JP2009248246A - Manufacturing method of bearing device - Google Patents

Manufacturing method of bearing device Download PDF

Info

Publication number
JP2009248246A
JP2009248246A JP2008098955A JP2008098955A JP2009248246A JP 2009248246 A JP2009248246 A JP 2009248246A JP 2008098955 A JP2008098955 A JP 2008098955A JP 2008098955 A JP2008098955 A JP 2008098955A JP 2009248246 A JP2009248246 A JP 2009248246A
Authority
JP
Japan
Prior art keywords
outer ring
grinding
peripheral surface
ring raceway
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008098955A
Other languages
Japanese (ja)
Inventor
Yukio Yamazaki
幸雄 山崎
Tatsuo Wakabayashi
達男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008098955A priority Critical patent/JP2009248246A/en
Publication of JP2009248246A publication Critical patent/JP2009248246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a manufacturing method capable of finish-grinding each of first and second outer-ring raceways 5, 6 with better geometric accuracy. <P>SOLUTION: When subjecting each of the first and second outer-ring raceways 5, 6 to a grinding process, the manufacturing method starts the grinding process, with an integral grinding wheel 14a, first on an inner circumferential surface of a shoulder portion 17, thereby stabilizing a feed rate of the grinding wheel 14a. After that, while maintaining the feed rate stable, the manufacturing method starts grinding each of the first and second outer-ring raceways 5, 6. Employing the manufacturing method like this solves the problem. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば自動車の車輪支持用軸受ユニットの様に、複列の外輪軌道を有する外方部材を備えた軸受装置の製造方法の改良に関する。   The present invention relates to an improvement in a manufacturing method of a bearing device including an outer member having a double row outer ring raceway, such as a bearing unit for supporting a wheel of an automobile.

自動車の車輪は、軸受装置の一種である、車輪支持用軸受ユニットにより懸架装置に支持する。図6は、この様な車輪支持用軸受ユニットの従来構造の第1例を示している。この車輪支持用軸受ユニットは、外方部材である外輪1と、内方部材であるハブ本体2及び内輪3と、複数個の転動体4、4とを備える。このうちの外輪1は、内周面に第一、第二の外輪軌道5、6を、外周面に懸架装置に結合固定する為の結合フランジ7を、それぞれ形成している。又、上記ハブ本体2は、外周面の軸方向外端(軸方向に関して「外」とは、自動車への組み付け状態で車両の幅方向外側を言い、図1〜4、図6〜8、図13の左側。反対に、車両の幅方向中央側となる図1〜4、図6〜8、図13の右側を、軸方向に関して「内」と言う。本明細書の全体で同じ。)寄り部分に、車輪及び制動用回転部材を支持固定する為の取付フランジ8を、軸方向中間部に第一の内輪軌道9を、軸方向内端部にこの第一の内輪軌道9を形成した部分よりも外径寸法が小さくなった小径段部11を、それぞれ形成している。   The wheels of an automobile are supported on a suspension device by a wheel-supporting bearing unit, which is a kind of bearing device. FIG. 6 shows a first example of a conventional structure of such a wheel support bearing unit. The wheel support bearing unit includes an outer ring 1 that is an outer member, a hub body 2 and an inner ring 3 that are inner members, and a plurality of rolling elements 4 and 4. Of these, the outer ring 1 is formed with first and second outer ring raceways 5 and 6 on the inner peripheral surface and a coupling flange 7 for coupling and fixing to the suspension device on the outer peripheral surface. Further, the hub body 2 has an outer end in the axial direction of the outer peripheral surface ("outside" with respect to the axial direction means the outer side in the width direction of the vehicle in the assembled state to the automobile, and FIGS. 1-4, 6-8, FIG. The left side of Fig. 13. On the contrary, the right side of Fig. 1-4, Fig. 6-8, and Fig. 13, which is the center side in the width direction of the vehicle, is referred to as "inner" in the axial direction. A portion in which a mounting flange 8 for supporting and fixing a wheel and a braking rotating member is formed in a portion, a first inner ring raceway 9 is formed in an axially intermediate portion, and a first inner ring raceway 9 is formed in an axially inner end portion. The small-diameter step portion 11 having a smaller outer diameter is formed.

又、上記内輪3は、外周面に第二の内輪軌道10を有するもので、上記小径段部11に締り嵌めで外嵌している。又、この状態で、上記ハブ本体2の軸方向内端部に設けた円筒部12の先端部を径方向外方に塑性変形させて形成したかしめ部13により、上記内輪3の軸方向内端面を抑え付けている。これにより、この内輪3を上記ハブ本体2に結合固定している。又、上記各転動体4、4は、上記第一、第二の各外輪軌道5、6と上記第一、第二の各内輪軌道9、10との間にそれぞれ複数個ずつ、転動自在に設けている。尚、図示の例では、上記各転動体4、4として玉を使用しているが、重量の嵩む自動車用の軸受ユニットの場合には、円すいころを使用する場合もある。   The inner ring 3 has a second inner ring raceway 10 on the outer peripheral surface, and is fitted on the small-diameter step portion 11 by an interference fit. Further, in this state, the inner end surface in the axial direction of the inner ring 3 is formed by the caulking portion 13 formed by plastically deforming the distal end portion of the cylindrical portion 12 provided at the inner end portion in the axial direction of the hub body 2 in the radially outward direction. Is suppressed. Thus, the inner ring 3 is coupled and fixed to the hub body 2. Each of the rolling elements 4 and 4 can freely roll between the first and second outer ring raceways 5 and 6 and the first and second inner ring raceways 9 and 10, respectively. Provided. In the example shown in the figure, balls are used as the rolling elements 4 and 4. However, in the case of a heavy-duty automobile bearing unit, tapered rollers may be used.

ところで、上述した様な車輪支持用軸受ユニットでは、上記外輪1の強度及び耐久性を向上させる為、この外輪1のうちで上記第一、第二の各外輪軌道5、6部分(図6に梨子地で示す部分)に、それぞれ高周波焼入れ処理による硬化層を形成している。又、上記第一、第二の各外輪軌道5、6には、上記各硬化層を形成した後、仕上げの研削加工を施している。図7〜8は、特許文献1に記載される等により従来から知られている、上記第一、第二の各外輪軌道5、6の研削方法の2例を示している。   By the way, in the wheel support bearing unit as described above, in order to improve the strength and durability of the outer ring 1, the first and second outer ring raceways 5 and 6 of the outer ring 1 (see FIG. 6). A hardened layer formed by induction hardening is formed on each of the parts indicated by the pear ground. The first and second outer ring raceways 5 and 6 are subjected to finishing grinding after the hardened layers are formed. 7 to 8 show two examples of grinding methods for the first and second outer ring raceways 5 and 6, which are conventionally known as described in Patent Document 1, and the like.

先ず、図7に示した従来の研削方法の第1例に就いて説明する。本例の場合には、一体型の砥石14を使用して、外輪1の内周面に設けた第一、第二の各外輪軌道5、6に対し、同時に(一挙動で)研削加工を施す。この為に、本例の場合には、上記砥石14の外周面に、上記第一の外輪軌道5を研削する為の第一の研削面15と、上記第二の外輪軌道6を研削する為の第二の研削面16とを、それぞれ軸方向に関して自身が研削する部位と同位置に設けている。このうちの第一の研削面15は、研削仕上げ後の上記第一の外輪軌道5の断面形状と合致する母線形状を有し、上記第二の研削面16は、研削仕上げ後の上記第二の外輪軌道6の断面形状と合致する母線形状を有する。   First, a first example of the conventional grinding method shown in FIG. 7 will be described. In the case of this example, by using an integrated grindstone 14, the first and second outer ring raceways 5 and 6 provided on the inner peripheral surface of the outer ring 1 are ground simultaneously (in one behavior). Apply. For this reason, in this example, the first grinding surface 15 for grinding the first outer ring raceway 5 and the second outer ring raceway 6 are ground on the outer peripheral surface of the grindstone 14. The second grinding surface 16 is provided at the same position as the portion to be ground by itself in the axial direction. Of these, the first grinding surface 15 has a generatrix shape that matches the cross-sectional shape of the first outer ring raceway 5 after grinding finish, and the second grinding surface 16 is the second grinding surface 16 after grinding finish. The outer ring raceway 6 has a busbar shape that matches the cross-sectional shape of the outer ring raceway 6.

この様な砥石14を使用して、上記第一、第二の各外輪軌道5、6に研削加工を施す際には、先ず、上記外輪1の径方向内側に上記砥石14を挿入し、上記第一、第二の各外輪軌道5、6と、上記第一、第二の各研削面15、16との、互いの軸方向位置を一致させる。これと共に、上記外輪1と上記砥石14とを、それぞれ自身の中心軸α、βを中心として、互いに異なる周速で(例えば逆方向に)回転させる。そして、この状態で、上記外輪1に対し上記砥石14を径方向に変位させる事により、この外輪1の内周面にこの砥石14の外周面を接触させ、図示の様に、上記第一の研削面15により上記第一の外輪軌道5を、上記第二の研削面16により上記第二の外輪軌道6を、それぞれ同時に研削する。   When grinding the first and second outer ring raceways 5 and 6 using such a grindstone 14, first, the grindstone 14 is inserted radially inside the outer ring 1, The axial positions of the first and second outer ring raceways 5 and 6 and the first and second grinding surfaces 15 and 16 are made to coincide with each other. At the same time, the outer ring 1 and the grindstone 14 are rotated at different peripheral speeds (for example, in opposite directions) around their own central axes α and β. In this state, the wheel 14 is displaced in the radial direction with respect to the outer ring 1 so that the outer surface of the wheel 14 is brought into contact with the inner surface of the outer ring 1, and the first The first outer ring raceway 5 is ground simultaneously by the grinding surface 15 and the second outer ring raceway 6 is ground simultaneously by the second grinding surface 16.

尚、上記外輪1では、上記第一、第二の各外輪軌道5、6同士の間に存在する肩部17にも、上記高周波焼入れ処理による熱影響が及んで、この肩部17の内周面(円筒面)に、スケールと呼ばれる硬い炭化物が付着する場合がある。このスケールが運転時に脱落して転がり接触部に噛み込まれると、振動や異音の発生並びに転がり疲れ寿命の低下の原因になる為、好ましくない。従って、上述した従来の研削方法の第1例の様に、上記砥石14により、上記第一、第二の各外輪軌道5、6にのみ研削加工を施す場合には、これと前後して、別の砥石により、上記肩部17の内周面に研削加工を施して、この肩部17の内周面に付着したスケールを除去するのが好ましい。   In the outer ring 1, the shoulder 17 existing between the first and second outer ring raceways 5, 6 is also affected by heat due to the induction hardening process. Hard carbide called scale may adhere to the surface (cylindrical surface). If this scale falls off during operation and is caught in the rolling contact portion, it is not preferable because it causes generation of vibrations and noise and a decrease in rolling fatigue life. Therefore, as in the first example of the conventional grinding method described above, when grinding is performed only on the first and second outer ring raceways 5 and 6 by the grindstone 14, before and after this, It is preferable to grind the inner peripheral surface of the shoulder portion 17 with another grindstone to remove the scale attached to the inner peripheral surface of the shoulder portion 17.

次に、図8に示した従来の研削方法の第2例に就いて説明する。本例の場合には、一体型の砥石14aを使用して、外輪1のうち、第一、第二の各外輪軌道5、6と、肩部17の内周面とに対し、同時に(一挙動で)研削加工を施す。この為に、本例の場合には、上記砥石14aの外周面に、上記第一の外輪軌道5を研削する為の第一の研削面15と、上記第二の外輪軌道6を研削する為の第二の研削面16と、上記肩部17の内周面を研削する為の第三の研削面18とを、それぞれ軸方向に関して自身が研削する部位と同位置に設けている。このうちの第一の研削面15は、研削仕上げ後の上記第一の外輪軌道5の断面形状と合致する断面形状を有し、上記第二の研削面16は、研削仕上げ後の上記第二の外輪軌道6の断面形状と合致する断面形状を有し、上記第三の研削面18は、研削仕上げ後の上記肩部17の内周面の断面形状と合致する断面形状を有する。   Next, a second example of the conventional grinding method shown in FIG. 8 will be described. In the case of this example, using the integrated grindstone 14a, the first and second outer ring raceways 5 and 6 and the inner peripheral surface of the shoulder portion 17 of the outer ring 1 are simultaneously (one Grinding (by behavior). For this reason, in this example, the first grinding surface 15 for grinding the first outer ring raceway 5 and the second outer ring raceway 6 are ground on the outer peripheral surface of the grindstone 14a. The second grinding surface 16 and the third grinding surface 18 for grinding the inner peripheral surface of the shoulder portion 17 are provided at the same positions as the portions to be ground by themselves in the axial direction. Of these, the first grinding surface 15 has a cross-sectional shape that matches the cross-sectional shape of the first outer ring raceway 5 after grinding finish, and the second grinding surface 16 is the second grinding surface 16 after grinding finish. The third grinding surface 18 has a cross-sectional shape that matches the cross-sectional shape of the inner peripheral surface of the shoulder portion 17 after grinding.

この様な砥石14aを使用して、上記第一、第二の各外輪軌道5、6及び上記肩部17の内周面に研削加工を施す際には、上述した第1例の場合と同様の手順で、上記外輪1の内周面に上記砥石14aの外周面を接触させ、図示の様に、上記第一、第二の各研削面15、16により上記第一、第二の各外輪軌道5、6を、上記第三の研削面18により上記肩部17の内周面を、それぞれ同時に研削する。この様に、本例の場合には、上記第一、第二の各外輪軌道5、6と、上記肩部17の内周面とに対し、同時に研削加工を施す為、別々に研削加工を施す場合に比べて、加工工数を少なくできる。   When grinding is performed on the inner peripheral surfaces of the first and second outer ring raceways 5 and 6 and the shoulder portion 17 using such a grindstone 14a, the same as in the case of the first example described above. In this procedure, the outer peripheral surface of the grindstone 14a is brought into contact with the inner peripheral surface of the outer ring 1, and the first and second outer rings are brought into contact with the first and second grinding surfaces 15, 16 as shown in the figure. The inner circumferential surface of the shoulder portion 17 is ground simultaneously with the tracks 5 and 6 by the third grinding surface 18. In this way, in the case of this example, the first and second outer ring raceways 5 and 6 and the inner peripheral surface of the shoulder portion 17 are ground at the same time. The number of processing steps can be reduced compared to the case of applying.

ところが、上述の図7〜8に示した従来の研削方法の第1〜2例を実施する場合には、砥石14、14aの外周面に設けた第一、第二の各研削面15、16の一部で砥粒が大量脱落して、研削仕上げ後の第一、第二の各外輪軌道5、6に形状崩れが生じる可能性がある。この理由に就いて、以下に説明する。   However, when the first and second examples of the conventional grinding method shown in FIGS. 7 to 8 are performed, the first and second grinding surfaces 15 and 16 provided on the outer peripheral surface of the grindstones 14 and 14a. There is a possibility that a large amount of abrasive grains fall off at a part of the shape, and the first and second outer ring raceways 5 and 6 after grinding finish may be deformed. The reason will be described below.

被加工物の研削加工を行う場合には、通常、図9に示す様に、クイックアプローチ(被加工物に砥石を接触させる工程)→粗研削→仕上げ研削→スパークアウト(最終仕上げ研削)と言った工程順に、(外輪1の径方向外方への)砥石の送り速度(送り量/時間)を段階的に減少させる(最終的に零にする)。尚、クイックアプローチで砥石の送り速度を最も大きくする理由は、ロスタイムを短くして、作業能率を向上させる為である。又、研削盤は、ギャップエリミネータと呼ばれる装置により、被加工物と砥石との接触が起こった事を確認した時点で、クイックアプローチから粗研削への工程の切り換え(砥石の送り速度の変更)を行う。   When grinding a workpiece, usually, as shown in FIG. 9, a quick approach (a step of bringing a grinding wheel into contact with the workpiece) → rough grinding → finish grinding → spark out (final finish grinding) In the order of the steps, the feed speed (feed amount / time) of the grindstone (outward in the radial direction of the outer ring 1) is decreased stepwise (finally set to zero). Note that the reason why the grindstone feed speed is maximized by the quick approach is to shorten the loss time and improve the work efficiency. In addition, when the grinding machine confirms that contact between the workpiece and the grindstone has occurred using a device called a gap eliminator, it switches the process from quick approach to rough grinding (changes the feed speed of the grindstone). Do.

一方、前記特許文献1には記載されていないが、上述の図7に示した従来の研削方法の第1例で、上述したクイックアプローチを行う(砥石14の外周面を外輪1の内周面に向け径方向に変位させる)場合には、第一の研削面15(第二の研削面16)が最初から、第一の外輪軌道5(第二の外輪軌道6)の全体に接触する訳ではない。即ち、この場合には、図10に示す様に、先ず最初に、上記第一の研削面15(第二の研削面16)が、上記第一の外輪軌道5(第二の外輪軌道6)のうちの肩部17側の端縁部(角部P)に接触する。この理由は、研削仕上げ前の上記第一の外輪軌道5(第二の外輪軌道6)の表層部に、この研削仕上げで削り取る予定の、均一な厚さの取り代19(図10に斜格子を付して示す部分)が存在する為である。   On the other hand, although not described in Patent Document 1, the above-described quick approach is performed in the first example of the conventional grinding method shown in FIG. 7 (the outer peripheral surface of the grindstone 14 is changed to the inner peripheral surface of the outer ring 1). The first grinding surface 15 (second grinding surface 16) is in contact with the entire first outer ring raceway 5 (second outer ring raceway 6) from the beginning. is not. That is, in this case, as shown in FIG. 10, first, the first grinding surface 15 (second grinding surface 16) is the first outer ring raceway 5 (second outer ring raceway 6). It contacts the edge (corner P) on the shoulder 17 side. The reason for this is that a uniform thickness allowance 19 (slanted lattice in FIG. 10), which is planned to be removed by grinding, is formed on the surface layer of the first outer ring raceway 5 (second outer ring raceway 6) before grinding finish. This is because there is a portion indicated by.

又、上述の図8に示した従来の研削方法の第2例で、上述したクイックアプローチを行う(砥石14aの外周面を外輪1の内周面に向け径方向に変位させる)場合も、図11に示す様に、先ず最初に、第一の研削面15(第二の研削面16)が、第一の外輪軌道5(第二の外輪軌道6)のうちの肩部17側の端縁部(角部P)に接触する。この理由も、研削仕上げ前の上記第一の外輪軌道5(第二の外輪軌道6)及び上記肩部17の内周面の表層部に、この研削仕上げで削り取る予定の、均一な厚さの取り代19(図11に斜格子を付して示す部分)が存在する為である。   Further, in the second example of the conventional grinding method shown in FIG. 8 described above, the above-described quick approach is performed (the outer peripheral surface of the grindstone 14a is displaced radially toward the inner peripheral surface of the outer ring 1). As shown in FIG. 11, first, the first grinding surface 15 (second grinding surface 16) is the edge on the shoulder 17 side of the first outer ring raceway 5 (second outer ring raceway 6). It contacts the part (corner part P). The reason for this is that the first outer ring raceway 5 (second outer ring raceway 6) before grinding finish and the surface layer portion of the inner peripheral surface of the shoulder 17 have a uniform thickness that is planned to be scraped off by this grinding finish. This is because there is a machining allowance 19 (portion shown with an oblique grid in FIG. 11).

何れにしても、上述の図10〜11に示す様な、第一の研削面15(第二の研削面16)と角部Pとの接触は、点接触若しくは接触長さが短い線接触となる。そして、この様な点接触若しくは短い線接触が起こった際に発生する振動や負荷荷重やモータ電流の変化等は、小さなものとなる。この為、上記ギャップエリミネータが、これら振動や負荷荷重やモータ電流の変化等を検知する事に基づいて、外輪1と砥石14(14a)との接触確認を行うものである場合には、上記点接触若しくは短い線接触が起こった際に発生する小さな振動や負荷荷重やモータ電流の変化等を検知できずに、上記接触確認のタイミングが遅れると言った不具合が生じる可能性がある。この様な不具合が生じた場合には、上記点接触若しくは短い線接触が起こった後も、上記接触確認がされるまでの間、クイックアプローチの送り速度で砥石14(14a)が送られる様になる。この結果、図12に示す様に、上記第一の研削面15(第二の研削面16)のうち、上記角部P(図10〜11)と接触した部分で砥粒の大量脱落が生じ、当該部分に凹部25が形成されると言った不具合が生じ易くなる。この様な不具合が生じた場合には、同図に示す様に、上記第一の外輪軌道5(第二の外輪軌道6)のうち、上記凹部25と対向する部分の取り代19が削り取られずに残り、研削仕上げ後の上記第一の外輪軌道5(第二の外輪軌道6)に形状崩れが生じる為、好ましくない。   In any case, the contact between the first grinding surface 15 (second grinding surface 16) and the corner P as shown in FIGS. 10 to 11 described above is a point contact or a line contact with a short contact length. Become. Then, vibrations, load loads, changes in motor current, and the like that occur when such point contact or short line contact occurs are small. For this reason, when the gap eliminator performs contact confirmation between the outer ring 1 and the grindstone 14 (14a) based on detection of such vibration, load load, change in motor current, etc. There may be a problem that the timing of the contact confirmation is delayed without detecting small vibrations, load loads, changes in motor current, etc. that occur when contact or short line contact occurs. When such a defect occurs, the grindstone 14 (14a) is fed at the feed speed of the quick approach until the contact is confirmed after the point contact or the short line contact occurs. Become. As a result, as shown in FIG. 12, a large amount of abrasive grains drop off at the portion of the first grinding surface 15 (second grinding surface 16) in contact with the corner portion P (FIGS. 10 to 11). The problem that the concave portion 25 is formed in the portion is likely to occur. When such a problem occurs, as shown in the figure, the machining allowance 19 of the portion of the first outer ring raceway 5 (second outer ring raceway 6) facing the recess 25 is not cut off. This is not preferable because the first outer ring raceway 5 (second outer ring raceway 6) after grinding finish is deformed.

尚、以上に述べた様な不具合は、例えば図13に示す様な車輪支持用軸受ユニットの従来構造の第2例を構成する外輪1aを対象として、上述の図7〜8に示した様な各研削方法を実施する場合にも生じる。この理由は、上記外輪1aの内周面のうちで、1対の外輪軌道5a、6a部分は、熱処理による脱炭層を除去する必要があるのに対し、これら両外輪軌道5a、6a同士の間部分は、単にスケールを除去すれば良く、研削取り代は、これら両外輪軌道5a、6a部分の方が大きくなる為である。図13に示した車輪支持用軸受ユニットの従来構造の第2例は、第一の外輪軌道5aの直径を第二の外輪軌道6aの直径よりも大きくすると共に、第一の内輪軌道9aの直径を第二の内輪軌道10aの直径よりも大きくしている。これにより、上記第一の外輪軌道5aと上記第一の内輪軌道9aとの間に設けた各転動体4、4(軸方向外側の転動体列)のピッチ円直径を、上記第二の外輪軌道5aと上記第二の内輪軌道10aとの間に設けた各転動体4、4(軸方向内側の転動体列)のピッチ円直径よりも大きくしている。そして、この様な構成を採用する事により、車輪支持用軸受ユニットのモーメント剛性を高めている。その他の部分の構造及び作用は、上述した従来構造の第1例の場合とほぼ同様である。   In addition, the troubles described above are as shown in FIGS. 7 to 8 for the outer ring 1a constituting the second example of the conventional structure of the wheel supporting bearing unit as shown in FIG. This also occurs when each grinding method is performed. This is because, among the inner peripheral surfaces of the outer ring 1a, the pair of outer ring raceways 5a and 6a need to remove the decarburized layer by heat treatment, while the outer ring raceways 5a and 6a are located between the outer ring raceways 5a and 6a. This is because the scale can be removed simply by removing the scale, and the grinding allowance is larger for both the outer ring raceways 5a and 6a. In the second example of the conventional structure of the wheel supporting bearing unit shown in FIG. 13, the diameter of the first outer ring raceway 5a is made larger than the diameter of the second outer ring raceway 6a and the diameter of the first inner ring raceway 9a. Is made larger than the diameter of the second inner ring raceway 10a. As a result, the pitch circle diameter of each rolling element 4, 4 (rolling element row outside in the axial direction) provided between the first outer ring raceway 5a and the first inner ring raceway 9a is set to the second outer ring. It is larger than the pitch circle diameter of each rolling element 4, 4 (rolling element row inside in the axial direction) provided between the track 5a and the second inner ring raceway 10a. By adopting such a configuration, the moment rigidity of the wheel supporting bearing unit is increased. The structure and operation of the other parts are almost the same as those in the first example of the conventional structure described above.

特開2005−325903号公報JP 2005-325903 A

本発明は、以上に述べた様な不具合が生じる事を防止して、研削仕上げ後に、複列の外輪軌道の形状精度を良好にできる製造方法を実現すべく発明したものである。   The present invention was invented to realize a manufacturing method capable of preventing the occurrence of the problems as described above and improving the shape accuracy of the double-row outer ring raceway after grinding finish.

本発明の製造方法の対象となる軸受装置は、内周面に複列の外輪軌道を有する外方部材と、外周面に複列の内輪軌道を有する内方部材と、これら各外輪軌道と各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体とを備える。そして、上記外方部材のうちで上記各外輪軌道部分に、それぞれ高周波焼入れ処理による硬化層を形成している。
そして、本発明の軸受装置の製造方法は、上述の様な構成を有する軸受装置を製造すべく、上記外方部材のうちで上記各外輪軌道部分に上記硬化層を形成した後、一体型の砥石により、これら各外輪軌道に対し、同時に(一挙動で)仕上げの研削加工を施す。
The bearing device that is the subject of the manufacturing method of the present invention includes an outer member having a double row outer ring raceway on the inner peripheral surface, an inner member having a double row inner ring raceway on the outer peripheral surface, the outer ring raceways, A plurality of rolling elements provided between the inner ring raceway and the inner ring raceway. And the hardening layer by the induction hardening process is formed in each said outer ring track part among the said outer members, respectively.
In the manufacturing method of the bearing device of the present invention, the hardened layer is formed on each outer ring raceway portion of the outer member in order to manufacture the bearing device having the above-described configuration. A grinding wheel is used to finish grinding the outer ring raceways simultaneously (in one behavior).

特に、本発明の軸受装置の製造方法の場合には、上記砥石により、上記外方部材の内周面のうちで上記各外輪軌道以外の部分に研削加工を施し始める事に基づき、上記砥石の送り速度を安定させる(クイックアプローチの送り速度よりも遅い、研削の送り速度にする)。その後、この送り速度を安定させたままの状態で、上記各外輪軌道に研削加工を施し始める。
この様な特徴を有する本発明の軸受装置の製造方法を実施する場合に、好ましくは、請求項2に記載した様に、上記外方部材の内周面のうちで、上記各外輪軌道よりも先に研削加工を施し始める部分を、これら各外輪軌道同士の間部分のうちの少なくとも一部分とする。
より好ましくは、請求項3に記載した様に、少なくとも最終的に、上記外方部材の内周面のうちで上記各外輪軌道同士の間部分の全体に研削加工を施す。
In particular, in the case of the method for manufacturing a bearing device according to the present invention, the grinding wheel starts to grind parts other than the outer ring raceways on the inner peripheral surface of the outer member. Stabilize the feed rate (make the feed rate of grinding slower than the quick approach feed rate). Thereafter, the outer ring raceway starts to be ground with the feed rate kept stable.
When carrying out the manufacturing method of the bearing device of the present invention having such a feature, preferably, as described in claim 2, the inner circumferential surface of the outer member is more than the outer ring raceways. The part where the grinding process starts first is defined as at least a part of the part between these outer ring raceways.
More preferably, as described in claim 3, at least finally, the entire portion of the inner peripheral surface of the outer member between the outer ring raceways is ground.

又、上述の様な本発明の軸受装置の製造方法は、例えば請求項4〜5に記載した様な軸受装置を対象として実施する事ができる。
このうちの請求項4に記載した軸受装置は、上記各外輪軌道と上記各内輪軌道との間に設けられた1対の転動体列のピッチ円直径(更には転動体の直径や個数)が、互いに異なる軸受装置である。
又、請求項5に記載した軸受装置は、自動車の車輪支持用軸受ユニットであり、使用状態で上記外方部材と上記内方部材とのうちの一方の部材を自動車の懸架装置に支持し、他方の部材に車輪を結合固定する。
Moreover, the manufacturing method of the bearing device of the present invention as described above can be carried out for a bearing device as described in claims 4 to 5, for example.
Of these, the bearing device described in claim 4 has a pitch circle diameter (and further, the diameter and number of rolling elements) of a pair of rolling element rows provided between the outer ring raceways and the inner ring raceways. , Different bearing devices.
The bearing device according to claim 5 is a bearing unit for supporting a wheel of an automobile, and supports one member of the outer member and the inner member on a suspension device of the automobile in use. A wheel is coupled and fixed to the other member.

上述した様に、本発明の軸受装置の製造方法によれば、砥石の送り速度を安定させた(砥石に無理な力が加わらない程度に緩徐した)状態で、各外輪軌道に研削加工を施し始める事ができる。この為、砥石の外周面のうちで、これら各外輪軌道を研削する部分の砥粒が大量に脱落すると言った不具合が生じる事を防止できる。従って、研削仕上げ後の上記各外輪軌道の形状精度を良好にできる。
尚、本発明を実施する場合には、上記砥石の外周面のうちで上記各外輪軌道を研削する部分以外の部分が、外輪の内周面のうちでこれら各外輪軌道以外の部分に最初に接触する。この為、この接触に伴い、上記砥石の外周面のうちで、上記各外輪軌道を研削する部分以外の部分の砥粒が大量に脱落する可能性がある。但し、当該部分の砥粒が大量に脱落しても、研削仕上げ後の上記各外輪軌道の形状精度は良好にできる為、軸受性能に影響が生じる事はない。尚、上記外輪の内周面のうちで上記砥石の外周面が最初に接触する部分が円筒面である場合には、最初から長い線接触になる為、ギャップエリミネータが作動し易くなり、砥粒の大量脱落が発生しにくくなる。
又、請求項2〜3に記載した構成を採用すれば、外方部材の内周面のうちで各外輪軌道同士の間部分の研削と、これら各外輪軌道の研削とを、それぞれ一緒に行える為、別々に行う場合に比べて、加工工数を少なくできる。
As described above, according to the method for manufacturing a bearing device of the present invention, grinding is applied to each outer ring raceway in a state where the feed speed of the grindstone is stabilized (slow so that no excessive force is applied to the grindstone). You can start. For this reason, it is possible to prevent the occurrence of a problem that a large amount of abrasive grains in the outer ring surface of the grindstone drop off from each of the outer ring raceways. Therefore, the shape accuracy of each outer ring raceway after grinding finish can be improved.
When the present invention is carried out, a portion of the outer peripheral surface of the grindstone other than the portion that grinds each outer ring raceway is first placed on a portion of the outer peripheral surface of the outer ring other than each outer ring raceway. Contact. For this reason, with this contact, a large amount of abrasive grains in the outer peripheral surface of the grindstone other than the portion for grinding the outer ring raceways may fall off. However, even if a large amount of abrasive grains fall off, the shape accuracy of each outer ring raceway after grinding finish can be improved, so that the bearing performance is not affected. If the portion of the inner peripheral surface of the outer ring where the outer peripheral surface of the grindstone contacts first is a cylindrical surface, the gap eliminator becomes easier to operate because of the long line contact from the beginning. It is difficult for large-scale omission to occur.
Further, if the configuration described in claims 2 to 3 is adopted, grinding of the portion between the outer ring raceways and grinding of each outer ring raceway can be performed together on the inner peripheral surface of the outer member. Therefore, the number of processing steps can be reduced as compared with the case where it is performed separately.

[実施の形態の第1例]
図1〜2は、請求項1〜3及び5に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、外輪1の内周面に設けた第一、第二の各外輪軌道5、6部分に高周波焼入れ処理による硬化層を形成した後に実施する、上記第一、第二の各外輪軌道5、6の研削仕上げ方法にある。上記外輪1を含んで構成する車輪支持用軸受ユニットは、前述の図6に示したものである。又、上記研削仕上げを行う際に使用する、一体型の砥石14aは、前述の図8に示した従来の研削方法の第2例で使用したものと同じものである。この為、上記車輪支持用軸受ユニット及び上記砥石14aに関する、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1 to 3 and 5. The feature of the present example is that the first and second are performed after a hardened layer is formed by induction hardening on the first and second outer ring raceways 5 and 6 provided on the inner peripheral surface of the outer ring 1. The outer ring raceways 5 and 6 are in a grinding finishing method. The wheel support bearing unit including the outer ring 1 is the one shown in FIG. Further, the integrated grindstone 14a used for the above-mentioned grinding finish is the same as that used in the second example of the conventional grinding method shown in FIG. For this reason, the illustration and description which overlap about the said wheel support bearing unit and the said grindstone 14a are abbreviate | omitted or simplified, and it demonstrates below focusing on the characteristic part of this example.

本例の場合、上記第一、第二の各外輪軌道5、6の研削仕上げを行う際には、前述の図8に示した従来の研削方法の第2例の場合と同様、上記一体型の砥石14aを使用して、上記外輪1のうち、上記第一、第二の各外輪軌道5、6と、肩部17の内周面とに対し、同時に(一挙動で)研削加工を施す。具体的には、先ず、上記外輪1の径方向内側に上記砥石14aを挿入し、上記第一、第二の各外輪軌道5、6(上記肩部17の内周面)と、上記砥石14aの外周面に設けた第一、第二の各研削面15、16(第三の研削面18)との、互いの軸方向位置を一致させる。これと共に、上記外輪1と上記砥石14aとを、それぞれ自身の中心軸α、βを中心として、互いに異なる周速で(例えば逆方向に)回転させる。そして、この状態で、上記外輪1に対し上記砥石14aを、クイックアプローチ(図9参照)の送り速度で径方向に変位させる事により、上記外輪1の内周面に上記砥石14aの外周面を接触させる。そして、それ以後、上記砥石14aの送り速度を適宜変更しながら、図1に示す様に、上記第一〜第三の各研削面15、16、18により、上記第一、第二の各外輪軌道5、6及び上記肩部17の内周面に対し、それぞれ粗研削→仕上研削→スパークアウト(図9参照)の工程順で研削加工を施す。   In this example, when the first and second outer ring raceways 5 and 6 are ground, the integrated type is the same as in the second example of the conventional grinding method shown in FIG. Of the outer ring 1, the first and second outer ring raceways 5 and 6 and the inner peripheral surface of the shoulder portion 17 are simultaneously ground (in one behavior). . Specifically, first, the grindstone 14a is inserted inside the outer ring 1 in the radial direction, and the first and second outer ring raceways 5 and 6 (inner peripheral surface of the shoulder portion 17) and the grindstone 14a. The axial positions of the first and second grinding surfaces 15 and 16 (third grinding surface 18) provided on the outer peripheral surface of each other are matched. At the same time, the outer ring 1 and the grindstone 14a are rotated at different peripheral speeds (for example, in opposite directions) around their own central axes α and β. And in this state, the outer peripheral surface of the said grindstone 14a is made to the inner peripheral surface of the said outer ring | wheel 1 by displacing the said grindstone 14a with respect to the said outer ring | wheel 1 by the feed rate of a quick approach (refer FIG. 9). Make contact. Thereafter, as shown in FIG. 1, while appropriately changing the feed speed of the grindstone 14a, the first and second outer rings are caused by the first to third grinding surfaces 15, 16, and 18, respectively. Grinding is performed on the tracks 5, 6 and the inner peripheral surface of the shoulder 17 in the order of rough grinding → finish grinding → spark out (see FIG. 9).

この点に就いて、より詳しく説明すると、本例の場合、上述の様にクイックアプローチの送り速度で外輪1の内周面に砥石14aの外周面を接触させる際には、先ず、図2に示す様に、上記第一、第二の各外輪軌道5、6に上記第一、第二の各研削面15、16を接触させるよりも先に、上記肩部17の内周面に上記第三の研削面18を、十分な長さで線(直線)接触させる。この様な長い線接触を実現する為に、本例の場合には、上記外輪1の内周面に設けた取り代19(研削加工により削り取る部分で、図2に斜格子を付して示す部分)の厚さ寸法を、上記肩部17の内周面部分で、上記第一、第二の各外輪軌道5、6部分よりも大きくしている。これと共に、上記肩部17の内周面の軸方向幅寸法W17を、上記第三の研削面18の軸方向幅寸法W18よりも小さく(W17<W18)している。 This point will be described in more detail. In the case of this example, when the outer peripheral surface of the grindstone 14a is brought into contact with the inner peripheral surface of the outer ring 1 at the feed speed of the quick approach as described above, first, FIG. As shown, the first and second ground surfaces 15 and 16 are brought into contact with the first and second outer ring raceways 5 and 6 before the first and second outer ring raceways 5 and 6 are brought into contact with the inner peripheral surface of the shoulder portion 17. The three grinding surfaces 18 are brought into line (straight line) contact with a sufficient length. In order to realize such a long line contact, in the case of this example, the machining allowance 19 provided on the inner peripheral surface of the outer ring 1 (the portion to be scraped off by grinding is shown in FIG. The thickness dimension of the portion) is made larger at the inner peripheral surface portion of the shoulder portion 17 than at the first and second outer ring raceways 5 and 6 portions. At the same time, the axial width W 17 of the inner peripheral surface of the shoulder portion 17 is made smaller (W 17 <W 18) than the axial width dimension W 18 of the third grinding face 18.

そして、上述の様に肩部17の内周面に第三の研削面18を線接触させる事に基づき、研削盤のギャップエリミネータに、上記外輪1の内周面に上記砥石14aの外周面が接触した事を確認させる。尚、上述の様な、長い線接触が起こった際に発生する振動や負荷荷重等は、大きなものとなる。この為、上記ギャップエリミネータは、この様な振動や負荷荷重を検知する事に基づいて、上記外輪1の内周面に上記砥石14aの外周面が接触した事を、直ちに確認する事ができる。そして、本例の場合には、この確認と同時に、上記砥石14aの送り速度を、クイックアプローチの送り速度から、粗研削の送り速度に変更し、上記第三の研削面18により、上記肩部17の内周面に粗研削を施し始める。その後、この肩部17の内周面の粗研削の進行途中で、上記第一、第二の各外輪軌道5、6に、上記第一、第二の各研削面15、16を接触させる事により、これら第一、第二の外輪軌道5、6に粗研削を施し始める。更に、それ以後、上記砥石14aの送り速度を適宜変更しながら、上記第一、第二の各外輪軌道5、6及び上記肩部17の内周面に対し、それぞれ粗研削→仕上研削→スパークアウトの工程順で研削加工を施す事により、上記第一、第二の各外輪軌道5、6の研削仕上げを完了する。尚、本例の場合、以上に述べた研削加工は何れも、図1に示す様に、ノズル20、20から噴出したクーラント(冷却液)21を、研削部位(研削点)に供給しながら行う。又、本例の場合、電流感知式のギャップエリミネータを使用する場合には、上記外輪1の内周面と上記砥石14aの外周面とが近接した際に、これら両周面同士の間に挟まれたクーラントの巻き込み撹拌抵抗が高まる事に伴って高まったモータ電流を検知して、上記砥石14aの送り速度を変える事が可能となる。   Then, based on the third grinding surface 18 being in line contact with the inner peripheral surface of the shoulder 17 as described above, the outer peripheral surface of the grindstone 14a is provided on the inner peripheral surface of the outer ring 1 on the gap eliminator of the grinding machine. Make sure they are in contact. In addition, the vibration, load load, etc. which generate | occur | produce when a long line contact as mentioned above arises become a big thing. Therefore, the gap eliminator can immediately confirm that the outer peripheral surface of the grindstone 14a is in contact with the inner peripheral surface of the outer ring 1 on the basis of detecting such vibration and load. In the case of this example, simultaneously with this confirmation, the feed speed of the grindstone 14a is changed from the feed speed of the quick approach to the feed speed of the rough grinding, and the shoulder portion is moved by the third grinding surface 18. 17 starts rough grinding on the inner peripheral surface. Thereafter, the first and second ground surfaces 15 and 16 are brought into contact with the first and second outer ring raceways 5 and 6 during the progress of rough grinding of the inner peripheral surface of the shoulder portion 17. Thus, rough grinding is started on the first and second outer ring raceways 5 and 6. Thereafter, while appropriately changing the feed speed of the grindstone 14a, the first and second outer ring raceways 5, 6 and the inner peripheral surface of the shoulder portion 17 are each subjected to rough grinding → finish grinding → spark. By performing the grinding process in the order of the out process, the grinding finishing of the first and second outer ring raceways 5 and 6 is completed. In the case of this example, all of the grinding processes described above are performed while supplying the coolant (cooling liquid) 21 ejected from the nozzles 20 and 20 to the grinding part (grinding point) as shown in FIG. . Further, in the case of this example, when a current sensing type gap eliminator is used, when the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the grindstone 14a are close to each other, they are sandwiched between the two peripheral surfaces. It is possible to change the feed speed of the grindstone 14a by detecting the motor current that has increased with the increase in the entrainment and stirring resistance of the coolant.

上述した様に、本例の軸受装置の製造方法によれば、砥石14aの送り速度を、粗研削の送り速度に安定させた状態で、各外輪軌道5、6に研削加工を施し始める事ができる。この為、本例の場合には、上記砥石14aの外周面の一部(上記各外輪軌道5、6の幅方向端縁部に存在する角部P、Pと接触した部分)で砥粒が大量に脱落すると言った不具合が生じる事を防止でき、研削仕上げ後の上記各外輪軌道5、6の形状精度を良好にできる。又、本例の場合も、一体型の砥石14aを使用して、上記各外輪軌道5、6の研削と、肩部17の内周面の研削とを、それぞれ一緒に行える為、別々に行う場合に比べて、加工工数を少なくできる。   As described above, according to the manufacturing method of the bearing device of this example, it is possible to start grinding the outer ring raceways 5 and 6 while the feed speed of the grindstone 14a is stabilized at the feed speed of rough grinding. it can. For this reason, in the case of this example, the abrasive grains are formed on a part of the outer peripheral surface of the grindstone 14a (the portions in contact with the corner portions P and P existing at the edge portions in the width direction of the outer ring raceways 5 and 6). It is possible to prevent the occurrence of a problem that a large amount is dropped, and to improve the shape accuracy of the outer ring raceways 5 and 6 after the grinding finish. In the case of this example also, the grinding of the outer ring raceways 5 and 6 and the grinding of the inner peripheral surface of the shoulder portion 17 can be performed separately using the integrated grindstone 14a. Compared to the case, the number of processing steps can be reduced.

[実施の形態の第2例]
図3は、請求項1〜3及び5に対応する、本発明の実施の形態の第2例を示している。本例の場合、研削仕上げ前の外輪1の内周面に設けた取り代19(研削加工により削り取る部分で、図3に斜格子を付して示す部分)のうち、肩部17の軸方向中央部分に、断面凸円弧形の内周面を有する凸部22を、全周に亙り設けている。これにより、本例の場合、クイックアプローチの送り速度で上記外輪1の内周面に砥石14aの外周面を接触させる際に、先ず、図示の様に、第一、第二の各外輪軌道5、6に第一、第二の各研削面15、16が接触するよりも先に、上記肩部17の内周面の一部である、上記凸部22の先端部(内周面の軸方向中央部)に第三の研削面18が接触する様にしている。
[Second Example of Embodiment]
FIG. 3 shows a second example of an embodiment of the present invention corresponding to claims 1 to 3 and 5. In the case of this example, the axial direction of the shoulder portion 17 of the machining allowance 19 provided on the inner peripheral surface of the outer ring 1 before grinding finish (the portion to be scraped off by grinding and shown with a diagonal grid in FIG. 3). A convex portion 22 having an inner peripheral surface having a convex arc shape in cross section is provided in the central portion over the entire circumference. Thus, in the case of this example, when the outer peripheral surface of the grindstone 14a is brought into contact with the inner peripheral surface of the outer ring 1 at the feed speed of the quick approach, first, the first and second outer ring raceways 5 as shown in the figure. , 6 before the first and second grinding surfaces 15 and 16 come into contact with each other, the tip of the convex portion 22 (the axis of the inner peripheral surface), which is a part of the inner peripheral surface of the shoulder portion 17. The third grinding surface 18 is in contact with the central portion in the direction).

そして、本例の場合も、上述の様に凸部22の先端部に第三の研削面18を接触させる事に基づき、研削盤のギャップエリミネータに、上記外輪1の内周面に上記砥石14aの外周面が接触した事を確認させる。そして、この確認と同時に、上記砥石14aの送り速度を、クイックアプローチの送り速度から、粗研削の送り速度に変更し、上記第三の研削面18により、上記肩部17の内周面に粗研削を施し始める。尚、本例の場合、上記凸部22の先端部と上記第三の研削面18との接触は、初期状態では点接触若しくは短い線接触となる為、上記ギャップエリミネータによる接触確認が少し遅れる可能性がある。但し、この様に接触確認が少し遅れた場合でも、この接触確認の前に、上記第一、第二の各外輪軌道5、6に上記第一、第二の各研削面15、16が接触する事がない様に、上記凸部22の径方向の高さ寸法を十分に確保している。又、本例の場合、上記肩部17の内周面の軸方向両端部(軸方向に関して上記凸部22から外れた部分)の粗研削は、それぞれこの凸部22の全体が削り取られた時点から開始される。言い換えれば、本例の場合、上記肩部17の内周面の軸方向両端部の研削は、上記凸部22の全体が削り取られるまでの間は行わずに済む(凸部22を形成した分、肩部の研削量を少なく抑えられる)。従って、その分だけ、上述の図1〜2に示した第1例の場合に比べて、研削能率を高める事ができる。その他の構成及び作用は、上述の図1〜2に示した第1例の場合と同様である。   And also in the case of this example, based on making the 3rd grinding surface 18 contact the front-end | tip part of the convex part 22 as mentioned above, the said grindstone 14a on the internal peripheral surface of the said outer ring | wheel 1 is used for the gap eliminator of a grinding machine. Make sure that the outer peripheral surface of the is in contact. Simultaneously with this confirmation, the feed speed of the grindstone 14 a is changed from the feed speed of the quick approach to the feed speed of the rough grinding, and the third grinding surface 18 is used to roughen the inner peripheral surface of the shoulder portion 17. Start grinding. In the case of this example, the contact between the tip of the convex portion 22 and the third grinding surface 18 is a point contact or a short line contact in the initial state, so that the contact confirmation by the gap eliminator may be slightly delayed. There is sex. However, even if the contact confirmation is slightly delayed in this way, the first and second ground surfaces 15 and 16 contact the first and second outer ring raceways 5 and 6 before the contact confirmation. The height dimension in the radial direction of the convex portion 22 is sufficiently ensured so as not to occur. In the case of this example, rough grinding of both ends in the axial direction of the inner peripheral surface of the shoulder portion 17 (portions deviating from the convex portion 22 with respect to the axial direction) is performed when the entire convex portion 22 is scraped off. Starts from. In other words, in the case of this example, grinding of both axial ends of the inner peripheral surface of the shoulder portion 17 is not necessary until the entire convex portion 22 is scraped (the amount of the convex portion 22 formed). , Can reduce the amount of grinding on the shoulders). Therefore, compared with the case of the first example shown in FIGS. Other configurations and operations are the same as those of the first example shown in FIGS.

[実施の形態の第3例]
図4は、請求項1〜3及び5に対応する、本発明の実施の形態の第3例を示している。本例の場合、研削仕上げ前の外輪1の内周面に設けた取り代19(研削加工により削り取る部分で、図4に斜格子を付して示す部分)のうち、肩部17の内周面は、単なる円筒面としている。これに対し、砥石14bの外周面に設けた第三の研削面18aの軸方向中央部分に、断面凸円弧形の外周面を有する凸部23を、全周に亙り設けている。これにより、本例の場合、クイックアプローチの送り速度で上記外輪1の内周面に上記砥石14bの外周面を接触させる際に、先ず、図示の様に、第一、第二の各外輪軌道5、6に第一、第二の各研削面15、16が接触するよりも先に、上記肩部17の内周面に、上記凸部23の先端部(外周面の軸方向中央部)が接触する様にしている。
[Third example of embodiment]
FIG. 4 shows a third example of the embodiment of the invention corresponding to claims 1 to 3 and 5. In the case of this example, the inner circumference of the shoulder portion 17 in the machining allowance 19 (the portion to be scraped off by grinding, which is shown by attaching a diagonal lattice in FIG. 4) provided on the inner circumferential surface of the outer ring 1 before grinding finish. The surface is a simple cylindrical surface. On the other hand, the convex part 23 which has the outer peripheral surface of a cross-section convex arc shape is provided over the perimeter in the axial direction center part of the 3rd grinding surface 18a provided in the outer peripheral surface of the grindstone 14b. Thus, in the case of this example, when the outer peripheral surface of the grindstone 14b is brought into contact with the inner peripheral surface of the outer ring 1 at the feed speed of the quick approach, first, as shown in FIG. Prior to the first and second grinding surfaces 15 and 16 coming into contact with the first and second grinding surfaces 5 and 6, the tip portion of the convex portion 23 (the axially central portion of the outer peripheral surface) is formed on the inner peripheral surface of the shoulder portion 17. Is in contact.

そして、本例の場合も、上述の様に肩部17の内周面に凸部23の先端部を接触させる事に基づき、研削盤のギャップエリミネータに、上記外輪1の内周面に上記砥石14bの外周面が接触した事を確認させる。そして、この確認と同時に、上記砥石14bの送り速度を、クイックアプローチの送り速度から、粗研削の送り速度に変更し、上記第三の研削面18aにより、上記肩部17の内周面に粗研削を施し始める。尚、本例の場合も、上記肩部17の内周面と上記凸部23の先端部との接触は、初期状態では点接触若しくは短い線接触となる為、上記ギャップエリミネータによる接触確認が少し遅れる可能性がある。但し、この様に接触確認が少し遅れた場合でも、この接触確認の前に、上記第一、第二の各外輪軌道5、6に上記第一、第二の各研削面15、16が接触する事がない様に、上記凸部23の径方向の高さ寸法を十分に確保している。又、本例の場合も、上記肩部17の内周面の軸方向両端部の粗研削は、この肩部17の内周面の軸方向中間部に上記凸部23の外周面の全体が線(曲線)接触する様になった時点から開始される。言い換えれば、本例の場合も、上記肩部17の内周面の軸方向両端部の研削は、この肩部17の内周面の軸方向中間部に上記凸部23の外周面の全体が線接触するまでの間は行わずに済む。従って、その分だけ、前述の図1〜2に示した第1例の場合に比べて、研削能率を高める事ができる。その他の構成及び作用は、前述の図1〜2に示した第1例の場合と同様である。   And also in the case of this example, based on making the front-end | tip part of the convex part 23 contact the inner peripheral surface of the shoulder part 17 as mentioned above, the said grindstone is used for the gap eliminator of a grinding machine on the inner peripheral surface of the said outer ring | wheel 1. It confirms that the outer peripheral surface of 14b contacted. Simultaneously with this confirmation, the feed speed of the grindstone 14b is changed from the feed speed of the quick approach to the feed speed of rough grinding, and the third grinding surface 18a is used to roughen the inner peripheral surface of the shoulder portion 17. Start grinding. In the case of this example as well, the contact between the inner peripheral surface of the shoulder portion 17 and the tip end portion of the convex portion 23 is a point contact or a short line contact in the initial state, so the contact confirmation by the gap eliminator is a little. There is a possibility of being late. However, even if the contact confirmation is slightly delayed in this way, the first and second ground surfaces 15 and 16 contact the first and second outer ring raceways 5 and 6 before the contact confirmation. The height dimension in the radial direction of the convex portion 23 is sufficiently ensured so as not to occur. Also in this example, the rough grinding of both ends in the axial direction of the inner peripheral surface of the shoulder portion 17 is carried out so that the entire outer peripheral surface of the convex portion 23 is formed at the intermediate portion in the axial direction of the inner peripheral surface of the shoulder portion 17. It starts when the line (curve) comes into contact. In other words, also in this example, grinding of both ends in the axial direction of the inner peripheral surface of the shoulder portion 17 is performed so that the entire outer peripheral surface of the convex portion 23 is formed in the intermediate portion in the axial direction of the inner peripheral surface of the shoulder portion 17. There is no need to do this until the line contacts. Therefore, the grinding efficiency can be increased by that amount as compared with the case of the first example shown in FIGS. Other configurations and operations are the same as those of the first example shown in FIGS.

尚、上述した各実施の形態では、一体型の砥石14a(14b)の粒度に就いては特に言及しなかったが、本発明を実施する場合、上記砥石14a(14b)の粒度は、全体的に等しくする事もできるし、或いは各部分毎に異ならせる事もできる。例えば、上記砥石14a(14b)の粒度を、第一、第二の各研削面15、16部分に比べて、第三の研削面18部分で大きくしたり、この第三の研削面18部分を比較的軟らかくすれば(或は、粒度を大きくし、且つ、軟らかくすれば)、外輪1の肩部17の内周面の研削抵抗を下げる事ができる。従って、その分だけ、この肩部17の内周面で研削焼けや研削割れを発生しにくくできる。   In each of the above-described embodiments, the particle size of the integrated grindstone 14a (14b) is not particularly mentioned. However, when the present invention is carried out, the particle size of the grindstone 14a (14b) is generally Can be equal to or different for each part. For example, the grain size of the grindstone 14a (14b) is made larger at the third grinding surface 18 portion than at the first and second grinding surfaces 15 and 16, or the third grinding surface 18 portion is made larger. If it is relatively soft (or if the particle size is increased and softened), the grinding resistance of the inner peripheral surface of the shoulder portion 17 of the outer ring 1 can be reduced. Accordingly, it is possible to make it difficult to generate grinding burns or grinding cracks on the inner peripheral surface of the shoulder portion 17 correspondingly.

又、上述した各実施の形態の様に、円筒状部材である外輪1の内周面を研削する場合には、研削部位にクーラント21を供給するのが難しい。この様な場合には、図5に示す様に、シュー24、24により径方向の位置決めを図った外輪1と、砥石14a(14b)とを、それぞれ自身の中心軸α、βを中心として、互いに同方向に、互いに異なる周速で回転させる。これと共に、上記外輪1の内周面と上記砥石14a(14b)の外周面とを、これら両周面が互いに下方に変位する位置で接触させる。そして、これら両周面同士の接触位置である研削部位に対して上記クーラント21を、この研削部位の上方に存在する楔形の空間を通じて供給する。この様にすれば、この研削部位の全体に、上記クーラント21を供給し易く(引き込み易く)できる。   Further, when the inner peripheral surface of the outer ring 1 that is a cylindrical member is ground as in each of the embodiments described above, it is difficult to supply the coolant 21 to the grinding site. In such a case, as shown in FIG. 5, the outer ring 1 positioned in the radial direction by the shoes 24 and 24 and the grindstone 14a (14b) are centered on their own central axes α and β, respectively. Rotate in the same direction at different peripheral speeds. At the same time, the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the grindstone 14a (14b) are brought into contact with each other at a position where these peripheral surfaces are displaced downward from each other. And the said coolant 21 is supplied with respect to the grinding site | part which is a contact position of these both peripheral surfaces through the wedge-shaped space which exists above this grinding site | part. If it does in this way, the said coolant 21 can be easily supplied to the whole grinding region | part (it is easy to draw in).

又、上述した各実施の形態では、前述の図6に示した車輪支持用軸受ユニットを対象として、本発明を実施した。但し、本発明は、例えば前述の図13に示した車輪支持用軸受ユニットの従来構造の第2例等、特許請求の範囲に記載した要件を満たす各種の軸受装置を対象として実施する事もできる。   Further, in each of the above-described embodiments, the present invention is implemented for the wheel support bearing unit shown in FIG. However, the present invention can also be implemented for various bearing devices that satisfy the requirements described in the claims, such as the second example of the conventional structure of the wheel supporting bearing unit shown in FIG. .

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. 外輪の内周面と砥石の外周面との初期接触状態を示す要部拡大断面図。The principal part expanded sectional view which shows the initial contact state of the inner peripheral surface of an outer ring | wheel, and the outer peripheral surface of a grindstone. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example. 研削部位にクーラントを引き込み易くする為に好ましく採用できる、外輪と砥石との回転方向及び位置関係を示す、図1のA−A断面に相当する図。The figure equivalent to the AA cross section of FIG. 1 which shows the rotation direction and positional relationship of an outer ring | wheel and a grindstone which can be preferably employ | adopted in order to make it easy to draw in coolant to a grinding site | part. 車輪支持用軸受ユニットの従来構造の第1例を示す半部断面図。The half part sectional view showing the 1st example of the conventional structure of the bearing unit for wheel support. 外輪の内周面に設けた複列の外輪軌道に研削加工を施す場合に採用できる、従来方法の第1例を示す断面図。Sectional drawing which shows the 1st example of the conventional method which can be employ | adopted when grinding a double row outer ring track | truck provided in the inner peripheral surface of the outer ring. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 研削加工を行う際の、砥石の送り位置と時間との関係を示す線図。The diagram which shows the relationship between the feed position of a grindstone, and time at the time of grinding. 上記従来方法の第1例を実施する場合の、外輪の内周面と砥石の外周面との初期接触状態を示す要部拡大断面図。The principal part expanded sectional view which shows the initial stage contact state of the inner peripheral surface of an outer ring | wheel and the outer peripheral surface of a grindstone in the case of implementing the 1st example of the said conventional method. 上記従来方法の第2例を実施する場合の、図10と同様の図。The figure similar to FIG. 10 in the case of implementing the 2nd example of the said conventional method. 上記従来方法の第1〜2例を実施した場合に起こり得る、砥石の一部破損及び外輪軌道の形状崩れを示す要部拡大断面図。The principal part expanded sectional view which shows the partial breakage of a grindstone and the shape collapse of an outer ring track | truck which may occur when the 1st-2nd example of the said conventional method is implemented. 車輪支持用軸受ユニットの従来構造の第2例を示す断面図。Sectional drawing which shows the 2nd example of the conventional structure of the bearing unit for wheel support.

符号の説明Explanation of symbols

1、1a 外輪
2、2a ハブ本体
3 内輪
4 転動体
5、5a 第一の外輪軌道
6、6a 第二の外輪軌道
7 結合フランジ
8 取付フランジ
9、9a 第一の内輪軌道
10、10a 第二の内輪軌道
11 小径段部
12 円筒部
13 かしめ部
14、14a、14b 砥石
15 第一の研削面
16 第二の研削面
17、17a 肩部
18、18a 第三の研削面
19 取り代
20 ノズル
21 クーラント
22 凸部
23 凸部
24 シュー
25 凹部
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2, 2a Hub main body 3 Inner ring 4 Rolling element 5, 5a First outer ring raceway 6, 6a Second outer ring raceway 7 Connection flange 8 Mounting flange 9, 9a First inner ring raceway 10, 10a Second Inner ring raceway 11 Small diameter step portion 12 Cylindrical portion 13 Caulking portion 14, 14a, 14b Grinding wheel 15 First grinding surface 16 Second grinding surface 17, 17a Shoulder portion 18, 18a Third grinding surface 19 Cutting allowance 20 Nozzle 21 Coolant 22 Convex part 23 Convex part 24 Shoe 25 Concave part

Claims (5)

内周面に複列の外輪軌道を有する外方部材と、外周面に複列の内輪軌道を有する内方部材と、これら各外輪軌道と各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体とを備え、上記外方部材のうちで上記各外輪軌道部分に、それぞれ高周波焼入れ処理による硬化層を形成している軸受装置を製造すべく、上記外方部材のうちで上記各外輪軌道部分に上記硬化層を形成した後、一体型の砥石により、これら各外輪軌道に対して同時に仕上げの研削加工を施す軸受装置の製造方法であって、上記砥石により、上記外方部材の内周面のうちで上記各外輪軌道以外の部分に研削加工を施し始める事に基づき、上記砥石の送り速度を安定させた後、この送り速度を安定させたままの状態で、上記各外輪軌道に研削加工を施し始める事を特徴とする軸受装置の製造方法。   An outer member having a double row outer ring raceway on the inner peripheral surface, an inner member having a double row inner ring raceway on the outer peripheral surface, and a plurality of each can be rolled between each outer ring raceway and each inner ring raceway. Among the outer members, in order to manufacture a bearing device in which a hardened layer is formed by induction hardening on each outer ring raceway portion among the outer members. A method of manufacturing a bearing device in which after the hardened layer is formed on each outer ring raceway portion, the outer ring raceway is simultaneously subjected to finishing grinding with an integrated grindstone, and the outer stone Based on starting to grind parts other than the outer ring raceways in the inner peripheral surface of the member, after stabilizing the feed speed of the grindstone, Start grinding the outer ring raceway Method of manufacturing a bearing device according to symptoms. 外方部材の内周面のうちで、各外輪軌道よりも先に研削加工を施し始める部分が、これら各外輪軌道同士の間部分のうちの少なくとも一部分である、請求項1に記載した軸受装置の製造方法。   2. The bearing device according to claim 1, wherein a portion of the inner peripheral surface of the outer member that starts grinding before each outer ring raceway is at least a part of a portion between the outer ring raceways. Manufacturing method. 少なくとも最終的には、外方部材の内周面のうちで各外輪軌道同士の間部分の全体に研削加工を施す、請求項1〜2のうちの何れか1項に記載した軸受装置の製造方法。   The manufacturing of the bearing device according to any one of claims 1 to 2, wherein at least finally, grinding is performed on the entire portion between the outer ring raceways on the inner peripheral surface of the outer member. Method. 各外輪軌道と各内輪軌道との間に設けられた1対の転動体列のピッチ円直径が互いに異なる、請求項1〜3のうちの何れか1項に記載した軸受装置の製造方法。   The bearing device manufacturing method according to any one of claims 1 to 3, wherein a pair of rolling element rows provided between each outer ring raceway and each inner ring raceway have different pitch circle diameters. 軸受装置が自動車の車輪支持用軸受ユニットであり、使用状態で外方部材と内方部材とのうちの一方の部材が自動車の懸架装置に支持され、他方の部材に車輪が結合固定される、請求項1〜4のうちの何れか1項に記載した軸受装置の製造方法。   The bearing device is a bearing unit for supporting a wheel of an automobile, and one member of the outer member and the inner member is supported by the suspension device of the automobile in use, and the wheel is coupled and fixed to the other member; The manufacturing method of the bearing apparatus in any one of Claims 1-4.
JP2008098955A 2008-04-07 2008-04-07 Manufacturing method of bearing device Pending JP2009248246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098955A JP2009248246A (en) 2008-04-07 2008-04-07 Manufacturing method of bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098955A JP2009248246A (en) 2008-04-07 2008-04-07 Manufacturing method of bearing device

Publications (1)

Publication Number Publication Date
JP2009248246A true JP2009248246A (en) 2009-10-29

Family

ID=41309412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098955A Pending JP2009248246A (en) 2008-04-07 2008-04-07 Manufacturing method of bearing device

Country Status (1)

Country Link
JP (1) JP2009248246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233536A (en) * 2011-05-02 2012-11-29 Jtekt Corp Outer race for bearing, its manufacturing method and grinding wheel for orbital surface
CN102990492A (en) * 2012-12-10 2013-03-27 中山市盈科轴承制造有限公司 Machining technology for grinding double bearing tracks and equipment thereof
JP7354439B2 (en) 2019-11-06 2023-10-02 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Honing tools and methods for machining bearing parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233536A (en) * 2011-05-02 2012-11-29 Jtekt Corp Outer race for bearing, its manufacturing method and grinding wheel for orbital surface
CN102990492A (en) * 2012-12-10 2013-03-27 中山市盈科轴承制造有限公司 Machining technology for grinding double bearing tracks and equipment thereof
JP7354439B2 (en) 2019-11-06 2023-10-02 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー Honing tools and methods for machining bearing parts

Similar Documents

Publication Publication Date Title
US8341844B2 (en) Manufacturing method of an outer ring for a bearing unit
JP2006305715A (en) Bearing unit for wheel supporting and its manufacturing method
JP4543928B2 (en) Manufacturing method of wheel bearing unit
JP2009248246A (en) Manufacturing method of bearing device
JP2004092830A (en) Manufacturing method for bearing unit for wheel
JP5228343B2 (en) Double row rolling bearing unit for wheel support and manufacturing method thereof
JP2009275842A (en) Machining method for raceway surface of outer ring and manufacturing method of outer ring for wheel rolling bearing device
JP2007016959A (en) Method of manufacturing outer ring of rolling bearing unit for supporting wheel
JP2008045719A (en) Bearing unit
JP2006194293A (en) Method for manufacturing bearing unit for wheel
JP2000002251A (en) Conical roller bearing
JP6287044B2 (en) Method and apparatus for grinding roller material
JP2008215567A (en) Rolling bearing unit for supporting wheel
JP4284951B2 (en) Method of manufacturing bearing ring for ball bearing
JP2019190586A (en) Manufacturing method of raceway member
JP2004150482A (en) Method of manufacturing inner ring member for tapered roller bearing, inner ring member for tapered roller bearing and tapered roller bearing device for axle
JP2017082824A (en) Manufacturing method of outer ring of rolling bearing unit for supporting wheel
JP2009024859A (en) Method of manufacturing race ring for rolling bearing
US20050229372A1 (en) Method of finishing a metal preform
JP2007285424A (en) Bearing device for wheel and its manufacturing method
JP4064440B1 (en) Manufacturing method of wheel bearing device
JP2008037385A (en) Roller bearing unit for supporting wheel
WO2005028890A1 (en) Self-aligning roller bearing and method of processing the same
JP5256951B2 (en) Hub unit outer ring and manufacturing method thereof
JP2002052401A (en) Manufacturing method for bearing unit for wheel with braking rotor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100318

Free format text: JAPANESE INTERMEDIATE CODE: A7424