JP2009245730A - Battery connection tool - Google Patents

Battery connection tool Download PDF

Info

Publication number
JP2009245730A
JP2009245730A JP2008090554A JP2008090554A JP2009245730A JP 2009245730 A JP2009245730 A JP 2009245730A JP 2008090554 A JP2008090554 A JP 2008090554A JP 2008090554 A JP2008090554 A JP 2008090554A JP 2009245730 A JP2009245730 A JP 2009245730A
Authority
JP
Japan
Prior art keywords
heat
battery
heat dissipation
secondary battery
connection tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008090554A
Other languages
Japanese (ja)
Inventor
Shigeki Umeda
繁樹 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Japan Railway Co
Original Assignee
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Japan Railway Co filed Critical West Japan Railway Co
Priority to JP2008090554A priority Critical patent/JP2009245730A/en
Publication of JP2009245730A publication Critical patent/JP2009245730A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase heat capacity, and at the same time, make heat-dissipation time constant small with regard to a battery connection tool used for structuring a secondary battery unit which makes high current charge and discharge possible through connection of a secondary battery. <P>SOLUTION: A battery connection tool J consists of a tool body 1 electrically connecting electrode terminals t of a battery cell C, erected face portions 2, 2 standing upwards from edges on both sides 1a, 1a of the tool body 1, and a heat dissipation portion 3 formed on outside surfaces of the vertically standing up panel portions 2, 2. Each heat dissipation portion 3 consists of a plurality of heat sinks 4 positioned at predetermined intervals and substantially parallel in a vertical direction. When electricity is passed on the battery connection tool J, an ascending air current is created by warmed-up air among the heat sinks 4 caused by the heat dissipated by the heat dissipation portions 3. As a result, heat dissipation of the battery connection tool J is accelerated by supply of fresh air into the heat dissipation portions 3. A high heat dissipation efficiency obtained prohibits remains of heat even at a larger heat capacity, enabling the control of temperature rise width during passage of electricity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の二次電池を接続して、大電流の充放電が可能な二次電池ユニットを構成するのに用いる電池接続具に関し、詳しくは、電池接続具の熱容量を増大すると同時に放熱時定数を小さくすることにより、通電時における電池接続具の温度上昇幅を抑えると共に、放熱効率を向上させることを目的とする。   The present invention relates to a battery connector used to configure a secondary battery unit capable of charging and discharging a large current by connecting a plurality of secondary batteries, and more specifically, at the same time as increasing the heat capacity of the battery connector. By reducing the time constant, an object is to suppress the temperature rise of the battery connector during energization and to improve the heat dissipation efficiency.

充電・放電が可能な二次電池は様々な分野で利用されている。また、単体電池では所要の容量が得られない場合、多数の二次電池を接続して大容量化した二次電池ユニットの形態で用いることも行なわれる。特にエネルギー密度の高いリチウム電池やリチウムイオン電池から成る二次電池ユニットは、比較的小型・軽量でありながら高入出力が可能であるので、電気自動車の駆動用電源として利用されている。さらに高電圧・大電流での用途として、直流電気鉄道における電力補完システムへの適用が検討されている。   Secondary batteries that can be charged and discharged are used in various fields. If the required capacity cannot be obtained with a single battery, a secondary battery unit having a large capacity by connecting a large number of secondary batteries may be used. In particular, a secondary battery unit composed of a lithium battery or a lithium ion battery having a high energy density is relatively small and lightweight, and can be used with high input / output, and is therefore used as a power source for driving an electric vehicle. Furthermore, application to a power supplement system in a DC electric railway is being studied as a use at high voltage and large current.

電力補完システムは、変電所間における電圧低下を補償するためのものであって、図6に示すように、主として、二次電池ユニットから成る蓄電装置と、蓄電装置の充放電を制御する制御装置とから構成される。また図7に示す如く、蓄電装置を構成する二次電池ユニット20は、整列配置した多数の二次電池セルCの各端子t,tを順に、銅などの金属製接続具10で直列に接続したものである。かかる電力補完システムは、変電所間の電圧降下が起こりやすい位置において、電力供給用の架線及びレール(図示せず)に対し充電・放電が可能なように接続される。電車が駅プラットホームに停車する際などに回生ブレーキで発生させた電力を二次電池ユニットに充電して貯えることで、回生失効を回避すると同時に、架線電圧の上昇を抑制する。また、電車が力行する際に架線電圧が設定値以下に降下したときは、二次電池ユニットに貯えておいた電力を架線へ供給する。このような機構により、回生電力を無駄なく有効に利用することができ、その結果、新たに電力を購入しなくても、変電所間における電圧低下を補償することが可能となっている。   The power supplement system is for compensating for a voltage drop between substations. As shown in FIG. 6, a power storage device mainly composed of a secondary battery unit and a control device for controlling charging / discharging of the power storage device It consists of. Further, as shown in FIG. 7, the secondary battery unit 20 constituting the power storage device connects the terminals t, t of a large number of aligned secondary battery cells C in series with a metal connector 10 such as copper in order. It is a thing. Such a power supplement system is connected to a power supply overhead line and a rail (not shown) so as to be able to be charged and discharged at a position where a voltage drop between substations is likely to occur. By recharging and storing the power generated by the regenerative brake in the secondary battery unit when the train stops at the station platform, regenerative invalidation is avoided, and at the same time the rise in overhead voltage is suppressed. Further, when the overhead line voltage drops below the set value when the train is powered, the power stored in the secondary battery unit is supplied to the overhead line. With such a mechanism, it is possible to effectively use regenerative power without waste, and as a result, it is possible to compensate for a voltage drop between substations without purchasing new power.

ところで、二次電池ユニット20に大電流を流すと、内部抵抗で電池セルCが発熱し、過熱による電池性能の低下を招いたり装置の損傷をもたらしたりするおそれがある。このような電池セルの過熱を防止するための技術が特許文献1に記載されている。それは、電池セルどうしを接続する接続具(バスバー)に冷却フィンを設けて冷却部材の機能を持たせることにより、電池セルの発熱を効率よく放散させるというものである。また、冷却ファンを設けて冷却フィンへ風を送ることも、特許文献1に記載されている。   By the way, when a large current is passed through the secondary battery unit 20, the battery cell C generates heat due to the internal resistance, and there is a concern that the battery performance may be deteriorated due to overheating or the apparatus may be damaged. A technique for preventing such overheating of the battery cell is described in Patent Document 1. That is, a cooling fin is provided in a connector (bus bar) that connects battery cells to have a function of a cooling member, thereby efficiently dissipating heat generated in the battery cells. Patent Document 1 also describes that a cooling fan is provided to send air to the cooling fins.

特開2005−71674号公報Japanese Patent Laying-Open No. 2005-71674

二次電池ユニットを前述の電力補完システムに適用した場合、電気自動車に搭載した場合と比べてはるかに大きい電流が流れることにより、電池接続具自体がその電気抵抗で発熱するという予想外の問題が発生した。現在の電気自動車に搭載される二次電池ユニットでは、充放電時の最大電流値が100〜150Aであるのに対し、電力補完システムに適用される二次電池ユニットの最大電流値は500Aを超える(例えば570A)。そのため、電池セルCどうしを繋ぐ電池接続具10は電気抵抗の小さい銅などで製作されるにもかかわらず発熱が生じる。このような現象による電池接続具10の発熱で、電池セルCを加熱するおそれがあった。また、電力補完システムの制御装置は、二次電池ユニットの温度を監視しているが、電池セルCがそれほど昇温していないにもかかわらず、電池接続具10の発熱を検知して、異常過熱の警報を発令するという不具合を生じさせる。   When the secondary battery unit is applied to the above-mentioned power supplement system, an unexpected problem that the battery connector itself generates heat due to its electrical resistance due to a much larger current flow than when mounted in an electric vehicle. Occurred. In the secondary battery unit mounted on the current electric vehicle, the maximum current value at the time of charging / discharging is 100 to 150A, whereas the maximum current value of the secondary battery unit applied to the power supplement system exceeds 500A. (For example, 570A). Therefore, the battery connector 10 that connects the battery cells C generates heat even though it is made of copper having a low electrical resistance. There is a possibility that the battery cell C is heated by the heat generated by the battery connector 10 due to such a phenomenon. In addition, the control device of the power complementation system monitors the temperature of the secondary battery unit, but detects the heat generation of the battery connector 10 even though the battery cell C is not so heated, It causes a problem of issuing an overheat warning.

そこで、図7に示す二次電池ユニット20において電池接続具10の厚みを大きくし、電気抵抗を低くすると同時に熱容量を増大させることも考えられる。しかし、単に厚みを増やしただけでは、大電流が流れたときの電池接続具10の昇温をそれほど抑えることはできない。また、熱容量が増大することにより冷めにくくなるから、短い時間間隔で大電流の入出力が繰り返された場合、つまり、直前の通電時に上昇した温度が元の温度まで低下する前に次の通電が行なわれることが反復された場合、電池接続具10に熱が蓄積し、最終的に許容温度を超えるおそれがある。   Therefore, it is conceivable to increase the thickness of the battery connector 10 in the secondary battery unit 20 shown in FIG. However, simply increasing the thickness cannot suppress the temperature rise of the battery connector 10 when a large current flows. In addition, since it becomes difficult to cool down due to an increase in heat capacity, if the input / output of a large current is repeated at short time intervals, that is, the next energization is performed before the temperature that has risen during the previous energization decreases to the original temperature. When this is repeated, heat accumulates in the battery connector 10 and may eventually exceed the allowable temperature.

前記特許文献1の技術は、電気自動車に適用される組電池(二次電池ユニット)を適用対象としたものであり、電池セルの過熱防止を目的としており、接続具(バスバー)自体が発熱する場合を想定していない。従って、特許文献1に記載の接続具の構造では、大電流による接続具自体の発熱に有効に対処できない。もし仮に、電力補完システムの蓄電装置に適用するならば、強制的に冷却するための冷却ファンが必要になり、二次電池ユニットのコスト増をもたらす。   The technique of Patent Document 1 is intended for application to an assembled battery (secondary battery unit) applied to an electric vehicle, and is intended to prevent overheating of battery cells, and the connector (bus bar) itself generates heat. The case is not assumed. Therefore, the structure of the connector described in Patent Document 1 cannot effectively cope with the heat generated by the connector itself due to a large current. If it is applied to a power storage device of a power supplement system, a cooling fan for forced cooling is required, which increases the cost of the secondary battery unit.

本発明が上記課題を解決するために採用した電池接続具の特徴は、請求項1に記載する如く、電池の電極端子を電気的に接続する本体部の側縁部に、電極端子に固定した状態における本体部の上方へ立ち上がる起立面部を設け、該起立面部の外側表面に所定間隔を置いて配置した上下方向に対し実質的に平行な放熱板の複数枚から成る放熱部を設けたところにある。また請求項2に記載する如く、前記放熱部を設けた起立面部を、本体部の対向する側縁部それぞれに設ける構成とすることもできる。   The battery connector used by the present invention to solve the above problems is characterized in that, as described in claim 1, the electrode terminal of the battery is fixed to the electrode terminal on the side edge of the main body part for electrically connecting the battery terminal. In the state where the rising surface portion that rises above the main body portion is provided, and the heat dissipation portion that is composed of a plurality of heat dissipation plates that are substantially parallel to the vertical direction arranged at predetermined intervals on the outer surface of the rising surface portion is provided. is there. According to a second aspect of the present invention, the standing surface portion provided with the heat radiating portion may be provided on each of the opposing side edge portions of the main body portion.

本発明に係る電池接続具は、放熱部を設けることにより、熱容量を増大させて温度変化を抑えると同時に、表面積を拡大して放熱時定数を小さくすることができる。従って、通電時に発生する熱を放熱部から効率よく発散させて、接続具自体の昇温を抑制できる。また、電池内部に生じた熱を電極端子から吸収して放熱部から発散させ、電池の昇温を抑えることができる。   In the battery connector according to the present invention, by providing the heat dissipating part, the heat capacity can be increased to suppress the temperature change, and at the same time, the surface area can be increased to reduce the heat dissipating time constant. Therefore, the heat generated at the time of energization can be efficiently dissipated from the heat radiating portion, and the temperature rise of the connector itself can be suppressed. Further, the heat generated in the battery can be absorbed from the electrode terminal and dissipated from the heat radiating portion, thereby suppressing the temperature rise of the battery.

ところで本発明では、本体部に設けた起立面部に放熱部を設け、放熱板を上下方向に対し平行に配置する構成を採用したので、各放熱板の間には、上下方向に連通する空間が形成される。従って、放熱部から熱を放散する際、放熱板間の空気が暖められて上昇気流を形成し、自然に空気の流動を生じさせるから、冷却ファンなどを設けなくても、高い放熱効率が得られる。その結果、熱容量を大きくしても、熱が残留することがなくなり、通電時の温度上昇幅を抑えることができる。このような作用を営む結果、本発明は、通電時の昇温が電池セルよりも低く、且つ、電池セルより放熱時定数の小さい電池接続具を提供することが可能である。   By the way, in this invention, since the heat radiation part was provided in the standing surface part provided in the main-body part, and the structure which has arrange | positioned a heat sink parallel to the up-down direction was employ | adopted, the space connected to an up-down direction is formed between each heat sink. The Therefore, when heat is dissipated from the heat radiating section, the air between the heat radiating plates is warmed to form an updraft, which naturally causes the air to flow, so high heat dissipation efficiency can be obtained without providing a cooling fan. It is done. As a result, even if the heat capacity is increased, no heat remains, and the temperature rise during energization can be suppressed. As a result of performing such an action, the present invention can provide a battery connector that has a temperature rise during energization lower than that of the battery cell and a smaller heat dissipation time constant than the battery cell.

なお、請求項2に記載の如く、本体部の対向する側縁部それぞれに放熱部を設ける構成とした場合は、一方の側縁部だけに放熱部を設ける場合と比べて、同じ表面積を得るのに必要な起立面部の高さを低くできるから、電池接続具が嵩高くなるのを避けられるという利点が得られる。   In addition, when it is set as the structure which provides a heat radiating part in each side edge part which a main-body part opposes as described in Claim 2, the same surface area is obtained compared with the case where a heat radiating part is provided only in one side edge part. Since the height of the standing surface portion required for the above can be reduced, an advantage that the battery connector can be prevented from becoming bulky can be obtained.

[第1の実施形態]
図1に本発明に係る電池接続具Jの使用状況を示し、図2に同接続具Jの平面図・正面図・側面図を示す。適用対象とする二次電池は、エネルギー密度の高いリチウムイオン電池・リチウム電池などのほか、ニッケル水素電池やニッケルカドミウム電池などを使用する場合もある。図1に示すように、各電池セルCは上面に電極端子tを有し、電池接続具Jは、多数の電池セルCの電極端子tどうしを電気的に接続して、大電流の入出力が可能な二次電池ユニットUを構築するのに使用されている。本例における電池接続具Jは、電池セルCの電極端子tに固定され、端子tどうしを電気的に接続する板状の本体部1と、本体部1の長手方向に沿った対向する側縁部1a,1aそれぞれのほぼ中央領域に、本体部1に対し上方へほぼ直角に立ち上がるよう設けた起立面部2と、各起立面部2,2の外側表面に設けた放熱部3とで構成される。本体部1には、電池セルCの電極端子tを挿通させるための貫通孔5が形成され、貫通孔5から突出させた電極端子tの螺子部にナットN(図1参照)等を螺合させ締め付けることで固定している。放熱部3は、所定間隔を置いて配置した上下方向に対し実質的に平行な複数枚の放熱板4より成っている。
[First Embodiment]
FIG. 1 shows a usage state of the battery connector J according to the present invention, and FIG. 2 shows a plan view, a front view, and a side view of the connector J. Secondary batteries to be applied include nickel-metal hydride batteries and nickel-cadmium batteries in addition to high energy density lithium ion batteries and lithium batteries. As shown in FIG. 1, each battery cell C has an electrode terminal t on its upper surface, and the battery connector J electrically connects the electrode terminals t of a large number of battery cells C so as to input and output a large current. Is used to construct a secondary battery unit U capable of The battery connector J in this example is fixed to the electrode terminal t of the battery cell C, and the plate-like main body portion 1 that electrically connects the terminals t to each other, and the opposite side edges along the longitudinal direction of the main body portion 1. It is comprised by the standing surface part 2 provided in the substantially center area | region of each of the parts 1a and 1a so that it may stand substantially perpendicularly upward with respect to the main-body part 1, and the thermal radiation part 3 provided in the outer surface of each standing surface part 2 and 2. . A through hole 5 for inserting the electrode terminal t of the battery cell C is formed in the main body 1, and a nut N (see FIG. 1) or the like is screwed into a screw part of the electrode terminal t protruding from the through hole 5. It is fixed by tightening. The heat dissipating part 3 is composed of a plurality of heat dissipating plates 4 substantially parallel to the vertical direction arranged at predetermined intervals.

電池接続具Jは、電気抵抗が小さく、熱伝導性が良く、且つ、融点が比較的高い素材で製作することが望ましく、本例では銅製としたが、銅合金・アルミニウム・ステンレス等も使用可能である。本体部1、起立面部2及び放熱部3は、一体成形することが望ましいが、形状が比較的複雑な放熱部3のみ別体に製作し、あとから起立面部2に密着固定することも可能である。本体部1は、少なくとも、隣接する電池セルCの端子tどうしを接続できる長さを有し、断面積は、二次電池ユニットUの入出力時における最大電流値と材質の電気抵抗値とに基づいて設定される。本例では、本体部1を長さ160mm幅20mm厚さ6mmの銅板で製作し、従って長手方向に垂直な断面積は120mmである。なお本発明の電池接続具Jは放熱部3を有しているため、熱容量が大きくても蓄熱が生じにくくなっているが、より断面積を大きくして、電気抵抗を減少させることも妨げない。但し本体部1の断面積を極端に大きくすると、通電時の昇温は抑えられる反面、熱容量の増大により冷めにくくなり、蓄熱する可能性が生じる。従って、本体部1の断面積は、二次電池ユニットUの入出力が行なわれる時間間隔を考慮して、熱が残留することがないように設定する。 The battery connector J is preferably made of a material having low electrical resistance, good thermal conductivity, and a relatively high melting point. In this example, it is made of copper, but copper alloy, aluminum, stainless steel, etc. can also be used. It is. The main body 1, the standing surface 2 and the heat radiating portion 3 are desirably formed integrally, but only the heat radiating portion 3 having a relatively complicated shape can be manufactured separately, and can be firmly fixed to the rising surface 2 later. is there. The main body 1 has at least a length capable of connecting the terminals t of adjacent battery cells C, and the cross-sectional area is determined by the maximum current value and the electric resistance value of the material when the secondary battery unit U is input / output. Set based on. In this example, the main body 1 is made of a copper plate having a length of 160 mm, a width of 20 mm, and a thickness of 6 mm, and thus the cross-sectional area perpendicular to the longitudinal direction is 120 mm 2 . In addition, since the battery connector J of the present invention has the heat radiating portion 3, it is difficult for heat storage to occur even if the heat capacity is large, but it does not prevent the electrical resistance from being reduced by increasing the cross-sectional area. . However, if the cross-sectional area of the main body 1 is extremely large, the temperature rise during energization can be suppressed, but it becomes difficult to cool due to an increase in the heat capacity, and heat may be stored. Therefore, the cross-sectional area of the main body 1 is set so that no heat remains in consideration of the time interval during which the secondary battery unit U is input and output.

放熱部3は、複数枚の放熱板4を所定間隔を置いて配置することにより、電池接続具Jの熱容量を増大させると共に、放熱時定数を小さくする機能を有するものである。放熱部3の大きさ及び放熱板4の配置枚数は、最大電流が流れたときに想定される温度上昇を勘案して、必要な表面積が得られるように決定する。本例では、最大電流が570Aの場合を想定し、放熱部3の見かけの高さH×幅W×奥行きD=20×40×20mmとした。放熱板4,4間の奥行き寸法E=16mm、放熱板4,4の配置間隔G=5mm、放熱板4の配置枚数は一方の放熱部3につき6枚である。従って、放熱部3,3全体の表面積は約11200mmとなる。 The heat dissipating unit 3 has a function of increasing the heat capacity of the battery connector J and reducing the heat dissipating time constant by arranging a plurality of heat dissipating plates 4 at predetermined intervals. The size of the heat dissipating part 3 and the number of the heat dissipating plates 4 are determined in consideration of the temperature rise assumed when the maximum current flows so that the necessary surface area can be obtained. In this example, it is assumed that the maximum current is 570 A, and the apparent height H × width W × depth D = 20 × 40 × 20 mm of the heat radiating unit 3 is set. The depth dimension E between the heat radiating plates 4 and 4 is 16 mm, the arrangement interval G of the heat radiating plates 4 and 4 is 5 mm, and the number of the radiating plates 4 is six per one heat radiating portion 3. Accordingly, the entire surface area of the heat radiating portions 3 and 3 is about 11200 mm 2 .

本発明に係る電池接続具Jは、図1に示すように、本体部1を電池セルCの電極端子tに固定して、電池セルCどうしを電気的に接続し、二次電池ユニットUを構成する。このようにして構成された二次電池ユニットUは、例えば図3に示すような収納庫Fに複数段を積み重ねて収納される。かかる状態において、二次電池ユニットUが電力の入出力を行ない、各電池接続具Jの通電がなされたとする。これにより各電池接続具Jは、その電気抵抗に基づき発熱する。また電池セルCも、内部抵抗により発熱する。放熱部3は、電池接続具J自体の発熱及び電極端子tを通じて吸収した電池セルCの熱を、空気中へ放散して、電池接続具J及び電池セルCの昇温を抑える。ところで、放熱板4は上下方向に沿って平行に配置されているから、各放熱板4間の空間S(図2参照)は上下方向に空気の流通が可能な空間である。そのため、放熱板4から放散される熱によって暖められた放熱板4間の空気は上昇気流を生成する。そして、この上昇気流は、複数段に積み重ねられた二次電池ユニットUの各段で生成するから、収納庫F内において、最下段から最上段へ至る連続した空気流Kが自然に形成され、その結果、放熱部3に新鮮空気が供給されることになるので、電池接続具Jの放熱が促進される。   As shown in FIG. 1, the battery connector J according to the present invention fixes the main body 1 to the electrode terminal t of the battery cell C, electrically connects the battery cells C, and attaches the secondary battery unit U. Constitute. The secondary battery unit U configured in this way is stored in a stacking manner such as shown in FIG. In such a state, it is assumed that the secondary battery unit U inputs / outputs electric power and the battery connector J is energized. Thereby, each battery connector J generates heat based on its electrical resistance. The battery cell C also generates heat due to the internal resistance. The heat radiating part 3 dissipates heat generated by the battery connector J itself and the heat of the battery cell C absorbed through the electrode terminal t into the air, thereby suppressing the temperature rise of the battery connector J and the battery cell C. By the way, since the heat sink 4 is arrange | positioned in parallel along the up-down direction, the space S (refer FIG. 2) between each heat sink 4 is a space which can distribute | circulate the air to an up-down direction. Therefore, the air between the heat sink 4 heated by the heat dissipated from the heat sink 4 generates an updraft. And since this ascending air current is generated at each stage of the secondary battery units U stacked in a plurality of stages, a continuous air flow K from the lowermost stage to the uppermost stage is naturally formed in the storage F, As a result, since fresh air is supplied to the heat radiating unit 3, the heat radiation of the battery connector J is promoted.

なお、図1に例示する如く、電池接続具Jを電極端子tに固定して電池セルCどうしを電気的に接続した状態において、放熱部3が、隣接する電池セルC,Cの境界上方に位置するよう設定した場合は、放熱部3に生じる上昇気流が、電池セルC,C間の隙間を流通するようになるから、電池セルCに対する冷却効果が向上する。   As illustrated in FIG. 1, in a state where the battery connector J is fixed to the electrode terminal t and the battery cells C are electrically connected to each other, the heat radiating portion 3 is located above the boundary between the adjacent battery cells C and C. When set so as to be positioned, the rising airflow generated in the heat radiating section 3 flows through the gap between the battery cells C and C, so that the cooling effect on the battery cell C is improved.

[第2の実施形態]
図4に示す電池接続具Jは、本体部1と起立面部2,2との成す立ち上がり角度θを鋭角に形成したものである。かかる構成により、前記実施形態(図2参照)の電池接続具Jと比べて、見かけの外形寸法は同一でありながら、放熱部3の奥行き寸法Dを拡大して、表面積の増大を図ることができる。従って、放熱時定数をより小さくできる効果が得られる、
[Second Embodiment]
The battery connector J shown in FIG. 4 is formed by forming the rising angle θ formed by the main body 1 and the rising surfaces 2 and 2 at an acute angle. With this configuration, it is possible to increase the surface area by increasing the depth dimension D of the heat dissipating unit 3 while maintaining the same external dimensions as compared to the battery connector J of the above-described embodiment (see FIG. 2). it can. Therefore, the effect of reducing the heat dissipation time constant can be obtained.

[第3の実施形態]
図5に示すように、放熱部3を、本体部1における長手方向に沿った一方の側縁部1aだけに設けることも可能である。本例では、所要の表面積を得るため、起立面部2及び放熱部3の高さ寸法Hを比較的大きくしている。また、本体部1の中央領域の幅寸法を大きくして、熱容量の増大を図っている。
[Third Embodiment]
As shown in FIG. 5, the heat radiating part 3 can be provided only on one side edge 1 a along the longitudinal direction of the main body 1. In this example, in order to obtain a required surface area, the height dimension H of the standing surface part 2 and the heat radiation part 3 is made relatively large. In addition, the width of the central region of the main body 1 is increased to increase the heat capacity.

本発明に係る電池接続具の使用状況を示すものであって、電池セルの電極端子どうしを接続した状態の斜視図である。It is a perspective view of the state which used the battery connector which concerns on this invention, Comprising: The electrode terminal of the battery cell was connected. 本発明に係る電池接続具の第1の実施形態を示すものであって、図(A)は平面図、図(B)は正面図、図(C)は側面図である。1 shows a first embodiment of a battery connector according to the present invention, in which FIG. (A) is a plan view, FIG. (B) is a front view, and FIG. (C) is a side view. 本発明に係る電池接続具を用いて構築した二次電池ユニットの一例を示す正面図である。It is a front view which shows an example of the secondary battery unit constructed | assembled using the battery connector which concerns on this invention. 本発明に係る電池接続具の第2の実施形態を示すものであって、図(A)は平面図、図(B)は正面図、図(C)は側面図である。The 2nd Embodiment of the battery connector which concerns on this invention is shown, Comprising: A figure (A) is a top view, A figure (B) is a front view, A figure (C) is a side view. 本発明に係る電池接続具の第3の実施形態を示すものであって、図(A)は平面図、図(B)は正面図、図(C)は側面図である。3 shows a third embodiment of a battery connector according to the present invention, in which FIG. (A) is a plan view, FIG. (B) is a front view, and FIG. (C) is a side view. 二次電池ユニットを用いた電力補完システムの構成例を示す概略図である。It is the schematic which shows the structural example of the electric power complementation system using a secondary battery unit. 従来の二次電池ユニットの一例を示す斜視図である。It is a perspective view which shows an example of the conventional secondary battery unit.

符号の説明Explanation of symbols

J…電池接続具 1…本体部 1a…側縁部 2…起立面部 3…放熱部 4…放熱板 5…貫通孔 C…電池セル U…二次電池ユニット J ... Battery connector 1 ... Main body 1a ... Side edge 2 ... Standing surface 3 ... Heat radiating part 4 ... Heat radiating plate 5 ... Through hole C ... Battery cell U ... Secondary battery unit

Claims (2)

電池の電極端子を電気的に接続する本体部の側縁部に、電極端子に固定した状態における本体部の上方へ立ち上がる起立面部が設けられ、該起立面部の外側表面に所定間隔を置いて配置した上下方向に対し実質的に平行な放熱板の複数枚から成る放熱部が設けられていることを特徴とする電池接続具。   A standing surface portion that rises upward from the main body portion in a state of being fixed to the electrode terminal is provided on the side edge portion of the main body portion that electrically connects the electrode terminals of the battery, and is arranged at a predetermined interval on the outer surface of the rising surface portion. A battery connector comprising a heat dissipating portion comprising a plurality of heat dissipating plates substantially parallel to the vertical direction. 前記放熱部を設けた起立面部を、本体部の対向する側縁部それぞれに設けた請求項1に記載する電池接続具。   The battery connector according to claim 1, wherein the rising surface portion provided with the heat radiating portion is provided on each of the opposing side edge portions of the main body portion.
JP2008090554A 2008-03-31 2008-03-31 Battery connection tool Pending JP2009245730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090554A JP2009245730A (en) 2008-03-31 2008-03-31 Battery connection tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090554A JP2009245730A (en) 2008-03-31 2008-03-31 Battery connection tool

Publications (1)

Publication Number Publication Date
JP2009245730A true JP2009245730A (en) 2009-10-22

Family

ID=41307398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090554A Pending JP2009245730A (en) 2008-03-31 2008-03-31 Battery connection tool

Country Status (1)

Country Link
JP (1) JP2009245730A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058729A1 (en) * 2009-11-12 2011-05-19 川崎重工業株式会社 Battery system, power supply system for electric railroad, and battery module
JP2012155948A (en) * 2011-01-25 2012-08-16 Auto Network Gijutsu Kenkyusho:Kk Bus bar for battery pack and bus bar module
JP2012216360A (en) * 2011-03-31 2012-11-08 Sanyo Electric Co Ltd Battery module
WO2012163886A1 (en) * 2011-06-03 2012-12-06 Sb Limotive Company Ltd. Battery cell, battery, or battery cell module, method for producing a battery cell, and motor vehicle
WO2013059235A1 (en) * 2011-10-19 2013-04-25 Cobasys, Llc Fusible link to connect battery cells and modules
JP2013127863A (en) * 2011-12-16 2013-06-27 Lithium Energy Japan:Kk Power storage device and bus bar for use in the same
WO2014110524A1 (en) * 2013-01-14 2014-07-17 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
WO2014120688A1 (en) * 2013-01-30 2014-08-07 Gentherm Incorporated Thermoelectric-based thermal management system
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
EP2814089A4 (en) * 2012-02-06 2015-08-05 Lg Chemical Ltd Bus bar having novel structure
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
US9219261B2 (en) 2012-04-19 2015-12-22 Samsung Sdi Co., Ltd. Battery pack
WO2016164410A1 (en) * 2015-04-10 2016-10-13 Maxwell Technologies, Inc. Reduced temperature energy storage device
US9553294B2 (en) 2011-12-16 2017-01-24 Gs Yuasa International Ltd. Electric storage device, manufacturing method of electric storage device, and bus bar used for electric storage device
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US9671142B2 (en) 2011-07-11 2017-06-06 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
KR20170095052A (en) * 2016-02-12 2017-08-22 주식회사 엘지화학 Busbar for cooling battery cell and battery module using thereof
US9863672B2 (en) 2005-04-08 2018-01-09 Gentherm Incorporated Thermoelectric-based air conditioning system
CN109390543A (en) * 2017-08-08 2019-02-26 矢崎总业株式会社 Busbar module and battery pack
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
FR3100661A1 (en) * 2019-09-06 2021-03-12 Psa Automobiles Sa BATTERY PACK EQUIPPED WITH PASSIVE HEAT DISSIPATION MEANS
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106361A (en) * 1992-09-24 1994-04-19 Matsushita Electric Ind Co Ltd Power unit for welding machine with built-in electrolytic capacitors
JPH0654210U (en) * 1992-12-25 1994-07-22 株式会社ユアサコーポレーション Equipment for mounting cooling fins for storage batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106361A (en) * 1992-09-24 1994-04-19 Matsushita Electric Ind Co Ltd Power unit for welding machine with built-in electrolytic capacitors
JPH0654210U (en) * 1992-12-25 1994-07-22 株式会社ユアサコーポレーション Equipment for mounting cooling fins for storage batteries

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863672B2 (en) 2005-04-08 2018-01-09 Gentherm Incorporated Thermoelectric-based air conditioning system
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
US9666914B2 (en) 2009-05-18 2017-05-30 Gentherm Incorporated Thermoelectric-based battery thermal management system
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
JP2011103265A (en) * 2009-11-12 2011-05-26 Kawasaki Heavy Ind Ltd Battery system
WO2011058729A1 (en) * 2009-11-12 2011-05-19 川崎重工業株式会社 Battery system, power supply system for electric railroad, and battery module
US9461292B2 (en) 2009-11-12 2016-10-04 Kawasaki Jukogyo Kabushiki Kaisha Battery system, power supply system for electric railcars, and battery module
JP2012155948A (en) * 2011-01-25 2012-08-16 Auto Network Gijutsu Kenkyusho:Kk Bus bar for battery pack and bus bar module
JP2012216360A (en) * 2011-03-31 2012-11-08 Sanyo Electric Co Ltd Battery module
WO2012163886A1 (en) * 2011-06-03 2012-12-06 Sb Limotive Company Ltd. Battery cell, battery, or battery cell module, method for producing a battery cell, and motor vehicle
US9882187B2 (en) 2011-06-03 2018-01-30 Robert Bosch Gmbh Battery cell, battery, or battery cell module, method for producing a battery cell, and motor vehicle
US9671142B2 (en) 2011-07-11 2017-06-06 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10337770B2 (en) 2011-07-11 2019-07-02 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
WO2013059235A1 (en) * 2011-10-19 2013-04-25 Cobasys, Llc Fusible link to connect battery cells and modules
US10741871B2 (en) 2011-12-16 2020-08-11 Gs Yuasa International Ltd. Electric storage device, manufacturing method of electric storage device, and bus bar used for electric storage device
JP2013127863A (en) * 2011-12-16 2013-06-27 Lithium Energy Japan:Kk Power storage device and bus bar for use in the same
US9553294B2 (en) 2011-12-16 2017-01-24 Gs Yuasa International Ltd. Electric storage device, manufacturing method of electric storage device, and bus bar used for electric storage device
EP2814089A4 (en) * 2012-02-06 2015-08-05 Lg Chemical Ltd Bus bar having novel structure
US10784015B2 (en) 2012-02-06 2020-09-22 Lg Chem, Ltd. Bus bar with novel structure
US9219261B2 (en) 2012-04-19 2015-12-22 Samsung Sdi Co., Ltd. Battery pack
CN105075002A (en) * 2013-01-14 2015-11-18 詹思姆公司 Thermoelectric-based thermal management of electrical devices
US10170811B2 (en) 2013-01-14 2019-01-01 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
WO2014110524A1 (en) * 2013-01-14 2014-07-17 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
CN108155430B (en) * 2013-01-14 2021-10-29 詹思姆公司 Thermoelectric-based thermal management of electrical devices
KR20150126828A (en) * 2013-01-14 2015-11-13 젠썸 인코포레이티드 Thermoelectric-based thermal management of electrical devices
KR102034337B1 (en) * 2013-01-14 2019-10-18 젠썸 인코포레이티드 Thermoelectric-based thermal management of electrical devices
US10686232B2 (en) 2013-01-14 2020-06-16 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
CN105075002B (en) * 2013-01-14 2018-03-16 詹思姆公司 The heat management based on thermoelectricity of electrical equipment
CN108155430A (en) * 2013-01-14 2018-06-12 詹思姆公司 The heat management based on thermoelectricity of electrical equipment
WO2014120688A1 (en) * 2013-01-30 2014-08-07 Gentherm Incorporated Thermoelectric-based thermal management system
CN108400410A (en) * 2013-01-30 2018-08-14 詹思姆公司 Heat management system based on thermoelectricity
CN104956539A (en) * 2013-01-30 2015-09-30 詹思姆公司 Thermoelectric-based thermal management system
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
US20150357692A1 (en) * 2013-01-30 2015-12-10 Gentherm Incorporated Thermoelectric-based thermal management system
JP2016513337A (en) * 2013-01-30 2016-05-12 ジェンサーム インコーポレイテッドGentherm Incorporated Thermoelectric based thermal management system
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10236547B2 (en) 2013-10-29 2019-03-19 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
WO2016164410A1 (en) * 2015-04-10 2016-10-13 Maxwell Technologies, Inc. Reduced temperature energy storage device
US9653824B2 (en) 2015-04-10 2017-05-16 Maxwell Technologies, Inc. Reduced temperature energy storage device
JP2018538664A (en) * 2016-02-12 2018-12-27 エルジー・ケム・リミテッド Battery cell cooling bus bar and battery module using the same
US10637112B2 (en) 2016-02-12 2020-04-28 Lg Chem, Ltd. Busbar for cooling battery cell and battery module using same
EP3343672A4 (en) * 2016-02-12 2018-07-04 LG Chem, Ltd. Busbar for cooling battery cell and battery module using same
KR20170095052A (en) * 2016-02-12 2017-08-22 주식회사 엘지화학 Busbar for cooling battery cell and battery module using thereof
KR102018719B1 (en) 2016-02-12 2019-09-04 주식회사 엘지화학 Busbar for cooling battery cell and battery module using thereof
CN109390543A (en) * 2017-08-08 2019-02-26 矢崎总业株式会社 Busbar module and battery pack
JP2019033002A (en) * 2017-08-08 2019-02-28 矢崎総業株式会社 Bus bar module and battery pack
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
FR3100661A1 (en) * 2019-09-06 2021-03-12 Psa Automobiles Sa BATTERY PACK EQUIPPED WITH PASSIVE HEAT DISSIPATION MEANS

Similar Documents

Publication Publication Date Title
JP2009245730A (en) Battery connection tool
US10381694B2 (en) Cooling device for battery cell and battery module comprising the same
US8409743B2 (en) Battery system with battery cells arranged in array alignment
JP5644086B2 (en) Battery module, power supply device, and vehicle including the same
JP5535520B2 (en) Battery system for vehicle
JP5364791B2 (en) Power storage module
JP5183175B2 (en) Battery system
KR101571774B1 (en) Battery Cell of Improved Cooling Efficiency
JP4325721B2 (en) Temperature control mechanism
JP2008091183A (en) Square battery and battery pack
JP2009252553A (en) Battery pack module
JP2012009410A (en) Battery assembly, electric motorcar, and battery housing
JP6466049B2 (en) Battery pack having a cooling system
JP2012033419A (en) Power supply device, vehicle using the same, battery cell, and method of manufacturing the battery cell
JP2004362879A (en) Collective battery
TW201737549A (en) Heat sink and battery module including the same
JP2012174496A (en) Battery module
EP2132823A1 (en) Electricity storage device
JP2011023179A (en) Battery pack, vehicle equipped therewith, and bus bar for battery pack
KR102053963B1 (en) Battery pack and vehicle comprising the same
JP2011198688A (en) Vehicular battery tray, and vehicular battery device equipped with the same
JP2011103265A (en) Battery system
US20190067763A1 (en) Power electronics with integrated busbar cooling
KR20180013460A (en) Battery apparatus
US20150221998A1 (en) Energy Storage System Preventing Self from Overheating and Method for Preventing Energy Storage System from Overheating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022