JP2009244223A - Moisture measuring method - Google Patents

Moisture measuring method Download PDF

Info

Publication number
JP2009244223A
JP2009244223A JP2008093982A JP2008093982A JP2009244223A JP 2009244223 A JP2009244223 A JP 2009244223A JP 2008093982 A JP2008093982 A JP 2008093982A JP 2008093982 A JP2008093982 A JP 2008093982A JP 2009244223 A JP2009244223 A JP 2009244223A
Authority
JP
Japan
Prior art keywords
moisture
unit
output current
output
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008093982A
Other languages
Japanese (ja)
Inventor
Yoko Miyazaki
陽子 宮崎
Osamu Hamamoto
修 浜本
Masahiro Saito
政宏 斉藤
Toshisuke Yamazaki
俊祐 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2008093982A priority Critical patent/JP2009244223A/en
Publication of JP2009244223A publication Critical patent/JP2009244223A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moisture percentage measuring method and a moisture measuring system that are capable of calculating a moisture percentage by precisely measuring the value of a current even if the current is a noisy output current. <P>SOLUTION: A moisture measuring method for calculating the water content of an analyte by using a moisture percentage measuring instrument 1 having at least a pair of a cathode and an anode fixed at an interval of 1 mm or shorter, immersing the cathode and the anode in the analyte, and then measuring the electrolytic current of water between the electrodes by applying predetermined alternate voltages to both the electrodes for each cycle includes steps of: applying alternating, rectangular-wave, or triangular-wave voltages to both the electrodes; taking out the output current value of a cyclic component based on the applied alternating voltage from a spectrum obtained by the frequency conversion of an output current-time output signal; and calculating the water content of the analyte from the output current value which is thus taken out. Moreover, the moisture measuring system includes a moisture measuring instrument 1, a measuring section 2 for measuring the electrolytic current of water; an analyzing section 3 for determining the water content, an output section 4, and a display section 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は水分測定方法に関し、電気化学的な方法を用いて、ノイズが生じやすい検体においても水分を簡便かつ高精度に定量することができる水分測定方法及び水分測定システムに関する。   The present invention relates to a moisture measuring method, and more particularly, to a moisture measuring method and a moisture measuring system that can quantify moisture easily and accurately even in a specimen that easily generates noise using an electrochemical method.

従来、水分測定の電気化学的方法としては、カールフィッシャ法が知られている。この方法は微量水分の測定に適している方法で、カールフィッシャ試薬を用いる電量滴定法であり、数分内に微量水分量を絶対定量することができるため、バッチ式の卓上分析計として広く普及している。   Conventionally, the Karl Fischer method is known as an electrochemical method for moisture measurement. This method is suitable for the measurement of trace moisture, and is a coulometric titration method using a Karl Fischer reagent. It can be used for absolute determination of trace moisture in a few minutes, so it is widely used as a batch-type desktop analyzer. is doing.

しかし、カールフィッシャ法は、高価な試薬を使用するため、分析費用が割高となり、また装置が複雑化して装置のコスト高と装置の保守費の増大を招く等の理由により、オンライン測定にはあまり使用されていない。   However, the Karl Fischer method uses expensive reagents, which increases the cost of analysis, and complicates the equipment, leading to higher equipment costs and increased equipment maintenance costs. not being used.

オンライン型の水分測定法としては赤外線吸収法や誘電的方法、導電率法、超音波法、熱伝導率法などが知られている。   As an on-line type moisture measurement method, an infrared absorption method, a dielectric method, a conductivity method, an ultrasonic method, a thermal conductivity method, and the like are known.

しかし、赤外線吸収法は、近赤外線の反射量を測定するため、試料表面が平坦でないと誤差が生じやすく、濃色試料の測定には適用しにくいという問題があり、誘電的方法では水の比誘電率または誘電損失を測定するので、含水率が0〜50%程度の範囲でしか十分な定量性が得られないという問題がある。また導電率法は、有機酸や二酸化炭素による導電率やpHの変化の影響を受けるため、測定環境によっては測定精度が低下してしまう(特許文献1)。特に、導電率法は交流インピーダンス等を測定するので試料にpHの変化が無いこと、超音波法は超音波のエネルギー減衰量を測定するので気泡等がない均質な試料であること、熱伝導率法は、熱パルスによる温度変化を測定するので、気泡等がない均質な資料であることが求められるので、試料の調整が必要であり、一般の工業用計器としては限られた領域でのみ使用されているというのが現状である。   However, since the infrared absorption method measures the amount of reflection of near infrared rays, errors are likely to occur unless the sample surface is flat, and it is difficult to apply it to the measurement of dark samples. Since the dielectric constant or dielectric loss is measured, there is a problem that sufficient quantitative properties can be obtained only when the water content is in the range of about 0 to 50%. In addition, since the conductivity method is affected by changes in conductivity and pH due to organic acids and carbon dioxide, the measurement accuracy is lowered depending on the measurement environment (Patent Document 1). In particular, the conductivity method measures AC impedance, etc., so that there is no change in pH of the sample, and the ultrasonic method measures the amount of ultrasonic energy attenuation, so it is a homogeneous sample without bubbles, etc., thermal conductivity Since the method measures temperature changes due to heat pulses, it is required to be homogeneous data without bubbles, etc., so it is necessary to adjust the sample, and it is used only in a limited area as a general industrial instrument. This is the current situation.

水分含有量が多い検体では、専ら乾燥重量法が用いられている。乾燥重量法は、検体重量を測定した後、乾燥させて乾燥重量を測定し、重量の差から水分含有量を求めるというものであるので、時間がかかる計測法であると共に自動化するのは決して容易でない。   For specimens with high water content, the dry weight method is exclusively used. The dry weight method is a time-consuming measurement method and is never easy to automate, because the sample weight is measured and then dried and the dry weight is measured to determine the water content from the difference in weight. Not.

そこで、本出願人は、水分を含む検体に対して電極を用いて定電圧電解法により電解電流を測定し、その電流値から予め作成された検量線に基づいて検体中の水分量を求める水分測定器及び水分測定方法を先に提案した。水の電解に伴う電子の移動を拡散層の安定性に依存しているこの方法では、測定精度を高めるために、陰極と陽極の間隔を1mm以下としている(特許文献2)。この方法では、簡便に0〜90%程度の広範囲の検体の水分率を測定することができる。
特開2004−294448号公報 静電容量型水分センサ 特公平7−69300号公報
Therefore, the present applicant measures the electrolytic current by a constant voltage electrolysis method using an electrode for a specimen containing moisture, and obtains the moisture content in the specimen based on a calibration curve prepared in advance from the current value. A measuring instrument and a moisture measuring method were proposed previously. In this method in which the movement of electrons due to electrolysis of water depends on the stability of the diffusion layer, the distance between the cathode and the anode is set to 1 mm or less in order to improve the measurement accuracy (Patent Document 2). In this method, the moisture content of a wide range of specimens of about 0 to 90% can be easily measured.
JP, 2004-294448, A Capacitance type moisture sensor Japanese Patent Publication No. 7-69300

しかし、本発明者らはさらに解決すべき課題が残されていることを見出した。   However, the present inventors have found that there are still problems to be solved.

陰極と陽極の間隔が1mm以下であれば、電子の移動はある程度自由度を増すため精度が上がるが、静止系の汚泥等の含水率の測定では、入力された特定電圧に対する出力電流(測定電流)にノイズが表れ、正確な電流値の測定が困難であった。   If the distance between the cathode and anode is 1 mm or less, the movement of electrons increases the degree of freedom to some extent, so the accuracy increases. However, when measuring the moisture content of static sludge, the output current (measurement current) with respect to the input specific voltage ) Appeared and it was difficult to accurately measure the current value.

また、流動性のある検体では、入力電圧の反転によって一定方向の入力過程で出力電流にノイズが表れ、それを反転させても結果としてノイズが出力電流としてアウトプットされることに変わらないので正確性に欠けることが判った。   For fluid samples, noise appears in the output current in the input process in a certain direction due to the inversion of the input voltage, and even if it is inverted, the noise is output as the output current as a result. It turns out that it lacks sex.

ノイズが見られる場合には、測定を繰り返して電流値を平均化する必要があった。   When noise was observed, it was necessary to repeat the measurement and average the current values.

そこで、本発明の課題は、ノイズが見られる出力電流であっても、正確な電流値を測定し水分率を求めることができる水分率測定方法及び水分測定システムを提供することにある。   Therefore, an object of the present invention is to provide a moisture content measurement method and a moisture measurement system capable of measuring an accurate current value and obtaining a moisture content even when an output current in which noise is observed.

また本発明の他の課題は、以下の記載により明らかになる。   Other problems of the present invention will become clear from the following description.

上記課題は以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
少なくとも1対の陰極および陽極が1mm以下の間隔に固定された水分測定器を用い、
前記陰極および陽極を検体中に浸漬した後、該両電極に各周期毎に一定の交番電圧を印加して該電極間の水の電解電流を測定し、検体中の含水率を求める水分測定法において、
該両電極に交流、矩形波又は三角波の電圧を印加し、
出力電流−時間の出力信号を周波数変換(フーリエ変換)によって得られたスペクトルから印加交番電圧に基づく周期成分の出力電流値を取り出し、
取り出された出力電流値から、検体中の水分量を求めることを特徴とする水分測定方法。
(Claim 1)
Using a moisture measuring device in which at least a pair of cathodes and anodes are fixed at intervals of 1 mm or less,
Moisture measurement method for determining the moisture content in the specimen by immersing the cathode and anode in the specimen and then applying a constant alternating voltage to each of the electrodes every period to measure the electrolysis current of water between the electrodes. In
Apply alternating, rectangular or triangular voltage to both electrodes,
The output current value of the periodic component based on the applied alternating voltage is extracted from the spectrum obtained by frequency conversion (Fourier transform) of the output signal of output current-time,
A method for measuring moisture, characterized in that a moisture content in a specimen is obtained from the output current value taken out.

(請求項2)
前記水分測定器は、少なくとも1対の陰極および陽極が先端部のみを露出させてその周囲を樹脂によって絶縁抱持されていることを特徴とする請求項1記載の水分測定方法。
(Claim 2)
2. The moisture measuring method according to claim 1, wherein at least one pair of the cathode and the anode of the moisture measuring device has only its tip exposed, and its periphery is insulated by a resin.

(請求項3)
少なくとも1対の陰極および陽極が1mm以下の間隔に固定された水分測定器と、
前記陰極および陽極を検体中に浸漬した後、該両電極に各周期毎に一定の交番電圧を印加して該電極間の水の電解電流を測定する測定部と、
出力電流−時間の出力信号を周波数変換(フーリエ変換)によって得られたスペクトルから印加交番電圧に基づく周期成分の出力電流値を取り出し、水分量を決定する解析部と、
決定した水分量を出力する出力部と、
出力された水分量を表示する表示部からなることを特徴とする水分測定システム。
(Claim 3)
A moisture measuring device having at least one pair of cathode and anode fixed at intervals of 1 mm or less;
After immersing the cathode and anode in a specimen, a measuring unit that measures the electrolysis current of water between the electrodes by applying a constant alternating voltage to each of the electrodes at each cycle;
An analysis unit that takes out an output current value of a periodic component based on an applied alternating voltage from a spectrum obtained by frequency conversion (Fourier transform) of an output signal of output current-time, and determines a moisture content;
An output unit for outputting the determined amount of water;
A moisture measuring system comprising a display unit for displaying the output moisture content.

(請求項4)
前記解析部が、測定部から出力電流−時間の出力信号を入力する入力部と、周波数変換(フーリエ変換)部と、出力電流−時間の出力信号を周波数変換(フーリエ変換)によって得られたスペクトルから印加交番電圧に基づく周期成分の出力電流値を取り出して読み取る読取部と、読み取った出力電流値をあらかじめ作成した検量線と対照して水分量を決定する対照部からなることを特徴とする請求項3記載の水分測定システム。
(Claim 4)
Spectrum obtained by the analysis unit by inputting an output signal of output current-time from the measurement unit, a frequency transform (Fourier transform) unit, and a spectrum obtained by frequency transform (Fourier transform) of the output signal of output current-time A reading unit that reads out and reads out an output current value of a periodic component based on an applied alternating voltage from a reading unit, and a control unit that determines a moisture content by comparing the read out output current value with a calibration curve prepared in advance. Item 4. The moisture measuring system according to item 3.

本発明の方法によれば、ノイズが見られる出力電流であっても、正確な電流値を測定し水分率を求めることができる水分率測定方法及び水分測定システムを提供することができる。   According to the method of the present invention, it is possible to provide a moisture content measuring method and a moisture measuring system capable of measuring an accurate current value and obtaining a moisture content even if an output current has noise.

本発明の方法による水分測定のオンライン用計器は、測定可能な水分の幅が広く、簡便性と経済性とともに測定精度にも優れるため、化学工業、食品工業、金属工業等の分野において特に有用である。   The on-line instrument for measuring moisture according to the method of the present invention has a wide range of moisture that can be measured and is particularly useful in fields such as the chemical industry, the food industry, and the metal industry because of its simplicity and economy as well as excellent measurement accuracy. is there.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1は、本発明の水分測定装置の一例を示す模式図である。この装置は、露出した陰極と陽極を備える水分測定器(センサー)1と、測定部2と、解析部3と、出力部4、表示部5からなる。   FIG. 1 is a schematic view showing an example of the moisture measuring apparatus of the present invention. This apparatus comprises a moisture measuring device (sensor) 1 having an exposed cathode and anode, a measuring unit 2, an analyzing unit 3, an output unit 4, and a display unit 5.

センサー1は、電源および計測部にそれぞれ接続された少なくとも1対の陰極および陽極と、該陰極および陽極を固定し、かつ先端部のみを露出させるように抱持する樹脂絶縁部とを有する。   The sensor 1 has at least one pair of a cathode and an anode connected to a power source and a measurement unit, respectively, and a resin insulating part that fixes the cathode and the anode and holds the tip part so as to expose only the tip part.

陰極および陽極を構成する物質としては、Ru(ルテニウム)、Rh(ロジウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)などの白金族元素、特にPtが好ましく用いられるが、Tc(テクネチウム)、Ag(銀)、Cd(カドミウム)、Re(レニウム)、Hg(水銀)などの金属や、Ti(チタン)板にPt、Ru/Pt等をコーティングしたものなどを用いることができる。   As a material constituting the cathode and the anode, platinum group elements such as Ru (ruthenium), Rh (rhodium), Os (osmium), Ir (iridium), Pt (platinum), and particularly Pt are preferably used. Metals such as technetium), Ag (silver), Cd (cadmium), Re (rhenium), and Hg (mercury), or a Ti (titanium) plate coated with Pt, Ru / Pt, or the like can be used.

本発明においては、陰極と陽極の間隔は、検体の導電率変化の影響を少なくする点から1mm以下、好ましくは0.2mm以下、より好ましくは0.05〜0.1mmの範囲とされる。   In the present invention, the distance between the cathode and the anode is set to 1 mm or less, preferably 0.2 mm or less, more preferably 0.05 to 0.1 mm in order to reduce the influence of the change in the conductivity of the specimen.

また陰極および/または陽極の電極巾は、電解時に生じる酸素ガスや水素ガスが電極面に停滞してノイズを発生するのを防止する点から1mm以下、好ましくは0.2〜0.5mmの範囲とされる。   The electrode width of the cathode and / or anode is 1 mm or less, preferably in the range of 0.2 to 0.5 mm from the point of preventing the oxygen gas and hydrogen gas generated during electrolysis from stagnating on the electrode surface and generating noise. It is said.

陰極と陽極は少なくとも1対あればよいが、陰極と陽極を交互に配列し、くし型電極として用いることもできる。露出する電極の長さには特に制限はないが、電極の長さが長い程、大きな電解電流値が得られ、ノイズの影響を少なくすることができる。またくし型電極とした場合には電極の数を多くすると同様の効果が得られる。   At least one pair of the cathode and the anode may be used, but the cathode and the anode may be alternately arranged and used as a comb-type electrode. The length of the exposed electrode is not particularly limited, but the longer the electrode length, the larger the electrolysis current value can be obtained and the influence of noise can be reduced. In the case of a comb-type electrode, the same effect can be obtained by increasing the number of electrodes.

11、12はそれぞれ陽極、陰極に接続されたリード線である。   Reference numerals 11 and 12 denote lead wires connected to the anode and the cathode, respectively.

なお、水分を測定する際は、センサー1を検体に浸漬させる。   When measuring moisture, the sensor 1 is immersed in the specimen.

測定部2は、電極に水の電解電圧以上の電圧、好ましくは2.5V以上の電圧を印加する電源部21と、電解電流を計測する電解電流計測部22と、電解電流計測部22で測定された電流値を出力する電流値出力部23からなる。   The measurement unit 2 is measured by a power source unit 21 that applies a voltage higher than the electrolysis voltage of water, preferably a voltage of 2.5 V or higher, an electrolysis current measurement unit 22 that measures an electrolysis current, and an electrolysis current measurement unit 22. The current value output unit 23 outputs the current value.

2.5V以上の電圧を印加する、とは、図2のように陽極電位と陰極電位の差を2.5V以上とすることである。   Applying a voltage of 2.5 V or more means that the difference between the anode potential and the cathode potential is 2.5 V or more as shown in FIG.

電源部21が電極に印加する電圧は、電極面への酸化皮膜の生成や電極への各種物質の電着を防止する点からも極性(+、−)を一定時間毎に反転させる交番電圧とする。交番電圧の印加によって電解電流値における感度の低下が少なく、高精度に含水率を測定することができる。   The voltage applied to the electrode by the power supply unit 21 is an alternating voltage that reverses the polarity (+, −) at regular intervals from the viewpoint of preventing the formation of an oxide film on the electrode surface and the electrodeposition of various substances on the electrode. To do. By applying the alternating voltage, the decrease in sensitivity in the electrolytic current value is small, and the moisture content can be measured with high accuracy.

印加方法としては、図3(A)、(B)、(C)のように正弦波、矩形波、三角波としても良く、矩形波、三角波の場合、連続して印加しても、間隔をあけてもよい。   As an application method, a sine wave, a rectangular wave, or a triangular wave may be used as shown in FIGS. 3A, 3B, and 3C. May be.

交番電圧の周波数としては、0.01〜1Hzの範囲が好ましく、より好ましくは0.1〜0.5Hzである。   The frequency of the alternating voltage is preferably in the range of 0.01 to 1 Hz, more preferably 0.1 to 0.5 Hz.

電圧が印加されると、水が電気分解され電流(ファラデー電流)が流れる。この電流(定電位電解、出力電流)を、電解電流計測部22において計測する。なお、電圧印加直後はコンデンサ電流が流れるので、印加直後10〜15秒の電流は測定値からはずすことが好ましい。   When a voltage is applied, water is electrolyzed and a current (Faraday current) flows. This current (constant potential electrolysis, output current) is measured by the electrolysis current measuring unit 22. Since the capacitor current flows immediately after the voltage application, it is preferable to remove the current for 10 to 15 seconds immediately after the application from the measured value.

以上のことを更に詳細に説明すると、同一サンプルの場合、本発明の電極系でなく、電極間隔が5〜10mmと広くなっている場合には、電解電流(ファラデー電流)に比べて、コンデンサ電流(容量電流)の割合が大きくなり、結果としてS/N比が低下する。通常の脱水汚泥の場合、電極間隔5mmでは一周期における信号(電流ピーク)で、ファラデー電流は4V程度の印加電圧で10%以下になる。この場合、周波数変換(フーリエ変換、FT)によっても精度の高い水分測定はできない。これに対して、電極間隔を本発明系電極のように、例えば0.2mmとすると、図3(B)の矩形波電圧を入力すると(図4(A)参照)、図4(B)のような出力信号が得られる。   The above will be described in more detail. In the case of the same sample, when the electrode interval is wide as 5 to 10 mm instead of the electrode system of the present invention, the capacitor current is larger than the electrolytic current (Faraday current). The ratio of (capacitance current) increases, and as a result, the S / N ratio decreases. In the case of normal dewatered sludge, the Faraday current is 10% or less at an applied voltage of about 4 V, with a signal (current peak) in one cycle when the electrode interval is 5 mm. In this case, highly accurate moisture measurement cannot be performed even by frequency conversion (Fourier transform, FT). On the other hand, when the electrode interval is 0.2 mm, for example, as in the case of the electrode of the present invention, when the rectangular wave voltage of FIG. 3B is input (see FIG. 4A), the electrode of FIG. Such an output signal is obtained.

図4(B)のx部分はコンデンサ電流であり、y部分はファラデー電流であり、本発明では、y部分のファラデー電流の出力信号をサンプリングし、FTすることにより、本来の電解電流を求めるものである。   In FIG. 4B, the x portion is a capacitor current, and the y portion is a Faraday current. In the present invention, the original electrolytic current is obtained by sampling the FT current output signal of the y portion and performing FT. It is.

電流値出力部23は電解電流計測部22において計測された電流値を解析部3に出力する。測定された出力電流には、不規則に上下する不安定な波形(ノイズ)が見られる。電流値が安定しないので真の電解電流がわからなくなってしまうため、解析部3においてFTして、真の電流値を読み取る必要がある。   The current value output unit 23 outputs the current value measured by the electrolytic current measurement unit 22 to the analysis unit 3. The measured output current has an unstable waveform (noise) that fluctuates randomly. Since the current value is not stable, the true electrolysis current cannot be known. Therefore, it is necessary to read the true current value by performing FT in the analysis unit 3.

解析部3は、電流値出力部23から出力された電流値を入力する入力部31と、電流値を周波数成分に分解するフーリエ変換部32と、フーリエ変換によって周波数成分に分けられた電流値から真の電流値を読み取る読取部33と、読み取った電流値をあらかじめ作成した検量線と対照して水分量を決定する対照部34からなる。   The analysis unit 3 includes an input unit 31 for inputting the current value output from the current value output unit 23, a Fourier transform unit 32 for decomposing the current value into frequency components, and a current value divided into frequency components by Fourier transform. The reading unit 33 reads the true current value, and the control unit 34 determines the moisture content by comparing the read current value with a calibration curve prepared in advance.

入力部31に入力された電流値は、フーリエ変換部32において、測定した電流値の全領域を1つの周期と考え、フーリエ変換を用いて周波数成分に分解する。   The current value input to the input unit 31 is decomposed by the Fourier transform unit 32 into frequency components using the Fourier transform, considering the entire region of the measured current value as one period.

図5は、フーリエ変換を行ない、周波数成分に分解された電流値を示している。図5に示すように、0.7Hz程度の領域に水の電解電流値が見られ、他の領域はノイズ成分として区別できる。   FIG. 5 shows a current value that has been subjected to Fourier transform and decomposed into frequency components. As shown in FIG. 5, the electrolysis current value of water is seen in a region of about 0.7 Hz, and other regions can be distinguished as noise components.

読取部33では、0.7Hz程度の領域に収束された電流値の高さzを真の電流値として読み取る。   The reading unit 33 reads the height z of the current value converged in the region of about 0.7 Hz as a true current value.

対照部34において、読取部33で読み取った電流値から、予め作成された検量線に基づき水分量が決定される。   In the control unit 34, the moisture content is determined from the current value read by the reading unit 33 based on a calibration curve created in advance.

対照部34で決定された水分量は、出力部4から、モニターなどの表示部5へ出力することができる。また、図示しない記憶部などに常時または間欠的に水分量を記録することができる。   The amount of water determined by the control unit 34 can be output from the output unit 4 to the display unit 5 such as a monitor. In addition, the amount of water can be recorded constantly or intermittently in a storage unit (not shown).

本発明の水分測定方法では、電解電流値から水分率を求めるので、導電率法などで問題になる有機酸や二酸化炭素による干渉を受けないが、強酸環境下、粘度が極端に高い検体などに対しては、補正が必要である。   In the moisture measuring method of the present invention, the moisture content is obtained from the electrolysis current value, so that it is not subject to interference by organic acids or carbon dioxide, which is a problem in the conductivity method, etc. On the other hand, correction is necessary.

以下に、本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

実施例1
陰極と陽極の間隔が0.2mm、10対のセンサー水分測定器を用いて、静止状態にある脱水汚泥ケーキの水分測定を行なった。
Example 1
Moisture measurement of the dehydrated sludge cake in a stationary state was performed using a sensor moisture meter having a distance between the cathode and the anode of 0.2 mm and 10 pairs.

入力電圧は、2.5Vを、30秒ごとに正負反転させた連続した矩形波で印加した。   As an input voltage, 2.5 V was applied by a continuous rectangular wave in which positive and negative were inverted every 30 seconds.

測定された出力電流をフーリエ変換して収束させ、0.7Hz付近の電流値を求めたところ、水分率は80.1%であった。   When the measured output current was converged by Fourier transform, and a current value in the vicinity of 0.7 Hz was determined, the moisture content was 80.1%.

比較例1
同じ脱水汚泥ケーキを乾燥重量法で測定したところ、80〜81%であった。
Comparative Example 1
When the same dewatered sludge cake was measured by the dry weight method, it was 80 to 81%.

本発明の水分測定装置の一例を示す模式図The schematic diagram which shows an example of the moisture measuring apparatus of this invention 測定原理図Measurement principle diagram 入力する印加電圧の波形の模式図Schematic diagram of input voltage waveform 矩形波の印加電圧と、出力信号の模式図Schematic diagram of square wave applied voltage and output signal 周波数成分に分解された電解電流値を示す図The figure which shows the electrolytic current value decomposed into frequency components

符号の説明Explanation of symbols

1:センサー
11、12:リード線
2:測定部
21:電源部
22:電解電流計測部
23:電流値出力部
3:解析部
31:入力部
32:フーリエ変換部
33:読取部
34:対照部
4:出力部
5:表示部
1: Sensor 11, 12: Lead wire 2: Measuring unit 21: Power supply unit 22: Electrolytic current measuring unit 23: Current value output unit
3: Analysis unit 31: Input unit 32: Fourier transform unit 33: Reading unit 34: Control unit 4: Output unit 5: Display unit

Claims (4)

少なくとも1対の陰極および陽極が1mm以下の間隔に固定された水分測定器を用い、
前記陰極および陽極を検体中に浸漬した後、該両電極に各周期毎に一定の交番電圧を印加して該電極間の水の電解電流を測定し、検体中の含水率を求める水分測定法において、
該両電極に交流、矩形波又は三角波の電圧を印加し、
出力電流−時間の出力信号を周波数変換(フーリエ変換)によって得られたスペクトルから印加交番電圧に基づく周期成分の出力電流値を取り出し、
取り出された出力電流値から、検体中の水分量を求めることを特徴とする水分測定方法。
Using a moisture measuring device in which at least one pair of cathode and anode is fixed at an interval of 1 mm or less,
Moisture measurement method for determining the moisture content in the specimen by immersing the cathode and anode in the specimen and then applying a constant alternating voltage to each of the electrodes every period to measure the electrolysis current of water between the electrodes. In
Apply alternating, rectangular or triangular voltage to both electrodes,
The output current value of the periodic component based on the applied alternating voltage is extracted from the spectrum obtained by frequency conversion (Fourier transform) of the output signal of output current-time,
A moisture measuring method characterized in that the amount of moisture in a specimen is obtained from the output current value taken out.
前記水分測定器は、少なくとも1対の陰極および陽極が先端部のみを露出させてその周囲を樹脂によって絶縁抱持されていることを特徴とする請求項1記載の水分測定方法。   2. The moisture measuring method according to claim 1, wherein the moisture measuring device has at least one pair of a cathode and an anode, with only the tip portion exposed, and its periphery insulated by a resin. 少なくとも1対の陰極および陽極が1mm以下の間隔に固定された水分測定器と、
前記陰極および陽極を検体中に浸漬した後、該両電極に各周期毎に一定の交番電圧を印加して該電極間の水の電解電流を測定する測定部と、
出力電流−時間の出力信号を周波数変換(フーリエ変換)によって得られたスペクトルから印加交番電圧に基づく周期成分の出力電流値を取り出し、水分量を決定する解析部と、
決定した水分量を出力する出力部と、
出力された水分量を表示する表示部からなることを特徴とする水分測定システム。
A moisture measuring device having at least one pair of cathode and anode fixed at intervals of 1 mm or less;
After immersing the cathode and anode in a specimen, a measuring unit that measures the electrolysis current of water between the electrodes by applying a constant alternating voltage to each of the electrodes at each cycle;
An analysis unit that takes out an output current value of a periodic component based on an applied alternating voltage from a spectrum obtained by frequency conversion (Fourier transform) of an output signal of output current-time, and determines a moisture content;
An output unit for outputting the determined amount of water;
A moisture measuring system comprising a display unit for displaying the output moisture content.
前記解析部が、測定部から出力電流−時間の出力信号を入力する入力部と、周波数変換(フーリエ変換)部と、出力電流−時間の出力信号を周波数変換(フーリエ変換)によって得られたスペクトルから印加交番電圧に基づく周期成分の出力電流値を取り出して読み取る読取部と、読み取った出力電流値をあらかじめ作成した検量線と対照して水分量を決定する対照部からなることを特徴とする請求項3記載の水分測定システム。   Spectrum obtained by the analysis unit by inputting an output current-time output signal from the measurement unit, a frequency transform (Fourier transform) unit, and an output current-time output signal by frequency transform (Fourier transform) A reading unit that reads out and reads out an output current value of a periodic component based on an applied alternating voltage from a reading unit, and a control unit that determines a moisture content by comparing the read out output current value with a calibration curve prepared in advance. Item 4. The moisture measuring system according to item 3.
JP2008093982A 2008-03-31 2008-03-31 Moisture measuring method Withdrawn JP2009244223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093982A JP2009244223A (en) 2008-03-31 2008-03-31 Moisture measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093982A JP2009244223A (en) 2008-03-31 2008-03-31 Moisture measuring method

Publications (1)

Publication Number Publication Date
JP2009244223A true JP2009244223A (en) 2009-10-22

Family

ID=41306266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093982A Withdrawn JP2009244223A (en) 2008-03-31 2008-03-31 Moisture measuring method

Country Status (1)

Country Link
JP (1) JP2009244223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713021A (en) * 2014-01-06 2014-04-09 长春汽车工业高等专科学校 Detecting method and device with impedance type water content sensor
JP2016107212A (en) * 2014-12-08 2016-06-20 株式会社Ihi Centrifugal separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713021A (en) * 2014-01-06 2014-04-09 长春汽车工业高等专科学校 Detecting method and device with impedance type water content sensor
CN103713021B (en) * 2014-01-06 2016-02-03 长春汽车工业高等专科学校 Impedance type moisture sensor detection method and pick-up unit
JP2016107212A (en) * 2014-12-08 2016-06-20 株式会社Ihi Centrifugal separator

Similar Documents

Publication Publication Date Title
Trouillon et al. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling
Shetti et al. Amberlite XAD-4 modified electrodes for highly sensitive electrochemical determination of nimesulide in human urine
Cobb et al. Enhancing square wave voltammetry measurements via electrochemical analysis of the non-faradaic potential window
Quintana et al. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection
JP2007139725A (en) Residual chlorine measuring method and residual chlorine measuring instrument
Herzog et al. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater
Chaisiwamongkhol et al. Amperometric micro pH measurements in oxygenated saliva
Bernalte et al. Characterisation of screen-printed gold and gold nanoparticle-modified carbon sensors by electrochemical impedance spectroscopy
Dehghanzade et al. Voltammetric determination of diazepam using a bismuth modified pencil graphite electrode
Nissim et al. Introducing absorptive stripping voltammetry: wide concentration range voltammetric phenol detection
Kovács et al. Characterization of the capacitance of a rotating ring–disk electrode
García-Mendoza et al. Analysis of water in room temperature ionic liquids by linear sweep, differential pulse and square wave cathodic stripping voltammetries
Lin et al. Enhanced electrochemiluminescent of lucigenin at an electrically heated cylindrical microelectrode
Angst et al. Measuring corrosion rates: A novel AC method based on processing and analysing signals recorded in the time domain
JP2009244223A (en) Moisture measuring method
Duarte et al. Sensing polymer inhomogeneity in coated metals during the early stages of coating degradation
Doulache et al. Detection of salicylic acid by electrocatalytic oxidation at a nickel-modified glassy carbon electrode
Belebentseva et al. Interrupted amperometry: An ultrasensitive technique for diffusion current measuring
JP5311501B2 (en) Method and apparatus for measuring pH using boron-doped diamond electrode
Shervedani et al. One-impedance for one-concentration impedimetry as an electrochemical method for determination of the trace zirconium ion
Fisicaro et al. Assessment of the uncertainty budget for the amperometric measurement of dissolved oxygen
KR20070005732A (en) One-point recalibration method for reducing error in concentration measurements for an electrolytic solution
Liu et al. Electrochemical stripping analysis from micro-counter electrode
Martínez‐Paredes et al. Lead Sensor Using Gold Nanostructured Screen‐Printed Carbon Electrodes as Transducers
Zimer et al. Needle-like IrO/Ag combined pH microelectrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607