を分離した。分離した固体状の物質をクロロホルムで2回抽出して、硫酸マグネシウムで乾燥した後、カラムクロマトグラフィ(溶媒:クロロホルム)で分離精製を行い、エバポレータで溶媒を除去して、2−メチル−4−ブロモ−4’ヒドロキシアゾベンゼン(収量:14g、収率:88%)を得た。H−NMRの測定結果を以下に示す。
(1) Synthesis of 2-methyl-4-bromo-4′hydroxyazobenzene:
10.0 g of 4-bromo-2-methylaniline and 22.0 g of HBF 4 were placed in a beaker having a capacity of 1000 ml, and 550 ml of ice water was further added and stirred for 30 minutes. 3.8 g of NaNO 3 dissolved in 50 ml of water, 7.7 g of phenol and 8.3 g of K 2 CO 3 were added, and the mixture was further stirred for 10 hours. After adding 200 ml of 1N HCl adjusted to pH = 4.0 and stirring for 20 minutes, a solid substance was separated by suction filtration. The separated solid substance is extracted twice with chloroform, dried over magnesium sulfate, separated and purified by column chromatography (solvent: chloroform), the solvent is removed with an evaporator, and 2-methyl-4-bromo is removed. -4 ′ hydroxyazobenzene (yield: 14 g, yield: 88%) was obtained. The measurement result of 1 H-NMR is shown below.

H−NMRの結果)
H−NMR(CDCl,δ,ppm):2.65(s,3H),5.07(s,1H),6.91−6.93(d,J=1.0Hz,2H),6.34−6.36(d,J=0.8Hz,1H),7.48−7.46(d,J=0.8Hz,2H),7.83(s,2H).
(Results of 1 H-NMR)
1 H-NMR (CDCl 3 , δ, ppm): 2.65 (s, 3H), 5.07 (s, 1H), 6.91-6.93 (d, J = 1.0 Hz, 2H), 6.34-6.36 (d, J = 0.8 Hz, 1H), 7.48-7.46 (d, J = 0.8 Hz, 2H), 7.83 (s, 2H).

(2)2−メチル−4−ブロモ−4’−(6−ヒドロキシへキシルオキシ)アゾベンゼンの合成:
(1)で得られた14g(4.7mmol)の2−メチル−4−ブロモ−4’ヒドロキシアゾベンゼンと6.4g(47.0mol)6−クロロ−1−ヘキサノール、6.5gのKCO、及び100mlのDMFをナスフラスコに投入し90℃で6時間加熱撹拌した。加熱撹拌後、放冷し、クロロホルムで有機相を抽出した。抽出した有機相に硫酸マグネシウムを加えて乾燥して、濾過後エバポレータでクロロホルムを除去してカラムクロマトグラフィ(溶媒:クロロホルム)で分離精製した。再びエバポレータで溶媒を除去し、減圧乾燥して2−メチル−4−ブロモ−4’−(6−ヒドロキシへキシルオキシ)アゾベンゼンの橙色結晶(収量:14g、収率:78%)を得た。H−NMRの測定結果を以下に示す。
(2) Synthesis of 2-methyl-4-bromo-4 ′-(6-hydroxyhexyloxy) azobenzene:
14 g (4.7 mmol) of 2-methyl-4-bromo-4′hydroxyazobenzene obtained in (1) and 6.4 g (47.0 mol) of 6-chloro-1-hexanol, 6.5 g of K 2 CO 3 and 100 ml of DMF were put into an eggplant flask and heated and stirred at 90 ° C. for 6 hours. After heating and stirring, the mixture was allowed to cool and the organic phase was extracted with chloroform. Magnesium sulfate was added to the extracted organic phase and dried. After filtration, chloroform was removed by an evaporator, and separation and purification were performed by column chromatography (solvent: chloroform). The solvent was removed again with an evaporator and dried under reduced pressure to obtain orange crystals of 2-methyl-4-bromo-4 ′-(6-hydroxyhexyloxy) azobenzene (yield: 14 g, yield: 78%). The measurement result of 1 H-NMR is shown below.

H−NMRの結果)
H−NMR(CDCl,δ,ppm):1.21(s,1H),1.58−1.63(t,J=1.0Hz,4H),1.78−1.85(m,1H),2.15(s,2H),2.65(s,3H),3.65−3.69(t,J=2.0Hz,2H),4.01−4.05(t,J=1.0Hz,2H),6.95−6.98(d,J=2.0Hz,2H),7.33−7.36(d,J=1.5Hz,1H),7.46−7.49(d,J=2.0Hz,2H),7.85−7.88(d,J=1.5Hz,2H).
(Results of 1 H-NMR)
1 H-NMR (CDCl 3 , δ, ppm): 1.21 (s, 1H), 1.58-1.63 (t, J = 1.0 Hz, 4H), 1.78-1.85 (m , 1H), 2.15 (s, 2H), 2.65 (s, 3H), 3.65-3.69 (t, J = 2.0 Hz, 2H), 4.01-4.05 (t , J = 1.0 Hz, 2H), 6.95-6.98 (d, J = 2.0 Hz, 2H), 7.33-7.36 (d, J = 1.5 Hz, 1H), 7. 46-7.49 (d, J = 2.0 Hz, 2H), 7.85-7.88 (d, J = 1.5 Hz, 2H).

(3)2−メチル−4−(4−メトキシフェニルエチニル)−4’−(6−ヒドロキシエチルオキシ)アゾベンゼンの合成:
ナスフラスコに(2)で得た5.8g(15.0mmol)の2−メチル−4−ブロモ−4’−(6−ヒドロキシへキシルオキシ)アゾベンゼン、1.1g(1.5mmol)のPdCl(PPh、0.85g(4.5mmol)のCuI、30mlのトリエチルアミン、及び0.85g(8.6mmol)のトリメチルシリルアセチレンを投入し、窒素雰囲気下60℃で6時間加熱撹拌した。加熱撹拌後、放冷して濾過を行い、クロロホルムと1Nの塩酸を加えて撹拌し、有機相を抽出した。抽出した有機相に硫酸マグネシウムを加えて乾燥して、濾過後エバポレータで酢酸を除去し、カラムクロマトグラフィ(溶媒:クロロホルム)で分離精製した。エバポレータで溶媒を除去し、再結晶して2−メチル−4−(4−メトキシフェニルエチニル)−4’−(6−ヒドロキシエチルオキシ)アゾベンゼンの橙色結晶(収量:2.7g、収率:40%)を得た。H−NMRの測定結果を以下に示す。
(3) Synthesis of 2-methyl-4- (4-methoxyphenylethynyl) -4 ′-(6-hydroxyethyloxy) azobenzene:
In an eggplant flask, 5.8 g (15.0 mmol) of 2-methyl-4-bromo-4 ′-(6-hydroxyhexyloxy) azobenzene obtained in (2), 1.1 g (1.5 mmol) of PdCl 2 ( PPh 3) 2, was charged CuI of 0.85g (4.5 mmol), 30 ml of triethylamine, and 0.85g of trimethylsilyl acetylene (8.6 mmol), was heated for 6 hours under 60 ° C. nitrogen atmosphere. After heating and stirring, the mixture was allowed to cool and filtered, and chloroform and 1N hydrochloric acid were added and stirred to extract the organic phase. Magnesium sulfate was added to the extracted organic phase and dried. After filtration, acetic acid was removed by an evaporator, and separation and purification were performed by column chromatography (solvent: chloroform). The solvent was removed with an evaporator and recrystallized to give orange crystals of 2-methyl-4- (4-methoxyphenylethynyl) -4 ′-(6-hydroxyethyloxy) azobenzene (yield: 2.7 g, yield: 40). %). The measurement result of 1 H-NMR is shown below.

H−NMRの結果)
H−NMR(CDCl,δ,ppm):1.20(s,1H),1.61(s,2H),1.83(s,2H),2.67(s,3H),3.65(s,2H),3.82(s,3H),4.03(s,2H),6.98−6.86(d,J=7.0Hz,4H),7.59−7.36(t,J=6.5Hz,4H),7.89(s,3H).
(Results of 1 H-NMR)
1 H-NMR (CDCl 3 , δ, ppm): 1.20 (s, 1H), 1.61 (s, 2H), 1.83 (s, 2H), 2.67 (s, 3H), 3 .65 (s, 2H), 3.82 (s, 3H), 4.03 (s, 2H), 6.98-6.86 (d, J = 7.0 Hz, 4H), 7.59-7 .36 (t, J = 6.5 Hz, 4H), 7.89 (s, 3H).

(4)(6−[4−[2−メチル−4−(4−メトキシフェニルエチニル)フェニルアゾ]フェノキシ]ヘキシルアクリレート)の合成:
(3)で得た1.5g(3.4mmol)の2−メチル−4−(4−メトキシフェニルエチニル)−4’−(6−ヒドロキシエチルオキシ)アゾベンゼン及び0.80g(8.0mmol)のトリエチルアミンを氷浴中の反応容器(容量:100ml)に移し、0.72g(8.0mmol)のアクリロリルクロライドをゆっくり滴下した。その後、反応容器を室温に保持して、24時間撹拌して反応を進行させた。反応終了後、酢酸エチル及び炭酸水素ナトリウム水溶液で分液操作を行い、カラムクロマトグラフィ(充填材:シリカゲル、溶媒:クロロホルム)によって精製した。最後にメタノール水溶液にて、再結晶を3回行うことにより、(6−[4−[2−メチル−4−(4−メトキシフェニルエチニル)フェニルアゾ]フェノキシ]ヘキシルアクリレート)の橙色の針状結晶(収量:0.70g、収率:40g)を得た。H−NMRの測定結果を以下に示す。
(4) Synthesis of (6- [4- [2-Methyl-4- (4-methoxyphenylethynyl) phenylazo] phenoxy] hexyl acrylate):
1.5 g (3.4 mmol) of 2-methyl-4- (4-methoxyphenylethynyl) -4 ′-(6-hydroxyethyloxy) azobenzene obtained in (3) and 0.80 g (8.0 mmol) of Triethylamine was transferred to a reaction vessel (volume: 100 ml) in an ice bath, and 0.72 g (8.0 mmol) of acrylolyl chloride was slowly added dropwise. Thereafter, the reaction vessel was kept at room temperature and stirred for 24 hours to allow the reaction to proceed. After completion of the reaction, liquid separation operation was performed with ethyl acetate and aqueous sodium hydrogen carbonate solution, and purification was performed by column chromatography (filler: silica gel, solvent: chloroform). Finally, by performing recrystallization three times with an aqueous methanol solution, orange needle-like crystals of (6- [4- [2-methyl-4- (4-methoxyphenylethynyl) phenylazo] phenoxy] hexyl acrylate) ( Yield: 0.70 g, yield: 40 g). The measurement result of 1 H-NMR is shown below.

H−NMRの結果)
H−NMR(CDCl,δ,ppm):1.44−1.84(m,8H),2.68(s,3H),3.82(t,3H),4.03(t,J=6.5Hz,3H),4.18(t,J=6.5Hz,3H),5.80(d,J=11Hz.1H),6.11(dd,J=11Hz,1H),6.39(d,J=11Hz.1H),6.87(d,J=8.5Hz,2H),6.98(d,J=8.5Hz,2H),7.36−7.48(m,3H),7.89(d,J=9.0Hz,2H).13C−NMR:17.35,25.72,28.53,29.06,29.68,55.29,64.47,68.10,88.23,91.33,114.02,114.67,115.24,115.42,124.17,124.87,125.37,128.55,129.57,130.54,133.00,133.11,134.04,137.66,147.39,149.93,159.73,161.57,166.31.MS(FAB):498(MH).Anal.Calcd for C3132:C,74.98;H,6.49;N,5.64.Found:C,74.67;H,6.97;N,5.70.
(Results of 1 H-NMR)
1 H-NMR (CDCl 3 , δ, ppm): 1.44 to 1.84 (m, 8H), 2.68 (s, 3H), 3.82 (t, 3H), 4.03 (t, J = 6.5 Hz, 3H), 4.18 (t, J = 6.5 Hz, 3H), 5.80 (d, J = 11 Hz. 1H), 6.11 (dd, J = 11 Hz, 1H), 6.39 (d, J = 11 Hz. 1H), 6.87 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 7.36-7.48 (M, 3H), 7.89 (d, J = 9.0 Hz, 2H). 13 C-NMR: 17.35, 25.72, 28.53, 29.06, 29.68, 55.29, 64.47, 68.10, 88.23, 91.33, 114.02, 114 .67, 115.24, 115.42, 124.17, 124.87, 125.37, 128.55, 129.57, 130.54, 133.00, 133.11, 134.04, 137.66. , 147.39, 149.93, 159.73, 161.57, 166.31. MS (FAB): 498 (MH <+> ). Anal. Calcd for C 31 H 32 N 2 O 4: C, 74.98; H, 6.49; N, 5.64. Found: C, 74.67; H, 6.97; N, 5.70.

実施例1で得られた本発明のフォトクロミック液晶材料について、示差走査熱量計(Differential Scanning Calorimeter:DSC)を用いて熱分析を行った。図5は、本発明のフォトクロミック液晶材料の示差走査熱量計(DSC)による測定結果を示した図である(測定装置 DSC−60:(株)島津製作所製、昇温速度及び降温速度:2℃/分)。図5に示すように、昇温過程においては64℃で固体から液晶に、174℃で液晶から液体に転移した。また、降温過程においては170℃で液体から液晶に転移し、以降は室温(20℃)まで戻しても液晶状態を保持した。以上より、実施例1で得られた本発明のフォトクロミック液晶材料は、室温でも液晶状(液状)となり、室温での材料の形態が液状となる液晶材料として使用することができることが確認できた。   The photochromic liquid crystal material of the present invention obtained in Example 1 was subjected to thermal analysis using a differential scanning calorimeter (DSC). FIG. 5 is a diagram showing the measurement results of the photochromic liquid crystal material of the present invention using a differential scanning calorimeter (DSC) (measuring device DSC-60: manufactured by Shimadzu Corporation, temperature increase rate and temperature decrease rate: 2 ° C.). / Min). As shown in FIG. 5, in the temperature raising process, the liquid crystal transitioned from solid to liquid crystal at 64 ° C. and from liquid crystal to liquid at 174 ° C. In the temperature lowering process, the liquid transitioned from liquid to liquid crystal at 170 ° C., and thereafter the liquid crystal state was maintained even after returning to room temperature (20 ° C.). From the above, it was confirmed that the photochromic liquid crystal material of the present invention obtained in Example 1 was in a liquid crystal state (liquid state) even at room temperature and could be used as a liquid crystal material in which the form of the material at room temperature was liquid.

また、図6は、前記した熱分析終了後(室温に戻した後)のフォトクロミック液晶材料の偏光顕微鏡における観察写真を示した図である。(測定装置:BX−51(オリンパス(株)製)、測定温度:160℃)。図6に示すように、実施例1で得られた本発明のフォトクロミック液晶材料はネマチック液晶相特有のシュリーレン組織を示し、材料の形態として室温でも液状となる液晶材料であることが確認できた。   FIG. 6 is a view showing a photo of the photochromic liquid crystal material observed with a polarizing microscope after the end of the thermal analysis described above (after returning to room temperature). (Measurement device: BX-51 (manufactured by Olympus Corporation), measurement temperature: 160 ° C.). As shown in FIG. 6, the photochromic liquid crystal material of the present invention obtained in Example 1 showed a schlieren structure peculiar to the nematic liquid crystal phase, and it was confirmed that the material was a liquid crystal material that became liquid even at room temperature.

[試験例1]
光伸張−収縮応答挙動の確認(1):
実施例1で得られた本発明のフォトクロミック液晶材料をスパチェラに載せ、200℃に加熱し、放冷して室温まで戻した後、水面に落とした。次いで、水面上のフォトクロミック液晶材料に対して、ダイオードレーザ(UV−400((株)キーエンス製))で照射波長を365nm、照射量を150mW/cmとして非偏光を照射したところ、水面上のフォトクロミック液晶材料が伸張することを確認した。
[Test Example 1]
Confirmation of light stretch-shrink response behavior (1):
The photochromic liquid crystal material of the present invention obtained in Example 1 was placed on a spatula, heated to 200 ° C., allowed to cool to room temperature, and dropped onto the water surface. Next, the photochromic liquid crystal material on the water surface was irradiated with non-polarized light with a diode laser (UV-400 (manufactured by Keyence Corporation)) at an irradiation wavelength of 365 nm and an irradiation amount of 150 mW / cm 2 . It was confirmed that the photochromic liquid crystal material stretched.

[試験例2]
光伸張−収縮応答挙動の確認(2):
実施例1で得られた本発明のフォトクロミック液晶材料とテトラヒドロフラン(THF)をフォトクロミック液晶材料/THF=40/60で混合して混合溶液を調製した。調製した混合溶液を150℃まで加熱し、放冷して室温まで戻した後、水面に落とした。次に、試験例1で使用したダイオードレーザで照射波長を365nm、照射量を150mW/cmとして非偏光を照射したところ、水面上の混合溶液(フォトクロミック液晶材料)が収縮することを確認した。
[Test Example 2]
Confirmation of light stretch-shrink response behavior (2):
The photochromic liquid crystal material of the present invention obtained in Example 1 and tetrahydrofuran (THF) were mixed at a photochromic liquid crystal material / THF = 40/60 to prepare a mixed solution. The prepared mixed solution was heated to 150 ° C., allowed to cool to room temperature, and then dropped on the water surface. Next, when the non-polarized light was irradiated with the irradiation wavelength of 365 nm and the irradiation amount of 150 mW / cm 2 with the diode laser used in Test Example 1, it was confirmed that the mixed solution (photochromic liquid crystal material) on the water surface contracted.

[試験例3]
光伸張−収縮応答挙動の確認(3):
実施例1で得られた本発明のフォトクロミック液晶材料とジメチルホルムアミド(DMF)をフォトクロミック液晶材料/DMF=40/60で混合して混合溶液を調製した。調製した混合溶液を150℃まで加熱し、放冷して室温まで戻した後、水面に落とした。次に、試験例1で使用したダイオードレーザで照射波長を365nm、照射量を150mW/cmとして非偏光を照射したところ、水面上の混合溶液(フォトクロミック液晶材料)が収縮することを確認した。
[Test Example 3]
Confirmation of light stretch-shrink response behavior (3):
The photochromic liquid crystal material of the present invention obtained in Example 1 and dimethylformamide (DMF) were mixed at photochromic liquid crystal material / DMF = 40/60 to prepare a mixed solution. The prepared mixed solution was heated to 150 ° C., allowed to cool to room temperature, and then dropped on the water surface. Next, when the non-polarized light was irradiated with the irradiation wavelength of 365 nm and the irradiation amount of 150 mW / cm 2 with the diode laser used in Test Example 1, it was confirmed that the mixed solution (photochromic liquid crystal material) on the water surface contracted.

[試験例4]
光伸張−収縮応答挙動の確認(4):
実施例1で得られた本発明のフォトクロミック液晶材料とジメチルホルムアミド(DMF)をフォトクロミック液晶材料/DMF=40/60で混合して混合溶液を調製した。かかる混合溶液を150℃まで加熱し、放冷して室温まで戻した後、厚さが50μmのポリ塩化ビニリデンフィルムに、厚さが0.1μmとなるように塗布した。かかるフィルムに対して、試験例1で使用したダイオードレーザで照射波長を365nm、照射量を150mW/cmとして非偏光を照射したところ、フィルムが屈曲することを確認した。
[Test Example 4]
Confirmation of light stretch-shrink response behavior (4):
The photochromic liquid crystal material of the present invention obtained in Example 1 and dimethylformamide (DMF) were mixed at photochromic liquid crystal material / DMF = 40/60 to prepare a mixed solution. The mixed solution was heated to 150 ° C., allowed to cool to room temperature, and then applied to a polyvinylidene chloride film having a thickness of 50 μm so as to have a thickness of 0.1 μm. When this film was irradiated with non-polarized light using the diode laser used in Test Example 1 with an irradiation wavelength of 365 nm and an irradiation amount of 150 mW / cm 2 , it was confirmed that the film was bent.

本発明のフォトクロミック液晶材料は、例えば、光学分野等において、記録素子等の書き換え型光記録材料のほか、光駆動型のモータ、光学素子、非線形光学素子、スイッチング素子、演算素子、表示素子、及び玩具等として有利に使用することができる。   The photochromic liquid crystal material of the present invention is, for example, in the optical field and the like, in addition to a rewritable optical recording material such as a recording element, a light-driven motor, an optical element, a nonlinear optical element, a switching element, an arithmetic element, a display element, and It can be advantageously used as a toy or the like.

式(I)に示す本発明のフォトクロミック液晶材料の合成方法のスキームの一態様を示した図である。It is the figure which showed the one aspect | mode of the scheme of the synthesis method of the photochromic liquid crystal material of this invention shown to Formula (I). 式(I−a)に示す本発明のフォトクロミック液晶材料の合成方法のスキームの一態様を示した図である。It is the figure which showed the one aspect | mode of the scheme of the synthesis method of the photochromic liquid crystal material of this invention shown to Formula (Ia). 式(II)に示す本発明のフォトクロミック液晶材料の合成方法のスキームの一態様を示した図である。It is the figure which showed the one aspect | mode of the scheme of the synthesis method of the photochromic liquid crystal material of this invention shown to Formula (II). 式(II−a)に示す本発明のフォトクロミック液晶材料の合成方法のスキームの一態様を示した図である。It is the figure which showed the one aspect | mode of the scheme of the synthesis method of the photochromic liquid crystal material of this invention shown to Formula (II-a). 本発明のフォトクロミック液晶材料の示差走査熱量計(DSC)による測定結果を示した図である。It is the figure which showed the measurement result by the differential scanning calorimeter (DSC) of the photochromic liquid crystal material of this invention. 本発明のフォトクロミック液晶材料の偏光顕微鏡における観察写真を示した図である。It is the figure which showed the observation photograph in the polarizing microscope of the photochromic liquid crystal material of this invention.

Claims (3)

下記式(I)で表され、室温で液晶状を呈することを特徴とするフォトクロミック液晶材料。
(式(I)中、Rは水素原子またはメチル基、nは1〜20の整数、Xはそれぞれ水素原子、アルコキシ基、またはフッ素基、Yは水素原子、アルコキシ基、フッ素基、シアノ基またはニトロ基、を示す。)
A photochromic liquid crystal material represented by the following formula (I) and exhibiting a liquid crystal form at room temperature.
(In formula (I), R is a hydrogen atom or a methyl group, n is an integer of 1 to 20, X is a hydrogen atom, an alkoxy group, or a fluorine group, Y is a hydrogen atom, an alkoxy group, a fluorine group, a cyano group, or A nitro group.)
下記式(II)で表され、室温で液晶状を呈することを特徴とするフォトクロミック液晶材料。
(式(II)中、Rは水素原子またはメチル基、nは1〜20の整数、Xはそれぞれ水素原子、アルコキシ基、またはフッ素基、Yは水素原子、アルコキシ基、フッ素基、シアノ基またはニトロ基、を示す。)
A photochromic liquid crystal material represented by the following formula (II) and exhibiting a liquid crystal form at room temperature.
(In the formula (II), R is a hydrogen atom or a methyl group, n is an integer of 1 to 20, X is a hydrogen atom, an alkoxy group, or a fluorine group, Y is a hydrogen atom, an alkoxy group, a fluorine group, a cyano group, or A nitro group.)
前記Yがフッ素基、シアノ基またはニトロ基であることを特徴とする請求項1または請求項2に記載のフォトクロミック液晶材料。
3. The photochromic liquid crystal material according to claim 1, wherein Y is a fluorine group, a cyano group, or a nitro group.
JP2008095506A 2008-04-01 2008-04-01 Photochromic liquid crystal material Pending JP2009249406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095506A JP2009249406A (en) 2008-04-01 2008-04-01 Photochromic liquid crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095506A JP2009249406A (en) 2008-04-01 2008-04-01 Photochromic liquid crystal material

Publications (1)

Publication Number Publication Date
JP2009249406A true JP2009249406A (en) 2009-10-29

Family

ID=41310414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095506A Pending JP2009249406A (en) 2008-04-01 2008-04-01 Photochromic liquid crystal material

Country Status (1)

Country Link
JP (1) JP2009249406A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236178A (en) * 2010-05-13 2011-11-24 Dic Corp Azobenzene derivative and liquid crystal composition containing the same
JP2013095685A (en) * 2011-10-31 2013-05-20 Dic Corp Azobenzene derivative, and liquid crystal composition containing the same
JP2013103897A (en) * 2011-11-11 2013-05-30 Dic Corp Azobenzene derivative, and liquid crystal composition containing the same
JP2013185110A (en) * 2012-03-08 2013-09-19 Tokyo Institute Of Technology Liquid crystal display element
JP2017222878A (en) * 2017-08-30 2017-12-21 国立大学法人東京工業大学 Liquid crystal display element
KR20180117828A (en) * 2017-04-20 2018-10-30 한국화학연구원 Azobenzen compound and composition for hologram recording comprising thereof
CN109790466A (en) * 2016-09-21 2019-05-21 皇家飞利浦有限公司 Actuator devices, actuating method and manufacturing method
WO2021101264A1 (en) * 2019-11-22 2021-05-27 한국화학연구원 Azobenzene compound comprising nitrogen-containing heteroaromatic, and blue hologram recording composition comprising same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236178A (en) * 2010-05-13 2011-11-24 Dic Corp Azobenzene derivative and liquid crystal composition containing the same
JP2013095685A (en) * 2011-10-31 2013-05-20 Dic Corp Azobenzene derivative, and liquid crystal composition containing the same
JP2013103897A (en) * 2011-11-11 2013-05-30 Dic Corp Azobenzene derivative, and liquid crystal composition containing the same
JP2013185110A (en) * 2012-03-08 2013-09-19 Tokyo Institute Of Technology Liquid crystal display element
US10287501B2 (en) 2012-03-08 2019-05-14 Tokyo Institute Of Technology Liquid crystal display element
CN109790466A (en) * 2016-09-21 2019-05-21 皇家飞利浦有限公司 Actuator devices, actuating method and manufacturing method
JP2019537741A (en) * 2016-09-21 2019-12-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Actuator device, actuation method, and manufacturing method
US11274253B2 (en) 2016-09-21 2022-03-15 Koninklijke Philips N.V. Actuator device, actuation method and manufacturing method
KR20180117828A (en) * 2017-04-20 2018-10-30 한국화학연구원 Azobenzen compound and composition for hologram recording comprising thereof
KR101970730B1 (en) * 2017-04-20 2019-04-23 한국화학연구원 Azobenzen compound and composition for hologram recording comprising thereof
JP2017222878A (en) * 2017-08-30 2017-12-21 国立大学法人東京工業大学 Liquid crystal display element
WO2021101264A1 (en) * 2019-11-22 2021-05-27 한국화학연구원 Azobenzene compound comprising nitrogen-containing heteroaromatic, and blue hologram recording composition comprising same

Similar Documents

Publication Publication Date Title
JP2009249406A (en) Photochromic liquid crystal material
JP4205195B2 (en) Photocrosslinkable silane derivative
JPH01503455A (en) Mixtures of chiral liquid crystal compounds and devices containing them
JPH0778218B2 (en) Liquid crystal polymer composition
JP2003315553A (en) Optical compensation sheet and polymerizable compound
KR101140037B1 (en) Photo-responsive Liquid Crystal Composition
JP2760836B2 (en) Dioxane liquid crystal material
JP5067964B2 (en) Light-induced rotation method, light-driven rotor, power transmission system, and power transmission device
TWI797059B (en) Composition for manufacturing liquid crystal alignment film, liquid crystal alignment film using same, and manufacturing method thereof, and liquid crystal display element having liquid crystal alignment film, and manufacturing method thereof
KR101663895B1 (en) Liquid crystal aligning derivatives converting orientation of liquid crystal, and liquid crystal display devices comprising the same
Lee et al. Synthesis and properties of new liquid crystalline compounds containing an indolinobenzospiropyranylazo group. Part 3
JPS62277412A (en) Novel polymer
JP2000035596A (en) Antiferroelectric liquid crystal display device and antiferroelectric compound and composition user for the device
US9158134B2 (en) Light-sensitive compound, polymer polymerized with light-sensitive compound and preparation method thereof
JP2005015406A (en) Compound, liquid crystal material, liquid crystal composition, optical film, and method for producing the compound
JPH10287635A (en) Polymerizable and optically active photo-isomerizable liquid crystal compound
JP3065734B2 (en) Cinnamic acid derivative
JP2000319527A (en) Unsaturated alicyclic compound, addition-based liquid crystal polymer and production of oriented film of liquid crystal polymer
WO2013172401A1 (en) Novel compound, polymerizable liquid crystalline compound, monomer/liquid crystal mixture, and polymer/liquid crystal composite
JP4174631B2 (en) Phenylpyridinylbenzoic acid trifluoroalkanol ester and liquid crystal composition
JP3044815B2 (en) Pyrimidine derivative and ferroelectric liquid crystal composition containing the same
Keum et al. Synthesis and characterization of new liquid crystallines containing a thiophenylated indolinobenzospiropyranyl group. Part 5
JPH04282345A (en) Optically active compound
CN117561233A (en) Compound, composition, cured product, optically anisotropic body, optical element, and light guide element
JP2007106758A (en) 2,3-dicyanohydroquinone derivative and its use