JP2009248431A - Manufacturing process and manufacturing apparatus of molding - Google Patents

Manufacturing process and manufacturing apparatus of molding Download PDF

Info

Publication number
JP2009248431A
JP2009248431A JP2008098411A JP2008098411A JP2009248431A JP 2009248431 A JP2009248431 A JP 2009248431A JP 2008098411 A JP2008098411 A JP 2008098411A JP 2008098411 A JP2008098411 A JP 2008098411A JP 2009248431 A JP2009248431 A JP 2009248431A
Authority
JP
Japan
Prior art keywords
resin
coated
fine pattern
mold
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008098411A
Other languages
Japanese (ja)
Other versions
JP4975675B2 (en
Inventor
Hiroshi Ito
伊東  宏
Kazutoshi Yakimoto
数利 焼本
Tsukasa Shiroganeya
司 白銀屋
Takashi Ochiiwa
崇 落岩
Akihiro Naito
章弘 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2008098411A priority Critical patent/JP4975675B2/en
Publication of JP2009248431A publication Critical patent/JP2009248431A/en
Application granted granted Critical
Publication of JP4975675B2 publication Critical patent/JP4975675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3697Moulds for making articles of definite length, i.e. discrete articles comprising rollers or belts cooperating with non-rotating mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C2043/3438Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds moving during dispensing over the moulds, e.g. laying up

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for molding a molding which is ultra finely machined, has a high dimensional accuracy, low residual stress, low birefringence, high light transmittance, and high mechanical strength in a shape of a thin wall thickness and a large area even by a super low pressure molding process and an apparatus for the method. <P>SOLUTION: A finely patterned surface to be coated is coated by a molten thermoplastic resin discharged from a discharge port being the lip of a T die. The coating is made by moving the surface to be coated relatively to the discharge port in a way that the distance between the lip of the T die and the surface defines the thickness of the coated molten resin. Immediately after the coating, a pressure is applied by a press roller to facilitate the filling of the coating resin into the fine pattern on the coated surface, to flatten the thickness of the coated resin, and to transfer the pattern from the mirror-finished surface to the top surface, while the contact force of the press roller is kept lower than the adhesion force between the resin and the mold. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、成形体の製造方法および製造装置に関するもので、詳しくは、超微細加工、高い寸法精度、低残留応力、低複屈折、高光透過性、優れた機械的強度を有する成形体を、超低圧の成形プロセスでありながら、薄肉かつ大面積の形状で提供可能な、成形体の製造方法および製造装置に関するものである。より詳細には、特開2006−056107号に開示の成形体の製造方法および装置に加圧ローラを付加することで、塗布直後の温度低下がほとんどない(変形抵抗が小さく、緩和時間の短い)樹脂をローラで加圧し、微細パターンへの樹脂の充填、塗布厚みの均一化、ダイラインの解消などを図り、従来法よりもさらに低圧かつ高い生産性を有する製造方法および装置を提供するものである。   The present invention relates to a method for manufacturing a molded body and a manufacturing apparatus, and more specifically, a molded body having ultrafine processing, high dimensional accuracy, low residual stress, low birefringence, high light transmittance, and excellent mechanical strength. The present invention relates to a method and an apparatus for manufacturing a molded body that can be provided in a thin and large-area shape while being an ultra-low pressure molding process. More specifically, by adding a pressure roller to the method and apparatus for producing a molded article disclosed in JP-A-2006-056107, there is almost no temperature drop immediately after application (small deformation resistance and short relaxation time). The present invention provides a manufacturing method and apparatus having a lower pressure and higher productivity than conventional methods by pressurizing the resin with a roller, filling the fine pattern with the resin, making the coating thickness uniform, eliminating the die line, and the like. .

現在、サブμmオーダの超微細なパターン形状を表面に有すると共に、三次元、薄肉、かつ大面積の形状を有する成形体が、マイクロレンズアレーなどの電子ディスプレイ用光学部品、血液検査チップなど微細流路が加工されたライフサイエンス部品などとして求められている。   Currently, molded products with ultra-fine pattern shapes on the surface of the order of sub-μm, and three-dimensional, thin, and large-area shapes are used for microfluidics such as optical components for electronic displays such as microlens arrays and blood test chips. It is required as a life science part with a processed road.

従来、表面に微細パターンを有する成形品の製造方法は、例えば下記特許文献1に知られている。この技術は、溶融した熱可塑性樹脂が粘着する温度まで加熱された微細パターンを有する成形型上に、溶融した熱可塑性樹脂を塗布装置によって最終製品にほぼ近い形状および厚さに塗布し、一連の塗布動作を完了してからプレスで塗布された樹脂を加圧(微細パターンに押付)していた。
特開2006−056107号公報
Conventionally, the manufacturing method of the molded article which has a fine pattern on the surface is known by the following patent document 1, for example. In this technology, a molten thermoplastic resin is applied to a shape and thickness almost close to the final product by a coating device on a mold having a fine pattern heated to a temperature at which the molten thermoplastic resin adheres. After completing the application operation, the resin applied by the press was pressed (pressed against the fine pattern).
JP 2006-056107 A

特許文献1に記載の技術(以下従来法)は金型温度(≒微細パターンが加工されたスタンパの温度)よりも高温の樹脂がTダイリップから吐出され、直接微細パターンに供給される点が特長である。   The technique described in Patent Document 1 (hereinafter referred to as the conventional method) is characterized in that a resin having a temperature higher than the mold temperature (≈the temperature of the stamper on which the fine pattern is processed) is discharged from the T die lip and directly supplied to the fine pattern. It is.

樹脂の変形抵抗や緩和時間には温度依存性があり、温度が高いほど変形抵抗は小さく、緩和時間は短い。すなわち、樹脂の変形抵抗が小さく、緩和時間も短い状態の樹脂がTダイからの吐出圧により微細パターンに満たされるので、塗布時点で概ねの充填を完了しており、塗布後のプレス工程での樹脂流動量がわずかであるために成形体の固化終了までに十分な歪の緩和がおこり、高い寸法精度、低残留応力、低複屈折を有する成形体が得られる。実際、この従来法で、アスペクト比0.5の微細パターンに関し、塗布工程の段階でパターン凹部底面までの樹脂の充填が得られていることを確認している。   The deformation resistance and relaxation time of the resin are temperature dependent. The higher the temperature, the smaller the deformation resistance and the shorter the relaxation time. That is, since the resin having a small deformation resistance and a short relaxation time is filled with a fine pattern by the discharge pressure from the T-die, the filling is almost completed at the time of application, and the press process after application is completed. Since the amount of resin flow is small, sufficient strain relaxation occurs before the solidification of the molded body, and a molded body having high dimensional accuracy, low residual stress, and low birefringence is obtained. In fact, with this conventional method, it has been confirmed that the resin filling up to the bottom of the pattern concave portion is obtained at the stage of the coating process for a fine pattern having an aspect ratio of 0.5.

しかし、塗布時の樹脂の充填に不足が生じる場合、従来法ではプレスの工程で、この不足を修正することになる。塗布工程の完了後のプレス工程では、塗布された樹脂の温度は金型温度まで低下しているため(図10参照)変形抵抗が大きく、緩和時間が長くなっているので、充填不足が多いほど、プレスに要する圧力が増し、プレス時間も長くなり、生産性が低下する。また、緩和時間が長くなっている樹脂に与える変形量が大きくなるので、この工法の特長である成形体の低残留応力、低複屈折が十分に得られなくなることが懸念される。   However, when a shortage occurs in the resin filling at the time of application, the conventional method corrects this shortage in the pressing step. In the pressing process after the completion of the coating process, since the temperature of the applied resin is lowered to the mold temperature (see FIG. 10), the deformation resistance is large and the relaxation time is long. The pressure required for the press increases, the press time becomes longer, and the productivity decreases. Further, since the amount of deformation applied to the resin having a long relaxation time becomes large, there is a concern that the low residual stress and low birefringence of the molded article, which are the features of this method, cannot be obtained sufficiently.

このため、従来法では、微細パターンのアスペクト比が高い等の充填の難しい場合には、塗布工程での樹脂の充填を促進させる必要がある。塗布工程での樹脂の充填を促進させる方法としては、大別して、(1)樹脂が微細パターンに入り込みやすい状態にする(樹脂の変形抵抗を小さく、緩和時間を短くする)、(2)樹脂を微細パターンに強い力で押付ける方法がある。   For this reason, in the conventional method, when filling is difficult because the aspect ratio of the fine pattern is high, it is necessary to promote filling of the resin in the coating process. Methods for promoting the filling of the resin in the coating process can be broadly classified as follows: (1) make the resin easy to enter the fine pattern (reduce the deformation resistance of the resin and shorten the relaxation time); There is a method of pressing a fine pattern with a strong force.

しかし、(1)の方法は微細パターンとの界面近傍の樹脂の温度を高くする必要があるが、このためには金型温度を高くする必要があり、金型の昇温に要する時間が長くなるため生産性が低下する。また、スタンパ表面(金属表面)に接触した時の溶融樹脂の温度が高いほど、剥離に必要なエネルギーが増大し(図11)、離型が困難になるといった副次的な不具合も生じる。   However, in the method (1), it is necessary to increase the temperature of the resin in the vicinity of the interface with the fine pattern. For this purpose, it is necessary to increase the mold temperature, and the time required to raise the mold is long. Therefore, productivity is reduced. Further, the higher the temperature of the molten resin when it is in contact with the stamper surface (metal surface), the more energy required for peeling increases (FIG. 11), and secondary problems such that it becomes difficult to release.

(2)の方法として、Tダイリップからの樹脂の吐出圧力を高くするなどが考えられるが、吐出圧力はリップの樹脂流路の形状、樹脂の流量など装置の形状や製品形状と密接に関係するため、自由に変更することができず、実質はほとんど調整代のないパラメータである。これらの結果、塗布工程で微細パターンに樹脂を充填することが困難になっている。   As a method of (2), it is conceivable to increase the discharge pressure of the resin from the T-die lip, but the discharge pressure is closely related to the shape of the apparatus and the product shape such as the shape of the resin flow path of the lip and the flow rate of the resin. Therefore, it cannot be freely changed, and the parameter is substantially free of adjustment. As a result, it is difficult to fill the fine pattern with resin in the coating process.

塗布された樹脂の天面(Tダイのリップと接触していた側)にダイライン(引掻いたような傷)が残る場合がある(図12)。現状は、プレス加圧してダイラインを消す(引掻き傷(凹凸)をプレス加圧で平滑化する)が、プレス加圧時には樹脂温度が低下して変形抵抗が大きく、緩和時間も長くなっているため、プレス圧力を高く、プレス時間を長くする必要がある。加えて、通常、ダイラインの深さは転写する微細形状よりも深いため、本来の微細形状転写に必要な加圧力や加圧時間よりも高圧で長時間加圧する必要がある。結果として、生産性向上(サイクルタイムの短縮)の足かせになっている。   Die lines (scratched scratches) may remain on the top surface of the applied resin (the side in contact with the lip of the T die) (FIG. 12). At present, the die line is erased by press-pressing (scratches (unevenness) are smoothed by press-pressing), but during press-pressing, the resin temperature decreases, the deformation resistance increases, and the relaxation time also increases. It is necessary to increase the press pressure and lengthen the press time. In addition, since the depth of the die line is usually deeper than the fine shape to be transferred, it is necessary to pressurize for a long time at a pressure higher than the pressure and pressurization time necessary for the original fine shape transfer. As a result, productivity is hampered (cycle time is shortened).

塗布された樹脂の厚み分布が大きい状態でプレス加圧されると、厚い部分が先に加圧されて薄い部位に向けて樹脂が流動する(図13)。この時、先に述べたように樹脂の温度は低下し、緩和時間が長くなっているため、プレス加圧後(またはプレス加圧中)に金型を冷却して樹脂を固化させると、流動に伴って生じた樹脂の配向は緩和する間もなく凍結される。この結果、最終製品に光学的な歪みが生じる、応力が残留するなどの不具合が生じる。さらに、樹脂をマクロ的に流動させるほど変形させる場合、必要なプレス圧力は高くなり、プレス時間も長くなるため、生産性も低下する。   When press-pressing is performed in a state where the thickness distribution of the applied resin is large, the thick portion is first pressed and the resin flows toward the thin portion (FIG. 13). At this time, as described above, since the temperature of the resin is lowered and the relaxation time is lengthened, if the mold is cooled and solidified after press pressurization (or during press pressurization), the resin flows. The orientation of the resulting resin is frozen soon after relaxation. As a result, defects such as optical distortion and residual stress occur in the final product. Further, when the resin is deformed so as to flow macroscopically, the necessary press pressure becomes high and the press time becomes long, so that productivity is also lowered.

良品を得るためには、下金型(微細パターンを有するスタンパを搭載する面側)および上金型(プレス加圧時に樹脂に接触する面側)の樹脂に接触する面には厳密な平坦度および平行度が求められる。製品が大面積化すると上記鏡面部の機械加工による精度確保が困難になり、製品の大面積化の足かせとなる。また、面積の小さい製品と同様な圧力を印加しようとすると面積に比例してプレス力が増大し、高推力のプレスが必要となり、装置の大型化、消費エネルギーの増大、装置コストの増大を招く。   In order to obtain good products, strict flatness is required for the lower metal mold (the surface on which the stamper having a fine pattern is mounted) and the upper metal mold (the surface that contacts the resin during pressurization). And parallelism is required. If the product has a large area, it becomes difficult to ensure the accuracy of the mirror surface by machining, which is an impediment to increasing the product area. In addition, if a pressure similar to that of a product with a small area is applied, the pressing force increases in proportion to the area, and a high-thrust press is required, leading to an increase in the size of the device, an increase in energy consumption, and an increase in device cost. .

本発明は、上述した問題点を解決するためになされたものであり、従来法よりもさらに低圧かつ高い生産性を有する製造方法および装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a manufacturing method and apparatus having a lower pressure and higher productivity than conventional methods.

我々は、今回、従来法での塗布時の樹脂の温度変化を実測し、樹脂の種類や、塗布条件によっても左右されるが、塗布時に、樹脂温度が金型温度まで低下するのに概ね10秒前後の時間を要することを見出した。すなわち、従来法のように、塗布後のTダイをパターンの上部空間から退けてからプレスする場合は、樹脂は金型温度まで低下しているが、樹脂を塗布した直後に加圧できれば、小さな力、短い時間で溶融樹脂を微細パターンに充填し、形状を固定(歪を緩和)することができるようになる。
よって本発明の成形体の製造方法は、上述の課題を解決するため、微細なパターンを有する被塗布面に、熱可塑性樹脂の吐出口であるTダイのリップと被塗布面との距離で、塗布された溶融した熱可塑性樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動しながら樹脂を塗布した後、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うことを特徴とする。
This time, we measured the temperature change of the resin during application by the conventional method, and it depends on the type of resin and the application conditions, but at the time of application, the resin temperature generally decreases to the mold temperature. It has been found that it takes time around seconds. That is, as in the conventional method, when pressing the T-die after application away from the upper space of the pattern, the resin is lowered to the mold temperature, but if the pressure can be applied immediately after the resin is applied, the resin is small. The molten resin can be filled into the fine pattern in a short time with force, and the shape can be fixed (strain can be reduced).
Therefore, in order to solve the above-mentioned problem, the manufacturing method of the molded body of the present invention is the distance between the coated surface having a fine pattern and the lip of the T die, which is a thermoplastic resin discharge port, and the coated surface. After the resin is applied while the coated surface and the discharge port move relatively so that the thickness of the applied molten thermoplastic resin is regulated, the resin and pressure are applied rather than the adhesive force between the resin and the mold. While maintaining the low adhesive force with the pressure roller, it immediately presses with the pressure roller to facilitate filling the fine pattern of the resin applied to the coated surface and smooth the thickness of the applied resin. And transferring the mirror surface to the top surface.

また、本発明の成形体の製造方法は、微細なパターンを有する被塗布面を、溶融した熱可塑性樹脂が付着する温度まで昇温する昇温工程と、熱可塑性樹脂の吐出口と被塗布面との距離で、塗布された樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動させながら樹脂を塗布する塗布工程と、前記塗布した熱可塑性樹脂を、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで順次押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うローラ加圧附形工程と、さらにプレス加圧しながら前記熱可塑性樹脂を冷却し固化させるプレス加圧・固化工程と、固化させた樹脂を被塗布面から剥離させる離型工程とを含む。   Further, the method for producing a molded body of the present invention includes a temperature raising step for raising the surface to be coated having a fine pattern to a temperature at which the molten thermoplastic resin adheres, a discharge port of the thermoplastic resin, and the surface to be coated. A coating step of applying the resin while relatively moving the surface to be applied and the discharge port, and the applied thermoplastic resin, While maintaining the adhesive force between the resin and the pressure roller lower than the adhesive force with the mold, immediately press the pressure roller sequentially to fill the fine pattern of the resin applied to the coated surface. Roller pressurizing process that promotes smoothing of applied resin thickness and mirror surface transfer to the top surface, and press pressurization and solidification that cools and solidifies the thermoplastic resin while further pressing Process and solidified resin And a releasing step of peeling.

また、本発明の成形体の製造方法は、(a)微細パターンを有する金型の少なくとも微細パターンの温度を、次段の塗布工程で吐出部から吐出される熱可塑性樹脂が粘着する温度、さらには塗布されて金型表面(微細パターンを含む)に接触した熱可塑性樹脂の接触界面に固化層が形成されず、かつ、加圧ローラによる押圧力で微細パターンに樹脂が充填される程度に変形しうる程度の軟化状態を維持できる温度まで昇温する被塗布面の昇温工程と、(b)塗布装置の吐出口から微細なパターンに前記熱可塑性樹脂が充填されるように、吐出部または金型を移動させて、吐出部と微細パターンを含む被塗布面とを塗布方向に相対的に移動させながら、かつ吐出口の先端部と前記被塗布面との距離によって最終製品の厚さが規定されるように溶融樹脂を吐出させることで成形体の最終形状および厚みにほぼ近い状態まで精密塗布を行う塗布工程と、(c)塗布された樹脂に加圧ローラで押圧力を作用させることで微細パターンへの樹脂の充填を促進させると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うローラ加圧附形工程と、
(d)前記塗布された樹脂をプレス加圧して、微細パターンに樹脂を完全に充填すると共に、金型を冷却して、樹脂を冷却および固化させるプレス加圧・固化工程と、(e)固化した成形品を金型から剥離させる離型工程とを含む。
Moreover, the manufacturing method of the molded body of the present invention includes (a) the temperature of at least the fine pattern of the mold having the fine pattern, the temperature at which the thermoplastic resin discharged from the discharge portion in the subsequent coating step adheres, Is deformed to the extent that a solidified layer is not formed at the contact interface of the thermoplastic resin that has been applied and is in contact with the mold surface (including the fine pattern), and the fine pattern is filled with the resin by the pressing force of the pressure roller. A temperature increasing step of the surface to be coated that is heated to a temperature that can maintain a softened state to a degree that can be performed, and (b) a discharge portion or a discharge portion or a fine pattern filled from the discharge port of the coating apparatus. The thickness of the final product depends on the distance between the tip of the discharge port and the coated surface while moving the mold and relatively moving the dispensing portion and the coated surface including the fine pattern in the coating direction. Melt as specified (C) Resin to fine pattern by applying a pressing force to the applied resin with a pressure roller. A roller pressurizing step for smoothing the thickness of the applied resin and transferring the mirror surface to the top surface,
(D) press-pressing the applied resin to completely fill the fine pattern with the resin, cooling the mold, and cooling and solidifying the resin; and (e) solidification. And a mold release step for peeling the molded product from the mold.

また、本発明の成形体の製造方法は、(a)微細パターンを有するエンドレスベルトの少なくとも後段で溶融樹脂が塗布される微細パターンの温度を、次段の塗布工程で吐出部から吐出される熱可塑性樹脂が粘着する温度、さらには塗布されて微細パターンに接触した熱可塑性樹脂の接触界面に固化層が形成されず、かつ、加圧ローラによる押圧力で微細パターンに樹脂が充填される程度に変形しうる程度の軟化状態を維持できる温度に昇温する被塗布面の昇温工程と、(b)塗布装置の吐出口から微細なパターン部の全体に前記熱可塑性樹脂が充填されるように、エンドレスベルトを移動させて、吐出部と微細パターンを含む被塗布面とを塗布方向に相対的に移動させながら、かつ吐出口の先端部と前記被塗布面との距離によって最終製品の厚さが規定されるように溶融樹脂を吐出させることで成形体の最終的な厚みおよび幅にほぼ近い状態まで精密塗布を行う塗布工程と、(c)塗布された樹脂に加圧ローラで押圧力を作用させることで微細パターンに樹脂を完全充填させると共に、最終製品としての厚みと幅に附形する加圧附形工程と、(d)樹脂が乗っている微細パターン部を冷却して、加圧ローラで押圧された樹脂を冷却および固化させる固化工程と、(e)固化した成形品を微細パターンから剥離させる離型工程とを含む。   Further, the method for producing a molded body of the present invention includes (a) the temperature of the fine pattern on which the molten resin is applied at least in the subsequent stage of the endless belt having the fine pattern, and the heat discharged from the discharge unit in the subsequent application process. The temperature at which the plastic resin adheres, and further, the solidified layer is not formed at the contact interface of the thermoplastic resin that has been applied and is in contact with the fine pattern, and the fine pattern is filled with the resin by the pressing force of the pressure roller. And (b) the thermoplastic resin is filled into the entire fine pattern portion from the discharge port of the coating apparatus, and the temperature of the coating surface is increased to a temperature at which the softened state capable of being deformed can be maintained. The end product is moved depending on the distance between the tip of the discharge port and the surface to be coated while moving the endless belt to relatively move the discharge portion and the surface to be coated including the fine pattern in the coating direction. A coating process in which the molten resin is discharged so that the thickness is regulated to perform a precise coating to a state almost close to the final thickness and width of the molded body, and (c) the applied resin is pressed by a pressure roller. The resin is completely filled into the fine pattern by applying pressure, and the pressure forming step for shaping the thickness and width as the final product, and (d) cooling the fine pattern portion on which the resin is placed, A solidifying step of cooling and solidifying the resin pressed by the pressure roller; and (e) a releasing step of peeling the solidified molded product from the fine pattern.

また、本発明の成形体の製造装置は、微細なパターンを有する被塗布面に、熱可塑性樹脂の吐出口であるTダイのリップと被塗布面との距離で、塗布された溶融した熱可塑性樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動しながら樹脂を塗布した後、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行う。   In addition, the molded product manufacturing apparatus of the present invention is applied to a coated surface having a fine pattern at a distance between a lip of a T die, which is a discharge port of a thermoplastic resin, and the coated surface. After the resin is applied while the surface to be coated and the discharge port move relatively so that the thickness of the resin is regulated, the adhesion force between the resin and the pressure roller is greater than the adhesion force between the resin and the mold. While maintaining a low state, it is immediately pressed with a pressure roller to promote filling of the resin applied to the fine pattern into a fine pattern, smoothing the thickness of the applied resin, and mirroring the top surface Transcription.

また、本発明の成形体の製造装置は、微細なパターンを有する被塗布面を、溶融した熱可塑性樹脂が付着する温度まで昇温する昇温手段と、熱可塑性樹脂の吐出口と被塗布面との距離で、塗布された樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動させながら樹脂を塗布する塗布手段と、前記塗布した熱可塑性樹脂を、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで順次押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うローラ加圧附形手段と、プレス加圧しながら前記熱可塑性樹脂を冷却し固化させるプレス加圧・固化手段と、固化させた樹脂を被塗布面から剥離させる離型手段とを含む。   Further, the molded body manufacturing apparatus of the present invention includes a temperature raising means for raising the surface to be coated having a fine pattern to a temperature at which the molten thermoplastic resin adheres, a discharge port of the thermoplastic resin, and the surface to be coated. The coating means for applying the resin while relatively moving the surface to be applied and the discharge port, and the applied thermoplastic resin, While maintaining the adhesive force between the resin and the pressure roller lower than the adhesive force with the mold, immediately press the pressure roller sequentially to fill the fine pattern of the resin applied to the coated surface. Roller pressurizing means for smoothing the thickness of the applied resin and transferring the mirror surface to the top surface, and press pressurizing / solidifying means for cooling and solidifying the thermoplastic resin while pressing And the solidified resin is peeled off from the coated surface To include a releasing means.

本発明によれば、Tダイリップの近傍に1本以上の加圧ローラを設置し、微細パターンに塗布された溶融樹脂が、金型温度に低下するまでの間(金型よりも高温で、樹脂の変形抵抗が小さく、緩和時間が短い間)に加圧ローラで樹脂を微細パターンに押付けるようにしたので(図1)、塗布された樹脂を順次ローラで加圧することで、温度低下の少ない、変形抵抗が小さく、緩和時間が短い状態の樹脂を微細パターンに押付けることができ、塗布工程での微細パターンへの樹脂の充填が促進される。例えば、図2(b)に示すように、塗布工程では樹脂が完全に充填できなくても、完全充填した最終製品を得るためにプレス工程で充填しなくてはならない量が低減されるため、プレス時間の短縮やプレス圧力の低減が可能となり、生産性向上や省エネ化に直結する。 According to the present invention, one or more pressure rollers are installed in the vicinity of the T die lip, and the molten resin applied to the fine pattern is lowered to the mold temperature (at a higher temperature than the mold, the resin Since the deformation resistance is small and the relaxation time is short), the resin is pressed against the fine pattern by the pressure roller (FIG. 1). The resin having a small deformation resistance and a short relaxation time can be pressed against the fine pattern, and the filling of the resin into the fine pattern in the coating process is promoted. For example, as shown in FIG. 2 (b), even if the resin cannot be completely filled in the coating process, the amount that must be filled in the pressing process to obtain a completely filled final product is reduced. The press time can be shortened and the press pressure can be reduced, leading directly to improved productivity and energy saving.

また、塗布した樹脂の性状が凹状または凸状になった場合でも、ローラで加圧することで平滑化することが可能となり、樹脂の厚み分布の低減(平滑化)が可能となる。図3は、塗布によって(一例として)中央が凸形状になった樹脂を、ローラ加圧によって平滑化する概念図を示す。凸部の樹脂をローラ加圧するため図13と同様に樹脂が流動するが、樹脂温度が高い状況下での変形のため、流動で生じた歪みは短時間で緩和し、製品には歪みが残らない。   Further, even when the applied resin becomes concave or convex, it can be smoothed by pressurizing with a roller, and the resin thickness distribution can be reduced (smoothed). FIG. 3 is a conceptual diagram in which a resin whose center has a convex shape by application (as an example) is smoothed by roller pressure. The resin flows in the same manner as in FIG. 13 to pressurize the resin of the convex portion, but the deformation caused by the flow is relieved in a short time due to deformation under high resin temperature, and the product remains strained. Absent.

さらに上記と同様な作用により、塗布した樹脂のダイラインを、歪みを残さずに消すことができる。塗布の厚み分布の低減(平滑化)に加えてダイラインを消すことで、プレス加圧時に樹脂を流動させる必要がほとんどなくなるため、プレス時間の短縮が可能となり、生産性が向上する。さらに、プレス時の樹脂の流動をなくすことで流動に伴う歪みの発生を抑制でき、製品を無延伸および無配向状態にすることが可能になる。このため、低歪み(残留応力がない、製品形状の経時変化がないなど)、優れた光学特性(複屈折がないなど)を有する製品を得ることができる。   Furthermore, the die line of the applied resin can be erased without leaving any distortion by the same action as described above. By eliminating the die line in addition to reducing the coating thickness distribution (smoothing), there is almost no need to flow the resin during press pressurization, so the press time can be shortened and productivity is improved. Furthermore, by eliminating the flow of the resin during pressing, it is possible to suppress the occurrence of distortion associated with the flow, and it is possible to make the product non-stretched and non-oriented. Therefore, it is possible to obtain a product having low distortion (no residual stress, no change in product shape over time, etc.) and excellent optical characteristics (eg no birefringence).

従来法では、プレス加圧の役割の一つに、鏡面加工された金型を樹脂に押付けることで、鏡面形状を樹脂に転写することが挙げられる。本発明の方法においても、ローラの表面を鏡面加工しておけば、ローラ加圧によって、より小さな力かつ短時間で樹脂に鏡面を転写することができる。同様に、ローラ表面に凹凸パターンを加工しておけば、ローラ加圧によって凹凸パターンの形状を樹脂に転写することが可能である。   In the conventional method, one of the roles of press-pressing is to transfer a mirror surface shape to a resin by pressing a mirror-finished mold against the resin. Also in the method of the present invention, if the surface of the roller is mirror-finished, the mirror surface can be transferred to the resin with a smaller force and in a shorter time by pressing the roller. Similarly, if a concavo-convex pattern is processed on the roller surface, the shape of the concavo-convex pattern can be transferred to the resin by pressing the roller.

さらに、先に述べたように、塗布工程で微細パターンへの樹脂の充填を促進しようとした場合の一つの手段として、樹脂温度を高くする方法があるが、樹脂がスタンパに接触した時の温度が高くなると、剥がすことが困難になる。よって、製品離型までを考慮すると、温度を高くするよりも樹脂を微細パターンに強く押付けて充填することが好ましい。しかし、従来法では塗布条件と独立して押付力を強くすることは困難であることを述べた。
塗布直後に押圧を塗布条件と関係なく付加できる本発明では、塗布工程での充填が不足気味であっても、これを補うことが出来る。よって、従来法のように、樹脂が微細パターンに充填されやすい状態(変形抵抗が小さく、緩和時間が短い)にするために金型温度を高くする必要がない。すなわち、
塗布工程での微細パターンへの樹脂充填が不足するような、低い金型温度でも、樹脂温度が金型温度まで下がりきらない塗布直後に加圧をすることで、十分な充填と歪の緩和を両立できる。金型温度を低くすることができれば、樹脂をスタンパ壁面から剥離させるのに必要なエネルギーも低くなり、離型工程において、従来よりも高い金型温度で製品離型が可能となる。この結果、塗布時の金型温度は低く、製品離型時の温度は高くすることが可能となり、昇温した時の温度と冷却した時との温度差を従来法に比べて小さくすることができる。すなわち、金型の昇温および冷却に要する時間を短くすることができるため、生産性の向上に直結する。
Furthermore, as described above, as a means for promoting the filling of the resin into the fine pattern in the coating process, there is a method of increasing the resin temperature, but the temperature at which the resin contacts the stamper. When it becomes high, it becomes difficult to remove. Therefore, considering the product release, it is preferable to fill the resin by pressing the resin strongly against the fine pattern rather than increasing the temperature. However, it was difficult to increase the pressing force independently of the coating conditions in the conventional method.
In the present invention in which pressing can be applied immediately after coating regardless of the coating conditions, even if the filling in the coating process seems to be insufficient, this can be compensated. Therefore, unlike the conventional method, it is not necessary to increase the mold temperature in order to make the resin easy to fill the fine pattern (the deformation resistance is small and the relaxation time is short). That is,
Even if the mold temperature is low enough to fill the fine pattern in the coating process, pressurization is performed immediately after coating so that the resin temperature does not fall down to the mold temperature. Can be compatible. If the mold temperature can be lowered, the energy required for peeling the resin from the wall of the stamper also becomes low, and the product can be released at a higher mold temperature than before in the release process. As a result, the mold temperature at the time of application is low, the temperature at the time of product release can be increased, and the temperature difference between the temperature when the temperature is raised and the time when it is cooled can be reduced compared to the conventional method. it can. That is, the time required for the temperature rise and cooling of the mold can be shortened, which directly leads to an improvement in productivity.

製品を大面積化(幅を広く、長さを長く)する場合、ローラの長さを長くすることで達成される。従来法では、金型同士の優れた平行度および平坦度を達成するための加工が困難になるため、大面積化の制約になることを述べたが、本発明のローラ加圧の場合、ローラの真直度を精度良く加工すればよく、これは平面を精度良く加工することに比べれば容易である。   When the product has a large area (wide width and long length), it can be achieved by increasing the length of the roller. In the conventional method, processing for achieving excellent parallelism and flatness between molds becomes difficult, and it has been described that it becomes a restriction on the enlargement of the area. It is only necessary to process the straightness of the plane with high accuracy, which is easier than processing a plane with high accuracy.

また、ローラ加圧方式では、樹脂とローラとの接触面積は小さいため、高い圧力を印加する場合でも押付力としては小さくなる。さらに、大型プレスを用いる場合に比べると装置がコンパクトになり、コストも抑えることができる。   In the roller pressurization method, since the contact area between the resin and the roller is small, the pressing force is small even when a high pressure is applied. Furthermore, the apparatus is more compact than the case where a large press is used, and the cost can be reduced.

さらに、加圧ローラのみで微細パターンへの樹脂の充填、樹脂天面への製品性状(例えば鏡面を転写)の付与が可能になれば、理想的にはプレス加圧が不要になる。塗布とローラ加圧は連続的に行うことができるため、シームレスのスタンパを用いれば、帯状の製品を連続して製造することができる。   Furthermore, if it becomes possible to fill a fine pattern with resin and impart product properties (for example, transfer a mirror surface) to the resin top surface only with a pressure roller, ideally press pressing is not necessary. Since application and roller pressurization can be performed continuously, a strip-shaped product can be continuously manufactured by using a seamless stamper.

上記の他に、本工法(溶融微細転写プロセス)特有の特長として、下記が挙げられる。   In addition to the above, the following are listed as features unique to the present construction method (melting and fine transfer process).

本方法によれば、表面に微細なパターンを有する被塗布面に、熱可塑性樹脂の吐出口であるTダイのリップと被塗布面との距離で、塗布された溶融した熱可塑性樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動させながら樹脂を塗布する。   According to this method, the thickness of the molten thermoplastic resin applied to the surface to be coated having a fine pattern on the surface is the distance between the lip of the T die that is the discharge port of the thermoplastic resin and the surface to be coated. As prescribed | regulated, resin is apply | coated, moving a to-be-coated surface and a discharge port relatively.

このため、リップと被塗布面との距離を変更し、かつ、その隙間が充填される量(塗布厚み×塗布幅×塗布速度(m/s)以上の体積流量)だけの溶融樹脂を吐出することで、塗布厚みを簡単に変更することができる。 Therefore, the distance between the lip and the surface to be coated is changed, and only the amount of molten resin that can fill the gap (coating thickness x coating width x volume flow rate of coating speed (m 3 / s) or more) is discharged. By doing, application thickness can be changed easily.

一般的に流通しているペレットを溶融させた後、そのままTダイからフィルム状に吐出して被塗布面に塗布するため、ペレットから直接的に製品を得ることができる。   In general, after the pellets in circulation are melted, they are discharged as they are from the T die into a film and applied to the surface to be coated, so that a product can be obtained directly from the pellets.

塗布することで製品性状を付与するため、樹脂の粘度が高くても、一般のフィルム成形法ではフィルム化できないような低粘度の樹脂でも使用できる。すなわち、本発明の方法に適用できる熱可塑性樹脂の種類やグレードには制約がなく、多種多様な樹脂を利用することが可能である。   Since the product properties are imparted by coating, even a resin having a low viscosity that cannot be formed into a film by a general film forming method can be used even if the viscosity of the resin is high. That is, there is no restriction on the type and grade of the thermoplastic resin applicable to the method of the present invention, and a wide variety of resins can be used.

溶融した熱可塑性樹脂を被塗布面に塗布すると、粘着して固定されるため、樹脂と被塗布面の微細パターンとの位置関係がずれないため、正確な形状転写が可能になる。   When the molten thermoplastic resin is applied to the surface to be coated, it is adhered and fixed, so that the positional relationship between the resin and the fine pattern on the surface to be coated does not shift, and accurate shape transfer becomes possible.

溶融樹脂が被塗布面に順次粘着しながら塗布される。よって、溶融樹脂と被塗布面との間に存在する空気のほとんどは塗布工程で排除される。その結果、真空プロセスは不要となる。   The molten resin is applied while sequentially sticking to the application surface. Therefore, most of the air existing between the molten resin and the surface to be coated is excluded in the coating process. As a result, a vacuum process becomes unnecessary.

図4は、本発明の実施の形態の塗布工程と加圧附形工程を説明する図である。表面に微細パターン(微細なパターン)1aを有する被塗布面1上に、溶融した熱可塑性樹脂2が塗布装置3の吐出口3aから吐出される。塗布した直後の温度低下のない樹脂(粘度が低く、緩和時間が短い)を、順次ローラ(加圧ローラ)4で加圧することで、微細パターンへの溶融樹脂の充填の促進と、塗布膜厚の平滑化、ダイラインの消去などを高効率に行い、後段のプレス工程での樹脂の充填量を低減することでプレス時間を短縮して生産サイクルの短縮、プレス加圧力低減による省エネ、さらにプレス加圧中の樹脂流動を最小化することで、低残留応力、低複屈折、高光透過性など寸法精度、光学特性に優れた最終製品を得る。下金型に塗布された樹脂は樹脂の種類や塗布条件によっても異なるが、概ね図10に示したように10秒程度で金型温度まで冷却されるので、ローラ加圧は塗布後8秒以内、望ましくは5秒以内に行うことが望ましい。   FIG. 4 is a diagram illustrating a coating process and a pressurizing process according to the embodiment of the present invention. A molten thermoplastic resin 2 is discharged from a discharge port 3a of a coating apparatus 3 on a surface to be coated 1 having a fine pattern (fine pattern) 1a on the surface. Immediately pressurizing a resin (low viscosity and short relaxation time) with a roller (pressure roller) 4 immediately after coating, thereby facilitating filling of the molten resin into the fine pattern and coating thickness Smoothing and erasing die lines, etc., and reducing the filling time of the resin in the subsequent press process shortens the press time, shortens the production cycle, saves energy by reducing the press force, and further increases the press force. By minimizing resin flow during pressing, a final product with excellent dimensional accuracy and optical properties such as low residual stress, low birefringence, and high light transmission can be obtained. The resin applied to the lower mold varies depending on the type of resin and the application conditions, but as shown in FIG. 10, it is cooled to the mold temperature in about 10 seconds, so the roller pressure is within 8 seconds after application. It is desirable to carry out within 5 seconds.

塗布された樹脂をローラで加圧するには、「金型との粘着力>ローラとの粘着力」を維持する必要がある。ローラとの粘着力が金型よりも大きい場合、ローラが塗布された樹脂を引き剥がすことになる。このためには、加圧ローラの(樹脂に接する表面の)温度を金型温度以下に維持することが必要となる。   In order to pressurize the applied resin with a roller, it is necessary to maintain “adhesive strength with a mold> adhesive strength with a roller”. When the adhesive strength with the roller is larger than that of the mold, the resin to which the roller is applied is peeled off. For this purpose, it is necessary to maintain the temperature of the pressure roller (the surface in contact with the resin) below the mold temperature.

ローラの温度調節は、所望の温度に調整された熱媒(水や油)を通水することで行うことが望ましい。これは、ローラの温度が熱媒以下であれば加熱媒体として作用し、熱媒以上であれば冷却媒体として作用するため、ローラの温度を所定の温度に維持しやすい。ただし、これに限定する必要はなく、加熱はスリップリングで給電するなどしてヒータや赤外線ランプ等で行ってもよい。冷却は水冷以外にペルチェ素子などの電気的な冷却を行ってもよい。これらを用いる場合、ローラの温度は接触式の熱電対や非接触の赤外線式温度計で検出し、あらかじめ設定される温度になるように温度調節計で加熱量および冷却量の自動調節を行えばよい。   It is desirable to adjust the temperature of the roller by passing a heat medium (water or oil) adjusted to a desired temperature. This acts as a heating medium if the temperature of the roller is lower than the heating medium, and acts as a cooling medium if the temperature is higher than the heating medium, so that the temperature of the roller is easily maintained at a predetermined temperature. However, it is not necessary to limit to this, and heating may be performed by a heater, an infrared lamp, or the like by supplying power with a slip ring. In addition to water cooling, the Peltier element or the like may be electrically cooled. When using these, the temperature of the roller can be detected with a contact-type thermocouple or a non-contact infrared thermometer, and the heating and cooling amounts can be adjusted automatically with a temperature controller so that the temperature is set in advance. Good.

加圧ローラ4は、樹脂への押付力またはローラ下面と微細パターンとの距離を調節できる構成とする。樹脂への押付力を調節することで、所望の押付力を樹脂に印加することが可能となる。この場合、押付力印加後の樹脂膜厚は制御されないことになる。そこで、最終製品の膜厚が重要となる場合には、ローラ下面と微細パターンとの距離を調節することで、押付力印加後の膜厚を所望の厚みにすることができる。機構は、図5のようにローラの左右を独立して調節することで、塗布幅方向に印加する押付力を変えることができる。押付力を調節する場合は、図5(a)のようにエアシリンダ4aや油圧シリンダ4bを設置すればよい。位置を調節する場合は図5(b)に示されるように、モータ4dとボールネジ4eを組み合わせると調節が容易となる。これらにより、ローラの傾きを調節することが可能になり、例えば、塗布幅方向にテーパ状の厚み分布を持たせた製品に対しても精密に均等な加圧力を印加することができる。また、位置制御によって意図的に幅方向に厚み分布を持った最終製品を得ることも可能である。独立したアクチュエータを備える代わりにローラが取り付けられた筐体を傾けるようにしてもよい。   The pressure roller 4 is configured to be capable of adjusting the pressing force against the resin or the distance between the lower surface of the roller and the fine pattern. A desired pressing force can be applied to the resin by adjusting the pressing force to the resin. In this case, the resin film thickness after applying the pressing force is not controlled. Therefore, when the film thickness of the final product is important, the film thickness after applying the pressing force can be set to a desired thickness by adjusting the distance between the roller lower surface and the fine pattern. The mechanism can change the pressing force applied in the coating width direction by independently adjusting the left and right sides of the roller as shown in FIG. When adjusting the pressing force, an air cylinder 4a or a hydraulic cylinder 4b may be installed as shown in FIG. When adjusting the position, as shown in FIG. 5B, the adjustment is facilitated by combining the motor 4d and the ball screw 4e. By these, it becomes possible to adjust the inclination of the roller, and for example, it is possible to accurately apply a uniform pressing force even to a product having a tapered thickness distribution in the coating width direction. It is also possible to obtain a final product having a thickness distribution in the width direction intentionally by position control. Instead of providing an independent actuator, the housing to which the roller is attached may be tilted.

被塗布面と吐出口および加圧ローラは互いに相対移動すればよく、被塗布面が固定で吐出口とローラとが塗布方向に移動しても良いし、吐出口と加圧ローラとが固定で被塗布面が移動してもよい。   The coated surface, the discharge port, and the pressure roller may be moved relative to each other, the coated surface may be fixed and the discharge port and the roller may move in the coating direction, or the discharge port and the pressure roller may be fixed. The coated surface may move.

図6は、本発明の代表的な一連の製品製造工程を示す。塗布装置および加圧ローラは図示しない移動手段で移動するものとする。図では、金型に搭載された微細パターンが加工されたスタンパを被塗布面として、塗布装置(吐出口)と加圧ローラが移動して溶融樹脂の塗布と加圧附形とを行い、成形体を製造する工程を示す。金型は加熱と冷却が可能であるとする。   FIG. 6 illustrates a typical series of product manufacturing steps of the present invention. The coating device and the pressure roller are moved by a moving means (not shown). In the figure, a stamper with a fine pattern mounted on a mold is used as the surface to be coated, and the coating device (discharge port) and pressure roller move to apply the molten resin and pressurize it. The process of manufacturing a body is shown. It is assumed that the mold can be heated and cooled.

まず、被塗布面を溶融樹脂が粘着する温度に加熱する(S1)。所定温度までの昇温が完了すると、塗布装置と加圧ローラを塗布開始位置に移動させる。次に、樹脂吐出口をスタンパの形状に沿って移動させながら、かつ、吐出口先端と被塗布面との距離で最終製品の厚さが規定されるように前記距離、塗布速度(被塗布面と吐出口との相対移動速度)、溶融樹脂の吐出流量を調整しながら塗布を行うことで、溶融した熱可塑性樹脂を最終製品にほぼ近い形状および厚さに塗布していく(S2−1,S2−2)。塗布工程では、塗布後、直ちに加圧ローラで溶融樹脂を押圧する(塗布・加圧附形工程)。さらに、プレスで加圧しながら樹脂を冷却および固化させて(固化工程:S3)、製品を剥離させる(S4)。   First, the coated surface is heated to a temperature at which the molten resin adheres (S1). When the temperature rise to the predetermined temperature is completed, the coating device and the pressure roller are moved to the coating start position. Next, while moving the resin discharge port along the shape of the stamper, the distance, the coating speed (surface to be coated) so that the final product thickness is defined by the distance between the tip of the discharge port and the surface to be coated. (Relative movement speed between the nozzle and the discharge port) and by applying while adjusting the discharge flow rate of the molten resin, the molten thermoplastic resin is applied in a shape and thickness almost similar to the final product (S2-1, S2-2). In the coating process, the molten resin is pressed with a pressure roller immediately after coating (coating / pressing step). Further, the resin is cooled and solidified while being pressed with a press (solidification step: S3), and the product is peeled off (S4).

図7は、複数の金型を備え(a)〜(d)、各場所で異なる工程を順次行う製造方法を示す。塗布装置が移動(横行)し、被塗布面が塗布方向に移動することで実現する実施の形態を示す。被塗布面は固定され、塗布装置が横行と塗布方向への移動を行ってもよい。本形態であれば、金型の加熱や冷却を、塗布および加圧附形する以外の場所で行うため、加熱や冷却を塗布および加圧附形工程が待つ必要がない。よって、より高効率に製品を製造することができる。   FIG. 7 shows a manufacturing method including a plurality of molds (a) to (d) and sequentially performing different processes at each place. An embodiment realized by moving (traversing) the coating apparatus and moving the surface to be coated in the coating direction will be described. The surface to be coated may be fixed, and the coating apparatus may move in the traversing direction and the coating direction. If it is this form, since heating and cooling of a metal mold | die will be performed in places other than application and pressurization shaping, it is not necessary to wait for an application and pressurization shaping process for heating and cooling. Therefore, a product can be manufactured with higher efficiency.

図8は、図7の形態を回転台で行う場合の方法を示す。本実施例では、Tダイと加圧ローラは上下動のみすれば良い FIG. 8 shows a method in which the embodiment of FIG. 7 is performed on a turntable. In this embodiment, the T die and the pressure roller need only move up and down.

図では、一つのローラを用いる例を示したが、複数個のローラを並べて使用してもよい。特に、溶融樹脂の緩和時間に対してローラによる加圧時間が短い場合、加圧力除去後(ローラ通過後)に弾性回復して元の形状にもどる(例えば、微細パターンに押し込まれた樹脂がもどる)。この場合、ローラを複数個設けることで必要な加圧時間を確保することが可能になる。   Although an example using one roller is shown in the figure, a plurality of rollers may be used side by side. In particular, when the pressing time by the roller is short with respect to the relaxation time of the molten resin, after the pressure is removed (after passing through the roller), it is elastically recovered and returns to its original shape (for example, the resin pushed into the fine pattern returns. ). In this case, it is possible to secure a necessary pressing time by providing a plurality of rollers.

図9は、被塗布面をエンドレスベルトとした実施形態の一例を示す。図では詳細を示してないが、エンドレスベルト7に微細パターンが加工されたスタンパを設置してもよいし、エンドレスベルト7の表面に直接微細パターンを加工してもよい。エンドレスベルト7には、(少なくとも)微細パターンを加熱および冷却できる機構を設ける。本図では、塗布の前段で赤外線ランプ8による加熱を行っているが、エンドレスベルト7を加熱できれば良く、誘導加熱、熱風吹付け、高温に維持した部屋の中を通過させて加熱するなども可能で、手段は問わない。   FIG. 9 shows an example of an embodiment in which the coated surface is an endless belt. Although not shown in detail in the drawing, a stamper in which a fine pattern is processed may be installed on the endless belt 7, or a fine pattern may be processed directly on the surface of the endless belt 7. The endless belt 7 is provided with a mechanism capable of heating and cooling (at least) a fine pattern. In this figure, heating by the infrared lamp 8 is performed before the coating, but it is sufficient if the endless belt 7 can be heated, and induction heating, hot air blowing, passing through a room maintained at a high temperature, etc. are possible. Any means can be used.

通常、エンドレスベルト7は薄く容易に変形するため、溶融樹脂を塗布する部位Aや加圧ローラ4で加圧附形する部位にはそれぞれバックアップローラ8を設けている。バックアップローラ8に接触したエンドレスベルト7が冷えることが好ましくない場合、温度を調節すればよい。冷却する場合も同様である。   Usually, since the endless belt 7 is thin and easily deformed, a backup roller 8 is provided in each of the part A to which the molten resin is applied and the part to be pressure-formed by the pressure roller 4. When it is not preferable that the endless belt 7 in contact with the backup roller 8 is cooled, the temperature may be adjusted. The same applies to cooling.

本図では、エンドレスベルト7に塗布された溶融樹脂の冷却は、冷却手段9として冷風を吹付けることで行っている。冷風を吹付ける方向は、エンドレスベルト7の裏面から吹付けてもよい。冷風を吹付けた際の風圧によってエンドレスベルト7およびそれに付着している製品が曲がるなどの不具合が生じる場合、風圧を支えるようにバックアップローラを設けてもよい。   In this figure, the molten resin applied to the endless belt 7 is cooled by blowing cold air as the cooling means 9. The direction of blowing cold air may be blown from the back surface of the endless belt 7. If a problem such as bending of the endless belt 7 and the product attached to the endless belt 7 due to the wind pressure when the cold wind is blown, a backup roller may be provided to support the wind pressure.

なお、上述したバックアップローラは必ずしもローラである必要はなく、板でもよい。エンドレスベルトの変形(たわみ)を防止できれば図の形態でなくてもよい。   The backup roller described above is not necessarily a roller, and may be a plate. If the deformation (deflection) of the endless belt can be prevented, the shape may not be as shown.

冷却された製品は、エンドレスベルトから剥離させ、ローラなどで巻き取る。離型する場所は必ずしも図9の位置である必要はなく、ベルトが一周して再度加熱が始められる前までに剥離が完了していればよい。   The cooled product is peeled off from the endless belt and wound up with a roller or the like. The location for releasing the mold does not necessarily have to be the position shown in FIG. 9, and it is sufficient that the peeling is completed before the belt makes one round and heating is started again.

上記の方法であれば、連続的に製品を製造できるため、大量生産にも適用できる。   If it is said method, since a product can be manufactured continuously, it is applicable also to mass production.

加圧ローラ4の表面は、平滑面でもよいし、製品に意匠面を持たせる場合は所望の形状を有するローラを押付ければよい。また、ローラ表面に微細パターン形状を設ければ、両面に微細形状が転写された製品を得ることも可能である。   The surface of the pressure roller 4 may be a smooth surface, or when a product has a design surface, a roller having a desired shape may be pressed. If a fine pattern shape is provided on the roller surface, it is possible to obtain a product having the fine shape transferred on both surfaces.

加圧ローラ4の表面を洗浄する洗浄機構を設けることで、ローラ表面を常に清浄な状態に維持できる。例えば、ローラ表面に樹脂膜が付着した場合、製品表面に樹脂膜の形状が転写されるのみでなく、樹脂同士が再溶融および付着して塗布済みの溶融樹脂が被塗布面から引き剥がされるか(ローラと樹脂膜との付着力が勝った場合)、製品表面に樹脂膜が付着する(ローラと樹脂膜との付着力が負けた場合)。   By providing a cleaning mechanism for cleaning the surface of the pressure roller 4, the roller surface can always be kept clean. For example, if a resin film adheres to the roller surface, not only the shape of the resin film is transferred to the product surface, but also the resin melts and adheres to each other, so that the applied molten resin is peeled off from the coated surface (When the adhesion between the roller and the resin film is won), the resin film adheres to the product surface (when the adhesion between the roller and the resin film is lost).

洗浄機構は、スクレーパでロール表面に付着した汚れをかきとる方法、洗浄紙でスクレーパでの除去が困難な薄い樹脂膜を除去する方法および樹脂を溶解させる溶剤を用いて完全に樹脂膜を除去する方法などから適宜選択して使用すればよい。上記方法の他に、紫外線やオゾンなどを利用して、溶剤を用いてもなお残る樹脂層を除去する方法も利用できる。   The cleaning mechanism is a method of scraping off the dirt adhered to the roll surface with a scraper, a method of removing a thin resin film that is difficult to remove with a scraper with cleaning paper, and a resin film that is completely removed using a solvent that dissolves the resin. What is necessary is just to select suitably from a method etc. and to use. In addition to the above method, a method of removing a resin layer that remains even if a solvent is used by using ultraviolet rays or ozone can be used.

さらに、ローラ表面には樹脂が粘着し難い表面処理を施すことが好ましい。具体的には表面にフッ素コーティングすることが好ましい。他に、クロムメッキ、TiC、TiCN、CrC、TiN、CrN、DLC(ダイヤモンドライクコーティング)などのめっきも効果的である。   Furthermore, it is preferable that the roller surface is subjected to a surface treatment that makes it difficult for the resin to adhere. Specifically, it is preferable to coat the surface with fluorine. In addition, plating such as chromium plating, TiC, TiCN, CrC, TiN, CrN, DLC (diamond-like coating) is also effective.

本発明の効果を示すための塗布方法を示す図である。It is a figure which shows the coating method for showing the effect of this invention. 本発明の効果を示すための塗布状態を示す図である。It is a figure which shows the application | coating state for showing the effect of this invention. 本発明の効果を示すための塗布した樹脂の形状を示す図である。It is a figure which shows the shape of apply | coated resin for showing the effect of this invention. 本発明の実施の形態1を示す側面図である。It is a side view which shows Embodiment 1 of this invention. 加圧ローラの取り付け方法を示す概略図である。It is the schematic which shows the attachment method of a pressure roller. 本発明の成形方法の各工程を示す説明図である。It is explanatory drawing which shows each process of the shaping | molding method of this invention. 複数の金型を備えて各場所で異なる工程を行う成形体の製造方法を示す図である。It is a figure which shows the manufacturing method of the molded object which provides a some metal mold | die and performs a different process in each place. 図7で示した工程を回転台で行う場合を示す図である。It is a figure which shows the case where the process shown in FIG. 7 is performed with a turntable. 被塗布面をエンドレスベルトとして成形体の製造を行う方法を示す図である。It is a figure which shows the method of manufacturing a molded object by making a to-be-coated surface into an endless belt. 金型表面に塗布された樹脂の温度変化を示す図である。It is a figure which shows the temperature change of resin apply | coated to the metal mold | die surface. シリコン基板に粘着させたアクリル樹脂を引き剥がずために必要なエネルギの温度依存性を示す図である。It is a figure which shows the temperature dependence of energy required in order not to peel off the acrylic resin adhered to the silicon substrate. 塗布された樹脂の天面に生じるダイラインを示す図である。It is a figure which shows the die line which arises on the top | upper surface of the apply | coated resin. 従来塗布された樹脂の厚み分布が大きい状態でプレス加圧された状態を示す図である。It is a figure which shows the state press-pressed in the state with the large thickness distribution of conventionally apply | coated resin.

符号の説明Explanation of symbols

1 被塗布面、1a 微細パターン、2 熱可塑性樹脂、3 塗布装置、3a 塗布装置の吐出口、4 加圧ローラ、7 エンドレスベルト、8 バックアップローラ、9 冷却手段。   DESCRIPTION OF SYMBOLS 1 Surface to be coated, 1a Fine pattern, 2 Thermoplastic resin, 3 Coating apparatus, 3a Discharge port of a coating apparatus, 4 Pressure roller, 7 Endless belt, 8 Backup roller, 9 Cooling means.

Claims (20)

微細なパターンを有する被塗布面に、熱可塑性樹脂の吐出口であるTダイのリップと被塗布面との距離で、塗布された溶融した熱可塑性樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動しながら樹脂を塗布した後、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うことを特徴とする成形体の製造方法。   The thickness of the applied molten thermoplastic resin is defined on the surface to be coated having a fine pattern by the distance between the lip of the T die, which is the thermoplastic resin discharge port, and the surface to be coated. After applying the resin while the surface and the discharge port move relatively, immediately press the pressure roller while keeping the adhesion force between the resin and the pressure roller lower than the adhesion force between the resin and the mold. The molded body is characterized by promoting the filling of the fine pattern of the resin applied to the application surface by pressing, smoothing the thickness of the applied resin, and transferring the mirror surface to the top surface. Production method. 請求項1記載の成形体の製造方法において、
微細なパターンを有する被塗布面を、溶融した熱可塑性樹脂が付着する温度まで昇温する昇温工程と、熱可塑性樹脂の吐出口と被塗布面との距離で、塗布された樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動させながら樹脂を塗布する塗布工程と、前記塗布した熱可塑性樹脂を、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで順次押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うローラ加圧附形工程と、さらにプレス加圧しながら前記熱可塑性樹脂を冷却し固化させるプレス加圧・固化工程と、固化させた樹脂を被塗布面から剥離させる離型工程とを含む成形体の製造方法。
In the manufacturing method of the molded object according to claim 1,
The temperature of the coated surface having a fine pattern is increased to a temperature at which the molten thermoplastic resin adheres, and the distance between the discharge port of the thermoplastic resin and the coated surface is such that the thickness of the coated resin is As specified, the application process in which the resin is applied while the surface to be applied and the discharge port are moved relatively, and the applied thermoplastic resin is pressed against the resin rather than the adhesive force between the resin and the mold. While maintaining a low adhesive force with the roller, it immediately presses with a pressure roller immediately to facilitate filling the fine pattern of the resin applied to the application surface and smooth the thickness of the applied resin. And a roller pressurizing step for transferring the mirror surface to the top surface, a press pressurization / solidification step for cooling and solidifying the thermoplastic resin while further pressurizing, and a solidified resin from the surface to be coated A molded body including a release step for peeling Manufacturing method.
請求項1または請求項2に記載の成形体の製造方法において、
複数個の加圧ローラを塗布方向に並べて備え、塗布された樹脂を加圧ローラで複数回加圧できることを特徴とする成形体の製造方法。
In the manufacturing method of the molded object of Claim 1 or Claim 2,
A method for producing a molded body, comprising: a plurality of pressure rollers arranged in a coating direction, wherein the applied resin can be pressed a plurality of times with a pressure roller.
請求項1乃至請求項3のいずれかに記載の成形体の製造方法において、
前記加圧ローラは、ローラを上下動させると共に、塗布された溶融樹脂への押圧力またはローラと被塗布面との距離を任意に調節可能な手段を有し、塗布された溶融樹脂への押圧力または塗布された溶融樹脂の最終厚みを調節可能なことを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to any one of claims 1 to 3,
The pressure roller moves the roller up and down and has means capable of arbitrarily adjusting the pressing force to the applied molten resin or the distance between the roller and the surface to be coated. A method for producing a molded body, wherein the pressure or the final thickness of the applied molten resin can be adjusted.
請求項4に記載の成形体の製造方法において、
前記ローラを上下動させる機構は、ローラ両端に独立して設けられ、塗布された溶融樹脂への押圧力または塗布された溶融樹脂の押圧後の厚みを両端で独立して調節可能なことを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to claim 4,
The mechanism for moving the roller up and down is provided independently at both ends of the roller, and the pressing force to the applied molten resin or the thickness after pressing of the applied molten resin can be adjusted independently at both ends. A method for producing a molded article.
請求項1乃至請求項5のいずれかに記載の成形体の製造方法において、
加圧ローラは加熱および冷却機能を有し、ローラ表面の温度を所望の温度に調節および維持できることを特徴とする成形体の製造方法。
In the manufacturing method of the molded object in any one of Claims 1 thru | or 5,
The pressure roller has a heating and cooling function, and the temperature of the roller surface can be adjusted and maintained at a desired temperature.
請求項1乃至請求項6のいずれかに記載の成形体の製造方法において、
加圧ローラの表面には、ローラの表面温度が高い場合でも、溶融樹脂が粘着し難いような表面処理を施したことを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to any one of claims 1 to 6,
A method for producing a molded body, wherein the surface of the pressure roller is subjected to a surface treatment that prevents the molten resin from sticking even when the surface temperature of the roller is high.
請求項1乃至請求項7のいずれかに記載の成形体の製造方法において、
加圧ローラの表面に付着した樹脂屑および汚れを洗浄する機構を有することを特徴とする成形体の製造方法。
In the manufacturing method of the molded object in any one of Claim 1 thru | or 7,
A method for producing a molded body, comprising a mechanism for cleaning resin waste and dirt adhering to the surface of a pressure roller.
請求項1乃至請求項8のいずれかに記載の成形体の製造方法であって、
(a)微細パターンを有する金型の少なくとも微細パターンの温度を、次段の塗布工程で吐出部から吐出される熱可塑性樹脂が粘着する温度、さらには塗布されて金型表面(微細パターンを含む)に接触した熱可塑性樹脂の接触界面に固化層が形成されず、かつ、加圧ローラによる押圧力で微細パターンに樹脂が充填される程度に変形しうる程度の軟化状態を維持できる温度まで昇温する被塗布面の昇温工程と、
(b)塗布装置の吐出口から微細なパターンに前記熱可塑性樹脂が充填されるように、吐出部または金型を移動させて、吐出部と微細パターンを含む被塗布面とを塗布方向に相対的に移動させながら、かつ吐出口の先端部と前記被塗布面との距離によって最終製品の厚さが規定されるように溶融樹脂を吐出させることで成形体の最終形状および厚みにほぼ近い状態まで精密塗布を行う塗布工程と、
(c)塗布された樹脂に加圧ローラで押圧力を作用させることで微細パターンへの樹脂の充填を促進させると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うローラ加圧附形工程と、
(d)前記塗布された樹脂をプレス加圧して、微細パターンに樹脂を完全に充填すると共に、金型を冷却して、樹脂を冷却および固化させるプレス加圧・固化工程と、
(e)固化した成形品を金型から剥離させる離型工程と
を含むことを特徴とする成形体の製造方法。
A method for producing a molded body according to any one of claims 1 to 8,
(A) The temperature of at least the fine pattern of the mold having a fine pattern is the temperature at which the thermoplastic resin discharged from the discharge portion adheres in the subsequent coating step, and further the applied mold surface (including the fine pattern) The temperature is raised to a temperature at which the solidified layer is not formed at the contact interface of the thermoplastic resin that is in contact with (3), and can be maintained in a softened state that can be deformed to the extent that the resin is filled into the fine pattern by the pressing force of the pressure roller A temperature raising step of the coated surface to be heated;
(B) The discharge unit or the mold is moved so that the thermoplastic resin is filled into the fine pattern from the discharge port of the coating apparatus, and the discharge unit and the surface to be coated including the fine pattern are relative to each other in the coating direction. The molten resin is discharged so that the thickness of the final product is regulated by the distance between the tip of the discharge port and the surface to be coated while being moved in a continuous manner, and is almost close to the final shape and thickness of the molded body Application process for precise application,
(C) By applying a pressing force to the applied resin with a pressure roller, the filling of the resin into the fine pattern is promoted, the thickness of the applied resin is smoothed, and the mirror surface is transferred to the top surface. Roller pressurizing process,
(D) press-pressing the applied resin to completely fill the fine pattern with the resin, cooling the mold, and cooling and solidifying the resin;
And (e) a mold release step of peeling the solidified molded product from the mold.
請求項1乃至請求項9のいずれかに記載の成形体の製造方法において、
塗布方向に走行する被塗布面を有するエンドレスベルトを備えると共に、エンドレスベルト表面に溶融樹脂を塗布する前段にエンドレスベルトを加熱する手段と、塗布工程および加圧附形工程の後段にエンドレスベルトを冷却する手段と、さらにその後段にエンドレスベルトから固化した樹脂を剥離させる離型手段とを有することを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to any one of claims 1 to 9,
An endless belt having a coated surface that runs in the coating direction is provided, and means for heating the endless belt before coating the molten resin on the endless belt surface, and cooling the endless belt after the coating process and pressurizing process And a mold release means for separating the solidified resin from the endless belt at the subsequent stage.
請求項1乃至請求項10のいずれかに記載の成形体の製造方法において、
少なくとも、吐出部に対してエンドレスベルトを挟んで対向する位置および加圧ローラに対してエンドレスベルトを挟んで対向する位置にバックアップローラを備え、塗布時に発生する樹脂圧力の反力および加圧ローラの押圧力の反力を受け止めることで、塗布された溶融樹脂に樹脂圧力および押圧力を印加させることが可能なことを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to any one of claims 1 to 10,
A backup roller is provided at least at a position facing the discharge unit with the endless belt interposed therebetween and at a position facing the pressure roller with the endless belt interposed therebetween, and the reaction force of the resin pressure generated during application and the pressure roller A method for producing a molded body, wherein a resin pressure and a pressing force can be applied to an applied molten resin by receiving a reaction force of a pressing force.
請求項1乃至請求項11のいずれかに記載の成形体の製造方法であって、
(a)微細パターンを有するエンドレスベルトの少なくとも後段で溶融樹脂が塗布される微細パターンの温度を、次段の塗布工程で吐出部から吐出される熱可塑性樹脂が粘着する温度、さらには塗布されて微細パターンに接触した熱可塑性樹脂の接触界面に固化層が形成されず、かつ、加圧ローラによる押圧力で微細パターンに樹脂が充填される程度に変形しうる程度の軟化状態を維持できる温度に昇温する被塗布面の昇温工程と、
(b)塗布装置の吐出口から微細なパターン部の全体に前記熱可塑性樹脂が充填されるように、エンドレスベルトを移動させて、吐出部と微細パターンを含む被塗布面とを塗布方向に相対的に移動させながら、かつ吐出口の先端部と前記被塗布面との距離によって最終製品の厚さが規定されるように溶融樹脂を吐出させることで成形体の最終的な厚みおよび幅にほぼ近い状態まで精密塗布を行う塗布工程と、
(c)塗布された樹脂に加圧ローラで押圧力を作用させることで微細パターンに樹脂を完全充填させると共に、最終製品としての厚みと幅に附形する加圧附形工程と、
(d)樹脂が乗っている微細パターン部を冷却して、加圧ローラで押圧された樹脂を冷却および固化させる固化工程と、
(e)固化した成形品を微細パターンから剥離させる離型工程と
を含むことを特徴とする成形体の製造方法。
A method for producing a molded body according to any one of claims 1 to 11,
(A) The temperature of the fine pattern at which the molten resin is applied at least in the subsequent stage of the endless belt having the fine pattern, the temperature at which the thermoplastic resin discharged from the discharge portion in the subsequent application process adheres, and At a temperature at which a solidified layer is not formed at the contact interface of the thermoplastic resin in contact with the fine pattern, and the softened state can be maintained so that the fine pattern can be deformed by the pressing force of the pressure roller. A temperature raising step of the coated surface to be heated;
(B) The endless belt is moved so that the entire thermoplastic resin is filled in the entire fine pattern portion from the discharge port of the coating apparatus, and the discharge portion and the coated surface including the fine pattern are relative to each other in the coating direction. The final thickness and width of the molded product by discharging the molten resin so that the thickness of the final product is regulated by the distance between the tip of the discharge port and the coated surface. An application process for precise application to a close state,
(C) a pressure forming step for completely filling the fine pattern with the resin by applying a pressing force to the applied resin with a pressure roller, and forming the final product with a thickness and a width;
(D) a solidification step of cooling the fine pattern portion on which the resin is placed, and cooling and solidifying the resin pressed by the pressure roller;
And (e) a mold release step of peeling the solidified molded product from the fine pattern.
請求項12に記載の成形体の製造方法において、
上記工程(d)において、塗布方向に加圧ローラが複数個設置されている間で微細パターンを冷却して、樹脂を冷却および固化させている間も押圧力の印加および厚みと幅の調節を続けることを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to claim 12,
In the step (d), the fine pattern is cooled while a plurality of pressure rollers are installed in the coating direction, and the pressing force is applied and the thickness and width are adjusted while the resin is cooled and solidified. A method for producing a molded article, characterized by continuing.
請求項1乃至請求項12のいずれかに記載の成形体の製造方法において、
被塗布面を有する金型を複数個備えると共に、樹脂吐出部と加圧ローラ、または金型の移動手段を備え、第一の場所の金型で昇温工程を行っている間に、第二の場所の金型で塗布工程とローラ加圧附形工程を行い、第三の場所の金型でプレス加圧と固化工程および第四の場所の金型で製品の離型工程を行い、金型または吐出部と加圧ローラを順次移動させながら、昇温工程が完了した場所の金型で塗布工程とローラ加圧附形工程を行い、塗布工程と加圧附形工程が完了した場所で固化工程を行うことを順次行うことを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to any one of claims 1 to 12,
While providing a plurality of molds having a surface to be coated, a resin discharge part and a pressure roller, or a moving means for the molds, The application process and roller pressurizing process are performed on the mold at the location of 2, the press-pressing and solidification process is performed on the mold at the third location, and the mold release process is performed on the mold of the fourth location. While moving the mold or discharge part and pressure roller sequentially, perform the application process and roller pressure forming process at the mold where the temperature raising process is completed, and at the place where the application process and pressure forming process are completed The manufacturing method of the molded object characterized by performing sequentially performing a solidification process.
請求項14に記載の成形体の製造方法において、
複数個の金型を搭載する回転台と、
吐出口先端と被塗布面とを塗布方向に相対移動させるために金型を塗布方向に移動させる手段、あるいは吐出部を塗布方向に移動させる手段と、
吐出口先端と被塗布面との距離を調節するために、吐出部あるいは被塗布面を上下動させるための移動手段と
を有することを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to claim 14,
A turntable for mounting a plurality of molds;
Means for moving the mold in the application direction in order to move the discharge port tip and the surface to be coated in the application direction, or means for moving the discharge part in the application direction;
And a moving means for moving the discharge portion or the surface to be coated up and down in order to adjust the distance between the tip of the discharge port and the surface to be coated.
請求項1乃至請求項12のいずれかに記載の成形体の製造方法において、
吐出部および加圧ローラを各場所に移動させる横行手段と、
吐出口先端および加圧ローラと被塗布面とを塗布方向に相対移動させるために金型を塗布方向に移動させる手段あるいは吐出部を塗布方向に移動させる手段と、
吐出口先端と被塗布面との距離を調節するために、吐出部あるいは被塗布面を上下動させるための移動手段と
を有することを特徴とする成形体の製造方法。
In the manufacturing method of the molded object according to any one of claims 1 to 12,
A traversing means for moving the discharge unit and the pressure roller to each location;
Means for moving the mold in the coating direction or means for moving the discharge part in the coating direction in order to move the discharge port tip and the pressure roller and the surface to be coated relative to each other in the coating direction;
And a moving means for moving the discharge portion or the surface to be coated up and down in order to adjust the distance between the tip of the discharge port and the surface to be coated.
請求項1記載の成形体の製造方法に用いられる成形体の製造装置であって、
微細なパターンを有する被塗布面に、熱可塑性樹脂の吐出口であるTダイのリップと被塗布面との距離で、塗布された溶融した熱可塑性樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動しながら樹脂を塗布した後、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うことを特徴とする成形体の製造装置。
An apparatus for manufacturing a molded body used in the method for manufacturing a molded body according to claim 1,
The thickness of the applied molten thermoplastic resin is defined on the surface to be coated having a fine pattern by the distance between the lip of the T die, which is the thermoplastic resin discharge port, and the surface to be coated. After applying the resin while the surface and the discharge port move relatively, immediately press the pressure roller while keeping the adhesion force between the resin and the pressure roller lower than the adhesion force between the resin and the mold. The molded body is characterized by promoting the filling of the fine pattern of the resin applied to the application surface by pressing, smoothing the thickness of the applied resin, and transferring the mirror surface to the top surface. Manufacturing equipment.
請求項2に記載の成形体の製造方法に用いられる成形体の製造装置であって、
微細なパターンを有する被塗布面を、溶融した熱可塑性樹脂が付着する温度まで昇温する昇温手段と、
熱可塑性樹脂の吐出口と被塗布面との距離で、塗布された樹脂の厚みが規定されるように、被塗布面と吐出口とが相対的に移動させながら樹脂を塗布する塗布手段と、
前記塗布した熱可塑性樹脂を、樹脂と金型との付着力よりも樹脂と加圧ローラとの付着力を低い状態に維持しながら、直ちに加圧ローラで順次押圧することで被塗布面に塗布された樹脂の微細パターンへの充填を促進すると共に、塗布した樹脂の厚みの平滑化と、天面への鏡面の転写を行うローラ加圧附形手段と、
プレス加圧しながら前記熱可塑性樹脂を冷却し固化させるプレス加圧・固化手段と、
固化させた樹脂を被塗布面から剥離させる離型手段と
を含む成形体の製造装置。
An apparatus for manufacturing a molded body used in the method for manufacturing a molded body according to claim 2,
A temperature raising means for raising the surface to be coated having a fine pattern to a temperature at which the molten thermoplastic resin adheres;
An application means for applying the resin while relatively moving the application surface and the discharge port so that the thickness of the applied resin is defined by the distance between the discharge port of the thermoplastic resin and the application surface;
The applied thermoplastic resin is applied to the surface to be coated by immediately pressing with the pressure roller while maintaining the adhesion force between the resin and the pressure roller lower than the adhesion force between the resin and the mold. Roller pressurizing means for facilitating filling of the fine resin pattern and smoothing the thickness of the applied resin and transferring the mirror surface to the top surface;
Press pressing and solidifying means for cooling and solidifying the thermoplastic resin while pressing,
A mold manufacturing apparatus comprising: mold release means for peeling the solidified resin from the surface to be coated.
請求項18に記載の成形体の製造装置において、
塗布方向に走行する被塗布面を有するエンドレスベルトを備えると共に、エンドレスベルト表面に溶融樹脂を塗布する前段にエンドレスベルトを加熱する手段と、塗布工程および加圧附形工程の後段にエンドレスベルトを冷却する手段と、さらにその後段にエンドレスベルトから固化した樹脂を剥離させる離型手段とを有することを特徴とする成形体の製造装置。
In the manufacturing apparatus of the molded object according to claim 18,
An endless belt having a coated surface that runs in the coating direction is provided, and means for heating the endless belt before coating the molten resin on the endless belt surface, and cooling the endless belt after the coating process and pressurizing process And a mold release means for separating the solidified resin from the endless belt at the subsequent stage.
請求項19に記載の成形体の製造装置において、
被塗布面を有する金型を複数個備えると共に、樹脂吐出部と加圧ローラ、または金型の移動手段を備え、第一の場所の金型で昇温工程を行っている間に、第二の場所の金型で塗布工程とローラ加圧附形工程を行い、第三の場所の金型でプレス加圧と固化工程および第四の場所の金型で製品の離型工程を行い、金型または吐出部と加圧ローラを順次移動させながら、昇温工程が完了した場所の金型で塗布工程とローラ加圧附形工程を行い、塗布工程と加圧附形工程が完了した場所で固化工程を行うことを順次行うことを特徴とする成形体の製造装置。
In the manufacturing apparatus of the molded object according to claim 19,
While providing a plurality of molds having a surface to be coated, a resin discharge part and a pressure roller, or a moving means for the molds, The application process and roller pressurizing process are performed on the mold at the location of 2, the press-pressing and solidification process is performed on the mold at the third location, and the mold release process is performed on the mold of the fourth location. While moving the mold or discharge part and pressure roller sequentially, perform the application process and roller pressure forming process at the mold where the temperature raising process is completed, and at the place where the application process and pressure forming process are completed An apparatus for manufacturing a molded body, wherein the solidifying step is sequentially performed.
JP2008098411A 2008-04-04 2008-04-04 Manufacturing method and manufacturing apparatus of molded body Active JP4975675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098411A JP4975675B2 (en) 2008-04-04 2008-04-04 Manufacturing method and manufacturing apparatus of molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098411A JP4975675B2 (en) 2008-04-04 2008-04-04 Manufacturing method and manufacturing apparatus of molded body

Publications (2)

Publication Number Publication Date
JP2009248431A true JP2009248431A (en) 2009-10-29
JP4975675B2 JP4975675B2 (en) 2012-07-11

Family

ID=41309566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098411A Active JP4975675B2 (en) 2008-04-04 2008-04-04 Manufacturing method and manufacturing apparatus of molded body

Country Status (1)

Country Link
JP (1) JP4975675B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037266A1 (en) 2009-09-28 2011-03-31 Mizuno Yoshiro Monitoring system
JP2012000894A (en) * 2010-06-17 2012-01-05 Japan Steel Works Ltd:The Method for manufacturing fine structure body
WO2012086385A1 (en) 2010-12-22 2012-06-28 株式会社 日本製鋼所 Method for manufacturing microscopic structural body
JP2014207179A (en) * 2013-04-15 2014-10-30 トヨタ自動車株式会社 Method and device for manufacturing secondary battery electrode
JP2016097607A (en) * 2014-11-25 2016-05-30 株式会社日本製鋼所 Method for molding resin molded article
CN110053209A (en) * 2019-05-28 2019-07-26 奥力孚传动科技股份有限公司 A kind of molding machine and moulding process of the synchronous belt that is open
KR20200080720A (en) * 2018-12-27 2020-07-07 현대제철 주식회사 Apparatus for manufacturing fiber product
JP2020131620A (en) * 2019-02-22 2020-08-31 パナソニックIpマネジメント株式会社 Production method and production device for film structure
JP7471702B1 (en) 2023-06-14 2024-04-22 若水技研株式会社 Method and manufacturing method for straightening a resin sheet, and apparatus for straightening a resin sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148525A (en) * 1980-04-22 1981-11-18 Dainippon Printing Co Ltd Manufacture of permeation-type television screen
JPS57169325A (en) * 1981-04-10 1982-10-19 Nippon Columbia Co Ltd Manufacture of information carrier
JPH02122916A (en) * 1988-11-01 1990-05-10 Canon Inc Manufacture of substrate for optical information storage medium and molding roller used therefor
JP2000141388A (en) * 1998-11-06 2000-05-23 Nichigo Morton Co Ltd Method for laminating
JP2001198979A (en) * 2000-01-18 2001-07-24 Ishikawa Seisakusho Ltd Pattern transfer device
JP2004202970A (en) * 2002-12-26 2004-07-22 Sekisui Chem Co Ltd Rotary die type compression molding method and its apparatus
JP2005305971A (en) * 2004-04-26 2005-11-04 Alps Electric Co Ltd Irregularity forming apparatus, microirregularity fabricating method, and liquid crystal display element using it
JP3857703B2 (en) * 2004-08-19 2006-12-13 株式会社日本製鋼所 Manufacturing method and manufacturing apparatus of molded body
JP2007076178A (en) * 2005-09-14 2007-03-29 Japan Steel Works Ltd:The Manufacturing equipment and manufacturing method for molded body
JP2007136842A (en) * 2005-11-18 2007-06-07 Japan Steel Works Ltd:The Apparatus and method for producing molding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148525A (en) * 1980-04-22 1981-11-18 Dainippon Printing Co Ltd Manufacture of permeation-type television screen
JPS57169325A (en) * 1981-04-10 1982-10-19 Nippon Columbia Co Ltd Manufacture of information carrier
JPH02122916A (en) * 1988-11-01 1990-05-10 Canon Inc Manufacture of substrate for optical information storage medium and molding roller used therefor
JP2000141388A (en) * 1998-11-06 2000-05-23 Nichigo Morton Co Ltd Method for laminating
JP2001198979A (en) * 2000-01-18 2001-07-24 Ishikawa Seisakusho Ltd Pattern transfer device
JP2004202970A (en) * 2002-12-26 2004-07-22 Sekisui Chem Co Ltd Rotary die type compression molding method and its apparatus
JP2005305971A (en) * 2004-04-26 2005-11-04 Alps Electric Co Ltd Irregularity forming apparatus, microirregularity fabricating method, and liquid crystal display element using it
JP3857703B2 (en) * 2004-08-19 2006-12-13 株式会社日本製鋼所 Manufacturing method and manufacturing apparatus of molded body
JP2007076178A (en) * 2005-09-14 2007-03-29 Japan Steel Works Ltd:The Manufacturing equipment and manufacturing method for molded body
JP2007136842A (en) * 2005-11-18 2007-06-07 Japan Steel Works Ltd:The Apparatus and method for producing molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037266A1 (en) 2009-09-28 2011-03-31 Mizuno Yoshiro Monitoring system
JP2012000894A (en) * 2010-06-17 2012-01-05 Japan Steel Works Ltd:The Method for manufacturing fine structure body
US9744698B2 (en) 2010-12-22 2017-08-29 The Japan Steel Works, Ltd. Method for manufacturing microscopic structural body
WO2012086385A1 (en) 2010-12-22 2012-06-28 株式会社 日本製鋼所 Method for manufacturing microscopic structural body
TWI490109B (en) * 2010-12-22 2015-07-01 Japan Steel Works Ltd Manufacturing method of microstructure
JP2014207179A (en) * 2013-04-15 2014-10-30 トヨタ自動車株式会社 Method and device for manufacturing secondary battery electrode
JP2016097607A (en) * 2014-11-25 2016-05-30 株式会社日本製鋼所 Method for molding resin molded article
KR20200080720A (en) * 2018-12-27 2020-07-07 현대제철 주식회사 Apparatus for manufacturing fiber product
KR102144200B1 (en) * 2018-12-27 2020-08-12 현대제철 주식회사 Apparatus for manufacturing fiber product
JP2020131620A (en) * 2019-02-22 2020-08-31 パナソニックIpマネジメント株式会社 Production method and production device for film structure
JP7386449B2 (en) 2019-02-22 2023-11-27 パナソニックIpマネジメント株式会社 Film structure manufacturing method and manufacturing device
CN110053209A (en) * 2019-05-28 2019-07-26 奥力孚传动科技股份有限公司 A kind of molding machine and moulding process of the synchronous belt that is open
JP7471702B1 (en) 2023-06-14 2024-04-22 若水技研株式会社 Method and manufacturing method for straightening a resin sheet, and apparatus for straightening a resin sheet

Also Published As

Publication number Publication date
JP4975675B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4975675B2 (en) Manufacturing method and manufacturing apparatus of molded body
JP3857703B2 (en) Manufacturing method and manufacturing apparatus of molded body
JP4506733B2 (en) Manufacturing method of optical film
TWI379760B (en) Apparatus for forming film with intermittent interval and method for forming film with intermittent interval
EP2263858A1 (en) Production method and production device of film having fine irregular pattern on surface
KR101400820B1 (en) Process for producing microconfiguration transfer sheet and apparatus therefor
CN1579732A (en) Process and apparatus for embossing a film surface
CN101142068A (en) Manufacturing method of resin sheet
JP2008254230A (en) Molding die and method for producing molding using this die
JP4444982B2 (en) Manufacturing method of molded body
Deshmukh et al. Current innovations in roller embossing—A comprehensive review
JP2008080727A (en) Manufacturing process of resin sheet
JP4699492B2 (en) Molded body manufacturing apparatus and manufacturing method
JP2009172794A (en) Method for producing resin sheet
JP4224048B2 (en) Molded body manufacturing apparatus and manufacturing method
JP2007136842A (en) Apparatus and method for producing molding
JP5104228B2 (en) Fine shape transfer sheet manufacturing apparatus and fine shape transfer sheet manufacturing method
JP2010030192A (en) Minute shape transfer sheet and method of manufacturing minute shape transfer sheet
JP2017072791A (en) Molding with nanostructure
JP5082738B2 (en) Fine shape transfer sheet manufacturing equipment
CN111516251B (en) Pattern forming method and imprinting apparatus
JP4575412B2 (en) Resin yarn cutting method, resin yarn cutting device and resin molding method
JPH10151662A (en) Roll for molding extruded sheet
JP2008087227A (en) Method and apparatus for manufacturing fine shape transfer sheet
JP2010094934A (en) Apparatus for manufacturing transfer sheet for fine pattern

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250