JP2009248484A - Method and mold for molding of tire - Google Patents

Method and mold for molding of tire Download PDF

Info

Publication number
JP2009248484A
JP2009248484A JP2008100617A JP2008100617A JP2009248484A JP 2009248484 A JP2009248484 A JP 2009248484A JP 2008100617 A JP2008100617 A JP 2008100617A JP 2008100617 A JP2008100617 A JP 2008100617A JP 2009248484 A JP2009248484 A JP 2009248484A
Authority
JP
Japan
Prior art keywords
tire
sector
mold
side mold
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008100617A
Other languages
Japanese (ja)
Other versions
JP5175598B2 (en
Inventor
Tomokazu Yasunaga
智一 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2008100617A priority Critical patent/JP5175598B2/en
Publication of JP2009248484A publication Critical patent/JP2009248484A/en
Application granted granted Critical
Publication of JP5175598B2 publication Critical patent/JP5175598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a mold for molding of tires enabling smooth mold release of a tire from the side mold portion on mold opening. <P>SOLUTION: The tire molding method comprises, while bringing the side mold portion 3 into contact with the outer surface of the sidewall portion of a tire T, bringing the tread mold portion of the tire T consisting of a combination of sectors 5 divided in the circumferential direction of the tire into contact with the outer surface of the tread portion of the tire T so as to vulcanize the tire T. On displacing the sectors 5 outside in the radial direction of the tire after vulcanization, the inner peripheral surface in the vicinity of the engagement surface 5a where the sectors 5 are engaged in the side mold portion 3 is engaged in the tire T, and the outer surface portion Ts of the tire extending over the engagement surface 5a is deformed to make detached from the side mold portion 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、タイヤを加硫する工程を含むタイヤ成形方法と、タイヤを加硫成形するためのタイヤ成形型とに関する。   The present invention relates to a tire molding method including a step of vulcanizing a tire, and a tire mold for vulcanizing and molding a tire.

一般に、セグメンテッドタイプのタイヤ成形型は、図13に示すように、タイヤのトレッド部外面を成形するトレッド型部11と、タイヤのサイドウォール部外面を成形するサイド型部12,13とを備える。トレッド型部11はタイヤ周方向に分割された複数のセクターで構成され、各セクターは、型締め時には互いに寄り集まって環状をなし、型開き時にはタイヤ径方向外側に変位して相互に離間する。   Generally, as shown in FIG. 13, a segmented type tire molding die includes a tread mold portion 11 that molds the outer surface of the tread portion of the tire, and side mold portions 12 and 13 that mold the outer surface of the sidewall portion of the tire. . The tread mold portion 11 is composed of a plurality of sectors divided in the tire circumferential direction, and the sectors are gathered together to form an annular shape when the mold is clamped, and are displaced outwardly in the tire radial direction when the mold is opened.

このようなタイヤ成形型では、加硫後に型開きする際に、タイヤがトレッド型部11に対しては円滑に離型するものの、サイド型部12又はサイド型部13に密着して離型が困難になる場合があった。特に上方に配置されるサイド型部13にタイヤが密着した場合には、サイド型部13の上昇に伴ってタイヤが持ち上げられるため、作業者が人力で引っ張り外す必要が生じ、作業能率が大きく損なわれるという問題があった。   In such a tire mold, when the mold is opened after vulcanization, the tire is smoothly released from the tread mold part 11, but the tire mold is in close contact with the side mold part 12 or the side mold part 13. It could be difficult. In particular, when the tire is in close contact with the side mold portion 13 disposed above, the tire is lifted as the side mold portion 13 is raised, so that it is necessary for the operator to pull it out manually and the work efficiency is greatly impaired. There was a problem of being.

上記の問題を解決すべく、下記特許文献1では、上側モールドリングの加硫時の拡張を外側から支えると共に、型開き動作の初期に上側モールドリングを下降してタイヤを上型モールド(上方に配置されたサイド型部)から剥離する手法が提案されている。しかし、この手法は、タイヤ成形型の開閉機構を改良するものであり、既存のタイヤ成形型に適用するには大幅な改造が避けられない。実用上、既存のタイヤ成形型に対しても簡易に適用できる手法が強く望まれる。
特開平6−218734号公報
In order to solve the above problem, in Patent Document 1 below, the upper mold ring is expanded from the outside during vulcanization, and the upper mold ring is lowered at the initial stage of the mold opening operation to remove the tire from the upper mold (upward). A method of peeling from the arranged side mold part) has been proposed. However, this method improves the opening and closing mechanism of the tire mold, and a large modification is inevitable for application to an existing tire mold. In practice, a technique that can be easily applied to existing tire molds is strongly desired.
JP-A-6-218734

本発明は上記実情に鑑みてなされたものであり、その目的は、型開き時にタイヤをサイド型部から円滑に離型できるようにしたタイヤ成形方法及びタイヤ成形型を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a tire molding method and a tire molding die that can smoothly release a tire from a side mold portion when the mold is opened.

上記目的は、下記の如き本発明により達成できる。即ち、本発明に係るタイヤ成形方法は、タイヤのサイドウォール部外面をサイド型部に当接させると共に、前記タイヤのトレッド部外面をタイヤ周方向に分割されたセクターの組み合わせからなるトレッド型部に当接させて加硫するタイヤ成形方法において、加硫後に前記セクターをタイヤ径方向外側に変位させるに際し、前記セクターの前記サイド型部との嵌合面付近の内周面をタイヤに係合させ、前記嵌合面に跨がったタイヤ外面部分を変形させて前記サイド型部から剥離させるようにしたものである。   The above object can be achieved by the present invention as described below. That is, in the tire molding method according to the present invention, the outer surface of the sidewall portion of the tire is brought into contact with the side mold portion, and the outer surface of the tire tread portion is formed into a tread mold portion composed of a combination of sectors divided in the tire circumferential direction. In the tire molding method for vulcanization by contact, when the sector is displaced outward in the tire radial direction after vulcanization, the inner peripheral surface of the sector near the fitting surface with the side mold portion is engaged with the tire. The tire outer surface portion straddling the fitting surface is deformed and peeled off from the side mold portion.

本発明のタイヤ成形方法では、加硫後に型開きする際のセクターの変位を利用して、嵌合面に跨がったタイヤ外面部分を変形させ、該タイヤ外面部分をサイド型部から剥離させるようにする。この剥離によって、嵌合面付近ではタイヤ外面部分とサイド型部との間に空気が侵入し、隙間が生じて密着状態が解除される。そのため、サイド型部をタイヤから離間させるときには、その隙間を取っ掛かりとして、タイヤをサイド型部から容易且つ円滑に離型することができる。   In the tire molding method of the present invention, by utilizing the sector displacement when the mold is opened after vulcanization, the tire outer surface portion straddling the fitting surface is deformed, and the tire outer surface portion is peeled off from the side mold portion. Like that. By this separation, air enters between the outer surface portion of the tire and the side mold portion in the vicinity of the fitting surface, and a clearance is generated to release the contact state. Therefore, when the side mold part is separated from the tire, the tire can be easily and smoothly released from the side mold part by using the gap as a handle.

上記において、前記セクターの内周面とタイヤとの係合の度合を前記セクターの周方向両側で互いに異ならせ、加硫後に前記セクターをタイヤ径方向外側に変位させたときに、前記嵌合面に跨がったタイヤ外面部分に捩り力を作用させることが好ましい。   In the above, when the degree of engagement between the inner peripheral surface of the sector and the tire is different from each other on both sides in the circumferential direction of the sector, and when the sector is displaced outward in the tire radial direction after vulcanization, the fitting surface It is preferable to apply a torsional force to the outer surface portion of the tire straddling the tire.

これにより、タイヤ外面部分の変形量を大きくして、サイド型部からの剥離を促進することができる。その結果、タイヤ外面部分の変形をセクターの周上で均一に発現する場合に比べて、タイヤ外面部分とサイド型部との密着状態をより円滑に解除できる。   Thereby, the deformation amount of a tire outer surface part can be enlarged and peeling from a side type | mold part can be accelerated | stimulated. As a result, the contact state between the tire outer surface portion and the side mold portion can be more smoothly released as compared with the case where the deformation of the tire outer surface portion is uniformly expressed on the circumference of the sector.

上記において、前記セクターの内周面とタイヤとの係合の度合をタイヤ周方向に沿って順々に小さくし、加硫後に前記セクターをタイヤ径方向外側に変位させたときに、前記嵌合面に跨がったタイヤ外面部分にタイヤ周方向に沿って回転力を作用させることが好ましい。   In the above, when the degree of engagement between the inner peripheral surface of the sector and the tire is sequentially reduced along the tire circumferential direction, and the sector is displaced outward in the tire radial direction after vulcanization, the fitting is performed. It is preferable to apply a rotational force along the tire circumferential direction to the tire outer surface portion straddling the surface.

これによって、タイヤ外面部分のサイド型部からの剥離し易さがタイヤ周方向に沿って順々に小さくなるため、セクターをタイヤ径方向外側に変位させたときには、嵌合面付近にてタイヤ外面部分のサイド型部からの剥離がタイヤ周方向に沿って順次に発現される。その結果、環状に延びたタイヤ外面部分を一気に剥離する場合に比べて、タイヤ外面部分とサイド型部との密着状態をより円滑に解除できる。   As a result, the ease with which the tire outer surface portion is peeled off from the side mold portion gradually decreases along the tire circumferential direction, so that when the sector is displaced outward in the tire radial direction, the tire outer surface near the fitting surface Peeling of the part from the side mold part is successively expressed along the tire circumferential direction. As a result, the contact state between the tire outer surface portion and the side mold portion can be released more smoothly than in the case where the tire outer surface portion extending in an annular shape is peeled off at once.

また、本発明に係るタイヤ成形型は、タイヤのサイドウォール部外面を成形するサイド型部と、型締め時に前記サイド型部のタイヤ径方向外側に嵌合され、前記タイヤのトレッド部外面を成形するトレッド型部とを備え、前記トレッド型部がタイヤ周方向に分割されたセクターの組み合わせからなり、前記セクターの各々がタイヤ径方向に変位可能に構成されているタイヤ成形型において、前記セクターの前記サイド型部との嵌合面付近の内周面にタイヤと係合する係合要素を設け、加硫後に前記セクターをタイヤ径方向外側に変位させるに際し、前記嵌合面に跨がったタイヤ外面部分を変形させて前記サイド型部から剥離可能に構成したものである。   Further, the tire molding die according to the present invention is fitted with a side mold part that molds the outer surface of the sidewall part of the tire and the outer side in the tire radial direction of the side mold part during mold clamping, and molds the outer surface of the tread part of the tire A tread mold part, wherein the tread mold part comprises a combination of sectors divided in the tire circumferential direction, and each of the sectors is configured to be displaceable in the tire radial direction. An engagement element that engages with the tire is provided on the inner peripheral surface in the vicinity of the fitting surface with the side mold portion, and when the sector is displaced outward in the tire radial direction after vulcanization, it straddles the fitting surface. A tire outer surface portion is deformed to be peelable from the side mold portion.

本発明のタイヤ成形型によれば、加硫後に型開きする際のセクターの変位を利用して、嵌合面に跨がったタイヤ外面部分をサイド型部から剥離できる。この剥離により、嵌合面付近ではタイヤ外面部分とサイド型部との間に空気が侵入し、隙間が生じて密着状態が解除される。そのため、サイド型部をタイヤから離間させるときには、その隙間を取っ掛かりとして、タイヤをサイド型部から容易且つ円滑に離型することができる。   According to the tire molding die of the present invention, the outer surface portion of the tire straddling the fitting surface can be peeled from the side mold portion by utilizing the displacement of the sector when the mold is opened after vulcanization. By this separation, air enters between the tire outer surface portion and the side mold portion in the vicinity of the fitting surface, and a gap is generated to release the contact state. Therefore, when the side mold part is separated from the tire, the tire can be easily and smoothly released from the side mold part by using the gap as a handle.

本発明では、係合要素がタイヤ側に突出した凸要素である場合に、複数個の凸要素をセクターの移動方向に配列していることが好ましい。これにより、係合要素による係合の回数を増やしてタイヤ外面部分を確実に変形させ、該タイヤ外面部分をサイド型部から効果的に剥離できる。なお、本発明では、係合要素として、凸要素のほか、反タイヤ側に窪んだ凹要素や、凸要素と凹要素との組み合わせを採用することが可能である。   In the present invention, when the engaging element is a convex element protruding to the tire side, it is preferable that a plurality of convex elements are arranged in the sector movement direction. Thereby, the frequency | count of engagement by an engagement element can be increased, a tire outer surface part can be deform | transformed reliably, and this tire outer surface part can be effectively peeled from a side type | mold part. In addition, in this invention, it is possible to employ | adopt the combination of the concave element dented in the anti-tire side other than a convex element, and a convex element and a concave element as an engaging element.

上記において、前記係合要素の個数又はサイズを前記セクターの周方向両側で互いに異ならせているものが好ましい。かかる構成によれば、タイヤ外面部分の変形量を大きくして、サイド型部からの剥離を促進することができる。その結果、タイヤ外面部分の変形をセクターの周上で均一に発現する場合に比べて、タイヤ外面部分とサイド型部との密着状態をより円滑に解除できる。なお、係合要素のサイズとしては、係合要素の幅や長さ、深さが挙げられる。   In the above, it is preferable that the number or size of the engaging elements be different from each other on both sides in the circumferential direction of the sector. According to such a configuration, it is possible to increase the amount of deformation of the tire outer surface portion and promote peeling from the side mold portion. As a result, the contact state between the tire outer surface portion and the side mold portion can be more smoothly released as compared with the case where the deformation of the tire outer surface portion is uniformly expressed on the circumference of the sector. The size of the engaging element includes the width, length, and depth of the engaging element.

上記において、前記係合要素の個数又はサイズをタイヤ周方向に沿ってセクター毎に順々に小さくしているものが好ましい。かかる構成によれば、タイヤ外面部分のサイド型部からの剥離し易さがタイヤ周方向に沿って順々に小さくなるため、セクターをタイヤ径方向外側に変位させたときには、嵌合面付近にてタイヤ外面部分のサイド型部からの剥離がタイヤ周方向に沿って順次に発現される。その結果、環状に延びたタイヤ外面部分を一気に剥離する場合に比べて、タイヤ外面部分とサイド型部との密着状態をより円滑に解除できる。   In the above, it is preferable that the number or size of the engaging elements is sequentially reduced for each sector along the tire circumferential direction. According to such a configuration, since the ease of peeling from the side mold portion of the tire outer surface portion decreases in order along the tire circumferential direction, when the sector is displaced outward in the tire radial direction, Thus, the peeling of the tire outer surface portion from the side mold portion is successively expressed along the tire circumferential direction. As a result, the contact state between the tire outer surface portion and the side mold portion can be released more smoothly than in the case where the tire outer surface portion extending in an annular shape is peeled off at once.

以下、本発明の実施の形態について図面を参照しながら説明する。図1は、本発明に係るタイヤ成形型の一例を概略的に示す縦断面図であり、型締め状態を示している。図1において、未加硫タイヤ(不図示)はタイヤ軸方向が上下になるようにセットされ、図1右側がタイヤ径方向内側、図1左側がタイヤ径方向外側となる。図2は、トレッド型部1の平面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing an example of a tire mold according to the present invention, showing a clamped state. In FIG. 1, an unvulcanized tire (not shown) is set so that the tire axial direction is up and down, and the right side in FIG. 1 is the inside in the tire radial direction and the left side in FIG. 1 is the outside in the tire radial direction. FIG. 2 is a plan view of the tread mold portion 1.

このタイヤ成形型(以下、単に「成形型」と称する場合がある。)は、タイヤのサイドウォール部外面を成形する一対のサイド型部2,3と、型締め時にサイド型部2,3のタイヤ径方向外側に嵌合され、タイヤのトレッド部外面を成形するトレッド型部1と、を備えたセグメンテッドモールドである。サイド型部2,3のタイヤ径方向内側にはビードリング4が設けられており、タイヤのビード部を固定可能に構成されている。   The tire mold (hereinafter sometimes simply referred to as “mold”) includes a pair of side mold parts 2 and 3 that mold the outer surface of the sidewall part of the tire, and the side mold parts 2 and 3 during mold clamping. A segmented mold including a tread mold portion 1 that is fitted to the outer side in the tire radial direction and that forms the outer surface of the tread portion of the tire. A bead ring 4 is provided on the inner side in the tire radial direction of the side mold parts 2 and 3 so that the bead part of the tire can be fixed.

トレッド型部1は、図2に示すようにタイヤ周方向に分割されたセクター5の組み合わせからなり、セクター5の各々はタイヤ径方向に変位可能に構成されている。型締め状態では、各セクター5が互いに寄り集まり、端面同士を当接させて円環状に連なる。型開き状態では、各セクター5がタイヤ径方向外側に変位してサイド型部2,3から離間する。本実施形態では、トレッド型部1が7分割され、各セクター5の周長が略同等である例を示すが、本発明ではトレッド型部の分割数は特に制限されず、各セクターの周長が互いに異なっていても構わない。   As shown in FIG. 2, the tread mold portion 1 is composed of a combination of sectors 5 divided in the tire circumferential direction, and each sector 5 is configured to be displaceable in the tire radial direction. In the mold-clamped state, the sectors 5 gather near each other, and end surfaces are brought into contact with each other to form an annular shape. In the mold open state, each sector 5 is displaced outward in the tire radial direction and separated from the side mold parts 2 and 3. In the present embodiment, an example is shown in which the tread part 1 is divided into seven and the circumferences of the sectors 5 are substantially equal. However, in the present invention, the number of divisions of the tread part is not particularly limited, and the circumference of each sector is not limited. May be different from each other.

トレッド型部1の素材としては、アルミニウムが例示される。このアルミニウムとは、純アルミ系の素材のみならず、アルミニウム合金を含む概念であり、例えばAl−Cu系、Al−Mg系、Al−Mg−Si系、Al−Zn−Mg系、Al−Mn系、Al−Si系が挙げられる。また、サイド型部2,3の素材としては、鋼材が例示される。   An example of the material of the tread mold 1 is aluminum. This aluminum is a concept that includes not only pure aluminum materials but also aluminum alloys. For example, Al-Cu, Al-Mg, Al-Mg-Si, Al-Zn-Mg, Al-Mn System and Al-Si system. Moreover, as a material of the side mold parts 2 and 3, a steel material is exemplified.

トレッド型部1の背面側となる外周面には、セクター5毎にコンテナ21が取り付けられている。コンテナ21は、昇降自在に構成されたサイドプレート23の下面に、タイヤ径方向に沿って摺動可能に取り付けられている。コーンリング24は、コンテナ21の外側斜面に設けられたレール25に嵌合されており、サイドプレート23に対して相対的に昇降自在に構成されている。   A container 21 is attached for each sector 5 on the outer peripheral surface on the back side of the tread mold portion 1. The container 21 is slidably attached along the tire radial direction to the lower surface of a side plate 23 configured to be movable up and down. The cone ring 24 is fitted to a rail 25 provided on the outer slope of the container 21, and is configured to be movable up and down relatively with respect to the side plate 23.

図1に示した型締め状態において、コーンリング24を上昇させてコンテナ21をタイヤ径方向外側に移動させると、各セクター5がタイヤ径方向外側に変位してサイド型部2,3から離間する。更にサイドプレート23及びコンテナ21を上昇させると、セクター5とサイド型部3が持ち上がって型開き状態に移行する。型開き状態から型締め状態への移行は、上記動作を逆に行えばよい。   In the mold clamping state shown in FIG. 1, when the cone ring 24 is raised and the container 21 is moved outward in the tire radial direction, each sector 5 is displaced outward in the tire radial direction and separated from the side mold parts 2 and 3. . When the side plate 23 and the container 21 are further raised, the sector 5 and the side mold part 3 are lifted and the mold is opened. The transition from the mold opening state to the mold clamping state may be performed by reversing the above operation.

図面には示していないが、成形型の内部にはブラダーと呼ばれるゴムバッグが設置されている。加硫成形時には、ブラダーをタイヤ径方向外側に膨張させることにより、タイヤの外面がトレッド型部1及びサイド型部2,3の内周面に押し当てられる。ブラダーに代えて剛性コアを使用することも可能であり、本発明はブラダー加硫にもコア加硫にも適用可能である。   Although not shown in the drawing, a rubber bag called a bladder is installed inside the mold. At the time of vulcanization molding, the outer surface of the tire is pressed against the inner peripheral surfaces of the tread mold part 1 and the side mold parts 2 and 3 by expanding the bladder outward in the tire radial direction. It is also possible to use a rigid core instead of the bladder, and the present invention is applicable to both bladder vulcanization and core vulcanization.

図3は、図1に示す成形型の要部拡大図であり、セクター5のサイド型部3との嵌合面5aの周辺(A部分)を拡大して示している。セクター5の嵌合面5a付近の内周面には、タイヤと係合する係合要素が設けられている。図3の例では、係合要素として、タイヤ側に突出した凸要素である突起6が設けられている。この成形型は、加硫後にセクター5をタイヤ径方向外側に変位させるに際し、嵌合面5aに跨がったタイヤ外面部分を変形させてサイド型部3から剥離可能に構成されている。   FIG. 3 is an enlarged view of a main part of the molding die shown in FIG. 1, and shows the periphery (A portion) of the fitting surface 5 a with the side mold part 3 of the sector 5 in an enlarged manner. An engagement element that engages with the tire is provided on the inner peripheral surface of the sector 5 near the fitting surface 5a. In the example of FIG. 3, a protrusion 6 that is a convex element protruding toward the tire side is provided as an engaging element. The mold is configured to be able to be peeled off from the side mold portion 3 by deforming a tire outer surface portion straddling the fitting surface 5a when the sector 5 is displaced outward in the tire radial direction after vulcanization.

かかる成形型を用いてタイヤを加硫成形する方法は、次の通りである。まず、成形型に未加硫タイヤをセットして型締めする。次に、ブラダーを膨張させて、タイヤのサイドウォール部外面をサイド型部2,3の内周面に当接させると共に、トレッド部外面をトレッド型部1の内周面に当接させる。そして、成形型を所定の加硫温度にて加熱保持し、内部のタイヤに加硫成形を施す。その後、成形型を型開きして加硫したタイヤを取り出す。   A method of vulcanizing and molding a tire using such a mold is as follows. First, an unvulcanized tire is set in a mold and clamped. Next, the bladder is expanded so that the outer surface of the sidewall portion of the tire is brought into contact with the inner peripheral surfaces of the side mold portions 2 and 3, and the outer surface of the tread portion is brought into contact with the inner peripheral surface of the tread mold portion 1. Then, the mold is heated and held at a predetermined vulcanization temperature, and vulcanization molding is performed on the internal tire. Thereafter, the mold is opened and the vulcanized tire is taken out.

既述のように、型開き動作では、まず、各セクター5がタイヤ径方向外側に変位してサイド型部2,3から離れ、その後にセクター5及びサイド型部3が上昇してサイド型部2から離れる。したがって、加硫後のタイヤは、まずトレッド型部1から離型し、その次にサイド型部3から離型する。この成形型では、セクター5がタイヤ径方向外側に変位する際に、嵌合面5aに跨ったタイヤ外面部分とサイド型部3との剥離が行われ、それによりサイド型部3が上昇する際にタイヤが容易且つ円滑に離型する。   As described above, in the mold opening operation, first, each sector 5 is displaced outward in the radial direction of the tire and is separated from the side mold parts 2 and 3, and then the sector 5 and the side mold part 3 are raised to form the side mold part. Leave 2 Therefore, the vulcanized tire is first released from the tread mold part 1 and then released from the side mold part 3. In this mold, when the sector 5 is displaced outward in the tire radial direction, the tire outer surface portion straddling the fitting surface 5a and the side mold portion 3 are peeled off, whereby the side mold portion 3 is raised. In addition, the tire can be released easily and smoothly.

即ち、セクター5がタイヤ径方向外側に変位する際には、図4に示すように、セクター5の嵌合面5a付近の内周面が突起6にてタイヤTに係合し、嵌合面5aに跨ったタイヤ外面部分Tsを強制的に弾性変形させ、タイヤ外面部分Tsをサイド型部3の内周面から剥離させる。この剥離によって、タイヤ外面部分Tsとサイド型部3との間に空気が侵入し、隙間が生じて密着状態が解除される。   That is, when the sector 5 is displaced outward in the tire radial direction, the inner peripheral surface near the fitting surface 5a of the sector 5 is engaged with the tire T by the protrusion 6, as shown in FIG. The tire outer surface portion Ts straddling 5a is forcibly elastically deformed, and the tire outer surface portion Ts is peeled off from the inner peripheral surface of the side mold portion 3. By this peeling, air enters between the tire outer surface portion Ts and the side mold portion 3, and a gap is generated to release the contact state.

セクター5が更に外側に変位すると、図5に示すように係合が外れ、タイヤ外面部分Tsが復元する。しかし、タイヤ外面部分Tsでは既にサイド型部3との密着状態が解除されていることから、サイド型部3を上昇させたときには、タイヤ外面部分Tsとサイド型部3との間の隙間が取っ掛かりとなり、サイド型部3の内周面による吸盤効果を滅失せしめて、タイヤTがサイド型部3から容易且つ円滑に離型することができる。   When the sector 5 is further displaced outward, the engagement is disengaged as shown in FIG. 5, and the tire outer surface portion Ts is restored. However, since the close contact state with the side mold portion 3 has already been released at the tire outer surface portion Ts, a clearance between the tire outer surface portion Ts and the side mold portion 3 is removed when the side mold portion 3 is raised. As a result, the sucker effect by the inner peripheral surface of the side mold part 3 is lost, and the tire T can be released from the side mold part 3 easily and smoothly.

上記の作用効果を適切に奏する観点から、突起6の係合面6aのタイヤ幅方向に対する角度θは30°以下であることが好ましい。即ち、この角度が30°以下であることにより、セクター5の変位に伴ってタイヤ外面部分Tsを変形させうるだけの係合力が良好に確保される。   From the viewpoint of appropriately achieving the above-described effects, the angle θ of the engagement surface 6a of the protrusion 6 with respect to the tire width direction is preferably 30 ° or less. That is, when this angle is 30 ° or less, an engagement force sufficient to deform the tire outer surface portion Ts with the displacement of the sector 5 is ensured satisfactorily.

突起6のタイヤ幅方向の突出量δは、タイヤTとの係合作用を確保するために0.5mm以上であることが好ましく、1.5mm以上であることがより好ましい。また、タイヤ外面部分TsにおけるタイヤTのゴム厚を確保するべく、突出量δは5.0mm以下であることが好ましい。更に、突起6のタイヤ径方向に沿った幅Wは、突起6の耐久性を高めて欠損を防ぐために2mm以上が好ましい。   The protrusion amount δ of the protrusion 6 in the tire width direction is preferably 0.5 mm or more, and more preferably 1.5 mm or more in order to ensure the engaging action with the tire T. In order to secure the rubber thickness of the tire T at the tire outer surface portion Ts, it is preferable that the protrusion amount δ is 5.0 mm or less. Furthermore, the width W along the tire radial direction of the protrusion 6 is preferably 2 mm or more in order to enhance the durability of the protrusion 6 and prevent a defect.

凸要素としては、上記の突起6のように断面三角形状をなすものに限られず、図6に示す突起7のように先端が丸みを帯びた形状でもよい。かかる突起7によれば、係合によるタイヤへのクラックの導入を抑制することができる。突起7の先端の曲率半径としては0.5〜5.0mmが例示される。   The convex elements are not limited to those having a triangular cross-section like the above-described protrusions 6 and may have a shape with rounded tips like the protrusions 7 shown in FIG. According to the projection 7, it is possible to suppress the introduction of cracks to the tire due to the engagement. Examples of the radius of curvature of the tip of the protrusion 7 include 0.5 to 5.0 mm.

図7は、図6に示すセクター5を概念的に示す平面図である。図7では突起7の外形を図示しており、このセクター5では複数個の突起7をセクターの移動方向MD(タイヤ径方向とは必ずしも一致していない。)に配列させている。これにより、突起7による係合の回数を増やしてタイヤ外面部分Tsを確実に変形させ、タイヤ外面部分Tsをサイド型部3から効果的に剥離できる。なお、この例では突起7を円柱状に設けてあるが、突起7などの係合要素をセクター5の周方向に沿って延設しても構わない。   FIG. 7 is a plan view conceptually showing the sector 5 shown in FIG. FIG. 7 shows the outer shape of the protrusion 7. In this sector 5, a plurality of protrusions 7 are arranged in the sector movement direction MD (not necessarily coincident with the tire radial direction). Accordingly, the tire outer surface portion Ts can be reliably deformed by increasing the number of engagements by the protrusions 7, and the tire outer surface portion Ts can be effectively peeled from the side mold portion 3. In this example, the protrusion 7 is provided in a columnar shape, but an engaging element such as the protrusion 7 may be extended along the circumferential direction of the sector 5.

上記では、係合要素として凸要素である突起6,7を採用した例を示したが、本発明では、凸要素のほか、反タイヤ側に窪んだ凹要素や、凸要素と凹要素との組み合わせを採用することが可能である。従って、例えば図3の突起6に代えて凹要素である溝を設け、該溝にてタイヤと係合させても構わない。溝の場合には、周長が20mm以上であることが好ましい。   In the above, an example in which the protrusions 6 and 7 that are convex elements are employed as the engaging elements has been shown. However, in the present invention, in addition to the convex elements, concave elements that are recessed toward the anti-tire side, Combinations can be employed. Therefore, for example, a groove which is a concave element may be provided in place of the protrusion 6 in FIG. 3, and the groove may be engaged with the tire. In the case of a groove, the circumference is preferably 20 mm or more.

図8は、係合要素として、凸要素と凹要素との組み合わせを採用した例である。このセクター5では、図3で説明した突起6を設けつつ、その突起6のタイヤ径方向外側に凹要素である溝8を設け、更にそれらをセクター5の移動方向に複数配列している。かかる構成によれば、突起6の高さに溝8の深さが合算されて大きな係合力を発揮することができる。そのうえ、係合力を高めながらも突起6の高さを抑制できるため、タイヤTのゴム厚を確保でき、耐久性を損なうことがない。   FIG. 8 shows an example in which a combination of a convex element and a concave element is employed as the engaging element. In the sector 5, while providing the protrusions 6 described with reference to FIG. 3, grooves 8 that are concave elements are provided outside the protrusions 6 in the tire radial direction, and a plurality of the grooves 8 are arranged in the moving direction of the sector 5. According to this configuration, the depth of the groove 8 can be added to the height of the protrusion 6 to exert a large engagement force. In addition, since the height of the protrusion 6 can be suppressed while increasing the engagement force, the rubber thickness of the tire T can be ensured and the durability is not impaired.

突起6,7及び溝8などの係合要素は、嵌合面5aからタイヤ径方向外側に40mm以内、より好ましくは30mm以内となる範囲に設けられていることが好ましい。これにより、セクター5の内周面が係合要素にてタイヤTと係合した際に、嵌合面5aに跨ったタイヤ外面部分Tsを変形させ易くなる。なお、嵌合面5aは、タイヤTのバットレス部に位置するのが一般的である。   The engaging elements such as the protrusions 6 and 7 and the groove 8 are preferably provided within a range of 40 mm or less, more preferably 30 mm or less on the outer side in the tire radial direction from the fitting surface 5a. Thereby, when the inner peripheral surface of the sector 5 is engaged with the tire T by the engagement element, the tire outer surface portion Ts straddling the fitting surface 5a is easily deformed. In general, the fitting surface 5a is located at the buttress portion of the tire T.

図7の例では、係合要素である突起7をセクター5の周方向に均一に設けており、この場合には、嵌合面5aに跨ったタイヤ外面部分の変形がセクター5の周上で均一に発現される傾向にある。但し、本発明はこれに限られるものではなく、下記に示すようなバリエーションが挙げられる。   In the example of FIG. 7, the protrusions 7 that are engaging elements are provided uniformly in the circumferential direction of the sector 5, and in this case, the deformation of the outer surface portion of the tire straddling the fitting surface 5 a occurs on the circumference of the sector 5. It tends to be expressed evenly. However, the present invention is not limited to this, and variations such as those shown below can be cited.

図9に示すセクター5では、係合要素としての突起9を周方向の片側(図9では左側)にのみ配設している。これは、セクター5の内周面とタイヤとの係合の度合がセクター5の周方向両側で互いに異なるように、突起9の個数をセクター5の周方向両側で互いに異ならせている例である。   In the sector 5 shown in FIG. 9, the protrusion 9 as the engaging element is disposed only on one side in the circumferential direction (left side in FIG. 9). This is an example in which the number of protrusions 9 is different on both sides in the circumferential direction of the sector 5 so that the degree of engagement between the inner peripheral surface of the sector 5 and the tire is different on both sides in the circumferential direction of the sector 5. .

この場合、セクター5の内周面は図9の左側だけがタイヤと係合するため、嵌合面5aに跨ったタイヤ外面部分Tsは左側だけが引っ張られ、この円弧状に延びたタイヤ外面部分Tsに時計回りの捩り力が作用する。これにより、タイヤ外面部分Tsの変形量が大きくなり、サイド型部3からの剥離を促進することができる。その結果、タイヤ外面部分Tsの変形をセクター5の周上で均一に発現する場合に比べて、タイヤ外面部分Tsとサイド型部との密着状態をより円滑に解除できる。   In this case, since only the left side in FIG. 9 is engaged with the tire on the inner peripheral surface of the sector 5, only the left side of the tire outer surface portion Ts straddling the fitting surface 5a is pulled, and the tire outer surface portion extending in this arc shape. A clockwise twisting force acts on Ts. Thereby, the deformation amount of the tire outer surface portion Ts increases, and peeling from the side mold portion 3 can be promoted. As a result, the contact state between the tire outer surface portion Ts and the side mold portion can be more smoothly released as compared with the case where the deformation of the tire outer surface portion Ts is uniformly expressed on the circumference of the sector 5.

図9では、突起9の個数をセクター5の周方向両側で互いに異ならせていたが、これに代えて又は加えて、突起9のサイズ(突起9の幅、長さ又は深さ)を異ならせることが可能である。いずれの場合にも、セクター5の周方向中央を境にして、その両側で係合の度合が互いに異なるように構成される。図10は、図9に示すセクター5の変形例であり、(A)は周上に不連続な突起15を設けた例、(B)は突起15のタイヤ径方向内側に円柱状の突起16を設けた例である。   In FIG. 9, the number of the protrusions 9 is different on both sides in the circumferential direction of the sector 5, but instead of or in addition to this, the size of the protrusion 9 (width, length, or depth of the protrusion 9) is changed. It is possible. In either case, the sector 5 is configured so that the degree of engagement is different from each other at the circumferential center of the sector 5. FIG. 10 is a modification of the sector 5 shown in FIG. 9, (A) is an example in which discontinuous protrusions 15 are provided on the circumference, and (B) is a cylindrical protrusion 16 on the inner side in the tire radial direction of the protrusion 15. Is an example.

図11に示すトレッド型部1では、係合要素である突起17をセクター5毎に異なる個数で設けてあり、それによってセクター5の内周面とタイヤとの係合の度合がタイヤ周方向に沿って順々に小さくなるように構成されている。かかるトレッド型部1では、タイヤ外面部分Tsのサイド型部からの剥離し易さがタイヤ周方向に沿って、詳しくはR方向に沿って順々に小さくなる。   In the tread mold portion 1 shown in FIG. 11, different numbers of protrusions 17 as engagement elements are provided for each sector 5, whereby the degree of engagement between the inner peripheral surface of the sector 5 and the tire is increased in the tire circumferential direction. It is comprised so that it may become small sequentially along. In the tread mold portion 1, the ease of peeling from the side mold portion of the tire outer surface portion Ts decreases in order along the tire circumferential direction, specifically along the R direction.

上記のトレッド型部1では、各セクター5をタイヤ径方向外側に変位させたときに、嵌合面5aに跨ったタイヤ外面部分Tsにタイヤ周方向に沿って回転力が作用し、タイヤ外面部分Tsのサイド型部からの剥離がR方向に沿って順次に発現される。これは、タイヤ外面部分Tsに対して回転力を局所的に発生させて剥離を促進するものであり、タイヤ全体を回転させるものではなく、その必要も無い。   In the tread mold portion 1 described above, when each sector 5 is displaced outward in the tire radial direction, a rotational force acts on the tire outer surface portion Ts straddling the fitting surface 5a along the tire circumferential direction, and the tire outer surface portion. Separation of the Ts from the side mold part is expressed sequentially along the R direction. This is to generate a rotational force locally on the tire outer surface portion Ts to promote peeling, and does not rotate the entire tire, and it is not necessary.

これによって、環状に延びたタイヤ外面部分Tsを一気に剥離する場合に比べて、タイヤ外面部分Tsとサイド型部との密着状態をより円滑に解除できる。なお、上記の作用効果が得られる範囲であれば、図11のように突起17の個数が同じセクター5が局部的に並んでいても構わない。また、係合の度合が最小となるセクターには突起を設けないことも可能である。   As a result, the contact state between the tire outer surface portion Ts and the side mold portion can be more smoothly released as compared with the case where the tire outer surface portion Ts extending in an annular shape is peeled at a stretch. Note that the sectors 5 having the same number of protrusions 17 may be locally arranged as long as the above-described effects are obtained. In addition, it is possible not to provide a protrusion in the sector where the degree of engagement is minimum.

図12に示すトレッド型部1は、図11の例と同様に、タイヤ周方向に沿ってセクター毎に係合の度合に差(強弱)を付けたものである。即ち、このトレッド型部1では、係合要素である突起18をセクター5毎に異なる幅で設けてあり、それによってセクター5の内周面とタイヤとの係合の度合がタイヤ周方向に沿って順々に小さくなるように構成されている。図12の例では、突起18の幅によって係合力を調整しているが、突起の長さや深さによっても調整可能である。   As in the example of FIG. 11, the tread mold portion 1 shown in FIG. 12 has a difference (strength) in the degree of engagement for each sector along the tire circumferential direction. That is, in the tread mold portion 1, the protrusions 18 as the engagement elements are provided with different widths for each sector 5, whereby the degree of engagement between the inner peripheral surface of the sector 5 and the tire is along the tire circumferential direction. It is configured so that it becomes smaller in order. In the example of FIG. 12, the engagement force is adjusted by the width of the protrusion 18, but it can also be adjusted by the length and depth of the protrusion.

上述した実施形態では、上方に配置したサイド型部3に対してタイヤの離型性を向上する例を説明したが、下方に配置したサイド型部2に対しても、上記と同様にして離型性を向上できる。その場合には、セクター5のサイド型部2との嵌合面1b付近の内周面に係合要素が設けられる。   In the above-described embodiment, an example in which the release property of the tire is improved with respect to the side mold part 3 disposed on the upper side has been described. However, the side mold part 2 disposed on the lower side is separated in the same manner as described above. The moldability can be improved. In that case, an engaging element is provided on the inner peripheral surface of the sector 5 near the fitting surface 1b with the side mold portion 2.

本発明では、一対のサイド型部2,3の両方に対して離型性が向上するように構成しても構わない。但し、通常はタイヤが上下のどちらに密着するのか明らかな傾向があるため、問題となる一方のサイド型部に対して離型性を向上させることで十分である。なお、両方のサイド型部2,3に対して、図11,12のようにタイヤ周方向に沿って回転力を作用させる場合には、その回転力の方向を上下で同じにすることが好ましい。   In this invention, you may comprise so that a mold release property may improve with respect to both of a pair of side type | mold parts 2 and 3. FIG. However, since there is usually a clear tendency for the tire to be in close contact with the upper and lower sides, it is sufficient to improve the releasability with respect to one side mold part which is a problem. In addition, when making rotational force act on both side type | mold parts 2 and 3 along a tire circumferential direction like FIG. 11, 12, it is preferable to make the direction of the rotational force the same up and down. .

本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。したがって、各型部の形状や材質、それらの移動機構などは特に限定されず、適宜に変更することが可能である。   The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention. Therefore, the shape and material of each mold part, their moving mechanism, etc. are not particularly limited, and can be changed as appropriate.

本発明に係るタイヤ成形型の一例を概略的に示す縦断面図1 is a longitudinal sectional view schematically showing an example of a tire mold according to the present invention. トレッド型部の平面図Top view of the tread mold タイヤ成形型の要部拡大図Enlarged view of main parts of tire mold タイヤ成形型の要部拡大図Enlarged view of main parts of tire mold タイヤ成形型の要部拡大図Enlarged view of main parts of tire mold 本発明の別実施形態に係るタイヤ成形型の要部拡大図The principal part enlarged view of the tire shaping | molding die which concerns on another embodiment of this invention. 図6に示すセクターを概念的に示す平面図Plan view conceptually showing the sector shown in FIG. 本発明の別実施形態に係るタイヤ成形型の要部拡大図The principal part enlarged view of the tire shaping | molding die which concerns on another embodiment of this invention. 本発明の別実施形態に係るタイヤ成形型のセクターを示す平面図The top view which shows the sector of the tire shaping | molding die concerning another embodiment of this invention. 図9に示すセクターの変形例Variation of sector shown in FIG. 本発明の別実施形態に係るタイヤ成形型のトレッド型部を示す平面図The top view which shows the tread type | mold part of the tire shaping | molding die concerning another embodiment of this invention. 本発明の別実施形態に係るタイヤ成形型のトレッド型部を示す平面図The top view which shows the tread type | mold part of the tire shaping | molding die concerning another embodiment of this invention. セグメンテッドモールドの概略構成図Schematic configuration diagram of segmented mold

符号の説明Explanation of symbols

1 トレッド型部
2 サイド型部
3 サイド型部
5 セクター
5a 嵌合面
6,7,9 突起(係合要素としての凸要素)
8 溝突起(係合要素としての凹要素)
15〜18 突起(係合要素としての凸要素)
T タイヤ
Ts タイヤ外面部分
DESCRIPTION OF SYMBOLS 1 Tread type | mold part 2 Side type | mold part 3 Side type | mold part 5 Sector 5a Fitting surface 6, 7, 9 Protrusion (convex element as an engagement element)
8 Groove protrusion (concave element as engaging element)
15-18 Protrusions (convex elements as engaging elements)
T Tire Ts Tire outer surface

Claims (7)

タイヤのサイドウォール部外面をサイド型部に当接させると共に、前記タイヤのトレッド部外面をタイヤ周方向に分割されたセクターの組み合わせからなるトレッド型部に当接させて加硫するタイヤ成形方法において、
加硫後に前記セクターをタイヤ径方向外側に変位させるに際し、前記セクターの前記サイド型部との嵌合面付近の内周面をタイヤに係合させ、前記嵌合面に跨がったタイヤ外面部分を変形させて前記サイド型部から剥離させるようにしたことを特徴とするタイヤ成形方法。
In a tire molding method in which an outer surface of a sidewall portion of a tire is brought into contact with a side mold portion, and an outer surface of the tire tread portion is brought into contact with a tread mold portion formed of a combination of sectors divided in a tire circumferential direction to vulcanize the tire. ,
When the sector is displaced outward in the tire radial direction after vulcanization, the inner peripheral surface of the sector near the fitting surface with the side mold portion is engaged with the tire, and the tire outer surface straddling the fitting surface A tire molding method, wherein a portion is deformed and peeled off from the side mold portion.
前記セクターの内周面とタイヤとの係合の度合を前記セクターの周方向両側で互いに異ならせ、加硫後に前記セクターをタイヤ径方向外側に変位させたときに、前記嵌合面に跨がったタイヤ外面部分に捩り力を作用させる請求項1に記載のタイヤ成形方法。   When the degree of engagement between the inner circumferential surface of the sector and the tire is different from each other on both sides in the circumferential direction of the sector, and when the sector is displaced outward in the tire radial direction after vulcanization, the sector straddles the fitting surface. The tire molding method according to claim 1, wherein a torsional force is applied to the outer portion of the tire. 前記セクターの内周面とタイヤとの係合の度合をタイヤ周方向に沿って順々に小さくし、加硫後に前記セクターをタイヤ径方向外側に変位させたときに、前記嵌合面に跨がったタイヤ外面部分にタイヤ周方向に沿って回転力を作用させる請求項1又は2に記載のタイヤ成形方法。   When the degree of engagement between the inner peripheral surface of the sector and the tire is reduced in order along the tire circumferential direction, and the sector is displaced outward in the tire radial direction after vulcanization, the sector straddles the fitting surface. The tire molding method according to claim 1, wherein a rotational force is applied to the tire outer surface portion along the tire circumferential direction. タイヤのサイドウォール部外面を成形するサイド型部と、型締め時に前記サイド型部のタイヤ径方向外側に嵌合され、前記タイヤのトレッド部外面を成形するトレッド型部とを備え、前記トレッド型部がタイヤ周方向に分割されたセクターの組み合わせからなり、前記セクターの各々がタイヤ径方向に変位可能に構成されているタイヤ成形型において、
前記セクターの前記サイド型部との嵌合面付近の内周面にタイヤと係合する係合要素を設け、加硫後に前記セクターをタイヤ径方向外側に変位させるに際し、前記嵌合面に跨がったタイヤ外面部分を変形させて前記サイド型部から剥離可能に構成したことを特徴とするタイヤ成形型。
The tread mold includes: a side mold part that molds an outer surface of a sidewall part of a tire; and a tread mold part that is fitted to the outer side in the tire radial direction of the side mold part when the mold is clamped to mold the outer surface of the tread part of the tire. In the tire mold in which the portion is composed of a combination of sectors divided in the tire circumferential direction, and each of the sectors is configured to be displaceable in the tire radial direction,
An engagement element that engages with a tire is provided on the inner peripheral surface of the sector in the vicinity of the fitting surface with the side mold portion, and when the sector is displaced outward in the tire radial direction after vulcanization, the sector straddles the fitting surface. A tire molding die characterized in that the outer surface portion of the tire is deformed so as to be peelable from the side mold portion.
前記係合要素がタイヤ側に突出した凸要素であり、複数個の前記凸要素が前記セクターの移動方向に配列されている請求項4に記載のタイヤ成形型。   The tire molding die according to claim 4, wherein the engagement element is a convex element protruding toward the tire side, and a plurality of the convex elements are arranged in a moving direction of the sector. 前記係合要素の個数又はサイズを前記セクターの周方向両側で互いに異ならせている請求項4又は5に記載のタイヤ成形型。   The tire molding die according to claim 4 or 5, wherein the number or size of the engagement elements are different from each other on both sides in the circumferential direction of the sector. 前記係合要素の個数又はサイズをタイヤ周方向に沿ってセクター毎に順々に小さくしている請求項4〜6いずれか1項に記載のタイヤ成形型。   The tire mold according to any one of claims 4 to 6, wherein the number or size of the engaging elements is sequentially reduced for each sector along the tire circumferential direction.
JP2008100617A 2008-04-08 2008-04-08 Tire molding method and tire molding die Expired - Fee Related JP5175598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100617A JP5175598B2 (en) 2008-04-08 2008-04-08 Tire molding method and tire molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100617A JP5175598B2 (en) 2008-04-08 2008-04-08 Tire molding method and tire molding die

Publications (2)

Publication Number Publication Date
JP2009248484A true JP2009248484A (en) 2009-10-29
JP5175598B2 JP5175598B2 (en) 2013-04-03

Family

ID=41309613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100617A Expired - Fee Related JP5175598B2 (en) 2008-04-08 2008-04-08 Tire molding method and tire molding die

Country Status (1)

Country Link
JP (1) JP5175598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133451A1 (en) * 2014-03-07 2015-09-11 住友ゴム工業株式会社 Rigid core for tire forming, and tire manufacturing method using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366206U (en) * 1986-10-22 1988-05-02
JPH0254511U (en) * 1988-10-12 1990-04-19
JPH0857863A (en) * 1994-08-26 1996-03-05 Nok Corp Mold for rubber
JP2005178333A (en) * 2003-12-24 2005-07-07 Sumitomo Rubber Ind Ltd Tire mold and tire manufacturing method
JP2007050825A (en) * 2005-08-19 2007-03-01 Toyo Tire & Rubber Co Ltd Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366206U (en) * 1986-10-22 1988-05-02
JPH0254511U (en) * 1988-10-12 1990-04-19
JPH0857863A (en) * 1994-08-26 1996-03-05 Nok Corp Mold for rubber
JP2005178333A (en) * 2003-12-24 2005-07-07 Sumitomo Rubber Ind Ltd Tire mold and tire manufacturing method
JP2007050825A (en) * 2005-08-19 2007-03-01 Toyo Tire & Rubber Co Ltd Pneumatic tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133451A1 (en) * 2014-03-07 2015-09-11 住友ゴム工業株式会社 Rigid core for tire forming, and tire manufacturing method using same
JP2015168172A (en) * 2014-03-07 2015-09-28 住友ゴム工業株式会社 Rigid core for tire formation
US10500803B2 (en) 2014-03-07 2019-12-10 Sumitomo Rubber Industries, Ltd. Rigid inner mold for forming tire, and method of manufacturing tire using the same

Also Published As

Publication number Publication date
JP5175598B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5054486B2 (en) Tire mold and tire manufacturing method
JP2008037053A (en) Tire vulcanizing mold
JP2008302558A (en) Tire vulcanization forming die
JP5417086B2 (en) Tire molding method and tire molding die
JP5175598B2 (en) Tire molding method and tire molding die
JP5050804B2 (en) Tire vulcanization method
JP5106170B2 (en) Tire vulcanizing method and tire vulcanizing mold
JP2010058396A (en) Method of manufacturing diaphragm for air spring and diaphragm for air spring
US9731462B2 (en) Mold and method for vulcanizing tires
JP5877652B2 (en) Tire vulcanization mold
JP2009149094A (en) Mold for vulcanizing unvulcanized tire blank
JP5991910B2 (en) Method of releasing vulcanized tire
JP2006341415A (en) Mold release method of tire and tire vulcanizer
JP5786465B2 (en) Tire manufacturing apparatus and tire vulcanization molding bladder used therefor
JP2003285331A (en) Tire vulcanization method and apparatus therefor
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
JP5406265B2 (en) Vulcanization shaping method for pneumatic tires for passenger cars
JP5275846B2 (en) Pneumatic tire
JP6742594B2 (en) Tire vulcanization mold
JP2006150603A (en) Tire mold, plug therefor and tire manufactured using tire mold
JP2009023164A (en) Vulcanization molding method of pneumatic tire and device therefor
JP2009269253A (en) Tire molding die and tire manufacturing method
JP5139823B2 (en) Tire manufacturing method
JP2007185855A (en) Tire vulcanizing method
JP2014121848A (en) Method and apparatus for tire vulcanization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

R150 Certificate of patent or registration of utility model

Ref document number: 5175598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350