JP2009249013A - Silicone packaging method - Google Patents

Silicone packaging method Download PDF

Info

Publication number
JP2009249013A
JP2009249013A JP2008101264A JP2008101264A JP2009249013A JP 2009249013 A JP2009249013 A JP 2009249013A JP 2008101264 A JP2008101264 A JP 2008101264A JP 2008101264 A JP2008101264 A JP 2008101264A JP 2009249013 A JP2009249013 A JP 2009249013A
Authority
JP
Japan
Prior art keywords
silicon
bag
water vapor
humidity
packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008101264A
Other languages
Japanese (ja)
Other versions
JP5051720B2 (en
Inventor
Kenji Yamawaki
健治 山脇
Sanji Ochiai
三二 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2008101264A priority Critical patent/JP5051720B2/en
Publication of JP2009249013A publication Critical patent/JP2009249013A/en
Application granted granted Critical
Publication of JP5051720B2 publication Critical patent/JP5051720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily and surely prevent the generation of the catastrophic oxidation phenomenon called spots on the surface of polycrystalline silicone crushed lump during the storage of the lump in a bag. <P>SOLUTION: A silicone product 10 packed with a predetermined amount of crushed silicone lump in a bag is sealed in a large polyethylene sheet bag 20, and the bag 20 is airtightly enclosed in a moisture barrier packing material 40 made of a SiO deposition film. A plurality of desiccating agents 50 made of silica gel, etc. are placed between the bag 20 and the material 40. The inside of the material 40 is kept at a low-moisture atmosphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体原料、或いは太陽電池原料等に使用される多結晶シリコンの破砕塊の梱包方法に関する。   The present invention relates to a method for packing polycrystalline silicon crushed lump used for semiconductor raw materials or solar cell raw materials.

シリコン単結晶原料、或いは太陽電池原料等に使用される多結晶シリコンは、シーメンス法と呼ばれる気相法により、ロッド状として製造される。シーメンス法により製造された多結晶シリコンロッドは、破砕塊の状態で袋詰めにされてシリコン単結晶製造メーカーなどのユーザーへ出荷されることが多い。多結晶シリコンの破砕塊はチャンク、クランプ、ナゲット等と呼ばれており、ロッドの破砕後は先ず表面に付着している金属不純物等を除去するためにフッ酸と硝酸の混合液であるフッ硝酸水溶液によるエッチング処理を受ける。次いで水洗処理、乾燥処理を受け、その後さらに表面の再汚染を防止するために複数個ずつ袋詰めにされて出荷される。梱包材としてはポリエチレン袋が一般的に使用される。   Polycrystalline silicon used as a silicon single crystal raw material, a solar cell raw material, or the like is manufactured as a rod by a vapor phase method called a Siemens method. Polycrystalline silicon rods manufactured by the Siemens method are often packaged in the form of crushed lumps and shipped to users such as silicon single crystal manufacturers. The crushed pieces of polycrystalline silicon are called chunks, clamps, nuggets, etc. After the rods are crushed, first, hydrofluoric acid, which is a mixture of hydrofluoric acid and nitric acid, is used to remove metal impurities attached to the surface. Etching with aqueous solution. Subsequently, it is subjected to a water washing treatment and a drying treatment, and then, in order to prevent re-contamination of the surface, a plurality of bags are packed and shipped. A polyethylene bag is generally used as the packaging material.

このような袋詰めされた塊状多結晶シリコン製品の問題点の一つとして、保存中にシリコン塊の表面にシミが生じることがある。このシミは、一部のシリコン塊の表面の一部分が褐色系に変色する着色現象であり、高純度な原料を必要とするユーザー側からはその防止が強く求められている。そして、そのシミ対策の一つとして、エッチング処理後のシリコン塊の表面に存在するSi−H結合をSi−O結合に変換することが、特許文献1により提示されている。   One problem with such bagged bulk polycrystalline silicon products is that spots may form on the surface of the silicon mass during storage. This stain is a coloring phenomenon in which a part of the surface of a part of the silicon lump is changed to brown, and the prevention from the user who needs a high-purity raw material is strongly demanded. And as one of the countermeasures against the spot, Patent Document 1 proposes to convert Si—H bonds existing on the surface of the silicon lump after the etching process into Si—O bonds.

特許第2834600号公報Japanese Patent No. 2834600

この対策は、シミの原因が、エッチング処理後のシリコン塊の表面における異常酸化膜、より具体的にはSi−H結合にあるとの知見に基づくものであり、エッチング処理をした直後のシリコン塊の表面に酸素含有雰囲気中でマイクロ波の照射、或いは高温空気の照射を行うことにより、その表面に存在するSi−H結合をSi−O結合に変換して、シリコン塊の表面全体を健全な酸化膜(SiO2 )で覆うというものである。 This measure is based on the knowledge that the cause of the stain is an abnormal oxide film on the surface of the silicon lump after the etching process, more specifically, the Si-H bond. By irradiating the surface of the substrate with microwaves or high-temperature air in an oxygen-containing atmosphere, the Si-H bonds existing on the surface are converted into Si-O bonds, and the entire surface of the silicon lump is healthy. It is covered with an oxide film (SiO 2 ).

しかしながら、この対策の場合、不定形な個々の破砕塊の表面全体にマイクロ波、或いは高温空気をムラなく照射する必要があるが、破砕塊の形状が複雑であるために、それらの均一照射は手法的に容易でない。更に言えば、後述するように、多結晶シリコンの破砕塊は所定量ずつ籠に入れてエッチング処理、水洗処理、乾燥処理を受けるのが一般的であるため、個々の破砕塊の表面全体にマイクロ波、或いは高温空気をムラなく照射することは困難であり、個々の破砕塊の表面全体にマイクロ波、或いは高温空気をムラなく照射するためには籠によるバッチ処理から破砕塊1個ずつの個別処理への転換が必要となる。   However, in the case of this measure, it is necessary to irradiate the whole surface of each irregular crushed lump with microwaves or high-temperature air without any unevenness. Not technically easy. Furthermore, as will be described later, it is common for the crushed pieces of polycrystalline silicon to be put into a basket by a predetermined amount and subjected to etching treatment, washing treatment, and drying treatment. It is difficult to uniformly irradiate waves or high-temperature air, and in order to irradiate the entire surface of each crushed lump with microwaves or high-temperature air without any unevenness, individual crushed lump from batch processing with scissors Conversion to treatment is required.

このため、この対策は非効率で不経済であるという問題があり、有効性にも問題がないとは言えない。このような事情から、袋詰め多結晶シリコン塊の表面に生じるシミを簡単な手法で確実に防止できる対策が求められている。   For this reason, there is a problem that this measure is inefficient and uneconomical, and it cannot be said that there is no problem in effectiveness. Under such circumstances, there is a demand for a measure that can reliably prevent spots generated on the surface of the bag-filled polycrystalline silicon lump by a simple method.

本発明の目的は、袋詰めされた塊状多結晶シリコン製品の表面におけるシミと呼ばれる異常酸化現象の発生を簡単かつ確実に防止することにある。   An object of the present invention is to easily and surely prevent the occurrence of an abnormal oxidation phenomenon called a stain on the surface of a packed bulk silicon product.

上記目的を達成するために、本発明者らはシミの発生原因を多角的に調査した。その結果、以下の事実が判明した。   In order to achieve the above object, the present inventors investigated the cause of the occurrence of stains from various angles. As a result, the following facts were found.

多結晶シリコンの破砕塊のエッチング、水洗、乾燥は次のようにして行われる。所定量のシリコン塊を耐酸性の籠に入れ、エッチング槽内のフッ硝酸混合溶液に浸漬する。次の水洗工程では、エッチング槽から引き上げた籠を水洗槽内の純水中に浸漬する。複数の水洗槽に順番に送り、清浄度を段階的に上げる。或いは単一の水洗槽で流水により処理する。最後に乾燥を行う。最後の乾燥工程では、水洗槽から引き上げた籠内のシリコン塊を温風等により処理する。   Etching, washing with water, and drying of the crushed polycrystalline silicon are performed as follows. A predetermined amount of silicon lump is placed in an acid-resistant tub and immersed in a hydrofluoric acid mixed solution in an etching tank. In the next washing step, the soot pulled up from the etching bath is immersed in pure water in the washing bath. It sends to several washing tanks in order and raises the cleanliness step by step. Alternatively, it is treated with running water in a single washing tank. Finally, drying is performed. In the final drying step, the silicon lump in the basket pulled up from the washing tank is treated with warm air or the like.

籠内に収容された複数個のシリコン塊は複雑な形状の破砕塊であるため、隣接するシリコン塊の間に十分な隙間ができ、この間をエッチング液、水洗用の純水、乾燥用の温風等が十分に通過するため、いずれの工程でも、籠内の個々のシリコン塊は問題のない処理を受け、その結果、乾燥後のシリコン塊の表面にはエッチング液成分も水分も残留していないと考えられていた。ところが、保存期間中に発生したシミと称される異常酸化膜の部分の成分を分析したところ、その部分から極微量のフッ素成分が確認された。そのフッ素成分はエッチング液中のフッ素成分であると考えられ、もし仮にシリコン塊の表面にフッ素成分が存在した場合は大気中では酸化の進行が促進される可能性のあることが知られている。   Since the plurality of silicon chunks housed in the basket are crushed chunks with a complicated shape, a sufficient gap is formed between adjacent silicon chunks, and there is an etching solution, pure water for washing, and temperature for drying. Because the wind etc. can pass sufficiently, in any process, the individual silicon chunks in the cage are treated without any problem, and as a result, the etching solution components and moisture remain on the surface of the dried silicon chunk. It was thought not. However, when a component of an abnormal oxide film portion called a stain generated during the storage period was analyzed, a very small amount of fluorine component was confirmed from that portion. The fluorine component is considered to be a fluorine component in the etching solution, and it is known that if the fluorine component is present on the surface of the silicon lump, the progress of oxidation may be accelerated in the atmosphere. .

このような事実を基礎として、本発明者らは、多結晶シリコンの破砕塊の表面にエッチング液成分が残留する可能性について調査した。その結果、次のことが明らかになった。多結晶シリコンの破砕塊の表面形状は、大小様々な凹凸が複雑に組み合わさった複雑な不定形状である。また、通常の水洗工程では、前述したとおり、複数個の破砕塊を1ロットとして籠に入れて洗浄を行う。これらのため、入念な水洗処理を行っても、破砕塊の複雑な形状の凹部や破砕塊同士の接触部分においては水洗液が滞留する危険を避け得ない。   Based on such facts, the present inventors investigated the possibility that an etchant component remains on the surface of the crushed polycrystalline silicon lump. As a result, the following became clear. The surface shape of the polycrystalline silicon crushed lump is a complex indefinite shape in which large and small irregularities are combined in a complex manner. Further, in the normal water washing step, as described above, a plurality of crushed lumps are placed in a basket as one lot for washing. For these reasons, even if careful rinsing treatment is performed, there is an unavoidable risk that the washing liquid will stay in the concave portions of the complex shape of the crushed lump and the contact portion between the crushed lump.

すなわち、多結晶シリコンの破砕塊の場合、その塊形状、水洗法からして、水切りが局部的に不足する事態を完全に回避することは実質不可能であるので、一部の破砕塊の一部分においては、水切り不足に起因するフッ素成分の残留が生じる懸念を完全には払拭できない。そして、水切りが不足した部分では、そのまま乾燥が進んでも、他の部分より液中成分が多く残るのを避け得ないので、その部分がシミと呼ばれる異常酸化物に発展する可能性が考えられる。   That is, in the case of a crushed piece of polycrystalline silicon, it is virtually impossible to completely avoid the situation where the drainage is locally insufficient due to the shape of the lump and the water washing method. In this case, it is impossible to completely eliminate the concern that the fluorine component remains due to insufficient draining. And in the portion where draining is insufficient, even if the drying proceeds as it is, it is unavoidable that more components in the liquid remain than the other portions, so that the portion may develop into an abnormal oxide called a stain.

これとは別に、本発明者らは長年の調査から、袋詰めシリコン塊にシミと呼ばれる異常酸化物が発生するのは、もっぱら、夏場の高温多湿の環境下で袋詰めシリコン塊を保管した場合であり、冬場の低温少湿環境下で袋詰めシリコン塊を保管した場合は、同じ条件でエッチング、水洗、乾燥を行い、フッ素成分の残留が皆無ではないはずであるにもかかわらず、異常酸化物が発生しにくい傾向のあることを経験している。   Apart from this, the present inventors have found that abnormal oxides called stains are generated in bagged silicon lumps when they are stored in a hot and humid environment in the summer, based on many years of research. When storing silicon lumps in a low-temperature, low-humidity environment in winter, etching, washing, and drying are performed under the same conditions, although abnormal oxidation should not occur. Experiences that things tend to be less likely to occur.

本発明者らは、この保管環境の相違による異常酸化物の発生状況の違いに着目し、保管環境の違いによる袋内の雰囲気変化も、異常酸化物の発生に関与していると考えた。すなわち、多結晶シリコンの破砕塊はポリエチレンフィルムからなる袋の中に封入されているが、ポレエチレンの袋は水分の透過性が高く、高温で多湿の状態に曝されれば袋内に水分が透過する。この袋内への透過水分も、袋詰めされたシリコン塊の異常酸化物の発生に関与しており、より詳しくは、袋内への透過水分が、袋内のシリコン塊の一部分に残留するフッ素成分と結合して、シミと呼ばれる異常酸化物を発生させると、本発明者らは考えた。これは、シリコン塊の表面にフッ素成分が存在した場合、大気中では酸化の進行が促進される考えとも符合する。   The present inventors paid attention to the difference in the state of occurrence of abnormal oxide due to the difference in storage environment, and thought that the change in the atmosphere in the bag due to the difference in storage environment was also involved in the generation of abnormal oxide. In other words, the crushed mass of polycrystalline silicon is sealed in a bag made of polyethylene film, but the polyethylene bag is highly permeable to moisture, and the moisture penetrates into the bag when exposed to high temperatures and humidity. To do. The moisture permeated into the bag is also involved in the generation of abnormal oxides in the silicon mass packed in the bag. More specifically, the moisture permeated into the bag remains in a part of the silicon mass in the bag. The present inventors thought that an abnormal oxide called a stain was generated by combining with components. This also coincides with the idea that when the fluorine component is present on the surface of the silicon block, the progress of oxidation is promoted in the atmosphere.

これらの事実から、本発明者らは多結晶シリコンのシリコン塊を梱包する袋の材料の選択により、袋の内部を低湿環境に保持するのが、異常酸化物の発生を抑制するに有効と考え、様々な実験を繰り返した。その結果、梱包材料をポリエチレンフィルムから、水蒸気バリア性のある材料に変更するとか、ポリエチレン袋の上から、水蒸気バリア性のある材料の袋で二重に梱包するといった対策が有効であること、更にはその袋内に乾燥剤を入れるのが有効であることが判明した。ちなみに、ポリエチレン袋の場合、温度湿度を管理したクリーンルーム内でシリコン塊を梱包しても、保管中の環境が高温多湿の状況になると水分が透過し、常温環境に放置しておくと袋内で結露が発生し、内部のシリコン塊の表面が濡れることがあり、シリコン塊の表面にフッ素成分が残留する限りは、梱包材の工夫なしでは異常酸化物の発生防止は困難であることを確認できた。   From these facts, the present inventors believe that maintaining the inside of the bag in a low-humidity environment by selecting the material of the bag for packing the silicon mass of polycrystalline silicon is effective in suppressing the generation of abnormal oxides. Various experiments were repeated. As a result, it is effective to take measures such as changing the packaging material from polyethylene film to a material with water vapor barrier property, or double packaging with a bag of water vapor barrier material material from above the polyethylene bag. Has proved effective to put a desiccant in the bag. By the way, in the case of polyethylene bags, even if the silicon lump is packed in a clean room where the temperature and humidity are controlled, moisture will permeate if the storage environment becomes hot and humid, and if left in a room temperature environment, Condensation may occur and the surface of the silicon mass inside may get wet, and as long as the fluorine component remains on the surface of the silicon mass, it can be confirmed that it is difficult to prevent abnormal oxides without using packaging materials. It was.

本発明はかかる知見を基礎として完成されたものであり、多結晶シリコンを破砕して得た1個又は複数個の塊状シリコンを、水蒸気透過率が1.0g/m2 day (温度40℃、湿度90%RH)以下である水蒸気バリア性のある梱包材にて梱包することを特徴とするシリコン梱包方法を要旨とする。 The present invention has been completed on the basis of such knowledge. One or a plurality of bulk silicon obtained by crushing polycrystalline silicon has a water vapor transmission rate of 1.0 g / m 2 day (temperature: 40 ° C., The gist of the present invention is a silicon packaging method characterized by packaging with a packaging material having a water vapor barrier property having a humidity of 90% RH or less.

具体的には、多結晶シリコンの破砕塊をポリエチレン袋に入れ、それを水蒸気バリア性のある梱包材で外装するというように、塊状シリコンを複数枚の梱包材で複数層に梱包し、最内層以外の少なくとも1枚に水蒸気バリア性のある梱包材を使用するのが有効である。なぜなら、水蒸気バリア性のある梱包材を最内層に配置すると、角のあるシリコン塊によってダメージを受け、水蒸気バリア性が低下する危険性があるからである。   Specifically, the bulk silicon is packed into a plurality of layers with a plurality of packing materials, such as a polycrystal silicon crushed lump is put into a polyethylene bag, and it is packaged with a packaging material having a water vapor barrier property. It is effective to use a packaging material having a water vapor barrier property for at least one other than the above. This is because, if a packaging material having a water vapor barrier property is disposed in the innermost layer, there is a risk that the water vapor barrier property may be deteriorated due to damage by the horny silicon lump.

本発明のシリコン梱包方法によれば、梱包材の外から内への水分浸透が抑制されることにより、梱包材内、すなわちシリコン塊の保存環境を低湿雰囲気に維持することができ、シミと呼ばれる異常酸化物の発生を防止することができる。好ましくは、水蒸気バリア性のある梱包材により内側に乾燥剤を配置する。こうすれば、内部に浸透した水分も乾燥剤により吸収され、シミと呼ばれる異常酸化物の発生を、より効果的に防止することができる。梱包材内部の好ましい雰囲気は、湿度が夏期、冬期を問わず70%以下である。梱包材内部の湿度を70%以下だと、保管中に梱包材内部の一部のシリコン塊の一部分にシミと呼ばれる異常酸化物が発生する危険性を長期間、安定的に防止することができる。   According to the silicon packing method of the present invention, moisture penetration from the outside to the inside of the packing material is suppressed, so that the storage environment of the packing material, that is, the silicon lump can be maintained in a low-humidity atmosphere. Generation of abnormal oxides can be prevented. Preferably, a desiccant is arrange | positioned inside by the packaging material with water vapor | steam barrier property. In this way, moisture that has penetrated inside is also absorbed by the desiccant, and the generation of abnormal oxides called stains can be more effectively prevented. The preferable atmosphere inside the packaging material is 70% or less in humidity regardless of summer or winter. When the humidity inside the packaging material is 70% or less, it is possible to stably prevent a risk that an abnormal oxide called a stain is generated in a part of the silicon lump inside the packaging material during storage for a long period of time. .

水蒸気バリア性のある梱包材としては、基材フィルムにSiOを蒸着したSiO蒸着フィルムが、性能、経済性の点から有効である。水蒸気バリア性のある梱包材といえども、全く水蒸気を透過しないわけではなく、若干の水分透過は避けられないため、乾燥剤を入れることで梱包材内部の湿度を一定に保つのが、より有効である。   As a packaging material having a water vapor barrier property, a SiO deposited film obtained by depositing SiO on a base film is effective in terms of performance and economy. Even if the packaging material has a water vapor barrier property, it does not transmit water vapor at all, and a slight water permeation is inevitable, so it is more effective to keep the humidity inside the packaging material constant by adding a desiccant. It is.

水蒸気バリア性のある梱包材料の性能は水蒸気透過率で表される。この値が小さいほど水蒸気バリア性が良くなり、シリコン塊の梱包には適するが、その一方で水蒸気透過率の小さいものは高価である。これらを勘案すると、水蒸気バリア性のある梱包材料の水蒸気透過率は1.0g/m2 day (温度40℃、湿度90%RH)以下が好ましい。水蒸気透過率がこれより大きいと、梱包材内への水分浸透が増加し、シミの発生の抑制が困難になると共に、乾燥剤の負担が大きくなり、経済性が悪化する。このような水蒸気透過率を満足するものとしては、アルミ蒸着フィルム〔水蒸気透過率0.7〜1.0g/m2 day (温度40℃、湿度90%RH)程度〕、SiO蒸着フィルム〔水蒸気透過率0.1〜0.7g/m2 day (温度40℃、湿度90%RH)程度〕等がある。 The performance of a packaging material having a water vapor barrier property is represented by a water vapor transmission rate. The smaller this value is, the better the water vapor barrier property is, and it is suitable for packing silicon lump, while the one with low water vapor permeability is expensive. Considering these, the water vapor permeability of the packaging material having a water vapor barrier property is preferably 1.0 g / m 2 day (temperature 40 ° C., humidity 90% RH) or less. If the water vapor transmission rate is larger than this, moisture penetration into the packing material increases, and it becomes difficult to suppress the occurrence of stains, and the burden on the desiccant increases, resulting in a deterioration in economic efficiency. As for satisfying such water vapor transmission rate, aluminum vapor deposition film (water vapor transmission rate of 0.7 to 1.0 g / m 2 day (temperature 40 ° C., humidity 90% RH)), SiO vapor deposition film [water vapor transmission rate] The rate is about 0.1 to 0.7 g / m 2 day (temperature 40 ° C., humidity 90% RH).

一方、蒸着フィルムでもアルミナ蒸着フィルムは、水蒸気透過率が1.5g/m2 day (温度40℃、湿度90%RH)程度と大きく、使用不可である。他方、ポリエチレンフィルムの水蒸気透過率は10〜20g/m2 day (温度40℃、湿度90%RH)である。半導体の特性でP型不純物の混入の可能性を考慮した場合、アルミ系の蒸着フィルムは、シリコン塊と直接接触しないように、より十分な配慮が必要である。非アルミ系のSiO蒸着フィルムは使いやすく、水蒸気透過率も小さい。 On the other hand, an alumina vapor-deposited film, which is a vapor-deposited film, has a water vapor transmission rate as large as about 1.5 g / m 2 day (temperature 40 ° C., humidity 90% RH) and cannot be used. On the other hand, the water vapor permeability of the polyethylene film is 10 to 20 g / m 2 day (temperature 40 ° C., humidity 90% RH). Considering the possibility of mixing P-type impurities in the characteristics of the semiconductor, it is necessary to give more consideration to the aluminum-based vapor deposition film so that it does not come into direct contact with the silicon block. Non-aluminum-based SiO deposited films are easy to use and have a low water vapor transmission rate.

梱包材内部に入れる乾燥剤としては、塩化カルシウム、生石灰、シリカゲル、アルミノシリケート等があるが、製品シリコン塊の品質を保証する点から、潮解(吸湿による液化)を生じないシリカゲルやアルミノシリケートが好ましい。シリカゲルのなかではA型のシリカゲルが、梱包材内部の湿度を一定に保つ点から特に好ましい。乾燥剤の使用量は、組み合わせる梱包材料の水素バリア性及び保管日数から予測される水分浸透量を吸収できるように、乾燥剤の能力に応じて決定される。   There are calcium chloride, quicklime, silica gel, aluminosilicate, etc. as the desiccant to be put inside the packing material, but silica gel or aluminosilicate that does not cause deliquescence (liquefaction due to moisture absorption) is preferable from the viewpoint of guaranteeing the quality of the product silicon lump. . Among the silica gels, A-type silica gel is particularly preferable from the viewpoint of keeping the humidity inside the packing material constant. The amount of the desiccant used is determined according to the ability of the desiccant so as to absorb the amount of moisture permeation predicted from the hydrogen barrier property and the storage days of the packaging material to be combined.

シリコン塊を梱包材内に袋詰めする作業は低温低湿の雰囲気中で行い、梱包材内の初期雰囲気を低温低湿にしておくのがよい。好ましい雰囲気は、具体的には温度18〜22℃、湿度30〜50%である。乾燥剤を使用しない場合は、この作業は特に重要である。   The operation of packing the silicon lump into the packing material is preferably performed in a low-temperature and low-humidity atmosphere, and the initial atmosphere in the packing material is preferably set to low-temperature and low-humidity. A preferable atmosphere is specifically a temperature of 18 to 22 ° C. and a humidity of 30 to 50%. This is especially important when no desiccant is used.

本発明のシリコン梱包方法は、多結晶シリコンの破砕塊の表面に存在する極微量のフッ素成分が水分と反応するのを阻止することによりシミの発生を防止するので、フッ素を含む洗浄液による処理を受けたシリコン塊の梱包に有効である。フッ素を含む洗浄液としては、フッ酸と硝酸の混合液であるフッ硝酸溶液がエッチング能力が高く、シリコン塊の洗浄液として一般的であるが、フッ化水素酸、フッ化アンモニウムなども、シリコン塊の表面を覆う酸化膜の除去などに使用され、これらの洗浄液による処理を受けたシリコン塊でも、残留フッ素成分によるシミが問題になる。このため、本発明はフッ硝酸溶液以外のフッ素を含む洗浄液による処理を受けたシリコン塊にも有効である。   The silicon packing method of the present invention prevents the generation of stains by preventing the trace amount of fluorine components present on the surface of the crushed polycrystalline silicon from reacting with moisture. It is effective for packing the received silicon mass. As a cleaning liquid containing fluorine, a hydrofluoric acid solution, which is a mixed liquid of hydrofluoric acid and nitric acid, has a high etching ability and is generally used as a cleaning liquid for a silicon lump. Even in a silicon lump that is used to remove an oxide film covering the surface and has been treated with these cleaning liquids, stains due to residual fluorine components become a problem. For this reason, this invention is effective also to the silicon lump which received the process by the washing | cleaning liquid containing fluorine other than a hydrofluoric acid solution.

本発明のシリコン梱包方法は、多結晶シリコンを破砕して得た塊状シリコンの梱包に、水蒸気バリア性のある梱包材を用いることにより、梱包材内を低湿雰囲気に保つことができるので、シミと呼ばれる異常酸化物の発生を季節にかかわらず防止でき、高品質な製品をユーザーへ安定的に供給することができる。この効果は、その梱包材内に乾燥剤を入れることで更に高めることができる。   Since the silicon packing method of the present invention can keep the inside of the packing material in a low-humidity atmosphere by using a packing material having a water vapor barrier property for packing bulk silicon obtained by crushing polycrystalline silicon, Occurrence of the abnormal oxide called can be prevented regardless of the season, and high-quality products can be stably supplied to users. This effect can be further enhanced by placing a desiccant in the packing material.

以下に本発明の実施形態を図面に基づいて説明する。図1(a)(b)(c)は本発明のシリコン梱包方法の一実施形態を、従来のシリコン梱包方法と比較して示す模式図であり、(a)は従来法、(b)は本発明の第1実施形態、(c)は本発明の第2実施形態をそれぞれ示す。   Embodiments of the present invention will be described below with reference to the drawings. 1 (a), (b) and (c) are schematic views showing an embodiment of the silicon packing method of the present invention in comparison with a conventional silicon packing method, where (a) is a conventional method and (b) is a conventional method. 1st Embodiment of this invention, (c) shows 2nd Embodiment of this invention, respectively.

従来のシリコン梱包方法では、(a)に示すように、シーメンス法により製造された棒状の多結晶シリコンを破砕して得られた複数個のシリコン塊が製品用の二重のポリエチレン袋内に密封されている。各シリコン塊は、袋詰めの前に、耐酸性の籠を使用したフッ硝酸溶液によるエッチング洗浄処理、水洗処理、乾燥処理を受けている。袋詰めシリコン製品10は、所定数を1単位として、ポリエチレンシートからなる大袋20内に密封され、通い容器のパレット30内に収納されている。このようなシリコン梱包方法では、保存中、特に高温多湿期に、一部のシリコン塊の一部分にシミと呼ばれる異常酸化物が発生するのを避け得ないことは前述したとおりである。   In the conventional silicon packing method, as shown in (a), a plurality of silicon lumps obtained by crushing rod-shaped polycrystalline silicon produced by the Siemens method are sealed in a double polyethylene bag for products. Has been. Each silicon lump has been subjected to an etching cleaning process, a water cleaning process, and a drying process using a hydrofluoric acid solution using acid-resistant soot. The bag-packed silicon product 10 is sealed in a large bag 20 made of a polyethylene sheet, with a predetermined number as one unit, and stored in a pallet 30 of a returnable container. As described above, in such a silicon packing method, it is inevitable that an abnormal oxide called a stain is generated in a part of a part of a silicon lump during storage, particularly in a high temperature and high humidity period.

これに対し、図1(b)に示す第1実施形態のシリコン梱包方法では、所定数の袋詰めシリコン製品10を収容するポリエチレンシートからなる大袋20が、SiO蒸着フィルムからなる水蒸気バリア梱包材40内に気密に封入され、この状態でパレット30内に収納されている。水蒸気バリア梱包材40内にはシリカゲルからなる複数の乾燥剤50が、大袋20を取り囲むようにして配置されている。   On the other hand, in the silicon packing method of the first embodiment shown in FIG. 1B, the large bag 20 made of a polyethylene sheet containing a predetermined number of bag-packed silicon products 10 is replaced with a water vapor barrier packing material 40 made of a SiO vapor-deposited film. It is hermetically sealed inside and is stored in the pallet 30 in this state. A plurality of desiccants 50 made of silica gel are arranged in the water vapor barrier packing material 40 so as to surround the large bag 20.

本実施形態のシリコン梱包方法では、袋詰めシリコン製品10が水蒸気透過率の低い水蒸気バリア梱包材40により梱包されているので、外部から梱包材内への水分の浸透が抑制される。梱包材内へ浸透した僅かの水分も乾燥剤50により吸収される。これにより、水蒸気バリア梱包材40内の湿度を季節に関係なく70%以下に維持することができ、その結果、高温多湿下でも袋詰めシリコン製品10における異常酸化物の発生を防止することができる。   In the silicon packing method of this embodiment, since the bag-packed silicon product 10 is packed with the water vapor barrier packing material 40 having a low water vapor transmission rate, the penetration of moisture from the outside into the packing material is suppressed. The slight moisture that has penetrated into the packaging material is also absorbed by the desiccant 50. Thereby, the humidity in the water vapor barrier packing material 40 can be maintained at 70% or less regardless of the season, and as a result, generation of abnormal oxides in the bag-packed silicon product 10 can be prevented even under high temperature and high humidity. .

また、図1(c)に示す第2実施形態のシリコン梱包方法では、所定数のポリエチレン袋詰めシリコン製品10がSiO蒸着フィルムからなる水蒸気バリア梱包材40内に直接封入されている。すなわち、ここではポリエチレンシートからなる大袋20が省略されている。水蒸気バリア梱包材40内にシリカゲルからなる複数の乾燥剤50が製品群を取り囲むように配置されていることは、第1実施形態のシリコン梱包方法と同じである。   Further, in the silicon packaging method of the second embodiment shown in FIG. 1C, a predetermined number of polyethylene bag-packed silicon products 10 are directly enclosed in a water vapor barrier packaging material 40 made of a SiO vapor deposition film. That is, the large bag 20 made of a polyethylene sheet is omitted here. It is the same as the silicon packaging method of the first embodiment that a plurality of desiccants 50 made of silica gel are disposed in the water vapor barrier packaging material 40 so as to surround the product group.

第2実施形態のシリコン梱包方法でも第1実施形態のシリコン梱包方法と同様に、水蒸気バリア梱包材40と乾燥剤50の使用により梱包剤内の湿度を季節に関係なく70%以下に維持することができ、高温多湿下でも袋詰めシリコン製品10における異常酸化物の発生を防止することができる。   In the silicon packing method of the second embodiment, the humidity in the packing material is maintained at 70% or less regardless of the season by using the water vapor barrier packing material 40 and the desiccant 50, similarly to the silicon packing method of the first embodiment. The generation of abnormal oxides in the bagged silicon product 10 can be prevented even under high temperature and high humidity.

また、いずれの実施形態のシリコン梱包方法でも、ポリエチレン袋詰めシリコン製品10内の複数個のシリコン塊は、そのポリエチレン袋を含め、2重以上の梱包材により梱包されており、しかも、水蒸気バリア梱包材40は最内層から除外されているので、シリコン塊による水蒸気バリア梱包材40の損傷、及びこれによる余分な水分侵入が防止される。   Moreover, in any of the silicon packing methods of the embodiments, the plurality of silicon lumps in the polyethylene bag-packed silicon product 10 are packed with double or more packing materials including the polyethylene bag, and the water vapor barrier packing is used. Since the material 40 is excluded from the innermost layer, damage to the water vapor barrier packing material 40 due to silicon lump and excessive moisture intrusion due to this is prevented.

本発明のシリコン梱包方法の有効性を定量的に検証するために以下の8つの比較試験を行った。   In order to quantitatively verify the effectiveness of the silicon packaging method of the present invention, the following eight comparative tests were conducted.

図2に示すように、多結晶シリコンを破砕して採取し、エッチング、水洗、乾燥を終えた100個のシリコン塊11(個々の平均重量100g、平均表面積237cm2 )を製品用の二重のポリエチレン袋12内に封入した。シリコン塊11の封入を終えたポリエチレン袋12の周囲をSiO蒸着フィルムからなる袋状の水蒸気バリア梱包材40で気密に梱包した。使用したSiO蒸着フィルムの水蒸気透過率は0.15g/m2 day (温度40℃、湿度90%RH)である。ポリエチレン袋12と袋状の水蒸気バリア梱包材40との間にシリカゲルからなる乾燥剤50を配置した。ポリエチレン袋12内には湿度記録計60も収容した。シリカゲルの量は、SiO蒸着フィルムの水蒸気透過率及び保管日数をもとに算出した必要最少量とした。一連の梱包作業は温度20℃、湿度40%の雰囲気中で行った。 As shown in FIG. 2, polycrystalline silicon was crushed and collected, and 100 silicon lumps 11 (each average weight 100 g, average surface area 237 cm 2 ) that had been etched, washed and dried were doubled for products. It was enclosed in a polyethylene bag 12. The periphery of the polyethylene bag 12 that had been sealed with the silicon lump 11 was airtightly packed with a bag-shaped water vapor barrier packing material 40 made of a SiO vapor-deposited film. The SiO vapor deposition film used has a water vapor transmission rate of 0.15 g / m 2 day (temperature 40 ° C., humidity 90% RH). A desiccant 50 made of silica gel was disposed between the polyethylene bag 12 and the bag-shaped water vapor barrier packing material 40. A humidity recorder 60 was also accommodated in the polyethylene bag 12. The amount of silica gel was the minimum necessary amount calculated based on the water vapor transmission rate of the SiO vapor-deposited film and the number of storage days. A series of packing operations was performed in an atmosphere at a temperature of 20 ° C. and a humidity of 40%.

この梱包品を酸化促進のために温度40℃、湿度90%の高温多湿槽内に40日間保管した。保管中のポリエチレン袋12内の湿度は40日間、約60%に維持された。ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。常温下に戻しても袋内に結露は認められなかった(実施例1−1)。   This packaged product was stored for 40 days in a high temperature and high humidity tank having a temperature of 40 ° C. and a humidity of 90% in order to promote oxidation. The humidity in the polyethylene bag 12 during storage was maintained at about 60% for 40 days. No stain was observed on any silicon mass 11 in the polyethylene bag 12. Even if it returned to normal temperature, the condensation was not recognized in the bag (Example 1-1).

図2に示す梱包形態において、乾燥剤50を省略した。この梱包品を温度40℃、湿度90%の高温多湿槽内に40日間保管した。保管期間の経過と共にポリエチレン袋12内の湿度は徐々に上昇したが、70%まで上昇するのに15日を要し、35日経過時点で周辺雰囲気と同じ90%になった。湿度が90%に達するまでは、ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。その後シミが発生し始めたが、極めて軽微であり、40日経過時点では100個中5個のシリコン塊11に平均0.7cm2 の小さなシミが発生した程度であった(実施例1−2)。 In the packing form shown in FIG. 2, the desiccant 50 is omitted. This packaged product was stored in a high-temperature and high-humidity tank having a temperature of 40 ° C. and a humidity of 90% for 40 days. Although the humidity in the polyethylene bag 12 gradually increased with the passage of the storage period, it took 15 days to increase to 70%, and it became 90%, the same as the surrounding atmosphere, after 35 days. Until the humidity reached 90%, no stain was observed in any of the silicon masses 11 in the polyethylene bag 12. After that, stains started to appear, but they were very slight, and at the time when 40 days had passed, only a small spot having an average of 0.7 cm 2 was generated in 5 out of 100 silicon blocks 11 (Example 1-2). ).

図2に示す梱包形態において水蒸気バリア梱包材40及び乾燥剤50を省略した。この梱包品を温度40℃、湿度90%の高温多湿槽内に40日間保管した。2日経過時点でポリエチレン袋12内の湿度が周辺雰囲気と同じ90%に達した。40日経過時点では、50個のシリコン塊11に平均0.9cm2 の比較的大きなシミが発生した。梱包品を常温下に戻すと袋内に結露が認められた(従来例)。 In the packing form shown in FIG. 2, the water vapor barrier packing material 40 and the desiccant 50 are omitted. This packaged product was stored in a high-temperature and high-humidity tank having a temperature of 40 ° C. and a humidity of 90% for 40 days. The humidity in the polyethylene bag 12 reached 90%, the same as the ambient atmosphere, after 2 days. At the time when 40 days passed, relatively large spots with an average of 0.9 cm 2 were generated in 50 silicon masses 11. When the packaged product was returned to room temperature, condensation was observed in the bag (conventional example).

図2に示す梱包形態において、SiO蒸着フィルムからなる袋状の水蒸気バリア梱包材40を、アルミ蒸着フィルム製の袋に変更した。この梱包材の水蒸気透過率は0.9g/m2 day (温度40℃、湿度90%RH)である。シリカゲルの量は、アルミ蒸着フィルムの水蒸気透過率及び保管日数をもとに算出した最少必要量とした。 In the packing form shown in FIG. 2, the bag-shaped water vapor barrier packing material 40 made of a SiO vapor deposition film is changed to a bag made of an aluminum vapor deposition film. The packaging material has a water vapor transmission rate of 0.9 g / m 2 day (temperature 40 ° C., humidity 90% RH). The amount of silica gel was the minimum required amount calculated based on the water vapor transmission rate of the aluminum vapor-deposited film and the number of storage days.

この梱包品を温度40℃、湿度90%の高温多湿槽内に40日間保管した。保管中のポリエチレン袋12内の湿度は約60%に維持された。ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。常温下に戻しても袋内に結露は認められなかった。ただし、使用したシリカゲルの量は、SiO蒸着フィルムからなる水蒸気バリア梱包材40を使用した場合の6倍であった(実施例2−1)   This packaged product was stored in a high-temperature and high-humidity tank having a temperature of 40 ° C. and a humidity of 90% for 40 days. The humidity in the polyethylene bag 12 during storage was maintained at about 60%. No stain was observed on any silicon mass 11 in the polyethylene bag 12. Condensation was not observed in the bag even after returning to room temperature. However, the amount of silica gel used was 6 times that when the water vapor barrier packing material 40 made of a SiO vapor-deposited film was used (Example 2-1).

シリカゲルの使用量を、SiO蒸着フィルムからなる水蒸気バリア梱包材40を使用したときと同じ量まで減らした。ポリエチレン袋12内の湿度が70%まで上昇するのに7日を要し、13日経過時点で周辺雰囲気と同じ90%になった。湿度が90%に達するまでは、ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。その後シミが発生し始めたが、極めて軽微であり、40日経過時点では100個中15個のシリコン塊11に平均0.8cm2 の小さなシミが発生した程度であった(実施例2−2) The amount of silica gel used was reduced to the same amount as when the water vapor barrier packing material 40 made of a SiO deposited film was used. It took 7 days for the humidity in the polyethylene bag 12 to rise to 70%, and it became 90%, the same as the surrounding atmosphere, after 13 days. Until the humidity reached 90%, no stain was observed in any of the silicon masses 11 in the polyethylene bag 12. After that, stains started to appear, but they were very slight, and at the time when 40 days had passed, small spots of an average of 0.8 cm 2 were generated on 15 out of 100 silicon blocks 11 (Example 2-2). )

シリカゲルを省略した場合は、保管期間の経過と共にポリエチレン袋12内の湿度は徐々に上昇したが、70%まで上昇するのに4日を要し、10日経過時点で周辺雰囲気と同じ90%になった。湿度が90%に達するまでは、ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。その後シミが発生し始めたが、極めて軽微であり、40日経過時点では100個中15個のシリコン塊11に平均0.8cm2 の小さなシミが発生した程度であった(実施例2−3)。 When silica gel was omitted, the humidity in the polyethylene bag 12 gradually increased with the passage of the storage period, but it took 4 days to increase to 70%. became. Until the humidity reached 90%, no stain was observed in any of the silicon masses 11 in the polyethylene bag 12. After that, spots started to appear, but they were very slight, and at the time when 40 days passed, small spots with an average of 0.8 cm 2 were generated in 15 out of 100 silicon blocks 11 (Example 2-3). ).

図2に示す梱包形態において、SiO蒸着フィルムからなる袋状の水蒸気バリア梱包材40を、アルミナ蒸着フィルム製の袋に変更した。この梱包材の水蒸気透過率は1.0g/m2 day (温度40℃、湿度90%RH)より大きい1.5g/m2 day (温度40℃、湿度90%RH)である。シリカゲルの量は、アルミナ蒸着フィルムの水蒸気透過率及び保管日数をもとに算出した最少必要量とした。 In the packing form shown in FIG. 2, the bag-shaped water vapor barrier packing material 40 made of a SiO vapor deposition film is changed to a bag made of an alumina vapor deposition film. Water vapor permeability of the packaging material is 1.0g / m 2 day (temperature 40 ° C., humidity of 90% RH) of greater than 1.5g / m 2 day (temperature 40 ° C., humidity of 90% RH). The amount of silica gel was the minimum required amount calculated based on the water vapor permeability of the alumina vapor-deposited film and the number of storage days.

この梱包品を温度40℃、湿度90%の高温多湿槽内に40日間保管した。保管中のポリエチレン袋12内の湿度は約60%に維持された。ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。常温下に戻しても袋内に結露は認められなかった。ただし、使用したシリカゲルの量は、SiO蒸着フィルムからなる水蒸気バリア梱包材40を使用した場合の10倍に達した(比較例1−1)。   This packaged product was stored in a high-temperature and high-humidity tank having a temperature of 40 ° C. and a humidity of 90% for 40 days. The humidity in the polyethylene bag 12 during storage was maintained at about 60%. No stain was observed on any silicon mass 11 in the polyethylene bag 12. Condensation was not observed in the bag even after returning to room temperature. However, the amount of silica gel used reached 10 times that when the water vapor barrier packing material 40 made of a SiO vapor-deposited film was used (Comparative Example 1-1).

シリカゲルを省略した場合は、ポリエチレン袋12内の湿度は、保管開始から3日経過時点で70%を超え、7日日経過時点で周辺雰囲気と同じ90%になった。湿度が90%に達するまでは、ポリエチレン袋12内のいずれのシリコン塊11にもシミは認められなかった。その後シミが発生し始め、40日経過時点では100個中70個のシリコン塊11に平均1.0cm2 の比較的大きなシミが発生した。梱包品を常温下に戻すと袋内に結露が認められた(比較例1−2)。 When silica gel was omitted, the humidity in the polyethylene bag 12 exceeded 70% when 3 days had elapsed from the start of storage, and became 90% the same as the surrounding atmosphere when 7 days had elapsed. Until the humidity reached 90%, no stain was observed in any of the silicon masses 11 in the polyethylene bag 12. After that, spots started to occur, and after 40 days, relatively large spots with an average of 1.0 cm 2 were generated in 70 of the 100 silicon blocks 11. When the packaged product was returned to room temperature, dew condensation was observed in the bag (Comparative Example 1-2).

(a)(b)(c)は本発明のシリコン梱包方法の一実施形態を、従来のシリコン梱包方法と比較して示す模式図であり、(a)は従来法、(b)は本発明の第1実施形態、(c)は本発明の第2実施形態をそれぞれ示す。(A) (b) (c) is a schematic diagram which shows one Embodiment of the silicon packing method of this invention compared with the conventional silicon packing method, (a) is a conventional method, (b) is this invention. (C) shows 2nd Embodiment of this invention, respectively. 本発明のシリコン梱包方法の有効性を定量的に検証するための実験における梱包形態の模式説明図である。It is a model explanatory drawing of the packing form in the experiment for verifying the effectiveness of the silicon packing method of this invention quantitatively.

符号の説明Explanation of symbols

10 袋詰めシリコン製品
11 シリコン塊
12 ポリエチレン袋
20 大袋
30 パレット
40 水蒸気バリア梱包材
50 乾燥剤
60 湿度記録計
DESCRIPTION OF SYMBOLS 10 Silicone product in a bag 11 Silicon lump 12 Polyethylene bag 20 Large bag 30 Pallet 40 Water vapor barrier packing material 50 Desiccant 60 Humidity recorder

Claims (5)

多結晶シリコンを破砕して得た1個又は複数個の塊状シリコンを、水蒸気透過率が1.0g/m2 day (温度40℃、湿度90%RH)以下である水蒸気バリア性のある梱包材にて梱包することを特徴とするシリコン梱包方法。 One or a plurality of bulk silicon obtained by crushing polycrystalline silicon, a water vapor barrier packaging material having a water vapor transmission rate of 1.0 g / m 2 day (temperature 40 ° C., humidity 90% RH) or less The silicon packing method characterized by packing with. 請求項1に記載のシリコン梱包方法において、塊状シリコンを複数枚の梱包材で複数層に梱包し、最内層以外の少なくとも1枚に水蒸気バリア性のある梱包材を使用するシリコン梱包方法。   The silicon packing method according to claim 1, wherein lump silicon is packed in a plurality of layers with a plurality of packing materials, and a packing material having a water vapor barrier property is used for at least one other than the innermost layer. 請求項1又は2に記載のシリコン梱包方法において、水蒸気バリア性のある梱包材より内側に乾燥剤を入れるシリコン梱包方法。   The silicon packaging method according to claim 1 or 2, wherein a desiccant is placed inside a packaging material having a water vapor barrier property. 請求項1〜3の何れかに記載のシリコン梱包方法において、梱包材内を湿度が70%以下の雰囲気に保持するシリコン梱包方法。   The silicon packing method according to claim 1, wherein the packing material is held in an atmosphere having a humidity of 70% or less. 請求項1〜4の何れかに記載のシリコン梱包方法において、塊状シリコンは、フッ素を含む洗浄液による処理を受けた多結晶シリコンの破砕塊であるシリコン梱包方法。   The silicon packing method according to any one of claims 1 to 4, wherein the lump silicon is a crushed lump of polycrystalline silicon that has been treated with a cleaning liquid containing fluorine.
JP2008101264A 2008-04-09 2008-04-09 Silicon packing method Expired - Fee Related JP5051720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101264A JP5051720B2 (en) 2008-04-09 2008-04-09 Silicon packing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101264A JP5051720B2 (en) 2008-04-09 2008-04-09 Silicon packing method

Publications (2)

Publication Number Publication Date
JP2009249013A true JP2009249013A (en) 2009-10-29
JP5051720B2 JP5051720B2 (en) 2012-10-17

Family

ID=41310088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101264A Expired - Fee Related JP5051720B2 (en) 2008-04-09 2008-04-09 Silicon packing method

Country Status (1)

Country Link
JP (1) JP5051720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073341A (en) * 2012-07-17 2019-05-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Package for product comprising at least one hydroscopic and flowable solid material
JP2020164192A (en) * 2019-03-29 2020-10-08 デンカ株式会社 Boron nitride powder package, cosmetic and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357106A (en) * 1991-05-31 1992-12-10 Tokuyama Soda Co Ltd Purifued silicon and its production
JPH08230894A (en) * 1994-12-26 1996-09-10 Ajinomoto Co Inc Caking-preventing packaging container
JP2006143552A (en) * 2004-11-24 2006-06-08 Sumitomo Titanium Corp Method for packing polycrystalline silicon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357106A (en) * 1991-05-31 1992-12-10 Tokuyama Soda Co Ltd Purifued silicon and its production
JPH08230894A (en) * 1994-12-26 1996-09-10 Ajinomoto Co Inc Caking-preventing packaging container
JP2006143552A (en) * 2004-11-24 2006-06-08 Sumitomo Titanium Corp Method for packing polycrystalline silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073341A (en) * 2012-07-17 2019-05-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Package for product comprising at least one hydroscopic and flowable solid material
JP7233214B2 (en) 2012-07-17 2023-03-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Packaging for products containing at least one hygroscopic flowable solid substance
JP2020164192A (en) * 2019-03-29 2020-10-08 デンカ株式会社 Boron nitride powder package, cosmetic and manufacturing method of the same
JP7403227B2 (en) 2019-03-29 2023-12-22 デンカ株式会社 Boron nitride powder packaging, cosmetics and manufacturing method thereof

Also Published As

Publication number Publication date
JP5051720B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5268442B2 (en) Polycrystalline silicon and manufacturing method thereof
JP5051720B2 (en) Silicon packing method
JP5140770B1 (en) Low oxygen titanium powder production method
RU2015138160A (en) LOW-ABRASIVE SILICON DIOXIDE WITH HIGH CLEANING CAPACITY AND METHOD FOR PRODUCING IT
JP2007210881A (en) Storing method of ozone, method of producing solid material incorporating ozone, food preservation material and food preserving method
CN102515555B (en) Quartz crucible surface processing method
JP4322311B2 (en) Oxygen scavenger and method for producing oxygen scavenger
EP0474345B1 (en) Method of surface cleaning articles with liquid cryogen
JP2012217942A (en) Gas adsorbing material and vacuum insulation material obtained by using the same
ES2561004T3 (en) Procedure for determining a surface impurity of polycrystalline silicon
RU2015108759A (en) PROCESSED SILICON OXIDES AND METAL SILICATES FOR IMPROVING CLEANING IN A TOOTHCARE
JP2910470B2 (en) Method for purifying hydrogen chloride containing hydrolyzable organosilicon compound
CN105506646B (en) Gas fired-boiler maintenance method
EP2967092A1 (en) Reactive ethylene absorber
JPH10209106A (en) Method and equipment for cleaning semiconductor substrate
CN104576308B (en) A kind of cleaning of epitaxial wafer and method for packing
JP6384455B2 (en) Silicon raw material cleaning equipment
CN101362602A (en) Purification processing method for drawing casting ingot cleaved bark slat and head material
TWI828845B (en) Polycrystalline silicon bulk, its packaging body and manufacturing method thereof
JP2009138890A (en) Heat insulating body
JP4580258B2 (en) Etching composition and etching method
CN111921945A (en) Cleaning process for polycrystalline silicon structured packing
CN106669643A (en) Preparation method for mineral drying agent
CN107971193A (en) A kind of store method of copper artware
CN213085481U (en) Treatment system for resin in polycrystalline silicon production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

R150 Certificate of patent or registration of utility model

Ref document number: 5051720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees