JP2009243869A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2009243869A
JP2009243869A JP2008202835A JP2008202835A JP2009243869A JP 2009243869 A JP2009243869 A JP 2009243869A JP 2008202835 A JP2008202835 A JP 2008202835A JP 2008202835 A JP2008202835 A JP 2008202835A JP 2009243869 A JP2009243869 A JP 2009243869A
Authority
JP
Japan
Prior art keywords
temperature
infrared
infrared sensor
condensing member
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008202835A
Other languages
Japanese (ja)
Inventor
Toshiaki Mamemoto
壽章 豆本
Kenichi Kakita
健一 柿田
Kiyoshi Mori
貴代志 森
Masaaki Tanaka
正昭 田中
Tadashi Adachi
正 足立
Yoshimasa Horio
好正 堀尾
Mitoko Ishita
美桃子 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008202835A priority Critical patent/JP2009243869A/en
Priority to EP20090718578 priority patent/EP2267387A4/en
Priority to PCT/JP2009/001111 priority patent/WO2009113310A1/en
Priority to CN201210027030.2A priority patent/CN102564051B/en
Priority to CN2009801090549A priority patent/CN101970962B/en
Publication of JP2009243869A publication Critical patent/JP2009243869A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem on degradation of temperature detection accuracy of an infrared ray sensor caused by the fluctuation of an ambient temperature of the infrared ray sensor caused by accumulation of warm air in a recessed section of a ceiling surface in rising the steam from hot food and warm air accumulated in a case. <P>SOLUTION: As the circumference of the infrared ray sensor 13 is surrounded by an infrared ray collecting member 48 having high heat conductivity, the influence of disturbance caused by fluctuation of the ambient temperature of the infrared ray sensor 13 (for example, temperature fluctuation by door opening/closing and hot food), is absorbed by the infrared ray collecting member 48, thus the temperatures of the infrared ray sensor and the infrared ray collecting member are equalized, the temperature fluctuation around the infrared ray sensor 13 is suppressed, and the detection accuracy of the infrared ray sensor 13 is improved. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、赤外線センサーを利用した冷蔵庫に関するものである。   The present invention relates to a refrigerator using an infrared sensor.

近年、冷蔵庫の大容量化の需要が高まるにつれて、無効空間縮小による容積効率の向上を図った冷蔵庫や、使い勝手の観点からさまざまなレイアウトの冷蔵庫が発売されている。   In recent years, as the demand for large-capacity refrigerators has increased, refrigerators designed to improve volumetric efficiency by reducing the ineffective space and refrigerators with various layouts from the viewpoint of usability have been released.

その中で、冷蔵庫では従来から庫内の温度を検知するために庫内の空気温度をサーミスタ等で測定し、例えば熱い食品が入れられた時では、庫内に多数設置したサーミスタによって、この熱い食品の影響で温められた庫内空気の温度を測定することで冷却量を調整していた。しかしながら、このような冷蔵庫では食品の実際の温度を測定しているわけではないので、実際に食品を冷却できたかどうかが分からない。よって食品を冷却するには周囲を冷却しながら食品を目的の温度まで冷却するため、食品自身が目的の温度まで冷却されるには時間がかかるということがあった。そのため、庫内に赤外線センサーを設けることで、実際の食品の温度を検知し冷却運転を行うようにしていた(例えば、特許文献1参照)。   In the refrigerator, in order to detect the temperature in the refrigerator, the air temperature in the refrigerator is conventionally measured with a thermistor. For example, when hot food is put, this hot The amount of cooling was adjusted by measuring the temperature of the air in the cabinet heated by the influence of food. However, since such a refrigerator does not measure the actual temperature of the food, it is not known whether the food could actually be cooled. Therefore, in order to cool the food, the food is cooled to the target temperature while cooling the surroundings, so that it may take time for the food itself to cool to the target temperature. For this reason, an infrared sensor is provided in the cabinet to detect the actual food temperature and perform a cooling operation (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図6は特許文献1に記載された従来の冷蔵庫の側面縦断面図である。また、図7は図6の一部拡大側面断面図である。   FIG. 6 is a side longitudinal sectional view of a conventional refrigerator described in Patent Document 1. In FIG. FIG. 7 is a partially enlarged side sectional view of FIG.

図に示すように、断熱箱体で形成された冷蔵庫本体101の内部を貯蔵空間として最上部に冷蔵室102、下方に野菜室103、最下部には冷凍室104をそれぞれ独立して配置し、冷蔵室102と野菜室103との間には断熱仕切壁を介して温度切替室105と製氷室(図示せず)とを左右に併置しており、各貯蔵室の前面開口には各々専用の扉を設けて開閉自在に閉塞している。   As shown in the figure, the inside of the refrigerator main body 101 formed of a heat-insulated box is used as a storage space, the refrigerator compartment 102 at the top, the vegetable compartment 103 at the bottom, and the freezer compartment 104 at the bottom, respectively. Between the refrigerator compartment 102 and the vegetable compartment 103, a temperature switching chamber 105 and an ice making chamber (not shown) are arranged side by side through a heat insulating partition wall. A door is provided and can be opened and closed.

野菜室103の後部には、冷凍室104や温度切替室105、製氷室など冷凍用の冷却器106およびこの冷凍用冷却器106で生成された冷気を貯蔵室内に循環する冷却送風ファン107を配置し、さらに、冷凍用冷却器106の前方位置に、冷蔵室102と野菜室104とを冷却する冷蔵用の冷却器108と冷蔵用ファン(図示せず)を設けており、本体下部の機械室に設置した圧縮機109の駆動および冷媒の流路切替弁の切替え制御によって前記冷凍および冷蔵用冷却器106、108に交互、あるいは双方同時に冷媒を流し、冷却された冷気を冷却送風ファン107や冷蔵用ファンにより冷凍温度帯側および冷蔵温度帯側の各貯蔵室に送風して、それぞれを所定温度に冷却制御している。また、冷凍用の冷却器106から吐出された低温の冷気は冷却送風ファン107によって、冷凍室104、製氷室、および温度切替室105に分流され、それぞれ専用ダクトを介して送風され冷却される。   At the rear of the vegetable room 103, a freezing cooler 106 such as a freezing room 104, a temperature switching room 105, an ice making room, and a cooling blower fan 107 that circulates the cold air generated by the freezing cooler 106 into the storage room are arranged. Further, a refrigeration cooler 108 and a refrigeration fan (not shown) for cooling the refrigeration chamber 102 and the vegetable compartment 104 are provided at a position in front of the freezing cooler 106, and a machine room below the main body is provided. The refrigerant is supplied to the refrigeration and refrigeration coolers 106 and 108 alternately or simultaneously by driving the compressor 109 installed in the compressor and switching control of the refrigerant flow path switching valve. Fans are blown to the storage compartments on the freezing temperature zone side and the refrigeration temperature zone side by the fan for cooling control to a predetermined temperature. The low-temperature cold air discharged from the freezing cooler 106 is diverted to the freezing chamber 104, the ice making chamber, and the temperature switching chamber 105 by the cooling air blowing fan 107, and is blown and cooled through dedicated ducts.

温度切替室105は、天井面の凹部113に取り付けられた赤外線センサー112が設けられている。そして、凹部113の開口には、シャッター機構114が設けられ、温度切替室105の扉開を検出すると、シャッター機構114が動作して凹部113の開口を閉塞し、更に温度切替室105の扉閉を検出すると、シャッター機構114が動作して凹部113の開口を開放させて、吹出口110から室内に冷気を吹き出し、この冷気で冷却される負荷である食品111の温度を赤外線センサー112で検出するとともに、あらかじめ設定された温度になるように冷凍サイクルの運転、および吹出口110近傍に設置した冷気ダンパーを開閉制御することによって室内への冷気導入量を調整し、食品111を所定の設定温度になるよう制御している。   The temperature switching chamber 105 is provided with an infrared sensor 112 attached to a recess 113 on the ceiling surface. A shutter mechanism 114 is provided at the opening of the recess 113, and when the opening of the temperature switching chamber 105 is detected, the shutter mechanism 114 operates to close the opening of the recess 113 and further close the door of the temperature switching chamber 105. , The shutter mechanism 114 operates to open the opening of the recess 113, cool air is blown into the room from the air outlet 110, and the temperature of the food 111 that is a load cooled by this cool air is detected by the infrared sensor 112. At the same time, the amount of cold air introduced into the room is adjusted by operating the refrigeration cycle so as to reach a preset temperature and by controlling the opening and closing of a cold air damper installed near the outlet 110 to bring the food 111 to a predetermined preset temperature. It is controlled to become.

このようにして、赤外線センサー112で対象となる食品111の表面温度を検知し、必要な時に必要な量だけの冷却運転を行うことで効率的な冷却運転制御を行っている。
特開2007−212053号公報
In this way, efficient cooling operation control is performed by detecting the surface temperature of the target food 111 with the infrared sensor 112 and performing only the necessary cooling operation when necessary.
JP 2007-212053 A

しかしながら、上記従来の構成では、温度切替室の扉を開けて、熱い食品を収納する時に、外気の流入によって温度切替室のケース内に暖気が溜まるのを防ぐために温度切替室の扉開を検知してシャッター機構で凹部の開口を閉塞し、凹部内への暖気の流入を防止しているため、温度切替室には扉開閉を検知するスイッチとそれと連動するシャッター機構を備える必要があり、複雑な構造を有していた。特に扉の開閉と共にシャッター機構が開閉するといった複雑な可動部分を備えることによって、例えばシャッター機構周辺になんらかの異物や結露水および霜等が付着している場合には、シャッター機構の可動部分が動作不良をおこすといった可能性が生じてくる。こういった問題は特に平均使用年数が10年といった長期間の使用を前提とした冷蔵庫に搭載した場合には、繰り返しの扉開閉によって動作不良が生じる可能性が高まるため、冷蔵庫の信頼性を低下させる要因となるといった課題を有していた。   However, in the above conventional configuration, when the temperature switching chamber door is opened and hot food is stored, detection of opening of the temperature switching chamber door to prevent warm air from accumulating inside the case of the temperature switching chamber due to inflow of outside air. Since the shutter mechanism closes the opening of the recess and prevents the inflow of warm air into the recess, the temperature switching chamber must be equipped with a switch that detects the opening and closing of the door and a shutter mechanism that works in conjunction with it. It had a good structure. In particular, by providing a complex movable part that opens and closes with the opening and closing of the door, for example, when there is some foreign matter, condensed water, frost, etc. around the shutter mechanism, the movable part of the shutter mechanism is malfunctioning. The possibility of causing These problems, especially when installed in refrigerators that are expected to be used for a long period of time, such as an average age of 10 years, increase the possibility of malfunction due to repeated opening and closing of the door, thus reducing the reliability of the refrigerator. It had the problem of becoming a factor to make it happen.

また、上記従来の構成のような複雑な構成を用いた場合には、故障の可能性が高まることに加え、モータや制御装置を運転する電力も必要となり、省エネルギーで赤外線センサーを設置するということが難しいといった課題も有していた。   In addition, when a complicated configuration such as the above-described conventional configuration is used, in addition to increasing the possibility of failure, electric power for operating the motor and control device is also required, and an infrared sensor is installed with energy saving. There was also a problem that was difficult.

本発明は、赤外線センサー周囲の外乱影響(例えば扉開閉等による周囲温度の変動)による検知精度の低下をより簡単な構成で抑制することで、長期間の使用を前提とした冷蔵庫に搭載した場合であっても信頼性が高くかつ省エネルギーで赤外線センサーの検知精度を向上する冷蔵庫を提供することを目的とする。   When the present invention is mounted on a refrigerator premised on long-term use by suppressing the deterioration of detection accuracy due to the influence of disturbance around the infrared sensor (for example, fluctuation of ambient temperature due to opening and closing of the door, etc.) with a simpler configuration. Even so, an object of the present invention is to provide a refrigerator that is highly reliable and saves energy and improves the detection accuracy of an infrared sensor.

上記従来の課題を解決するために、複数の断熱区画で構成された断熱箱体と、前記断熱箱体を仕切る断熱仕切り部と、前記仕切り部で仕切られた貯蔵室と、前記貯蔵室内に収納された収納物から放射された赤外線量を検知する温度検知部を有した赤外線センサーと、前記温度検知部の周囲を囲い前記赤外線センサーに放射量を導く貫通口を備えた赤外線集光部材とを有し、前記赤外線集光部材の少なくとも内壁面は、熱保持力が大きくなるように形成したものである。   In order to solve the above-mentioned conventional problems, a heat insulating box composed of a plurality of heat insulating compartments, a heat insulating partition for partitioning the heat insulating box, a storage compartment partitioned by the partition, and the storage compartment An infrared sensor having a temperature detection unit that detects the amount of infrared radiation emitted from the stored item, and an infrared condensing member that includes a through hole that surrounds the temperature detection unit and guides the radiation amount to the infrared sensor. And at least an inner wall surface of the infrared condensing member is formed so as to have a large heat holding force.

これによって、赤外線センサーの視野範囲の温度変動を抑制するために赤外線センサの視野範囲に位置する赤外線集光部材の内壁面の熱保持力を大きくすることで、外乱による温度変動に対する赤外線集光部材の温度追従性を緩和し、赤外線センサーの視野範囲の温度安定性を高めることでき、赤外線センサーの温度検知部の周囲温度が変動する外乱影響(例えば扉開閉や熱い食品)よる検知精度の低下をより簡単な構成で抑制することが可能となり、赤外線センサーの検知精度を向上することができる。   In this way, in order to suppress the temperature fluctuation in the visual field range of the infrared sensor, the thermal holding power of the inner wall surface of the infrared light collecting member located in the visual field range of the infrared sensor is increased, so that the infrared light collecting member against the temperature fluctuation due to disturbance The temperature tracking performance of the infrared sensor can be relaxed, and the temperature stability of the infrared sensor's visual field range can be improved. It can be suppressed with a simpler configuration, and the detection accuracy of the infrared sensor can be improved.

また、このように、赤外線センサーの周囲に位置する赤外線集光部材の温度変動を低減することで、前記赤外線センサーの周囲の温度変動についても抑制することが可能となり、さらに赤外線センサーの検知精度を向上することができる。   In addition, by reducing the temperature fluctuation of the infrared condensing member located around the infrared sensor in this way, it becomes possible to suppress the temperature fluctuation around the infrared sensor, and further the detection accuracy of the infrared sensor can be improved. Can be improved.

本発明の冷蔵庫は、赤外線センサー周囲の外乱影響(例えば扉開閉等による周囲温度の変動)による検知精度の低下をより簡単な構成で抑制することで、長期間の使用を前提とした冷蔵庫に搭載した場合であっても信頼性が高くかつ省エネルギーで赤外線センサーの検知精度を向上することで、赤外線センサーを備えた冷蔵庫の品質を向上させることができる。   The refrigerator of the present invention is mounted on a refrigerator that is premised on long-term use by suppressing the deterioration of detection accuracy due to the influence of disturbance around the infrared sensor (for example, fluctuation of ambient temperature due to door opening and closing, etc.) with a simpler configuration. Even if it is a case, the quality of the refrigerator provided with the infrared sensor can be improved by improving the detection accuracy of the infrared sensor with high reliability and energy saving.

請求項1に記載の発明は、複数の断熱区画で構成された断熱箱体と、前記断熱箱体を仕切る断熱仕切り部と、前記仕切り部で仕切られた貯蔵室と、前記貯蔵室内に収納された収納物から放射された赤外線量を検知する温度検知部を有した赤外線センサーと、前記温度検知部の周囲を囲い前記赤外線センサーに放射量を導く貫通口を備えた赤外線集光部材とを有し、前記赤外線集光部材の少なくとも内壁面は、熱保持力が大きくなるように形成したものである。   The invention according to claim 1 is housed in the heat insulation box composed of a plurality of heat insulation compartments, the heat insulation partition part partitioning the heat insulation box, the storage room partitioned by the partition part, and the storage room. An infrared sensor having a temperature detection unit for detecting the amount of infrared radiation radiated from the stored item, and an infrared condensing member having a through-hole surrounding the temperature detection unit to guide the radiation amount to the infrared sensor. In addition, at least the inner wall surface of the infrared condensing member is formed so as to increase the heat holding force.

これによって、赤外線センサーの視野範囲の温度変動を抑制するために赤外線センサの視野範囲に位置する赤外線集光部材の内壁面の熱保持力を大きくすることで、外乱による温度変動に対する赤外線集光部材の温度追従性を緩和し、赤外線センサーの視野範囲の温度安定性を高めることでき、赤外線センサーの温度検知部の周囲温度が変動する外乱影響(例えば扉開閉や熱い食品)よる検知精度の低下をより簡単な構成で抑制することが可能となり、赤外線センサーの検知精度を向上することができる。   In this way, in order to suppress the temperature fluctuation in the visual field range of the infrared sensor, the thermal holding power of the inner wall surface of the infrared light collecting member located in the visual field range of the infrared sensor is increased, so that the infrared light collecting member against the temperature fluctuation due to disturbance The temperature tracking performance of the infrared sensor can be relaxed, and the temperature stability of the infrared sensor's visual field range can be improved. It can be suppressed with a simpler configuration, and the detection accuracy of the infrared sensor can be improved.

また、このように、赤外線センサーの周囲に位置する赤外線集光部材の温度変動が低減することで、前記赤外線センサーの周囲の温度変動についても抑制することが可能となり、さらに赤外線センサーの検知精度を向上することができる。   In addition, since the temperature fluctuation of the infrared condensing member located around the infrared sensor is reduced in this way, it is possible to suppress the temperature fluctuation around the infrared sensor, and the detection accuracy of the infrared sensor is further improved. Can be improved.

請求項2に記載の発明は、請求項1に記載の発明の冷蔵庫において、前記断熱仕切り部に形成した凹部と、前記赤外線センサーを収納する赤外線取付ケースと、前記赤外線取付ケースの一部に前記赤外線集光部材の側面と同一形状で貫通した集光開口部とを備え、前記凹部に前記赤外線取付ケースを埋設したことにより、前記赤外線集光部材の側面を更に熱容量の大きい樹脂部材で囲うことで、熱容量を向上し、更に前記赤外線集光部材の温度変動を低減することで、前記赤外線センサーの周囲温度変動を更に抑制し、前記赤外線センサーの検知精度を更に向上させることができる。   The invention according to claim 2 is the refrigerator of the invention according to claim 1, wherein the recess formed in the heat insulating partition, the infrared mounting case that houses the infrared sensor, and a part of the infrared mounting case Containing a condensing opening that penetrates in the same shape as the side surface of the infrared condensing member, and by embedding the infrared mounting case in the recess, the side surface of the infrared condensing member is surrounded by a resin member having a larger heat capacity. Thus, by improving the heat capacity and further reducing the temperature fluctuation of the infrared condensing member, the ambient temperature fluctuation of the infrared sensor can be further suppressed, and the detection accuracy of the infrared sensor can be further improved.

請求項3に記載の発明は、請求項2に記載の発明の冷蔵庫において、前記赤外線集光部材の先端面は、前記凹部の先端面と同一面に埋設したことにより、扉開閉による暖気の流入を前記赤外線集光部材の先端面のみを通過させることで、凹凸をなくす同一面とすることで、扉開閉による暖気の流入や、食品等を収納し、その食品から出る蒸気の暖気溜まりをなくすことで、扉を開けた場合でも温度変動が小さいため、急激な周囲温度の変化による上昇や降下などが原因による誤検知を抑えることができ、赤外線センサーの検知精度の安定性を向上させることができる。   According to a third aspect of the present invention, in the refrigerator of the second aspect of the invention, the front end surface of the infrared condensing member is embedded in the same surface as the front end surface of the recess, so that warm air flows in by opening and closing the door. By passing only the front end surface of the infrared condensing member, it becomes the same surface that eliminates unevenness, so that inflow of warm air due to opening and closing of the door and food etc. are stored, and warm air accumulation of steam emitted from the food is eliminated Therefore, even when the door is opened, the temperature fluctuation is small, so it is possible to suppress false detections caused by sudden changes in ambient temperature, etc., and to improve the stability of infrared sensor detection accuracy. it can.

請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明の冷蔵庫において、前記赤外線集光部材は、良熱伝導性のアルミを主成分とした金属からなることで、扉開閉による暖気の流入があっても、良熱伝導性を兼ね備えたアルミを主成分とした金属を用いることで、熱による応答性を早め、前記赤外線集光部材の貫通口の温度勾配をなくし、前記赤外線センサーの検知精度を向上させることができる。   According to a fourth aspect of the present invention, in the refrigerator according to any one of the first to third aspects of the present invention, the infrared condensing member is made of a metal whose main component is good heat conductive aluminum. Therefore, even if there is an inflow of warm air due to opening and closing of the door, by using a metal mainly composed of aluminum that has good thermal conductivity, the heat response is accelerated, and the temperature of the through-hole of the infrared condensing member is increased. The gradient can be eliminated and the detection accuracy of the infrared sensor can be improved.

請求項5に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明の冷蔵庫において、前記赤外線集光部材は、樹脂と粉体酸化物とを配合し、前記粉体酸化物を85%以上配合してなる電気絶縁性を特徴としたことにより、赤外線センサーの検知精度を低下させることなく、家電製品に関する各種法令で定められている電気絶縁性を確保することができる。   The invention according to claim 5 is the refrigerator according to any one of claims 1 to 3, wherein the infrared condensing member is formed by blending a resin and a powder oxide, and the powder. It is possible to ensure the electrical insulation stipulated by various laws and regulations concerning household electrical appliances without deteriorating the detection accuracy of the infrared sensor by having the characteristics of electrical insulation composed of 85% or more of oxides. .

請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明の冷蔵庫において、前記貫通口は、前記赤外線センサーの先端面から3mm以上の高さを備えたことにより、例えば、角度が広くなると赤外線センサーで温度検知している温度検知面も大きくなり、設置面以外の温度を検知したり、検知したい食品以外の食品が温度検知面に存在する可能性が増加する。これにより、貫通口の高さを3mm以上にすることで、視野角度を制限し、温度検知面を絞ることで、赤外線センサーの誤検知を最小限に抑えることができ、検知精度の安定性を更に向上させることができる。   The invention according to claim 6 is the refrigerator according to any one of claims 1 to 5, wherein the through-hole has a height of 3 mm or more from a front end surface of the infrared sensor. For example, when the angle becomes wider, the temperature detection surface that detects the temperature with the infrared sensor also becomes larger, and the possibility of detecting a temperature other than the installation surface or food other than the food to be detected increases on the temperature detection surface. To do. As a result, the height of the through-hole is set to 3 mm or more, the viewing angle is limited, and the temperature detection surface is narrowed, so that erroneous detection of the infrared sensor can be minimized, and the detection accuracy is stable. Further improvement can be achieved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態について図面を用いて詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態1における冷蔵庫の要部側面断面図である。図2aは、本発明の実施の形態1における冷蔵庫の赤外線センサー取付部の側面断面図である。   FIG. 1 is a side cross-sectional view of the main part of the refrigerator according to Embodiment 1 of the present invention. FIG. 2a is a side sectional view of the infrared sensor mounting portion of the refrigerator in the first embodiment of the present invention.

図1、図2aにおいて、断熱箱体1で構成された冷蔵庫本体2の貯蔵室の一部である冷凍室3は、上方の上部断熱仕切体4と下方の下部断熱仕切体5によって温度帯の異なる冷蔵室6と野菜室7とから区画されている。また、冷凍室3の開口部(図示せず)には、その開口部の左右端をつなぐ仕切体8が設けられている。   In FIG. 1 and FIG. 2 a, the freezer compartment 3, which is a part of the storage compartment of the refrigerator main body 2 composed of the heat insulating box 1, has a temperature zone due to the upper upper heat insulating partition 4 and the lower lower heat insulating partition 5. It is partitioned from different refrigerator compartment 6 and vegetable compartment 7. Further, an opening (not shown) of the freezer compartment 3 is provided with a partition 8 that connects the left and right ends of the opening.

本実施の形態では仕切体8によって開口部の左右端のみをつないでいるが、冷凍室3を上下区画に分けて、どちらかの区画を例えば別の温度帯設定も可能となるような貯蔵室として使用する場合には仕切体8で上下区画を分けるように上部断熱仕切体4や下方の下部断熱仕切体5のように断面全体にわたって断熱仕切体で形成しても良い。   In the present embodiment, only the left and right ends of the opening are connected by the partition body 8, but the freezer compartment 3 is divided into upper and lower compartments, and either compartment can be set to another temperature zone, for example. In the case of using as the upper insulating partition 4 or the lower lower insulating partition 5 so as to divide the upper and lower compartments by the partition 8, it may be formed of an insulating partition over the entire cross section.

冷凍室3の背面に設けられた冷気生成室9には、冷気を生成する蒸発器10と、冷気を冷蔵室6、冷凍室3、野菜室7にそれぞれ供給、循環させる送風機11が配置され、蒸発器10の下部空間には除霜時に通電される除霜用ヒータ12が配置されている。また、冷凍室3の背面には冷気分配室19が設けられており、冷気分配室19に連続して複数の冷気吐出口として冷気吐出口21及び冷気吐出口22および冷気吐出口33が設けられている。   In the cold air generation chamber 9 provided on the back surface of the freezer compartment 3, an evaporator 10 that generates cold air and a blower 11 that supplies and circulates the cold air to the refrigerator compartment 6, the freezer compartment 3, and the vegetable compartment 7 are arranged, respectively. A defrosting heater 12 that is energized during defrosting is disposed in the lower space of the evaporator 10. In addition, a cold air distribution chamber 19 is provided on the rear surface of the freezer compartment 3, and a cold air discharge port 21, a cold air discharge port 22, and a cold air discharge port 33 are provided as a plurality of cold air discharge ports continuously to the cold air distribution chamber 19. ing.

冷凍室3の開口部には、扉23と扉24が設けられており、冷凍室3からの冷気の流出が無いように冷凍室3を閉塞している。扉23と扉24はいずれも引き出し式の扉であり、食品を出し入れする場合は冷蔵庫手前側、すなわち図1で示すところの左側方向に引き出して使用される。また、扉23及び扉24の後方にはそれぞれ枠体25、26が設けられている。この枠体25、26上にはそれぞれ上段容器27と下段容器28が載置されている。   A door 23 and a door 24 are provided at the opening of the freezer compartment 3, and the freezer compartment 3 is closed so that cold air does not flow out of the freezer compartment 3. Both the door 23 and the door 24 are drawer-type doors. When food is taken in and out, the door 23 and the door 24 are used by being pulled out toward the front side of the refrigerator, that is, the left side as shown in FIG. In addition, frame bodies 25 and 26 are provided behind the door 23 and the door 24, respectively. An upper container 27 and a lower container 28 are placed on the frames 25 and 26, respectively.

上段容器27の底面の赤外線センサー13と対向する面である検知面には蓄冷材29が載置されている。この蓄冷材29は、一般的に冷凍される食品の凍結温度より低く、かつ、冷凍室3の温度よりも高い温度である−15℃に融解温度を設定されている。また、蓄冷材29の充填量としては、蓄冷材29上に食品が投入、配置された場合でも完全に融解することのない量に設定されている。   A cold storage material 29 is placed on a detection surface which is a surface facing the infrared sensor 13 on the bottom surface of the upper container 27. The cold storage material 29 is set to a melting temperature of −15 ° C., which is lower than the freezing temperature of food that is generally frozen and higher than the temperature of the freezer compartment 3. Further, the filling amount of the regenerator material 29 is set to an amount that does not completely melt even when food is put on and placed on the regenerator material 29.

また、赤外線センサー13が取り付けられている壁面である上部断熱仕切体4の庫内側の壁面はABS樹脂で形成されている。また、冷凍室3の他の庫内壁面も同様にABS樹脂で形成されており、上段容器27および下段容器28はABS樹脂と熱特性の似た一般の樹脂からなるPP樹脂で形成されている。   Further, the inner wall surface of the upper heat insulating partition 4, which is the wall surface to which the infrared sensor 13 is attached, is formed of ABS resin. Similarly, the other inner wall surface of the freezer compartment 3 is also made of ABS resin, and the upper container 27 and the lower container 28 are made of PP resin made of a general resin similar in thermal characteristics to the ABS resin. .

また、冷凍室3の背面下部には冷気を吸い込み、蒸発器10まで導くための冷気吸入口30が設けられている。   Further, a cold air suction port 30 for sucking cold air and leading it to the evaporator 10 is provided at the lower back of the freezer compartment 3.

また、蓄冷材29上には食品31が使用者の手によって載置、保存される。   In addition, the food 31 is placed and stored on the cold storage material 29 by the user's hand.

赤外線センサー13は、一般的に視野範囲にある物体から放射される赤外線量を検出し、電気信号に変換する赤外線受光部40と、赤外線受光部40の周囲温度の基準温度を測定し、電気信号に変換するサーミスタ42とが内蔵された赤外線素子部43で構成されている。   The infrared sensor 13 generally detects the amount of infrared rays radiated from an object in the visual field range, converts the infrared light receiving unit 40 to convert it into an electric signal, and measures the reference temperature of the ambient temperature of the infrared light receiving unit 40 to obtain an electric signal. And a thermistor 42 for converting into the infrared element unit 43.

本実施の形態においては、食品31の温度を検知することを目的としているが、赤外線センサー13は食品31の温度を検知すると同時に赤外線センサー13の視野範囲内にあるものの温度を検知するので、冷凍室4の壁面や冷凍室4内収納される食品31および蓄冷材29などから放射される赤外線量を検出している。その際に赤外線受光部40の周囲温度を基準温度として測定している。   In the present embodiment, the purpose is to detect the temperature of the food 31, but the infrared sensor 13 detects the temperature of the food 31 and at the same time detects the temperature within the field of view of the infrared sensor 13. The amount of infrared rays emitted from the wall surface of the chamber 4, the food 31 stored in the freezer compartment 4, the cold storage material 29, and the like is detected. At that time, the ambient temperature of the infrared light receiving unit 40 is measured as a reference temperature.

また、赤外線素子部43が電気的に接続されたワイヤー46と、コネクタ44と、プリント配線(図示せず)された基板41とが電気的に接続され、冷蔵庫を制御する制御基板(図示せず)の配線45と、コネクタ44とが電気的に接続される。   In addition, a control board (not shown) for controlling the refrigerator is electrically connected to the wire 46 to which the infrared element portion 43 is electrically connected, the connector 44, and the printed circuit board (not shown) 41. ) Wiring 45 and the connector 44 are electrically connected.

そして、赤外線素子部43は、サーミスタ42の基準温度の電圧と、赤外線受光部40の赤外線量の電圧とを制御基板(図示せず)に電圧を出力することで、検出した測定物の温度を算出し、算出した検知温度で、制御手段(図示せず)で判断を行う。   And the infrared element part 43 outputs the voltage of the reference temperature of the thermistor 42, and the voltage of the infrared rays amount of the infrared light-receiving part 40 to a control board (not shown), The temperature of the detected measured object is output. The control means (not shown) makes a determination based on the calculated detected temperature.

赤外線集光部材48は、赤外線素子部43と熱的に接する状態で赤外線素子部43の周囲を覆って、基板45と隙間なく設けられ、食品31や蓄冷材29以外から放射される外乱の赤外線を取り除き、検知強度を高めるために視野角θ°を制限する貫通口50が赤外線受光部40へ導くように設けている。このように集光機能を有するために本実施の形態においては、赤外線集光部材48の貫通口50の内壁面50a先端部50bから後端部50cの高さを3mm以上とすることで、視野角が30°〜60°となるように設けられている。また、ここで、上段容器27の高さを略110mmとした場合は、視野角を略50°とすることが望ましい。   The infrared condensing member 48 covers the periphery of the infrared element unit 43 in a state of being in thermal contact with the infrared element unit 43, is provided without any gap with the substrate 45, and is an infrared ray of disturbance radiated from other than the food 31 and the cold storage material 29. In order to increase the detection intensity, a through hole 50 that restricts the viewing angle θ ° is provided so as to lead to the infrared light receiver 40. Thus, in this Embodiment in order to have a condensing function, by making the height of the rear-end part 50c from the inner wall surface 50a front-end | tip part 50b of the through-hole 50 of the infrared condensing member 48 into 3 mm or more, visual field It is provided so that the angle is 30 ° to 60 °. Here, when the height of the upper container 27 is approximately 110 mm, the viewing angle is preferably approximately 50 °.

また、ここで、貫通口50は、検知する範囲の円内部において、中心が最も赤外線検知強度が強く、端に行くほど検知強度が弱くなる。そのため赤外線センサーの視野角をより絞ることで赤外線センサーの視野範囲に入っている食品31等の検知物の赤外線量の強度を上げることができ、対象物温度をより確実に精度よく検出することができるが、視野角度の一部が貫通口50の内壁面50aおよび先端部50bに重なるため、内壁面50aや先端部50b温度の影響を受け誤検知の要因となることにより、赤外線センサーの視野範囲内に位置する赤外線集光部材48の少なくとも貫通口50の内壁面50aは、例えば扉の開閉に伴う暖気の流入といった外乱による温度変動があった場合でも、そういった外乱に対する温度追従性を緩和して安定した検知ができるようにするのが望ましく、本実施の形態においては、赤外線集光部材48の貫通口50の内壁面50aの熱保持力を大きくするために、赤外線集光部材48自体の熱保持力が高くなるように熱伝導性を高くかつ熱容量を大きくするように工夫している。   Here, in the through hole 50, the infrared detection intensity is the strongest in the center of the circle to be detected, and the detection intensity becomes weaker toward the end. Therefore, by narrowing the viewing angle of the infrared sensor, it is possible to increase the intensity of the infrared ray of the detected object such as food 31 that is in the visual field range of the infrared sensor, and to detect the temperature of the object more reliably and accurately. However, since a part of the viewing angle overlaps with the inner wall surface 50a and the tip end portion 50b of the through-hole 50, it is affected by the temperature of the inner wall surface 50a and the tip end portion 50b, thereby causing a false detection range. At least the inner wall surface 50a of the through-hole 50 of the infrared condensing member 48 located inside relaxes the temperature followability to such disturbance even when there is a temperature fluctuation due to disturbance such as inflow of warm air accompanying opening and closing of the door. It is desirable to enable stable detection, and in the present embodiment, the heat retaining force of the inner wall surface 50a of the through-hole 50 of the infrared condensing member 48. In order to increase, it is devised so as to increase the high and heat capacity thermal conductivity so that the heat retention of the infrared condensing member 48 itself is increased.

ここで、本発明における熱保持力とは、周辺空気に温度変動等の熱負荷がかかった場合に、それらの温度変動に対する温度追従性の応答性を表しており、すなわち、熱負荷がかかった場合に温度追従性が悪い方向は熱保持力が大きくなる方向であり、追従性が良い方向は熱保持力が小さくなる方向とする。この熱容量は例えば部材の空気に露出している面の単位表面積辺りの熱放射量で表すことができる。具体的には、例えば赤外線集光部材48の空気に露出している表面積が同じであっても、赤外線集光部材48の体積が大きいと熱保持力は大きくなり、また同じ体積であっても、熱容量が大きい材料を使用するとその熱保持力は大きくなる。   Here, the heat retention force in the present invention represents the responsiveness of the temperature followability to the temperature variation when the ambient air is subjected to a thermal load such as a temperature variation, that is, the thermal load is applied. In this case, the direction in which the temperature followability is poor is the direction in which the heat retention force is increased, and the direction in which the followability is good is the direction in which the heat retention force is decreased. This heat capacity can be expressed, for example, by the amount of heat radiation per unit surface area of the surface of the member exposed to the air. Specifically, for example, even if the surface area of the infrared condensing member 48 exposed to the air is the same, if the infrared condensing member 48 has a large volume, the heat holding force increases, and even if the volume is the same. When a material having a large heat capacity is used, the heat retention force increases.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、電源投入後、冷凍サイクル(図示せず)の運転が開始され、蒸発器10に冷媒が流通して冷気が生成される。生成された冷気は送風機11によって冷気分配室19に送られ、冷気吐出口21と冷気吐出口22から分配されて冷凍室3内に吐出される。   First, after turning on the power, the operation of the refrigeration cycle (not shown) is started, and the refrigerant flows through the evaporator 10 to generate cold air. The generated cold air is sent to the cold air distribution chamber 19 by the blower 11, distributed from the cold air discharge port 21 and the cold air discharge port 22, and discharged into the freezer compartment 3.

冷凍室内3に吐出された冷気により冷凍室3が所定の温度まで冷却され、同時に蓄冷材29も冷却される。この時、冷凍室3は食品をある一定の期間冷凍保存できる温度、例えば−20℃に温調されているが、蓄熱材29は−15℃に融解温度を設定されたものを用いるため、冷凍室3が十分に冷却され一定時間経過した後では蓄冷材29は完全に凍結している状態となり、冷却室3内を冷却した冷気は冷気吸入口30から冷気生成室9に入り、蒸発器10によって再び冷却される。   The freezer compartment 3 is cooled to a predetermined temperature by the cold air discharged into the freezer compartment 3, and at the same time, the cold storage material 29 is also cooled. At this time, the freezer compartment 3 is adjusted to a temperature at which the food can be stored frozen for a certain period of time, for example, -20 ° C, but the heat storage material 29 uses a material whose melting temperature is set to -15 ° C. After the chamber 3 is sufficiently cooled and a predetermined time elapses, the regenerator 29 is completely frozen, and the cool air that has cooled the inside of the cooling chamber 3 enters the cool air generation chamber 9 through the cool air inlet 30 and the evaporator 10. Cooled again.

赤外線センサー13の温度検出は、例えば、基準温度となる赤外線センサー13の周囲温度を25℃とした時に赤外線センサー13から出力される電圧をV、サーミスタ42で測定する周囲温度をS、測定範囲を赤外線受光部40で赤外線量を測定する赤外線量の平均温度をBとした場合は、「V=α(B−S)」の関係式で表せる。ここでのαは係数である。 For detecting the temperature of the infrared sensor 13, for example, when the ambient temperature of the infrared sensor 13 serving as the reference temperature is 25 ° C., the voltage output from the infrared sensor 13 is V, the ambient temperature measured by the thermistor 42 is S, and the measurement range is When the average temperature of the amount of infrared rays for measuring the amount of infrared rays by the infrared light receiving unit 40 is B, it can be expressed by the relational expression “V = α (B 4 −S 4 )”. Here, α is a coefficient.

従って、赤外線センサー13は、周囲温度Sと赤外線量の平均温度Bとの温度差がなければ、出力される電圧Vの値が0に近づき、基準となる温度が測定範囲の温度Sになり、温度差が大きければ、赤外線受光部40で検出している赤外線量が多くなり、出力される電圧も大きくなる。   Therefore, if there is no temperature difference between the ambient temperature S and the average temperature B of the amount of infrared rays, the infrared sensor 13 approaches the value of the output voltage V, and the reference temperature becomes the temperature S in the measurement range. If the temperature difference is large, the amount of infrared light detected by the infrared light receiving unit 40 increases, and the output voltage also increases.

よって、仮に温かい食品が投入された場合に、基準温度となる赤外線センサー13の周囲温度Sもそれに伴って大きくなった場合には、周囲温度Sと平均温度Bとの差が小さくなり、温かい食品が入った場合でも相対的に温度の高い食品が投入されたと検出できず、赤外線センサー13の検知精度が低下してしまう。   Therefore, if a warm food is introduced and the ambient temperature S of the infrared sensor 13 serving as the reference temperature also increases accordingly, the difference between the ambient temperature S and the average temperature B becomes small, and the warm food. Even when a food item is contained, it cannot be detected that a food having a relatively high temperature is introduced, and the detection accuracy of the infrared sensor 13 is lowered.

上記のように、サーミスタ42の温度が外乱によって変動せずに安定した温度を保つことができれば、温かい食品等が入った場合に正確な温度を赤外線センサー13が検知することが可能となる。   As described above, if the temperature of the thermistor 42 does not fluctuate due to disturbance and can maintain a stable temperature, the infrared sensor 13 can detect the accurate temperature when warm food or the like enters.

次に扉23が閉時の赤外線センサー13の検出温度は、赤外線センサー13と対向する側に備えられた検知面である上段容器27の底面に据置された蓄冷材29の表面温度を含めて検出する。このように赤外線センサー13が検知する面を蓄冷機能を有する蓄冷材29で形成したことで、検知面における熱保持力も大きくすることができる。例えば、暖気の流入等の外乱があった場合でも、赤外線センサーの検知面も熱保持力が高く外乱に対する温度追従性を緩和することができるので、より外乱による温度変動に影響を受けにくく、安定した温度を保持することができるので、より高い検知精度を得ることができる。この場合は、蓄冷材29が配置されている検知面の方が、蓄冷材29が配置されていない部分の上段容器27の表面よりも周辺温度の変動による熱追従性が悪いことによって、外乱に対する温度追従性を緩和することができる。別の言い方をすると蓄冷材29が配置されている検知面の方が、蓄冷材29が配置されていない部分の上段容器27の表面よりも単位面積辺りの熱放射量が小さいことで熱保持力を大きくすることができる。   Next, the detection temperature of the infrared sensor 13 when the door 23 is closed is detected including the surface temperature of the regenerator 29 placed on the bottom surface of the upper container 27 which is a detection surface provided on the side facing the infrared sensor 13. To do. As described above, the surface detected by the infrared sensor 13 is formed of the cold storage material 29 having a cold storage function, so that the heat retention force on the detection surface can be increased. For example, even if there is a disturbance such as inflow of warm air, the detection surface of the infrared sensor has a high heat holding power, and the temperature followability to the disturbance can be relaxed. Therefore, higher detection accuracy can be obtained. In this case, the detection surface on which the regenerator material 29 is disposed is less susceptible to disturbance due to poor thermal follow-up due to variations in ambient temperature than the surface of the upper container 27 where the regenerator material 29 is not disposed. Temperature followability can be relaxed. In other words, the detection surface on which the regenerator material 29 is disposed has a smaller heat radiation amount per unit area than the surface of the upper container 27 where the regenerator material 29 is not disposed. Can be increased.

このように、本実施の形態においては、赤外線センサー13の視野範囲に位置するものである赤外線集光部材48の貫通口50の内壁面50aと赤外線センサー13と対向する側に備えられた検知面である上段容器27の底面との両方すなわち赤外線センサー13の視野範囲全体を熱保持力の大きい部材で形成することによって、外乱による一時的な温度変動が生じた場合でも、赤外線センサーの視野範囲内に位置する部分の温度追従性を緩和することができるので、赤外線センサー13が温度検知する目的物である食品31の温度をより正確に検知することが可能となる。   Thus, in the present embodiment, the detection surface provided on the side facing the infrared sensor 13 and the inner wall surface 50a of the through-hole 50 of the infrared condensing member 48 that is located in the visual field range of the infrared sensor 13. By forming both the bottom surface of the upper container 27, that is, the entire visual field range of the infrared sensor 13 with a member having a large heat retention force, even if a temporary temperature fluctuation occurs due to a disturbance, it is within the visual field range of the infrared sensor. Therefore, it is possible to more accurately detect the temperature of the food 31 that is the object of temperature detection by the infrared sensor 13.

使用者が食品31を収納する時は、例えば、扉23が引き出され、この時は、赤外線センサー13の温度検出は、下段容器28内の温度を検出する。本実施の形態においては、このような扉23が開いた場合に赤外線センサーと対向する検知面である下段容器28内が本来の検知面である上段容器27の底面とほぼ同温度帯の冷凍温度帯であるために、赤外線センサー13が冷凍温度を検知するため、温度の高い検知を行うことがなく、不要な急速冷凍制御を行うことを防止することができる。   When the user stores the food 31, for example, the door 23 is pulled out. At this time, the temperature detection of the infrared sensor 13 detects the temperature in the lower container 28. In the present embodiment, when the door 23 is opened, the inside of the lower container 28, which is the detection surface facing the infrared sensor, has a freezing temperature in the same temperature range as the bottom surface of the upper container 27, which is the original detection surface. Since it is a belt, the infrared sensor 13 detects the refrigeration temperature, so that high temperature detection is not performed and unnecessary quick refrigeration control can be prevented.

このように引き出し式の扉を有する貯蔵室に赤外線センサーを備える場合において、扉の開閉を検知する扉開閉センサーを備えると扉の開放を検知して赤外線センサーの検知を停止することで誤検知を防止することが可能であるが、本実施の形態のように扉開閉センサーを備えない場合においては、赤外線センサーが検知する検知面が扉の開放に伴って変化することに伴う誤検知を防ぐために赤外線センサーの検知方向において検知面の投影線上の隣接する貯蔵室は、赤外線センサーを備えた貯蔵室と同温度帯もしくは低温度帯の貯蔵室とすることが望ましい。仮にこの隣接する貯蔵室が高い温度帯の貯蔵室である場合には高い温度を検知してしまうことで、冷凍サイクルに負荷をかけて冷却を促進する制御が動作することとなり、無駄なエネルギーを消費してしまう。   When an infrared sensor is provided in a storage room having a drawer-type door in this way, if a door opening / closing sensor that detects opening / closing of the door is provided, false detection is performed by detecting the opening of the door and stopping detection of the infrared sensor. Although it is possible to prevent, in the case where the door opening / closing sensor is not provided as in this embodiment, in order to prevent erroneous detection due to the detection surface detected by the infrared sensor changing as the door is opened The adjacent storage chamber on the projection line of the detection surface in the detection direction of the infrared sensor is preferably a storage chamber in the same temperature range or a low temperature range as the storage chamber provided with the infrared sensor. If this adjacent storage room is a storage room in a high temperature zone, a high temperature is detected, so that a control is applied to accelerate cooling by applying a load to the refrigeration cycle, and wasteful energy is saved. Consume.

よって、本実施の形態のように扉開閉センサーを備えない場合においては、赤外線センサーの検知方向において検知面の投影線上の赤外線センサーを備えた貯蔵室と隣接する貯蔵室は、赤外線センサーを備えた貯蔵室と同温度帯もしくは低温度帯の貯蔵室とすることが望ましく、これによって扉が開放された場合の誤検知を防ぎ、より検知精度を高めることで省エネルギーで冷凍負荷を着実に冷却する冷蔵庫を実現することが可能となる。   Therefore, when the door opening / closing sensor is not provided as in the present embodiment, the storage room adjacent to the storage room provided with the infrared sensor on the projection line of the detection surface in the detection direction of the infrared sensor is provided with the infrared sensor. It is desirable to make it a storage room in the same temperature zone as the storage room or a low temperature zone, thereby preventing false detection when the door is opened and improving the detection accuracy to steadily cool the refrigeration load with energy saving Can be realized.

そして、扉23が開いた状態となり、外気の暖気が扉23の開口面から流入し、冷凍室3の天井面の上段断熱仕切板4に沿って暖気が流れ、赤外線集光部材48の貫通口の内壁面50a先端部50bと、凹部49の先端面49aが同一面になるため、扉を開けた場合でも温度変動が小さいため、急激な周囲温度の変化による上昇や降下などが原因による誤検知を抑えることができ、赤外線センサー13の検知精度の安定性を向上させることができる。   Then, the door 23 is in an open state, the warm air of the outside air flows in from the opening surface of the door 23, the warm air flows along the upper heat insulating partition plate 4 of the ceiling surface of the freezer compartment 3, and the through-hole of the infrared condensing member 48 Because the tip 50b of the inner wall surface 50a and the tip 49a of the recess 49 are the same surface, even when the door is opened, the temperature fluctuation is small. Therefore, false detection due to a rise or fall due to a sudden change in ambient temperature. And the stability of the detection accuracy of the infrared sensor 13 can be improved.

また、赤外線集光部材48の貫通口の内壁面50a先端部50bの温度が上昇するが、赤外線集光部材48の熱保持力が大きいため、暖気が流れても、赤外線集光部材48の貫通口の内壁面50a先端部50bから後端部50cにかけて温度勾配が付き難く、赤外線集光部材48の全体の温度が均温に保たれる。   Moreover, although the temperature of the inner wall surface 50a tip 50b of the through hole of the infrared condensing member 48 rises, the infrared condensing member 48 penetrates through the infrared condensing member 48 even if warm air flows because the heat condensing force of the infrared condensing member 48 is large. A temperature gradient is hardly applied from the front end 50b to the rear end 50c of the inner wall surface 50a of the mouth, and the entire temperature of the infrared condensing member 48 is maintained at a constant temperature.

そして、赤外線センサー13は、周囲温度との温度差がない状態となり、赤外線センサー13の検知精度を向上することが可能である。   And the infrared sensor 13 will be in a state without a temperature difference with ambient temperature, and it is possible to improve the detection accuracy of the infrared sensor 13.

ここで、図3を用いて扉の開閉が行われた場合の赤外線集光部材48の材料による熱保持力すなわち熱追従性の比較を説明する。   Here, a comparison of the heat holding force, that is, the heat followability due to the material of the infrared condensing member 48 when the door is opened and closed will be described with reference to FIG.

本実施の形態では、赤外線集光部材48は、従来庫内壁面の材料として一般的だったABS樹脂と、ABS樹脂と比較して熱保持力が高くなるように熱伝導性を高くかつ熱容量を大きくしたアルミニウムを主成分とするもの、また少しコストが高いが熱伝導率や熱容量が高いことに加えて電気的に絶縁性を有する粉体酸化物からなる高熱電導樹脂材料とを比較した。また、粉体金属樹脂材料は周囲が空気中に露出しているもの(ケース無)と、周囲をこの集光部材よりも熱伝導率の低いケースで覆っているもの(ケース有)とを比較する実験を行った。   In the present embodiment, the infrared condensing member 48 has a high thermal conductivity and a high heat capacity so that the heat retention is higher than that of the ABS resin, which has been conventionally used as a material for the inner wall surface of the warehouse. A comparison was made between a material mainly composed of large aluminum, and a high thermal conductive resin material composed of a powder oxide having an electrically insulating property in addition to high thermal conductivity and heat capacity although the cost is slightly higher. Also, compare the powder metal resin material that is exposed in the air (no case) with the one that covers the periphery with a case with lower thermal conductivity than this condensing member (with case). An experiment was conducted.

また、粉体金属樹脂材料は具体的には、アルミナを主成分として、PPS、ABS、LSP(液晶ポリマ)等の樹脂に分散して混合配合した高熱電導樹脂材料を用いている。また、主成分はやシリカ、マグネシアの何れか1種類を用いても良い。   Specifically, the powder metal resin material is a high thermal conductive resin material that is mainly mixed with alumina and dispersed and mixed in a resin such as PPS, ABS, or LSP (liquid crystal polymer). The main component may be any one of silica, magnesia.

実験条件は、外気温38℃に設置された冷蔵庫において、−17.5℃に保たれた冷凍室のドアを20秒間(横軸の10秒〜30秒の間)開放した後に閉塞した場合に、冷凍室内に備えられた赤外線センサーが検知する検知温度の時間経過に伴う温度を測定したものである。   The experimental condition is that, in a refrigerator installed at an outside temperature of 38 ° C., the door of the freezer room maintained at −17.5 ° C. is opened for 20 seconds (between 10 seconds and 30 seconds on the horizontal axis) and then closed. The temperature with the passage of time of the detected temperature detected by the infrared sensor provided in the freezer compartment is measured.

図3によると、従来一般的であったABS樹脂は−17.5℃に保たれた貯蔵室を20秒間開放した場合には、−3℃以上まで温度上昇した後、序々に温度は低下していくが、ドア閉塞後70秒経っても−15℃以下にはなっておらず、当初の温度まで復帰していなかった。本実験では比較しないが、こういったABS樹脂と同様に従来一般的な樹脂であったPP樹脂等でも同様の温度特性となる。   According to FIG. 3, the ABS resin, which has been generally used in the prior art, gradually rises in temperature after rising to -3 ° C. or higher when the storage chamber maintained at -17.5 ° C. is opened for 20 seconds. However, even after 70 seconds from the closing of the door, the temperature did not fall below -15 ° C, and the temperature did not return to the original temperature. Although not compared in this experiment, similar temperature characteristics are obtained with PP resin or the like, which is a conventional general resin, as well as such ABS resin.

これと比較して集光部材をアルミニウムで形成した場合には、ドアの開放で一時的に−7℃付近まで温度上昇するがその後急速に温度が低下し、ドアの閉塞後20秒で元の温度である−17.5℃まで温度低下していた。これは、アルミニウムの熱保持力が大きいために、一時的に表面の貯蔵室内の空気および外気といった暖気に接している集光部材の内壁面の温度は上昇するものの、アルミニウムの集光部材本体がドア開放前に保っていた−17.5℃の温度を熱保持していたので、ドアを閉めた後は、その温度が集光部材の内壁面に速やかに伝導してドア開放前に蓄えていた冷熱によって集光部材の内壁面も集光部材の温度まで低下したことで、赤外線センサーの検知温度が速やかに低下したと思われる。   In contrast, when the light collecting member is made of aluminum, the temperature temporarily rises to around −7 ° C. when the door is opened, but then the temperature rapidly decreases, and the original temperature is 20 seconds after the door is closed. The temperature was reduced to -17.5 ° C, which is the temperature. This is because the heat holding power of aluminum is large, so the temperature of the inner wall surface of the light collecting member that is temporarily in contact with the warm air such as air in the surface storage chamber and outside air rises, but the aluminum light collecting member body Since the temperature of -17.5 ° C. kept before opening the door was kept hot, after closing the door, the temperature was quickly conducted to the inner wall surface of the light collecting member and stored before opening the door. It seems that the detection temperature of the infrared sensor was rapidly reduced because the inner wall surface of the light collecting member was also lowered to the temperature of the light collecting member due to the cold heat.

次に粉体金属樹脂の場合には、アルミニウムと同様にドアの開放で一時的に−7℃付近まで温度上昇するがその後急速に温度が低下し、ドアの閉塞後20秒で元の温度である−17.5℃まで温度低下しており、これも上記と同様に熱保持力が大きいために、一時的に表面の貯蔵室内の空気および外気といった暖気に接している集光部材の内壁面の温度は上昇するものの、集光部材本体がドア開放前に保っていた−17.5℃の温度を熱保持していたので、ドアを閉めた後は、その温度が集光部材の表面に速やかに伝導してドア開放前に蓄えていた冷熱によって集光部材の内壁面も集光部材の温度まで低下したことで、赤外線センサーの検知温度が速やかに低下したと思われる。   Next, in the case of powder metal resin, as with aluminum, the temperature temporarily rises to around -7 ° C when the door is opened, but then the temperature rapidly decreases, and at the original temperature 20 seconds after the door is closed. Since the temperature is lowered to a certain −17.5 ° C. and this also has a large heat holding power as described above, the inner wall surface of the light collecting member that is temporarily in contact with warm air such as air in the surface storage chamber and outside air However, after the door was closed, the temperature was kept on the surface of the light collecting member. It seems that the detection temperature of the infrared sensor quickly decreased because the inner wall surface of the light collecting member was also lowered to the temperature of the light collecting member due to the cold heat that was quickly conducted and stored before the door was opened.

次に粉体金属樹脂の外周に熱保持促進部材としてABS樹脂からなるケースを備えた場合には、ドアを開放した場合でも温度があまり上昇せず、20秒間の開放後の温度は−15℃と2.5℃の上昇であった。その後ドアを閉塞した後20秒後には元の−17.5℃まで、赤外線センサーの検知温度が速やかに低下している。   Next, when a case made of ABS resin is provided on the outer periphery of the powder metal resin as a heat retention promoting member, the temperature does not rise so much even when the door is opened, and the temperature after opening for 20 seconds is −15 ° C. And a rise of 2.5 ° C. Thereafter, 20 seconds after closing the door, the detection temperature of the infrared sensor is rapidly reduced to the original -17.5 ° C.

これは、熱保持促進部材によって外周部を囲まれていることで、暖気が流入した場合に熱放射する表面積がさらに小さくなり、熱放射が抑えられるために、集光部材の内壁面のみが暖気に接していても集光部材全体の熱保持力によって内壁面温度はすぐには上昇しないためと思われ、ドアの閉塞後は上記アルミニウムと同様に集光部材本体がドア開放前に保っていた−17.5℃の温度を熱保持していたので、ドアを閉めた後は、その温度が集光部材の内壁面に速やかに伝導してドア開放前に蓄えていた冷熱によって集光部材の内壁面も集光部材の温度まで低下したと思われる。   This is because the outer peripheral portion is surrounded by the heat retention promoting member, so that the surface area that radiates heat when warm air flows in is further reduced and the heat radiation is suppressed, so that only the inner wall surface of the light collecting member is warmed. It seems that the inner wall surface temperature does not rise immediately due to the heat retention force of the entire light collecting member even if it is in contact with the light collecting member, and after closing the door, the light collecting member body was kept before the door was opened like the above aluminum Since the temperature of −17.5 ° C. was kept hot, after the door was closed, the temperature was quickly conducted to the inner wall surface of the light collecting member, and the cold heat stored in the light collecting member before the door was opened. It seems that the inner wall surface also decreased to the temperature of the light collecting member.

よって、赤外線集光部材48は、熱保持力が高くなるようにするために、従来の集光部材や庫内壁面の材料として一般的であったABS樹脂と比較して熱伝導性および熱保持力の高い材料である例えばアルミニウム、チタン、ステンレス、鉄、銅等の金属もしくはそれらを含む材料で形成されている。特に、軽量で、熱伝導率や熱容量が高く、冷凍室3内に一部表面が剥き出して配置される観点から見ると、耐腐食性の高いアルミニウムを主成分とするものが好ましい。   Therefore, the infrared condensing member 48 has thermal conductivity and heat retention as compared with the conventional ABS resin, which is a general material for the condensing member and the inner wall surface, in order to increase the heat retention force. It is formed of a material having high strength, for example, a metal such as aluminum, titanium, stainless steel, iron, copper, or a material containing them. In particular, from the viewpoint of being lightweight, having high thermal conductivity and high heat capacity, and being partly exposed in the freezer compartment 3, it is preferable to use aluminum having high corrosion resistance as a main component.

また、冷凍室3内に一部表面が剥き出して使用する場合は、使用者が庫内等を清掃する布巾等による摩擦や人体に帯電して発生する静電気による赤外線センサー13の誤動作や素子自体の破壊を防止するために、粉体金属樹脂の中でも、電気的に絶縁し、熱伝導率や熱容量が高い粉体酸化物樹脂で、例えば、アルミナやシリカ、マグネシアの何れか1種類を主成分として、PPS、ABS、LSP(液晶ポリマ)等の樹脂に分散して混合配合した材料を用いることで熱保持力を向上させることも可能であり、この場合には高熱保持力および高熱伝導性で且つ電気絶縁性を兼ね備え、その配合比は、重量比率で粉体酸化物が80%以上であるものが好ましく、電気絶縁性についても、一般の樹脂部材と同等の比抵抗で1.0×1014Ω・m以上あり、家電製品に関する各種法令で定められている電気絶縁性を満足させることも可能である。 Further, when the surface of the freezer 3 is partially exposed, the infrared sensor 13 malfunctions due to friction caused by a cloth or the like that the user cleans the inside of the refrigerator or static electricity generated by the human body or the element itself. In order to prevent destruction, among powder metal resins, it is a powder oxide resin that is electrically insulated and has high thermal conductivity and heat capacity. For example, any one of alumina, silica, and magnesia is the main component. , PPS, ABS, LSP (liquid crystal polymer), etc., can be used to improve the heat retention by using a material mixed and mixed. In this case, high heat retention and high thermal conductivity and It also has electrical insulation, and the blending ratio is preferably 80% or more by weight of powder oxide. The electrical insulation also has a specific resistance equivalent to that of a general resin member of 1.0 × 10 14. Ω ・ m or less There, it is possible to satisfy the electrical insulation properties are determined by various laws appliances.

更に、貯蔵室内に収納する収納物を赤外線センサー13で温度を検知する場合は、扉開閉による温度変動で赤外線集光部材48の貫通口の内壁面50a先端部50bと後端部50cとの温度勾配ができ易いので、粉体酸化物の重量比率を略85%以上とすることで、熱伝導率が高くなり、熱伝導率は2W/m・K以上で、且つ、単位質量あたりの熱容量は、750J/kg・℃以上とすることが望ましい。   Further, when the temperature of the stored item stored in the storage chamber is detected by the infrared sensor 13, the temperature of the front end portion 50b and the rear end portion 50c of the inner wall surface 50a of the through hole of the infrared light collecting member 48 due to temperature fluctuation caused by opening and closing the door. Since the gradient is easily formed, the thermal conductivity is increased by setting the weight ratio of the powder oxide to approximately 85% or more, the thermal conductivity is 2 W / m · K or more, and the heat capacity per unit mass is 750 J / kg · ° C. or higher is desirable.

上記のように赤外線集光部材48の少なくとも内壁面は赤外線センサーが取り付けられている壁面である上部断熱仕切り板の庫内側の壁面であるABS樹脂の壁面よりも温度変動に対する追従性が悪く、すなわち熱保持力が大きいものである。   As described above, at least the inner wall surface of the infrared condensing member 48 has less followability to temperature fluctuations than the wall surface of the ABS resin, which is the inner wall surface of the upper heat insulating partition plate, which is the wall surface to which the infrared sensor is attached. The heat retention is large.

また、本実施の形態では、さらに赤外線集光部材48の熱保持力を向上させる熱保持促進部材として赤外線取付けケース47を用いて、赤外線集光部材48の周囲を赤外線取付ケース47の集光開口部51で包囲することで、熱容量を向上し、赤外線集光部材48の温度変動を更に低減させている。   Further, in the present embodiment, the infrared mounting case 47 is used as a heat retention promoting member for further improving the heat retaining force of the infrared light collecting member 48, and the light collecting opening of the infrared mounting case 47 is surrounded by the infrared light collecting member 48. By surrounding with the part 51, the heat capacity is improved and the temperature fluctuation of the infrared condensing member 48 is further reduced.

この場合、赤外線取付ケース47が赤外線集光部材48の周囲を取り囲む断熱部材として機能しており、赤外線集光部材48の外側表面が外気にさらされることを防止しているので、赤外線集光部材48の外気と接触面積を低減させるとともに、一定温度の赤外線集光部材の温度変化を緩慢にすることで、外乱による温度変動に対する追従性をより緩和することができ、熱保持力を向上させることができ、赤外線取付けケース47が熱保持力を向上させることができる熱保持促進部材として機能している。   In this case, since the infrared mounting case 47 functions as a heat insulating member that surrounds the infrared condensing member 48 and prevents the outer surface of the infrared condensing member 48 from being exposed to the outside air, the infrared condensing member By reducing the contact area with 48 outside air and making the temperature change of the infrared condensing member at a constant temperature slow, followability to temperature fluctuations due to disturbance can be further relaxed, and heat retention is improved. The infrared mounting case 47 functions as a heat retention promoting member that can improve the heat retention force.

なお、本実施の形態では熱保持促進部材として赤外線集光部材48の少なくとも外表面を赤外線取り付けケース47で覆う構成としたが、これを赤外線集光部材48よりも熱伝導率の低い部材で形成すれば他の構成であっても良い。例えば、赤外線集光部材48の周囲にゴムやブチル等の部材を嵌め込むことによって熱保持促進部材としてもよく、この場合には他部品と取付けを行う際のシール部材としての機能も果たすことが可能である。また、一般的に冷蔵庫の庫内壁面に使用されているABS樹脂で形成し、そこに赤外線集光部材を嵌め込む形でも良い。さらに、熱伝導率の低い材料からなる断熱部材で赤外線集光部材48の周囲を囲う構造ではさらに赤外線集光部材48の熱保持力を向上させることが可能となり、より温度変動に対する追従性を緩和し、安定した検知精度を備えた赤外線センサーを備えることができる。   In the present embodiment, at least the outer surface of the infrared condensing member 48 is covered with the infrared mounting case 47 as the heat retention promoting member, but this is formed of a member having a lower thermal conductivity than the infrared condensing member 48. Other configurations may be used. For example, a member such as rubber or butyl may be fitted around the infrared condensing member 48 to serve as a heat retention promoting member. In this case, it can also function as a seal member when mounting with other components. Is possible. Further, it may be formed of an ABS resin generally used on the inner wall surface of a refrigerator, and an infrared condensing member may be fitted therein. Furthermore, the structure that surrounds the periphery of the infrared condensing member 48 with a heat insulating member made of a material having low thermal conductivity makes it possible to further improve the heat holding power of the infrared condensing member 48, thereby further reducing the follow-up to temperature fluctuations. In addition, an infrared sensor having stable detection accuracy can be provided.

このように熱保持促進部材を用いることで、赤外線センサーの検知範囲内の壁面である赤外線集光部材の内壁面は一般的な庫内壁面すなわちABS樹脂よりも単位面積あたりの熱放射量を小さくすることが可能となり、安定した検知精度を備えた赤外線センサーを備えることができる。   By using the heat retention promoting member in this way, the inner wall surface of the infrared condensing member, which is the wall surface within the detection range of the infrared sensor, has a smaller amount of heat radiation per unit area than a general inner wall surface, that is, ABS resin. And an infrared sensor with stable detection accuracy can be provided.

上記に加えて、赤外線センサーの検知範囲内の壁面の中で大きな面積となる検知面である食品載置面についても一般的な庫内壁面すなわちABS樹脂よりも熱保持力を大きくすることで、単位面積あたりの熱放射量を小さくすることが可能となり、安定した検知精度を備えた赤外線センサーを備えることができる。このように赤外線センサーの検知範囲内のすべての面を赤外線センサーが備えられている壁面表面のABS樹脂よりも熱保持力を大きくすることで、単位面積あたりの熱放射量を小さくすることが可能となり、より暖気の流入による温度変動に対する温度追従性を緩和すなわち悪くすることができるので、赤外線センサーの検知面の温度変動を抑制し、安定した検知精度を備えた赤外線センサーを備えることができる。   In addition to the above, by increasing the heat holding power of the food placement surface, which is a detection surface that is a large area in the wall surface within the detection range of the infrared sensor, than the general inner wall surface, that is, ABS resin, The amount of heat radiation per unit area can be reduced, and an infrared sensor having stable detection accuracy can be provided. In this way, it is possible to reduce the amount of heat radiation per unit area by increasing the heat holding power of all surfaces within the detection range of the infrared sensor than the ABS resin on the wall surface where the infrared sensor is provided. As a result, the temperature followability to the temperature fluctuation caused by the inflow of warm air can be reduced, that is, the temperature fluctuation on the detection surface of the infrared sensor can be suppressed, and the infrared sensor having stable detection accuracy can be provided.

また、赤外線取付ケース47は、略中心に位置する部分に赤外線集光部材48の側面と同一形状で貫通した集光開口部51が設けられ、その集光開口部51に赤外線集光部材48を収納して、赤外線センサー13が赤外線取付ケース47に取付けられている。また、赤外線受光部40面と赤外線集光部材48の先端面48aが並行で、冷凍室3内に伸びる赤外線集光部材48の先端面48aと、赤外線取付ケース47の外面が同一面に設けられ段差を少なくすることで、扉23、扉24の開閉状態があっても、冷凍室3の天井面の上段断熱仕切板4に沿って風が流れやすく、暖気溜まりで赤外線集光部材48の貫通口50の内壁面50a先端部50bと後端部50cとの温度勾配ができ難いように設けられている。   Further, the infrared mounting case 47 is provided with a condensing opening 51 penetrating in the same shape as the side surface of the infrared condensing member 48 in a portion located substantially at the center, and the infrared condensing member 48 is provided in the condensing opening 51. The infrared sensor 13 is mounted on the infrared mounting case 47 in the housed state. Further, the infrared light receiving unit 40 surface and the front end surface 48a of the infrared light collecting member 48 are parallel, and the front end surface 48a of the infrared light collecting member 48 extending into the freezer compartment 3 and the outer surface of the infrared mounting case 47 are provided on the same surface. By reducing the level difference, even if the door 23 and the door 24 are opened and closed, the wind easily flows along the upper heat insulating partition plate 4 on the ceiling surface of the freezer compartment 3, and the infrared condensing member 48 penetrates through the warm air pool. The inner wall surface 50a of the mouth 50 is provided so that a temperature gradient between the front end portion 50b and the rear end portion 50c is difficult to occur.

また、図2bに示すように本実施の形態においては、赤外線集光部材48の内壁面50aは円錐形の頂点をカットしたような横断面が台形であり、底辺が直径2.5mmで検知面側が直径3.9mmの断面が台形上の形をしており、高さ4mm、表面積は40.73mmである。 Further, as shown in FIG. 2b, in the present embodiment, the inner wall surface 50a of the infrared condensing member 48 has a trapezoidal cross section as if the apex of the conical shape is cut, the bottom is 2.5 mm in diameter, and the detection surface. The cross section with a diameter of 3.9 mm is a trapezoidal shape with a height of 4 mm and a surface area of 40.73 mm 2 .

また、赤外線集光部材48は赤外線の検知面である赤外線受光部40の配置面40aもしくはサーミスタ42の配置面42aよりも検知面である食品31が載置されている側と逆の上部断熱仕切り4側に延出して赤外線集光部材後端面48bが形成されており、赤外線集光部材48の内部に赤外線受光部40やサーミスタ42とを挟んで両側に赤外線集光部材48で囲まれた空間が形成されている。   Further, the infrared condensing member 48 is an upper heat insulating partition opposite to the side on which the food 31 serving as the detection surface is placed, rather than the arrangement surface 40a of the infrared light receiving unit 40 which is an infrared detection surface or the arrangement surface 42a of the thermistor 42. An infrared condensing member rear end surface 48b is formed extending to the side 4 and is a space surrounded by the infrared condensing member 48 on both sides with the infrared light receiving unit 40 and the thermistor 42 sandwiched inside the infrared condensing member 48. Is formed.

このように赤外線集光部材48の円心側の空間内に赤外線受光部40やサーミスタ42が配置されていることで、赤外線集光部材48の熱保持力を上げることが赤外線受光部40やサーミスタ42自身の温度変動を抑制することに直接的に関わっていることとなる。   As described above, the infrared light receiving unit 40 and the thermistor 42 are arranged in the space on the center side of the infrared light collecting member 48, so that the heat holding power of the infrared light collecting member 48 can be increased. It is directly related to suppressing the temperature fluctuation of 42 itself.

上記のように、赤外線集光部材48の体積は集光機能を発揮する部分よりも倍以上の体積である745.935mmのとしたので表面積は40.73mmに対して十分に大きな熱容量を実現することが可能となる。 As described above, since the volume of the infrared condensing member 48 is 745.935 mm 3 , which is more than twice that of the portion exhibiting the condensing function, the surface area has a sufficiently large heat capacity with respect to 40.73 mm 2 . It can be realized.

また、赤外線集光部材48の体積は赤外線受光部40の配置面40aの背面側の方が赤外線受光部40の配置面40aの先端側よりも大きくなるように構成している。すなわち、赤外線受光部40の配置面40aから赤外線集光部材の後端面48b側の体積の方が赤外線受光部40の配置面40aから赤外線集光部材の先端面48aの体積よりも大きくなるように形成していることで、より外気の影響を受けにくい赤外線集光部材の後端面48b側の熱容量を大きくすることができ、より周辺空気による温度変動を緩和し、熱安定性の高い集光部材を形成することが可能となる。   Further, the volume of the infrared condensing member 48 is configured such that the back side of the arrangement surface 40 a of the infrared light receiving unit 40 is larger than the tip side of the arrangement surface 40 a of the infrared light receiving unit 40. That is, the volume on the rear end surface 48b side of the infrared light collecting member from the arrangement surface 40a of the infrared light receiving unit 40 is larger than the volume of the front surface 48a of the infrared light collecting member from the arrangement surface 40a of the infrared light receiving unit 40. By forming, the heat capacity of the rear end face 48b side of the infrared condensing member that is less susceptible to the influence of outside air can be increased, the temperature fluctuation due to the surrounding air is further reduced, and the condensing member having high thermal stability Can be formed.

以上のように、本実施の形態では、赤外線集光部材48の少なくとも内壁面は赤外線センサーが取り付けられている貯蔵室の壁面よりも単位体積当たりの熱保持力が大きくなるように形成したものである。   As described above, in the present embodiment, at least the inner wall surface of the infrared condensing member 48 is formed so that the heat holding power per unit volume is larger than the wall surface of the storage chamber to which the infrared sensor is attached. is there.

これによって、赤外線センサーの視野範囲の温度変動を抑制するために赤外線センサの視野範囲に位置する赤外線集光部材の内壁面が、暖気の流入等の外乱による温度変動に対する温度追従性を緩和することができ、赤外線センサーの視野範囲の温度安定性を高めることでき、赤外線センサーの温度検知部の周囲温度が変動する外乱影響(例えば扉開閉や熱い食品)よる検知精度の低下をより簡単な構成で抑制することが可能となり、赤外線センサーの検知精度を向上することができる。   As a result, the inner wall surface of the infrared condensing member located in the infrared sensor visual field range in order to suppress temperature fluctuations in the visual field range of the infrared sensor can alleviate temperature followability to temperature fluctuations caused by disturbance such as inflow of warm air. The temperature stability of the infrared sensor's visual field range can be improved, and the detection accuracy can be reduced by the influence of disturbance (for example, door opening and closing and hot food) that changes the ambient temperature of the infrared sensor's temperature detector. It becomes possible to suppress the detection accuracy of the infrared sensor.

また、本実施の形態で用いたアルミを主成分とした金属もしくは粉体金属樹脂を集光部材として用いると、その内壁面温度すなわち空気と接する表面温度は一時的に変動するものの、そういった一時的な外乱に対してはすぐに元の状態に復帰するため、暖気の流入等の外乱があった場合でも、赤外線センサーの検知面も熱保持力が高く外乱に対する温度追従性を緩和することができるので、より外乱による温度変動に影響を受けにくく、安定した温度を保持することができるので、より高い検知精度を得ることができることがわかった。   In addition, when the metal mainly composed of aluminum or powder metal resin used in the present embodiment is used as a light collecting member, the inner wall surface temperature, that is, the surface temperature in contact with air, temporarily fluctuates. Because it immediately returns to the original state for any disturbance, even if there is a disturbance such as inflow of warm air, the detection surface of the infrared sensor also has a high thermal holding power, and the temperature followability to the disturbance can be relaxed Therefore, it was found that a higher detection accuracy can be obtained because it is less affected by temperature fluctuation due to disturbance and can maintain a stable temperature.

また、赤外線集光部材48の先端の温度と、サーミスタ42との温度差があれば、赤外線集光部材48の先端部の温度を検出し、赤外線センサーによって検出した温度が赤外線センサー13の検知精度が悪くなる原因であるが、本実施の形態ではサーミスタ42と赤外線集光部材48の内壁面および先端部48aとの温度差を小さくすることができ、より検知精度を向上させた赤外線センサーを用いることが可能となる。   Further, if there is a temperature difference between the temperature of the tip of the infrared condensing member 48 and the thermistor 42, the temperature of the tip of the infrared condensing member 48 is detected, and the temperature detected by the infrared sensor is the detection accuracy of the infrared sensor 13. In this embodiment, the temperature difference between the thermistor 42 and the inner wall surface of the infrared condensing member 48 and the tip 48a can be reduced, and an infrared sensor with improved detection accuracy is used. It becomes possible.

また、赤外線集光部材48の少なくとも内壁面は赤外線センサーが取り付けられている壁面である上部断熱仕切り板の庫内側の壁面であるABS樹脂の壁面よりも温度変動に対する追従性が悪く、すなわち熱保持力が大きいものであるので、より外乱による温度変動に影響を受けにくく、安定した温度を保持することができるので、より高い検知精度を得ることができる。   In addition, at least the inner wall surface of the infrared condensing member 48 has less followability to temperature fluctuation than the wall surface of the ABS resin, which is the inner wall surface of the upper heat insulating partition plate, which is the wall surface to which the infrared sensor is attached, that is, heat retention. Since the force is large, it is less susceptible to temperature fluctuations due to disturbance, and a stable temperature can be maintained, so that higher detection accuracy can be obtained.

従って、赤外線センサー13の周囲を熱伝導率の大きい赤外線集光部材48で囲うことで、赤外線センサー13の周囲の外乱影響(例えば扉開閉や熱い食品による温度変動)を赤外線集光部材48で吸収し、赤外線センサー13と赤外線集光部材48の温度が均一になり、赤外線センサー13の周囲の温度変動が小さくなり、外乱による熱影響を低減し、温度変動を抑制することで赤外線センサー13の検知精度を向上することが可能である。   Therefore, by surrounding the infrared sensor 13 with the infrared condensing member 48 having high thermal conductivity, the infrared condensing member 48 absorbs the influence of disturbance around the infrared sensor 13 (for example, door opening / closing and temperature fluctuation due to hot food). In addition, the temperature of the infrared sensor 13 and the infrared condensing member 48 becomes uniform, the temperature fluctuation around the infrared sensor 13 is reduced, the thermal influence due to disturbance is reduced, and the temperature fluctuation is suppressed, thereby detecting the infrared sensor 13. The accuracy can be improved.

また本発明では、赤外線センサー13の検知する上段容器27内に食品等の負荷から発せられる赤外線量を検知し、赤外線量から算出される温度が一定の温度以上(上限設定温度:T0)である場合に、自動で急凍制御に入り、また、急凍制御設定後に赤外線センサー128が検知する温度が一定の温度以下(下限設定温度:T1)である場合に急凍制御を終了するようにした。   In the present invention, the amount of infrared rays emitted from a load such as food is detected in the upper container 27 detected by the infrared sensor 13, and the temperature calculated from the amount of infrared rays is equal to or higher than a certain temperature (upper limit set temperature: T0). In this case, the quick freezing control is automatically entered, and the quick freezing control is terminated when the temperature detected by the infrared sensor 128 after the setting of the quick freezing control is equal to or lower than a certain temperature (lower limit set temperature: T1). .

急凍制御の動作としては、食品が入り赤外線センサー13の検知温度が開始温度であるT0以上を検知すると、冷蔵庫は圧縮機(図示せず)の回転数を上昇させることで循環する冷媒量を上げ、蒸発器10の温度を下げる。更に、冷気送風機11の回転数を上昇させることにより、蒸発器10で生成された冷気を庫内に循環させる冷却量を増やすことで食品31を早く冷却させる。その後、食品31の温度を継続検知する中で、最大氷結晶生成帯である0℃〜−5℃の通過を確認後、終了温度である下限設定温度T1となると急凍制御を自動で終了し、通常の冷却運転とさせることで食品保存として鮮度に影響する最大氷結晶生成帯を早く通過させ、最大氷結晶生成帯を通過後には通常に冷却していても保鮮性の劣化にはほとんど影響はないので、通常運転としている。本実施の形態では、急凍制御の開始温度すなわち上限温度であるT0は−2.5℃とし、急凍制御の終了温度すなわち下限温度であるT1は−15℃としている。これは、食品の収納形態や食品自身の形態によって状態が異なるためである。   As an operation of the quick freezing control, when the food enters and the detected temperature of the infrared sensor 13 detects T0 or more which is the start temperature, the refrigerator increases the rotation speed of the compressor (not shown) to thereby circulate the amount of refrigerant circulating. Raise the evaporator 10 temperature. Furthermore, the foodstuff 31 is cooled rapidly by increasing the cooling amount which circulates the cold air produced | generated by the evaporator 10 in the store | warehouse | chamber by raising the rotation speed of the cold air blower 11. FIG. After that, while continuously detecting the temperature of the food 31, after confirming the passage of the maximum ice crystal formation zone from 0 ° C. to −5 ° C., when the lower limit set temperature T 1 that is the end temperature is reached, the quick freezing control is automatically ended. The maximum ice crystal formation zone, which affects the freshness of food preservation, can be passed quickly by normal cooling operation, and after passing through the maximum ice crystal formation zone, even if it is normally cooled, it has little effect on the deterioration of freshness. There is no such thing as normal operation. In the present embodiment, T0, which is the start temperature of the quick freezing control, that is, the upper limit temperature, is −2.5 ° C., and T1, which is the end temperature of the quick freezing control, ie, the lower limit temperature, is −15 ° C. This is because the state varies depending on the food storage form and the form of the food itself.

このように、本実施の形態では自動で急速冷凍(急凍)の制御に入り冷却能力の向上が自動で行われるので、冷蔵庫の冷却を必要に応じた冷却運転で行うことができる。特に、負荷投入によっての庫内温度の上昇や、急速に凍結させたい負荷への冷却に対して、従来のように圧縮機を中回転で運転し負荷をゆっくり冷却するよりも、高能力で短時間の冷却とするほうが、実際の冷蔵庫の消費電力量としては運転時間を短縮することができるので、さらに省エネルギーを実現した冷蔵庫を提供することができる。   As described above, in this embodiment, the control of quick freezing (rapid freezing) is automatically performed and the cooling capacity is automatically improved, so that the refrigerator can be cooled by a cooling operation as required. In particular, for higher temperature inside the chamber due to load input and cooling to a load that you want to freeze quickly, it is faster and more efficient than operating a compressor at medium speed and slowly cooling the load. The time cooling can shorten the operation time as the actual power consumption of the refrigerator, so that it is possible to provide a refrigerator that further saves energy.

このような、自動での急速冷凍を行う場合には、赤外線センサー13の検知精度が悪いと無駄に急速冷凍の制御が始まってしまうといった課題があるが、本実施の形態では赤外線センサー13の検知精度をより向上させているので、自動での急速冷凍をより精度よく行うことが可能となる。   When performing such automatic quick freezing, there is a problem that if the detection accuracy of the infrared sensor 13 is poor, the control of the quick freezing starts unnecessarily. In the present embodiment, the detection of the infrared sensor 13 is performed. Since the accuracy is further improved, automatic quick freezing can be performed with higher accuracy.

以上のように、本実施の形態1においては、複数の断熱区画で構成された断熱箱体と、断熱箱体を仕切る断熱仕切り部と、仕切り部で仕切られた貯蔵室と、貯蔵室内に収納された収納物から放射された赤外線量を検知する温度検知部を有した赤外線センサーと、温度検知部の周囲を囲い赤外線センサーに放射量を導く貫通口を備えた、赤外線集光部材とを有し、赤外線集光部材は、樹脂と比較して、熱伝導率の大きい特性を備え、赤外線センサーの周囲を熱伝導率の大きい赤外線集光部材で包囲し、赤外線センサーの周囲の外乱影響(例えば扉開閉や熱い食品等)による温度変動を赤外線集光部材で吸収し、赤外線センサーと赤外線集光部材の温度が均一になり、赤外線センサーの周囲の温度変動が低減し、赤外線センサーの周囲の温度変動を抑制することで、赤外線センサーの検知精度を向上することができる。   As described above, in the first embodiment, the heat insulating box configured by a plurality of heat insulating compartments, the heat insulating partition that partitions the heat insulating box, the storage chamber partitioned by the partition, and the storage chamber are accommodated. An infrared sensor having a temperature detection unit for detecting the amount of infrared radiation radiated from the stored items, and an infrared condensing member having a through-hole surrounding the temperature detection unit and guiding the radiation amount to the infrared sensor. The infrared condensing member has a characteristic of higher thermal conductivity than that of the resin, and surrounds the infrared sensor with an infrared condensing member having a high thermal conductivity. Temperature fluctuations due to door opening and closing and hot foods are absorbed by the infrared condensing member, the temperature of the infrared sensor and infrared condensing member becomes uniform, the temperature fluctuation around the infrared sensor is reduced, and the temperature around the infrared sensor Fluctuation By suppressing, it is possible to improve the detection accuracy of the infrared sensor.

また、断熱仕切り部に形成した凹部と、赤外線センサーを収納する赤外線取付ケースと、赤外線取付ケースの一部に赤外線集光部材の側面と同一形状で貫通した集光開口部とを備え、凹部に赤外線取付ケースを埋設したことにより、赤外線集光部材の側面を更に熱容量の大きい樹脂部材で囲うことで、熱容量を向上し、更に赤外線集光部材の温度変動を低減することで、赤外線センサーの検知精度を更に向上させることができる。   In addition, a recess formed in the heat insulating partition, an infrared mounting case that houses the infrared sensor, and a condensing opening that penetrates a part of the infrared mounting case in the same shape as the side surface of the infrared condensing member. Infrared mounting case is embedded so that the side of the infrared condensing member is surrounded by a resin member with a larger heat capacity, thereby improving the heat capacity and further reducing the temperature fluctuation of the infrared condensing member. The accuracy can be further improved.

また、赤外線集光部材の先端面は、凹部の先端面と同一面に埋設したことにより、扉開閉による暖気の流入を赤外線集光部材の先端面のみを通過させることで、凹凸をなくす同一面とすることで、扉開閉による暖気の流入や、食品等を収納し、その食品から出る蒸気の暖気溜まりをなくすことで、扉を開けた場合でも温度変動が小さいため、急激な周囲温度の変化による上昇や降下などが原因による誤検知を抑えることができ、検知精度の安定性を向上させることができる。   Moreover, the front end surface of the infrared condensing member is embedded in the same surface as the front end surface of the recess, so that the inflow of warm air by opening and closing the door is allowed to pass only through the front end surface of the infrared condensing member, thereby eliminating the unevenness. As a result, temperature fluctuations are small even when the door is opened by storing inflow of warm air by opening and closing the door, storing food, etc., and eliminating the accumulation of warm air from the food. It is possible to suppress erroneous detection due to the rise and fall caused by, and to improve the stability of detection accuracy.

また、赤外線集光部材は、良熱伝導性のアルミを主成分とした金属からなることで、扉開閉による暖気の流入があっても、良熱伝導性を兼ね備えたアルミを主成分とした金属を用いることで、熱による応答性を早め、赤外線集光部材の貫通口の温度勾配をなくし、赤外線センサーの検知精度を向上させることができる。   In addition, the infrared condensing member is made of a metal mainly composed of aluminum with good heat conductivity, so that even if there is an inflow of warm air due to opening and closing of the door, it is a metal based on aluminum that has good heat conductivity. By using, the responsiveness by heat can be accelerated, the temperature gradient of the through-hole of the infrared condensing member can be eliminated, and the detection accuracy of the infrared sensor can be improved.

また、赤外線集光部材は、樹脂と粉体酸化物とを配合し、粉体酸化物を85%以上配合してなる電気絶縁性を特徴としたことにより、赤外線センサーの検知精度を低下させることなく、家電製品に関する各種法令で定められている電気絶縁性を確保することができる。   In addition, the infrared condensing member is characterized by electrical insulation, which is made by blending resin and powder oxide and blending 85% or more of powder oxide, thereby reducing the detection accuracy of the infrared sensor. In addition, it is possible to ensure the electrical insulation defined by various laws and regulations concerning home appliances.

また、貫通口は、赤外線センサーの先端面から3mm以上の高さを備えたことにより、例えば、角度が広くなると赤外線センサーで温度検知している温度検知面も大きくなり、設置面以外の温度を検知したり、検知したい食品以外の食品が温度検知面に存在する可能性が増加する。これにより、貫通口の高さを3mm以上にすることで、視野角度を制限し、温度検知面を絞ることで、赤外線センサーの誤検知を最小限に抑えることができ、検知精度の安定性を更に向上させることができる。   In addition, since the through hole has a height of 3 mm or more from the tip surface of the infrared sensor, for example, when the angle is widened, the temperature detection surface where the temperature is detected by the infrared sensor also becomes large, and the temperature other than the installation surface is increased. There is an increased possibility that food other than the food to be detected or detected exists on the temperature detection surface. As a result, the height of the through-hole is set to 3 mm or more, the viewing angle is limited, and the temperature detection surface is narrowed, so that erroneous detection of the infrared sensor can be minimized, and the detection accuracy is stable. Further improvement can be achieved.

また、一般に赤外線センサー112は、物体から照射される赤外線の放射量を検知するもので、熱い食品から出る蒸気により、凹部113の周囲や赤外線センサー112の周囲が結露し、その結露(水)が持つ熱エネルギーを赤外線の放射量として検知するので、食品の表面温度を検出するより、赤外線センサー112の周辺に付着した結露(水)の温度を検出してしまい、食品の表面温度を正確に検出できないという課題を有していたが、本実施の形態では、赤外線センサーと食品との間にカバーや集光レンズといった介在物を設けずに赤外線センサー表面と貯蔵室内空間が連通していることで介在物に結露水が付着することによる赤外線センサーの検知精度の低下を防止することができる。   In general, the infrared sensor 112 detects the amount of infrared radiation emitted from an object, and the vapor from the hot food causes condensation around the recess 113 and around the infrared sensor 112, and the condensation (water) is generated. Because it detects the thermal energy it has as the amount of infrared radiation, it detects the temperature of the dew (water) adhering to the periphery of the infrared sensor 112 rather than detecting the surface temperature of the food, and accurately detects the surface temperature of the food. In this embodiment, the infrared sensor surface and the storage room space communicate with each other without providing an inclusion such as a cover or a condenser lens between the infrared sensor and food. It is possible to prevent a decrease in detection accuracy of the infrared sensor due to the condensation water adhering to the inclusions.

(実施の形態2)
以下、本発明の実施の形態について図面を用いて詳細に説明する。なお、上記実施の形態1と同一構成の部分は同じ符号をふり詳細な説明を省略し、同一の技術思想が適用できる部分については詳細な説明を省略する。
(Embodiment 2)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that parts having the same configurations as those of the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and detailed description of parts to which the same technical idea can be applied is omitted.

本実施の形態2は本願発明の他の実施の形態で説明した構成要素との組合せが可能であり、目的に応じて随時適用できるものである。   The second embodiment can be combined with the components described in the other embodiments of the present invention, and can be applied at any time according to the purpose.

図4は、本発明の実施の形態2における冷蔵庫の要部側面断面図である。   FIG. 4 is a side sectional view of an essential part of the refrigerator in the second embodiment of the present invention.

冷蔵庫内の貯蔵室の一つである冷凍室3内に備えられた赤外線センサー13は、一般的に視野範囲にある物体から放射される赤外線量を検出し、電気信号に変換する赤外線受光部40と、赤外線受光部40の周囲温度の基準温度を測定し、電気信号に変換するサーミスタ42とが内蔵された赤外線素子部43で構成されている。よって、赤外線センサー13の視野範囲外に温度の高い食品が投入された場合には、検知できないこととなる。   The infrared sensor 13 provided in the freezer compartment 3 which is one of the storage rooms in the refrigerator generally detects the amount of infrared rays radiated from an object in the visual field range and converts it into an electrical signal. And a thermistor 42 that incorporates a thermistor 42 that measures a reference temperature of the ambient temperature of the infrared light receiver 40 and converts it into an electrical signal. Therefore, when food with a high temperature is put out of the visual field range of the infrared sensor 13, it cannot be detected.

本実施の形態においては、より赤外線センサー13を用いた場合の検知精度を向上させるために、前方側に備えられた第一の赤外線センサー13aと後方側に備えられた第二の赤外線センサー13bの複数の赤外線センサーを備えている。   In the present embodiment, in order to improve the detection accuracy when the infrared sensor 13 is used, the first infrared sensor 13a provided on the front side and the second infrared sensor 13b provided on the rear side are provided. It has multiple infrared sensors.

また、上段容器27内を冷却する冷気吐出口21も複数設けられ、主に前方側へ冷気を吐出する第一の冷気吐出口21aおよび主に後方側へ冷気を吐出する第二の冷気吐出口21bを備えている。   Also, a plurality of cold air discharge ports 21 for cooling the inside of the upper container 27 are provided, a first cold air discharge port 21a that mainly discharges cold air to the front side, and a second cold air discharge port that mainly discharges cold air to the rear side. 21b.

これによって、冷凍室3内の上段容器27内の例えば冷蔵庫の前方側の温度は第一の赤外線センサー13aによって検知し、上段容器27の後方側の温度は赤外線センサー13bによって検知することが可能であるので、複数の赤外線センサーの検知温度を制御手段によって比較して、どの領域に冷却が必要な負荷が投入されたかを判定する。   Thus, the temperature on the front side of the upper container 27 in the upper container 27 in the freezer compartment 3 can be detected by the first infrared sensor 13a, and the temperature on the rear side of the upper container 27 can be detected by the infrared sensor 13b. Therefore, the temperature detected by the plurality of infrared sensors is compared by the control means, and it is determined in which region a load requiring cooling is applied.

そして、上段容器27内のいずれの箇所に温かい食品が投入された場合には複数の赤外線センサー13のうち最も高い温度を検知している赤外線センサーの配置されている領域を集中的に冷却することで効率的な冷却を行うために、複数の吐出口の風量を変化させることが可能となっている。   And when warm food is thrown into any place in the upper container 27, the area | region where the infrared sensor which is detecting the highest temperature among the some infrared sensors 13 is arrange | positioned is cooled intensively. In order to perform efficient cooling, it is possible to change the air volume of the plurality of discharge ports.

具体的には、例えば赤外線センサー13の中で最も高い温度を検知した赤外線センサーが第一の赤外線センサー13aであった場合には、前方側に温かいものが投入されたと判断し、第二の冷気吐出口21bはダンパーによって閉塞し、第一の冷気吐出口21aから集中的に冷気を吐出することで、上段容器27の前方側の領域に投入された食品を急速に冷却することが可能となる。   Specifically, for example, when the infrared sensor that has detected the highest temperature among the infrared sensors 13 is the first infrared sensor 13a, it is determined that a warm object has been introduced to the front side, and the second cold air The discharge port 21b is closed by a damper, and the food put into the area on the front side of the upper container 27 can be rapidly cooled by discharging cold air intensively from the first cold air discharge port 21a. .

このような急速冷却を行うことで、温度が高い食品からの熱影響によって貯蔵室全体の温度が上昇して予め保存していた食品の温度上昇により鮮度が低下するといったことを防止することができ、また温度が上昇した貯蔵室の食品全体を万遍なく冷却するよりも温度が高いものに集中して急速冷却することができるので、省エネルギーでの冷却が可能となる。なかでも、赤外線センサーの検知温度によって自動で急速冷却を行うような制御を行うと、さらに必要な箇所のみ必要な負荷量だけ急速冷却を行うことができるので、より省エネルギーを実現して冷却保存を行うことができる。   By performing such rapid cooling, it is possible to prevent the temperature of the entire storage room from rising due to the heat effect from food at a high temperature and the freshness from being lowered due to the temperature rise of the food stored in advance. In addition, since the whole food in the storage room where the temperature has risen can be rapidly cooled by concentrating on the one having a higher temperature than the uniform cooling, energy-saving cooling is possible. In particular, if control is performed such that automatic cooling is performed automatically based on the temperature detected by the infrared sensor, rapid cooling can be performed only for the necessary load only at the necessary locations, thus realizing further energy saving and cooling storage. It can be carried out.

また、このような急速冷却を行う場合に本実施の形態のように、赤外線センサー13と対向する側に備えられた検知面である上段容器27の底面を熱保持力の大きい部材で形成することによって、温かい食品を入れることで大きな熱負荷が増えた場合でも、より速やかな急速冷却を行うことが可能となる。   Further, when performing such rapid cooling, as in the present embodiment, the bottom surface of the upper container 27, which is a detection surface provided on the side facing the infrared sensor 13, is formed of a member having a large heat holding force. Thus, even when a large heat load is increased by adding warm food, quick cooling can be performed more quickly.

また、本実施の形態においても実施の形態1と同様に赤外線センサーの検知範囲を絞る赤外線集光部材を熱保持力の大きくすることで、より検知精度を高めた効率の良い急速冷却が行うことができるのは言うまでもない。   Also in the present embodiment, as in the first embodiment, the infrared condensing member that narrows the detection range of the infrared sensor has a large heat holding force, so that efficient rapid cooling with higher detection accuracy can be performed. Needless to say, you can.

(実施の形態3)
以下、本発明の実施の形態について図面を用いて詳細に説明する。なお、上記実施の形態1および2と同一構成の部分は同じ符号をふり詳細な説明を省略し、同一の技術思想が適用できる部分については詳細な説明を省略する。
(Embodiment 3)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that parts having the same configurations as those in the first and second embodiments are denoted by the same reference numerals and detailed description thereof is omitted, and detailed description of parts to which the same technical idea can be applied is omitted.

本実施の形態3は本願発明の他の実施の形態で説明した構成要素との組合せが可能であり、目的に応じて随時適用できるものである。   The third embodiment can be combined with the components described in the other embodiments of the present invention, and can be applied at any time according to the purpose.

図5aは、本発明の実施の形態3における冷蔵庫の要部側面断面図である。図5bは、本発明の実施の形態3における冷蔵庫の冷凍室の上から見た平面図である。   FIG. 5a is a side sectional view of an essential part of the refrigerator in the third embodiment of the present invention. FIG. 5b is a plan view seen from above the freezer compartment of the refrigerator according to Embodiment 3 of the present invention.

冷蔵庫内の貯蔵室の一つである冷凍室3内に備えられた赤外線センサー13は、一般的に視野範囲にある物体から放射される赤外線量を検出し、電気信号に変換する赤外線受光部40と、赤外線受光部40の周囲温度の基準温度を測定し、電気信号に変換するサーミスタ42とが内蔵された赤外線素子部43で構成されている。よって、赤外線センサー13の視野範囲外に温度の高い食品が投入された場合には、検知できないこととなる。   The infrared sensor 13 provided in the freezer compartment 3 which is one of the storage rooms in the refrigerator generally detects the amount of infrared rays radiated from an object in the visual field range and converts it into an electrical signal. And a thermistor 42 that incorporates a thermistor 42 that measures a reference temperature of the ambient temperature of the infrared light receiver 40 and converts it into an electrical signal. Therefore, when food with a high temperature is put out of the visual field range of the infrared sensor 13, it cannot be detected.

よって、本実施の形態では赤外線センサー13を首振り可能なすなわち検知範囲を可動機構によって変化させることのできる赤外線センサー13cを用いている。   Therefore, in this embodiment, the infrared sensor 13c that can swing the infrared sensor 13, that is, the detection range can be changed by a movable mechanism is used.

この赤外線センサー13cは貯蔵室の赤外線センサー13cが検知する検知面すなわち食品載置面である上段容器27の底面における長手方向の中心線27aを中心として上段容器27の幅寸法27wに対し少なくとも赤外線受光部40が可動するように赤外線センサー13c全体を可動させている。   This infrared sensor 13c receives at least infrared rays with respect to the width 27w of the upper container 27 around the center line 27a in the longitudinal direction of the bottom surface of the upper container 27 which is a detection surface detected by the infrared sensor 13c of the storage room, that is, the food placement surface. The entire infrared sensor 13c is moved so that the unit 40 is movable.

よって、上段容器27の幅寸法27wに対する赤外線センサー13cの視野範囲の幅方向における寸法27xは下記のようになっている。   Therefore, the dimension 27x in the width direction of the visual field range of the infrared sensor 13c with respect to the width dimension 27w of the upper container 27 is as follows.

27w/2≦27x≦27w
これによって、赤外線センサーの視野範囲27をより絞ることで、投入食品が入った場合の温度検知精度をより向上させることができ、どの領域に冷却が必要な負荷が投入されたかをより正確に判定して冷却を行うことが可能となる。
27w / 2 ≦ 27x ≦ 27w
Thus, by narrowing the field of view 27 of the infrared sensor, it is possible to further improve the temperature detection accuracy when the input food enters, and more accurately determine in which region the load requiring cooling is input. Thus, cooling can be performed.

そして、上段容器27内のいずれの箇所に温かい食品が投入された場合には複数の赤外線センサー13のうち最も高い温度を検知している赤外線センサーの配置されている領域を集中的に冷却することで効率的な冷却を行うために、複数の吐出口の風量を変化させることが可能となっている。   And when warm food is thrown into any place in the upper container 27, the area | region where the infrared sensor which is detecting the highest temperature among the some infrared sensors 13 is arrange | positioned is cooled intensively. In order to perform efficient cooling, it is possible to change the air volume of the plurality of discharge ports.

具体的には、例えば赤外線センサー13cの視野範囲の中で最も高い温度を検知した部分が前方側(すなわち扉23側)にあった場合には、前方側に温かいものが投入されたと判断し、第二の冷気吐出口21bはダンパーによって閉塞し、第一の冷気吐出口21aから集中的に冷気を吐出することで、上段容器27の前方側の領域に投入された食品を急速に冷却することが可能となる。   Specifically, for example, when the portion where the highest temperature is detected in the visual field range of the infrared sensor 13c is on the front side (that is, on the door 23 side), it is determined that a warm object has been put on the front side, The second cold air discharge port 21b is closed by a damper, and the cold food is intensively discharged from the first cold air discharge port 21a, thereby rapidly cooling the food put into the area on the front side of the upper container 27. Is possible.

このような急速冷却を行うことで、温度が高い食品からの熱影響によって貯蔵室全体の温度が上昇して予め保存していた食品の温度上昇により鮮度が低下するといったことを防止することができ、また温度が上昇した貯蔵室の食品全体を万遍なく冷却するよりも温度が高いものに集中して急速冷却することができるので、省エネルギーでの冷却が可能となる。なかでも、赤外線センサーの検知温度によって自動で急速冷却を行うような制御を行うと、さらに必要な箇所のみ必要な負荷量だけ急速冷却を行うことができるので、より省エネルギーを実現して冷却保存を行うことができる。   By performing such rapid cooling, it is possible to prevent the temperature of the entire storage room from rising due to the heat effect from food at a high temperature and the freshness from being lowered due to the temperature rise of the food stored in advance. In addition, since the whole food in the storage room where the temperature has risen can be rapidly cooled by concentrating on the one having a higher temperature than the uniform cooling, energy-saving cooling is possible. In particular, if control is performed such that automatic cooling is performed automatically based on the temperature detected by the infrared sensor, rapid cooling can be performed only for the necessary load only at the necessary locations, thus realizing further energy saving and cooling storage. It can be carried out.

また、本実施の形態では、吐出口を複数設けて負荷の大きい領域に集中的に冷気を流すことで急速冷却を行ったが、単一の吐出口であっても風向を可変できるような風向可変装置を備え、負荷の大きい領域に冷気が流れるように風向きを調整することも可能であり、この場合には複数の吐出口21を設ける必要がないため、より簡素な構成で必要な領域を集中的に冷却することが可能となる。   Further, in this embodiment, rapid cooling is performed by providing a plurality of discharge ports and concentrating cool air in a heavily loaded area. However, the wind direction can be changed even with a single discharge port. It is also possible to adjust the direction of the wind so that the cool air flows in a region with a large load with a variable device. In this case, it is not necessary to provide a plurality of discharge ports 21. It becomes possible to cool intensively.

なお、本実施の形態においては、貯蔵室の赤外線センサー13cが検知する検知面をより広範囲とするために、赤外線センサー13c全体を可動させているが、この目的は赤外線検知面を移動させることであるので、例えば、表面にカバー等のなんらかの集光部材を形成する場合には、その集光部材の開口部のみ可動するような構成でもよく、その場合には、赤外線センサー自体の電気配線等を可動させずに集光部材の開口部のみを可動する構成を備えることで、低温環境においても電気配線や可動部への負担を低減し、より信頼性の高い可動部を備えた赤外線センサー13cを備えることができる。   In the present embodiment, the entire infrared sensor 13c is moved in order to make the detection surface detected by the infrared sensor 13c in the storage room wider, but this purpose is to move the infrared detection surface. Therefore, for example, in the case where some light collecting member such as a cover is formed on the surface, only the opening of the light collecting member may be movable. By providing a configuration that allows only the aperture of the light collecting member to move without being moved, the burden on the electric wiring and the movable portion is reduced even in a low-temperature environment, and the infrared sensor 13c having a more reliable movable portion is provided. Can be provided.

以上のように、本発明にかかる冷蔵庫の赤外線センサーは、周囲の外乱影響(例えば扉開閉や熱い食品による温度変動)を受けず検知精度を向上することができ、且つ、家電製品に関する各種法令で定められている電気絶縁性を確保し、製品品質を向上させると共に家庭用冷蔵庫のみならず、業務用冷蔵庫や周囲影響が大きい環境下の測定機器などの用途にも適用できる。   As described above, the infrared sensor of the refrigerator according to the present invention can improve detection accuracy without being affected by ambient disturbances (for example, door opening and closing and temperature fluctuation due to hot food), and various laws and regulations relating to home appliances. The specified electrical insulation is ensured and the product quality is improved, and it can be applied not only to household refrigerators, but also to commercial refrigerators and measuring instruments in environments with large ambient influences.

本発明の実施の形態1における冷蔵庫の要部側面断面図Side surface sectional drawing of the principal part of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の赤外線センサー取付部の側面断面図Side surface sectional drawing of the infrared sensor attachment part of the refrigerator in Embodiment 1 of this invention 図2aの要部拡大図Enlarged view of the main part of FIG. 本発明の実施の形態1における開扉に伴う赤外線集光部の温度比較を示す図The figure which shows the temperature comparison of the infrared rays condensing part accompanying the opening in Embodiment 1 of this invention 本発明の実施の形態2における冷蔵庫の要部側面断面図Side surface sectional drawing of the principal part of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態3における冷蔵庫の要部側面断面図Side surface sectional drawing of the principal part of the refrigerator in Embodiment 3 of this invention 本発明の実施の形態3における冷蔵庫の冷凍室の上から見た平面図The top view seen from the freezer compartment of the refrigerator in Embodiment 3 of this invention 従来技術による冷蔵庫の側面縦断面図Side sectional view of a refrigerator according to the prior art 従来技術による冷蔵庫の図6の一部拡大側面断面図Partially enlarged side sectional view of FIG. 6 of a refrigerator according to the prior art

符号の説明Explanation of symbols

1 断熱箱体
2 冷蔵庫本体
3 冷凍室(貯蔵室)
4 上部断熱仕切板
5 下部断熱仕切板
6 冷蔵室(貯蔵室)
7 野菜室(貯蔵室)
8 仕切体
9 冷気生成室
10 蒸発器
11 送風機
12 除霜用ヒータ
13 赤外線センサー
13a 第一の赤外線センサー
13b 第二の赤外線センサー
21 冷気吐出口
21a 第一の冷気吐出口
21b 第二の冷気吐出口
22 冷気吐出口
23 扉
24 扉
25 枠体
26 枠体
27 上段容器
28 下段容器
29 蓄冷材
30 冷気吸入口
31 食品
32 中段容器
33 冷気吐出口
40 赤外線受光部
40a 赤外線受光部の配置面
41 基板
42 サーミスタ
42a サーミスタの配置面
43 赤外線素子
44 コネクタ
45 配線
46 ワイヤー
47 赤外線取付ケース
48 赤外線集光部材
48a 赤外線集光部材の先端面
48b 赤外線集光部材の後端面
49 凹部
49a 凹部の先端面
50 貫通口
50a 貫通口の内壁面
50b 貫通口の先端部
51 集光開口部
1 Insulation box 2 Refrigerator body 3 Freezer room (storage room)
4 Upper heat insulation partition plate 5 Lower heat insulation partition plate 6 Refrigerated room (storage room)
7 Vegetable room (storage room)
DESCRIPTION OF SYMBOLS 8 Partition 9 Cold-air production | generation room 10 Evaporator 11 Blower 12 Defroster heater 13 Infrared sensor 13a First infrared sensor 13b Second infrared sensor 21 Cold-air outlet 21a First cold-air outlet 21b Second cold-air outlet 22 Cold air outlet 23 Door 24 Door 25 Frame body 26 Frame body 27 Upper container 28 Lower container 29 Cold storage material 30 Cold air inlet 31 Food 32 Middle container 33 Cold air outlet 40 Infrared light receiving part 40a Infrared light receiving part arrangement surface 41 Substrate 42 Thermistor 42a Thermistor placement surface 43 Infrared element 44 Connector 45 Wiring 46 Wire 47 Infrared mounting case 48 Infrared condensing member 48a Infrared condensing member front end surface 48b Infrared condensing member rear end surface 49 Concavity 49a Concave front end surface 50 Through hole 50a Inner wall surface of the through hole 50b Tip of the through hole 51 Condensing aperture

Claims (6)

複数の断熱区画で構成された断熱箱体と、前記断熱箱体を仕切る断熱仕切り部と、前記仕切り部で仕切られた貯蔵室と、前記貯蔵室内に収納された収納物から放射された赤外線量を検知する温度検知部を有した赤外線センサーと、前記赤外線センサーよりも前記貯蔵室内側に備えられた赤外線集光部材とを有し、前記赤外線集光部材の少なくとも内壁面は熱保持力が大きくなるように形成した冷蔵庫。   Insulation box body composed of a plurality of heat insulation compartments, a heat insulation partition part for partitioning the heat insulation box body, a storage room partitioned by the partition part, and an amount of infrared rays radiated from storage items stored in the storage room An infrared sensor having a temperature detecting unit for detecting the temperature, and an infrared condensing member provided closer to the storage chamber than the infrared sensor, and at least the inner wall surface of the infrared condensing member has a large heat retention force. A refrigerator formed to be. 前記赤外線センサーを収納する赤外線取付ケースを備え、前記赤外線取付ケースの一部に前記赤外線集光部材の側面と同一形状で貫通した集光開口部とを備え、前記凹部に前記赤外線取付ケースを埋設した請求項1に記載の冷蔵庫。   An infrared mounting case for housing the infrared sensor is provided, a part of the infrared mounting case is provided with a condensing opening that penetrates in the same shape as a side surface of the infrared condensing member, and the infrared mounting case is embedded in the recess The refrigerator according to claim 1. 前記赤外線集光部材の先端面は、前記凹部の先端面と同一面に埋設した請求項2に記載の冷蔵庫。   The refrigerator according to claim 2, wherein the front end surface of the infrared condensing member is embedded in the same plane as the front end surface of the recess. 前記赤外線集光部材は、良熱伝導性のアルミを主成分とした金属からなる請求項1から請求項3のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the infrared condensing member is made of a metal mainly composed of highly heat-conductive aluminum. 前記赤外線集光部材は、樹脂と粉体酸化物とを配合し、前記粉体酸化物を85%以上配合してなる電気絶縁性を有した請求項1から請求項3のいずれか一項に記載の冷蔵庫。   The said infrared condensing member mix | blended resin and powder oxide, and has the electrical insulation formed by mix | blending 85% or more of the said powder oxide. The refrigerator described. 前記貫通口は、前記赤外線センサーの先端面から3mm以上の高さを備えた請求項1から請求項5のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 5, wherein the through-hole has a height of 3 mm or more from a tip surface of the infrared sensor.
JP2008202835A 2008-03-14 2008-08-06 Refrigerator Pending JP2009243869A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008202835A JP2009243869A (en) 2008-03-14 2008-08-06 Refrigerator
EP20090718578 EP2267387A4 (en) 2008-03-14 2009-03-12 Refrigerator
PCT/JP2009/001111 WO2009113310A1 (en) 2008-03-14 2009-03-12 Refrigerator
CN201210027030.2A CN102564051B (en) 2008-03-14 2009-03-12 Refrigerator
CN2009801090549A CN101970962B (en) 2008-03-14 2009-03-12 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008065413 2008-03-14
JP2008202835A JP2009243869A (en) 2008-03-14 2008-08-06 Refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008270593A Division JP4367576B2 (en) 2008-03-14 2008-10-21 refrigerator

Publications (1)

Publication Number Publication Date
JP2009243869A true JP2009243869A (en) 2009-10-22

Family

ID=41305969

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008202835A Pending JP2009243869A (en) 2008-03-14 2008-08-06 Refrigerator
JP2008202836A Active JP4367564B2 (en) 2008-03-14 2008-08-06 refrigerator
JP2008270593A Active JP4367576B2 (en) 2008-03-14 2008-10-21 refrigerator

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008202836A Active JP4367564B2 (en) 2008-03-14 2008-08-06 refrigerator
JP2008270593A Active JP4367576B2 (en) 2008-03-14 2008-10-21 refrigerator

Country Status (1)

Country Link
JP (3) JP2009243869A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386390B2 (en) * 2010-02-04 2014-01-15 日立アプライアンス株式会社 refrigerator
JP5895145B2 (en) * 2012-02-07 2016-03-30 パナソニックIpマネジメント株式会社 refrigerator
KR102163618B1 (en) * 2013-11-26 2020-10-08 엘지전자 주식회사 Refrigerator
JP6965293B2 (en) * 2019-02-27 2021-11-10 日立グローバルライフソリューションズ株式会社 refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459016A (en) * 1987-08-31 1989-03-06 Toshiba Corp Infrared sensor
JPH07119980A (en) * 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd Cooker
JP2002235976A (en) * 2001-02-09 2002-08-23 Toshiba Corp Refrigerator
JP2006308504A (en) * 2005-05-02 2006-11-09 Ishizuka Electronics Corp Infrared ray detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694758B1 (en) * 2002-08-14 2004-02-24 Lg Electronics Inc. Apparatus and method for controlling concentrated cooling of refrigerator
JP2004251560A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Refrigerator
JP2007212053A (en) * 2006-02-09 2007-08-23 Toshiba Corp Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459016A (en) * 1987-08-31 1989-03-06 Toshiba Corp Infrared sensor
JPH07119980A (en) * 1993-10-22 1995-05-12 Matsushita Electric Ind Co Ltd Cooker
JP2002235976A (en) * 2001-02-09 2002-08-23 Toshiba Corp Refrigerator
JP2006308504A (en) * 2005-05-02 2006-11-09 Ishizuka Electronics Corp Infrared ray detector

Also Published As

Publication number Publication date
JP4367576B2 (en) 2009-11-18
JP2009243870A (en) 2009-10-22
JP4367564B2 (en) 2009-11-18
JP2009243872A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
WO2009113308A1 (en) Refrigerator
WO2009113310A1 (en) Refrigerator
JP5402779B2 (en) refrigerator
JP2013072595A (en) Refrigerator and freezer
JP4367569B1 (en) refrigerator
JP2007163002A (en) Refrigerator
WO2014017050A1 (en) Refrigerator
JP4367564B2 (en) refrigerator
JP2005172303A (en) Refrigerator
JP2008057919A (en) Refrigerator
JP2015038409A (en) Refrigerator
US11549740B2 (en) Refrigerator and controlling method for the same
US10429863B2 (en) Systems and methods for refrigerator control
JP4367571B1 (en) refrigerator
WO2005057104A1 (en) Refrigerator
JP2011257022A (en) Refrigerator
JP2009300053A (en) Refrigerator
JP2014085060A (en) Refrigerator
WO2023030186A1 (en) Refrigerator
JP2014025606A (en) Refrigerator
JP2022020230A (en) refrigerator
KR100205923B1 (en) Cooling air supply method and device of a refrigerator
KR0153293B1 (en) Humidification apparatus for vegetable storage of a refrigerator
JP2013242059A (en) Refrigerator
JP2021116941A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

RD01 Notification of change of attorney

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Effective date: 20120705

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Effective date: 20121004

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105