JP2009243853A - Combustion device for heating furnace - Google Patents

Combustion device for heating furnace Download PDF

Info

Publication number
JP2009243853A
JP2009243853A JP2008093789A JP2008093789A JP2009243853A JP 2009243853 A JP2009243853 A JP 2009243853A JP 2008093789 A JP2008093789 A JP 2008093789A JP 2008093789 A JP2008093789 A JP 2008093789A JP 2009243853 A JP2009243853 A JP 2009243853A
Authority
JP
Japan
Prior art keywords
fuel
gas fuel
gas
flame
ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093789A
Other languages
Japanese (ja)
Other versions
JP2009243853A5 (en
JP5313535B2 (en
Inventor
Makoto Hirano
誠 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008093789A priority Critical patent/JP5313535B2/en
Publication of JP2009243853A publication Critical patent/JP2009243853A/en
Publication of JP2009243853A5 publication Critical patent/JP2009243853A5/ja
Application granted granted Critical
Publication of JP5313535B2 publication Critical patent/JP5313535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion device for a heating furnace, appropriately realizing cleanness and high efficiency of combustion gas, in the case where it is used for changing a combustion device for an oil-type heating furnace, for example. <P>SOLUTION: A peripheral wall part at an leading end side of a fuel ejection body B and facing the inside of the furnace is provided with a gas fuel ejecting nozzle 9 comprising a plurality of ejection holes 9a for ejecting gas fuel supplied from a gas fuel flow passage 20 toward the inside of the furnace in a state of being aligned to a supply passage width direction of an oxygen containing gas supply passage. The gas fuel ejecting nozzle 9 is composed to eject the gas fuel so as to form a flame whose flame formation range is spread more extensively on one side than on the other side in the supply passage width direction, which forms a fan-shaped flame with its flame formation range spreading in the supply passage width direction. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、基端側から先端側に向けてガス燃料を通流させるガス燃料流路を内部に備えた上下方向に沿う姿勢で長尺状の燃料噴出体が、加熱炉側壁部の供給口を通して炉内に燃焼用酸素含有ガスを供給する酸素含有ガス供給路内に突入させる状態で設けられ、前記燃料噴出体における先端側でかつ炉内に対向する周壁部分に、前記ガス燃焼流路から供給されるガス燃料を炉内側に向けて噴出する複数の噴出孔を前記酸素含有ガス供給路における供給路横幅方向に並べる状態で備えるガス燃料噴出ノズルが設けられて、火炎形成範囲が前記供給路横幅方向に拡がる扇形状となる火炎を形成するように構成された加熱炉用の燃焼装置に関する。   The present invention provides a gas fuel flow path for allowing gas fuel to flow from the base end side toward the tip end side, and a long fuel jetting body in a posture along the vertical direction that is provided along the vertical direction. From the gas combustion flow path to the peripheral wall portion on the tip side of the fuel jetting body and facing the furnace. There is provided a gas fuel injection nozzle provided with a plurality of injection holes for injecting supplied gas fuel toward the inside of the furnace in a state in which the oxygen-containing gas supply path is arranged in the width direction of the supply path. The present invention relates to a combustion apparatus for a heating furnace configured to form a flame having a fan shape extending in a lateral width direction.

かかる加熱炉用の燃焼装置(以下、単に燃焼装置と略記する場合がある)は、酸素含有ガス供給路内に突入させる状態に燃料噴出体を設け、その燃料噴出体のガス燃料噴出ノズルからガス燃料を炉内側に向けて噴出させて、火炎形成範囲が供給路横幅方向に拡がる扇形状となる火炎を形成するように構成されており、例えば、ガラス原料を溶解させる溶解層の上方に扇形状の火炎を形成して、溶解槽を加熱するものである。
そして、このような加熱炉用の燃焼装置において、従来では、ガス燃料噴出ノズルが、火炎形成範囲が供給路横幅方向の一方側と他方側とに同じように拡がる状態となる火炎を形成するようにガス燃料を噴出する状態に構成されていた(例えば、特許文献1参照。)。
Such a combustion apparatus for a heating furnace (hereinafter sometimes simply referred to as a combustion apparatus) is provided with a fuel ejection body in a state of entering into an oxygen-containing gas supply path, and gas is emitted from a gas fuel ejection nozzle of the fuel ejection body. It is configured to form a flame in which the fuel is ejected toward the inside of the furnace and the flame forming range expands in the width direction of the supply path, for example, a fan shape above the melting layer that dissolves the glass raw material The flame is formed and the melting tank is heated.
In such a combustion apparatus for a heating furnace, conventionally, the gas fuel injection nozzle forms a flame in which the flame formation range is expanded in the same manner on one side and the other side in the supply passage width direction. It was comprised in the state which ejects gas fuel to (for example, refer patent document 1).

特開平11−346174号公報JP-A-11-346174

近年では、低CO2化を図る等のために、オイル燃料噴出ノズルを備えた燃料噴出体にてオイル燃料を炉内側に向けて噴出させるオイル式の加熱炉用の燃焼装置を、ガス燃料噴出ノズルを備えた燃料噴出体にてガス燃料を炉内側に向けて噴出させるガス式の加熱炉用の燃焼装置に変更する場合があり、このようにオイル式の加熱炉用の燃焼装置をガス式の加熱炉用燃焼装置に変更する際には、酸素含有ガス供給路の底壁部には、オイル式用の燃料噴出体を突入させるための孔が形成されているので、この孔を利用してガス式用の燃料噴出体を設けることになる。   In recent years, in order to reduce CO2 and the like, a combustion apparatus for an oil-type heating furnace in which oil fuel is ejected toward the inside of the furnace by a fuel ejection body provided with an oil fuel ejection nozzle is used as a gas fuel ejection nozzle. May be changed to a combustion apparatus for a gas-type heating furnace in which gas fuel is ejected toward the inside of the furnace with a fuel ejection body provided with an oil-type heating furnace. When changing to a combustion furnace for a heating furnace, a hole is formed in the bottom wall portion of the oxygen-containing gas supply path to allow an oil-type fuel jet to enter. A fuel jet for gas type is provided.

つまり、オイル式の加熱炉用の燃焼装置において、酸素含有ガス供給路に対して、燃料噴出体を給路横幅方向の中央位置よりも一方側に偏った位置と他方側に偏った位置との夫々に設けていた場合には、酸素含有ガス供給路の底壁部には、オイル式用の燃料噴出体を突入させるための孔が2箇所形成されているので、ガス式の加熱炉用の燃焼装置に変更する際には、2箇所に形成された孔の夫々に、ガス燃料噴出ノズルを備えた燃料噴出体を設け、図19に示すように、それら2本の燃料噴出体の夫々からガス燃料を噴出させるようして、ガス式の加熱炉用の燃焼装置に変更させていた。
ちなみに、2本の燃料噴出体の夫々からガス燃料を噴出させるようしたガス式の加熱炉用の燃焼装置では、酸素含有ガス供給路の供給路横幅方向の中央位置よりも一方側と他方側との夫々に、火炎形成範囲が供給路横幅方向に拡がる扇形状となる火炎が形成される。
In other words, in the combustion apparatus for an oil-type heating furnace, a position where the fuel ejector is biased to one side with respect to the oxygen-containing gas supply path and a position biased to the other side with respect to the central position in the lateral direction of the feed path. In the case where each is provided, since two holes are formed in the bottom wall portion of the oxygen-containing gas supply path to allow the oil-type fuel jets to enter. When changing to the combustion apparatus, a fuel jet body provided with a gas fuel jet nozzle is provided in each of the two holes formed, and as shown in FIG. 19, from each of the two fuel jet bodies. The gas fuel is ejected and changed to a combustion apparatus for a gas-type heating furnace.
Incidentally, in a combustion apparatus for a gas-type heating furnace in which gas fuel is ejected from each of two fuel ejection bodies, one side and the other side of the oxygen-containing gas supply path from the center position in the lateral direction of the supply path. In each of the above, a flame is formed that has a fan shape in which the flame formation range extends in the width direction of the supply path.

ところで、加熱炉用の燃焼装置においては、加熱対象物の加熱のために適正長さの火炎を形成しながらも、燃焼ガスのクリーン化並びに高効率化を向上させることが望まれるものであるが、従来の加熱炉用の燃焼装置は、上述の如く、オイル式の加熱炉用の燃焼装置の変更に用いる場合等において、燃焼ガスのクリーン化並びに高効率化を的確に向上し難いことがあり、改良が望まれている。   By the way, in a combustion apparatus for a heating furnace, it is desired to improve the cleanliness of combustion gas and the improvement in efficiency while forming a flame of an appropriate length for heating the object to be heated. As described above, when a conventional combustion apparatus for a heating furnace is used to change a combustion apparatus for an oil-type heating furnace, it may be difficult to accurately improve combustion gas cleaning and efficiency. Improvement is desired.

本発明は、上記実状に鑑みて為されたものであって、その目的は、オイル式の加熱炉用の燃焼装置の変更に用いる場合等において、燃焼ガスのクリーン化並びに高効率化を的確に図ることが可能となる加熱炉用の燃焼装置を提供する点にある。   The present invention has been made in view of the above circumstances, and its purpose is to accurately clean and improve the efficiency of combustion gas when used for changing a combustion apparatus for an oil-type heating furnace. It is in providing a combustion apparatus for a heating furnace that can be achieved.

本発明にかかる加熱炉用の燃焼装置は、基端側から先端側に向けてガス燃料を通流させるガス燃料流路を内部に備えた上下方向に沿う姿勢で長尺状の燃料噴出体が、加熱炉側壁部の供給口を通して炉内に燃焼用酸素含有ガスを供給する酸素含有ガス供給路内に突入させる状態で設けられ、前記燃料噴出体における先端側でかつ炉内に対向する周壁部分に、前記ガス燃料流路から供給されるガス燃料を炉内側に向けて噴出する複数の噴出孔を前記酸素含有ガス供給路における供給路横幅方向に並べる状態で備えるガス燃料噴出ノズルが設けられて、火炎形成範囲が前記供給路横幅方向に拡がる扇形状となる火炎を形成するように構成されたものであって、その第1特徴構成は、
前記ガス燃料噴出ノズルが、前記火炎形成範囲が前記供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するように燃料を噴出する状態に構成されている点にある。
A combustion apparatus for a heating furnace according to the present invention has a long fuel jet body in a posture along a vertical direction provided with a gas fuel flow path for allowing gas fuel to flow from the base end side toward the tip end side. A peripheral wall portion that is provided in a state of being rushed into an oxygen-containing gas supply path for supplying combustion oxygen-containing gas into the furnace through a supply port of the heating furnace side wall portion, and is opposed to the furnace at the front end side of the fuel ejection body In addition, a gas fuel injection nozzle is provided that includes a plurality of injection holes for injecting the gas fuel supplied from the gas fuel flow channel toward the inside of the furnace in a state in which the supply holes in the oxygen-containing gas supply channel are arranged in the lateral width direction. The flame forming range is configured to form a fan-shaped flame extending in the width direction of the supply path, and the first characteristic configuration is
The gas fuel injection nozzle is configured to inject fuel so that the flame formation range forms a flame in which one side in the lateral direction of the supply path is larger than the other side.

すなわち、ガス燃料噴出ノズルが、火炎形成範囲が供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するようにガス燃料を噴出する状態に構成されているから、火炎形成範囲が供給路横幅方向の一方側を他方側よりも大きく拡がる扇形状となる火炎を形成することができる。
そして、オイル式の加熱炉用の燃焼装置の変更に用いる場合等において、例えば、燃料噴出体を、酸素含有ガス供給路の供給路横幅方向の中央位置よりもいずれか一方に偏った位置に設けるようにすれば、その燃料噴出体にて、燃料噴出体を設けていない側を一方側、燃料噴出体を設けた側を他方側として、火炎形成範囲が供給路横幅方向の一方側を他方側より大きく拡がる状態となる火炎を形成することにより、酸素含有ガス供給路に対して適切な火炎を形成することができる。
このように、酸素含有ガス供給路の供給路横幅方向の中央位置から一方側に偏った位置に燃料噴出体を1本設けた場合において、酸素含有ガス供給路の供給路横幅方向の中央位置の両側の夫々に燃料噴出体を設けた場合に比べて、2本の燃料噴出体に分けて供給するガス燃料を1本の燃料噴出体に集約して供給することができるため、火炎の幅広化が可能となり、また、火炎長を同じ長さとしながらも、ガス燃料の噴出速度を遅くすることができるため、燃焼ガスのクリーン化並びに高効率化を的確に図ることが可能となる。
説明を加えると、酸素含有ガス供給路の供給路横幅方向の中央位置から一方側に偏った位置に燃料噴出体を1本設けた場合では、酸素含有ガス供給路の供給路横幅方向の中央位置の両側の夫々に燃料噴出体を設けた場合に比べて、図18に示すように、火炎長を同じ長さとし、且つ、図14、図16及び図17に示すように、火炎の幅広化により同様の温度分布としながらも、ガス燃料の噴出速度を遅くすることにより緩慢燃焼が図られるため、図15に示すように、煙道の温度を低下させて高効率化を図ることができ、また、図19に示すように、NOの排出量を減らして燃焼ガスのクリーン化を図ることができるものであることが、実験結果からも判明した。尚、この実験の内容については後述する。
That is, since the gas fuel injection nozzle is configured in a state in which the gas fuel is ejected so as to form a flame in which the flame formation range expands on one side in the supply passage width direction more than the other side, It is possible to form a flame in which the range is a fan shape in which one side in the lateral direction of the supply path is wider than the other side.
And when using it for the change of the combustion apparatus for oil-type heating furnaces, for example, the fuel jet is provided at a position that is biased to one of the center positions in the width direction of the supply path of the oxygen-containing gas supply path. In this case, in the fuel jet body, the side where the fuel jet body is not provided is one side, the side where the fuel jet body is provided is the other side, and the flame forming range is one side in the lateral direction of the supply path. By forming a flame that expands more greatly, an appropriate flame can be formed for the oxygen-containing gas supply path.
Thus, in the case where one fuel jet is provided at a position deviated to one side from the central position in the supply passage width direction of the oxygen-containing gas supply passage, the central position in the supply passage width direction of the oxygen-containing gas supply passage is provided. Compared to the case where fuel jets are provided on both sides, the gas fuel supplied separately into two fuel jets can be gathered and supplied to a single fuel jet, thus broadening the flame. In addition, since the jet speed of the gas fuel can be slowed while the flame length is the same length, the combustion gas can be cleaned and the efficiency can be improved accurately.
In other words, in the case where one fuel jet is provided at a position biased to one side from the central position in the supply passage width direction of the oxygen-containing gas supply passage, the central position in the supply passage width direction of the oxygen-containing gas supply passage As shown in FIG. 18, the flame length is the same as shown in FIG. 18, and as shown in FIG. 14, FIG. 16 and FIG. Although the temperature distribution is the same, slow combustion is achieved by slowing down the gas fuel injection speed, so that the temperature of the flue can be lowered and the efficiency can be improved as shown in FIG. As shown in FIG. 19, it was also found from the experimental results that the amount of NO emission can be reduced to clean the combustion gas. The contents of this experiment will be described later.

よって、ガス燃料噴出ノズルが、火炎形成範囲が供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するようにガス燃料を噴出する状態に構成されているから、オイル式の加熱炉用の燃焼装置の変更に用いる場合等において、酸素含有ガス供給路の供給路横幅方向の中央位置から一方側に偏った位置に燃料噴出体を1本設けるようにすることにより、酸素含有ガス供給路に対して適切な火炎を形成しながらも、つまり、加熱対象物の加熱のために適正長さの火炎を形成しながらも、燃焼ガスのクリーン化並びに高効率化を図ることが可能となる。
従って、オイル式の加熱炉用の燃焼装置の変更に用いる場合等において、燃焼ガスのクリーン化並びに高効率化を的確に図ることが可能となる加熱炉用の燃焼装置を提供することができるに至った。
Therefore, since the gas fuel injection nozzle is configured to inject gas fuel so as to form a flame in which the flame formation range is in a state in which one side in the lateral direction of the supply path is larger than the other side, the oil type In the case where the combustion apparatus for a heating furnace is used, for example, an oxygen-containing gas supply path is provided with a single fuel jet at a position biased to one side from the center position in the lateral width direction of the supply path. While forming an appropriate flame for the contained gas supply path, that is, forming a flame of an appropriate length for heating an object to be heated, the combustion gas can be cleaned and the efficiency can be improved. It becomes possible.
Accordingly, it is possible to provide a combustion apparatus for a heating furnace capable of accurately purifying combustion gas and improving efficiency when used for changing a combustion apparatus for an oil-type heating furnace. It came.

本発明にかかる加熱炉用の燃焼装置の第2特徴構成は、第1特徴構成において、前記ガス燃料噴出ノズルにおける複数の噴出孔が、放射状に形成されている点にある。   A second characteristic configuration of a combustion apparatus for a heating furnace according to the present invention is that, in the first characteristic configuration, a plurality of ejection holes in the gas fuel ejection nozzle are formed radially.

すなわち、ガス燃料噴出ノズルにおける複数の噴出孔が、放射状に形成されているから、ガス燃料を炉内側に向けて火炎形成範囲の全体に亘って噴出させることができるため、火炎形成範囲の全体に亘って均一な状態で燃焼する火炎を形成し易い。
従って、火炎形成範囲の全体に亘って均一な状態で燃焼する火炎を形成し易い加熱炉用の燃焼装置を提供することができるに至った。
That is, since the plurality of ejection holes in the gas fuel ejection nozzle are formed radially, gas fuel can be ejected toward the inside of the furnace over the entire flame formation range, so that the entire flame formation range It is easy to form a flame that burns in a uniform state.
Accordingly, it has become possible to provide a combustion apparatus for a heating furnace that easily forms a flame that burns in a uniform state over the entire flame formation range.

本発明にかかる加熱炉用の燃焼装置の第3特徴構成は、第2特徴構成において、前記ガス燃料噴出ノズルが、外周面及び内周面の夫々を同心の円弧状とする円弧状体に形成されている点にある。   A combustion apparatus for a heating furnace according to a third aspect of the present invention is the combustion apparatus for a heating furnace according to the second aspect, wherein the gas fuel injection nozzle is formed in an arcuate body having an outer peripheral surface and an inner peripheral surface that are concentric arcs. It is in the point.

すなわち、ガス燃料噴出ノズルが、外周面及び内周面の夫々を同心の円弧状とする円弧状体に形成されているから、ガス燃料噴出ノズルを、燃料噴出体の外周面からの突出量を極力少なくするように又は燃料噴出体の外周面から突出しないようにして、ガス燃料噴出ノズルの過熱を防止してガス燃料噴出ノズルの耐久性を向上させることが可能となり、また、複数の噴出孔の長さの均等化により、噴出孔の抵抗の均一化を図れるため、火炎形成範囲の全体に亘って一層均一な状態で燃焼させ易いものとなる。
従って、ガス燃料ノズルの耐久性を向上させ且つ火炎形成範囲の全体に亘って一層均一な状態で燃焼させ易い加熱炉用の燃焼装置を提供することができるに至った。
That is, since the gas fuel injection nozzle is formed in an arcuate body in which each of the outer peripheral surface and the inner peripheral surface is a concentric arc shape, the gas fuel injection nozzle has an amount of protrusion from the outer peripheral surface of the fuel jet body. It is possible to improve the durability of the gas fuel injection nozzle by preventing overheating of the gas fuel injection nozzle by minimizing it as much as possible or preventing it from projecting from the outer peripheral surface of the fuel injection body. By equalizing the length, it is possible to make the resistance of the ejection holes uniform, and it becomes easy to burn in a more uniform state over the entire flame formation range.
Accordingly, it has become possible to provide a combustion apparatus for a heating furnace that improves the durability of the gas fuel nozzle and facilitates combustion in a more uniform state over the entire flame formation range.

本発明にかかる加熱炉用の燃焼装置の第4特徴構成は、第3特徴構成において、前記ガス燃料噴出ノズルが、前記燃料噴出体に対して左右対称となる状態で装着され、前記複数の噴出孔が、前記燃料噴出体の前記供給路横幅方向における中央位置よりも、前記火炎形成範囲を大きく拡げる側とは反対側に偏った位置を中心とする放射状に形成されている点にある。   A combustion apparatus for a heating furnace according to a fourth aspect of the present invention is the combustion apparatus for a heating furnace according to the third aspect, wherein the gas fuel ejection nozzle is mounted in a state of being symmetrical with respect to the fuel ejection body, and the plurality of ejections The holes are formed in a radial shape centering on a position that is biased to the side opposite to the side that greatly expands the flame forming range, rather than the center position of the fuel jet body in the lateral direction of the supply path.

すなわち、ガス燃料噴出ノズルが、燃料噴出体に対して左右対称となる状態で装着され、このように装着されたガス燃料噴出ノズルの複数の噴出孔が、燃料噴出体の供給路横幅方向における中央位置よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った位置を中心とする放射状に形成されているから、ガス燃料噴出ノズルを、火炎形成方向が供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するようにガス燃料を噴出するように構成することができる。
つまり、一般的に、燃料噴射体は、ガス燃料噴射ノズルを左右対称となる状態で装着するように構成されているから、複数の噴出孔を、燃料噴出体の供給路横幅方向における中央位置よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った位置を中心とする放射状に形成することにより、ガス燃料噴出ノズルを、火炎形成範囲が供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するようにガス燃料を噴出する状態に構成することができる。
従って、オイル式の加熱炉用の燃焼装置を変更して用いる場合等において、そのオイル式の加熱炉用の燃焼装置の取付構成を利用しながら、ガス燃料噴出ノズルを備えた燃料噴出体を取り付けることが可能となって一層便利に使用できる加熱炉用の燃焼装置を提供することができるに至った。
That is, the gas fuel ejection nozzle is mounted in a state of being symmetrical with respect to the fuel ejection body, and the plurality of ejection holes of the gas fuel ejection nozzle thus mounted are arranged in the center in the lateral direction of the supply path of the fuel ejection body. It is formed in a radial shape centered on the position opposite to the side that greatly expands the flame formation range than the position, so the gas fuel injection nozzle is connected to the other side with the flame formation direction on the other side of the supply passage width direction. The gas fuel can be ejected so as to form a flame that expands more than the side.
That is, in general, the fuel injector is configured so that the gas fuel injection nozzle is mounted in a bilaterally symmetric state, and therefore, the plurality of injection holes are arranged from the center position in the lateral direction of the supply passage of the fuel injector. However, by forming the gas fuel injection nozzle radially, centering on a position that is biased to the side opposite to the side that greatly expands the flame formation range, the flame formation range is set so that one side in the width direction of the supply path is more than the other side. The gas fuel can be ejected so as to form a flame that expands greatly.
Therefore, in the case where the combustion apparatus for the oil type heating furnace is changed and used, the fuel ejection body provided with the gas fuel ejection nozzle is attached while utilizing the mounting configuration of the combustion apparatus for the oil type heating furnace. It has become possible to provide a combustion apparatus for a heating furnace that can be used more conveniently.

本発明にかかる加熱炉用の燃焼装置の第5特徴構成は、第1〜第4特徴構成のいずれか1つにおいて、前記燃料噴出体が、前記酸素含有ガス供給路に対して、前記供給路横幅方向の中央位置よりも、前記火炎形成範囲を大きく拡げる側とは反対側に偏った位置に設けられている点にある。   A combustion apparatus for a heating furnace according to a fifth aspect of the present invention is the combustion apparatus for a heating furnace according to any one of the first to fourth characteristic structures, wherein the fuel ejection body is in the supply path with respect to the oxygen-containing gas supply path. It exists in the point provided in the position biased to the opposite side to the side which expands the said flame formation range largely rather than the center position of a width direction.

すなわち、燃料噴出体が、酸素含有ガス供給路に対して、供給路横幅方向の中央位置よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った位置に設けられているから、火炎形成範囲が供給路横幅方向の酸素含有ガス供給路の中央位置側を他方側よりも大きく拡がる状態となる火炎を形成することができるため、酸素含有ガス供給路に対して適した火炎を形成することができる。
従って、オイル式の加熱炉用の燃焼装置を変更して用いる場合等において、酸素含有ガス供給路に対して適した火炎を形成することができる加熱炉用の燃焼装置を提供することができるに至った。
That is, since the fuel jet body is provided at a position that is biased to the side opposite to the side that greatly expands the flame formation range with respect to the oxygen-containing gas supply path, rather than the center position in the supply path lateral width direction. Since the flame can be formed in such a state that the central position side of the oxygen-containing gas supply path in the width direction of the supply path is wider than the other side, a flame suitable for the oxygen-containing gas supply path is formed. Can do.
Accordingly, when a combustion apparatus for an oil-type heating furnace is changed and used, a combustion apparatus for a heating furnace capable of forming a flame suitable for the oxygen-containing gas supply path can be provided. It came.

以下、図面に基づいて、本発明を加熱炉用の燃焼装置の一例であるガラス溶解炉用の燃焼装置に適用した場合の実施形態を説明する。
図6及び図7に示すように、ガラス溶解炉は、溶解槽2を下部に備えると共にアーチ型の天井を備えた炉本体1を中央に設け、溶解槽2の一端からガラス原料を投入し、他端から溶融ガラスを取り出すように構成し、ガラス原料の移送方向Tに対して、炉本体1の左右夫々に、蓄熱室3を原料移送方向Tに沿って延設し、炉本体1の溶解炉側壁部としての左右の炉壁4夫々の上部に、4つの空気口(所謂ポートであり、供給口に相当する)5を原料移送方向Tに沿って並設し、蓄熱室3と各空気口5とを空気供給路6にて連通させて、所謂サイドポート式に構成してある。
尚、空気供給路6は、左右の炉壁4の空気口5を通して炉内7に燃焼用空気を燃焼用酸素含有ガスとして供給するように構成してあり、酸素含有ガス供給路に相当する。
Hereinafter, based on the drawings, an embodiment in which the present invention is applied to a combustion apparatus for a glass melting furnace, which is an example of a combustion apparatus for a heating furnace, will be described.
As shown in FIGS. 6 and 7, the glass melting furnace is provided with a melting tank 2 at the bottom and a furnace body 1 having an arched ceiling at the center, and a glass raw material is charged from one end of the melting tank 2, The molten glass is taken out from the other end, the heat storage chambers 3 are extended along the raw material transfer direction T on the left and right sides of the furnace main body 1 with respect to the glass raw material transfer direction T, and the furnace main body 1 is melted. Four air ports (so-called ports, which correspond to supply ports) 5 are arranged in parallel along the raw material transfer direction T in the upper part of the left and right furnace walls 4 as the furnace side walls, and the heat storage chamber 3 and each air The port 5 is communicated with an air supply path 6 so as to be a so-called side port type.
The air supply path 6 is configured to supply combustion air as combustion oxygen-containing gas into the furnace 7 through the air ports 5 of the left and right furnace walls 4 and corresponds to an oxygen-containing gas supply path.

次に、ガラス溶解炉について説明を加える。
炉本体1の炉壁4に投入口4iを形成し、投入口4iを形成した炉壁4と対面する炉壁4の外部に作業槽8を設けると共に、その作業槽8を溶解槽2に連通させる取り出し孔4eを炉壁4に形成して、投入口4iから投入したガラス原料を、溶解槽2にて溶融させて作業槽8に向かって流動させ、取り出し孔4eを通じて、清浄な溶融ガラスを作業槽8に導くように構成してある。
Next, description is added about a glass melting furnace.
An inlet 4 i is formed in the furnace wall 4 of the furnace body 1, a work tank 8 is provided outside the furnace wall 4 facing the furnace wall 4 where the inlet 4 i is formed, and the work tank 8 communicates with the melting tank 2. An extraction hole 4e to be formed is formed in the furnace wall 4, and the glass raw material charged from the charging port 4i is melted in the melting tank 2 to flow toward the working tank 8, and clean molten glass is passed through the extraction hole 4e. It is configured to be guided to the work tank 8.

図6にも示すように、ガス燃料Gを炉内7側に向けて噴出するガス燃料噴出ノズル9を先端側に備えた横断面形状が円筒状の長尺状の燃料噴出体Bを、炉本体1の右側に備えられた4つの空気供給路6と左側に備えられた4つの空気供給路6との夫々に対して、その内部に下方側から上方に向かって突入する状態で設けて、所謂スルーポート式に構成してある。   As shown in FIG. 6, a long-sized fuel ejection body B having a cylindrical cross-sectional shape having a gas fuel ejection nozzle 9 for ejecting the gas fuel G toward the inside 7 of the furnace on the tip side is provided in the furnace. For each of the four air supply paths 6 provided on the right side of the main body 1 and the four air supply paths 6 provided on the left side, it is provided in a state of protruding into the inside from the lower side to the inside, The so-called through-port type is used.

左側の燃料噴出体Bと右側の燃料噴出体Bとは、一定時間(例えば、約15〜30分)毎に交互に、ガス燃料Gの噴出と噴出停止を繰り返し、また、ガス燃料Gを噴出している燃料噴出体B側の空気口5からは、蓄熱室3を通って高温(1000〜1200°C程度)に予熱された燃焼用空気Aが炉内7に供給され、ガス燃料Gの噴出を停止している燃料噴出体Bの側の空気口5からは炉内7の燃焼ガスEを排出させるようにして、右側の燃料噴出体B及び左側の燃料噴出体Bにて交互に燃焼させる、所謂交番燃焼を行わせるようにしてある。尚、図6及び図7は、左側の燃料噴出体Bにて燃焼させている状態を示している。   The fuel ejector B on the left side and the fuel ejector B on the right side alternately repeat the ejection of the gas fuel G and stop the ejection every certain time (for example, about 15 to 30 minutes), and eject the gas fuel G. Combustion air A preheated to a high temperature (about 1000 to 1200 ° C.) through the heat storage chamber 3 is supplied to the furnace 7 from the air outlet 5 on the fuel ejector B side, and the gas fuel G The combustion gas E in the furnace 7 is discharged from the air outlet 5 on the side of the fuel jet B that has stopped jetting, and the fuel jet B on the right side and the fuel jet B on the left side burn alternately. The so-called alternating combustion is performed. 6 and 7 show a state in which the fuel jet B on the left side is burning.

燃料噴出体Bのガス燃料噴出ノズル9から噴出されたガス燃料Gの周囲に、その噴出方向に沿って、そのガス燃料Gを噴出している燃料噴出体Bが設けられている空気口5から燃焼用空気Aが供給されて、ガス燃料Gと燃焼用空気Aとが接触して拡散燃焼して、所謂、緩慢燃焼し、高輝度の火炎(輝炎)Fが形成され、その火炎Fの輻射熱により、溶解槽2内のガラス原料を溶解する。炉本体1のアーチ状の天井は、火炎Fの輻射熱を反射させる。
炉内7の燃焼ガスEは、ガス燃料Gの噴出を停止している燃料噴出体Bの側の空気口5から、蓄熱室3に流入し、蓄熱材を通過して、蓄熱材に排熱が回収された後、排気される。
蓄熱室3においては、燃焼ガスEを排出させる状態のときに、燃焼ガスEから排熱を蓄熱材に回収して蓄熱し、燃焼用空気Aを供給する状態のときには、蓄熱材の蓄熱により燃焼用空気Aを予熱する。そして、そのように予熱された燃焼用空気Aが、空気供給路6を通流して空気口5から炉内7に供給されるのである。
Around the gas fuel G ejected from the gas fuel ejection nozzle 9 of the fuel ejection body B, from the air port 5 provided with the fuel ejection body B ejecting the gas fuel G along the ejection direction. Combustion air A is supplied, and gaseous fuel G and combustion air A come into contact and diffusely burn, so-called slow combustion, and a high-intensity flame (luminous flame) F is formed. The glass raw material in the melting tank 2 is melted by radiant heat. The arched ceiling of the furnace body 1 reflects the radiant heat of the flame F.
The combustion gas E in the furnace 7 flows into the heat storage chamber 3 from the air port 5 on the side of the fuel jet B where the ejection of the gaseous fuel G is stopped, passes through the heat storage material, and is exhausted to the heat storage material. After being recovered, it is exhausted.
In the heat storage chamber 3, when the combustion gas E is discharged, the exhaust heat is recovered from the combustion gas E into the heat storage material to store heat, and when the combustion air A is supplied, the heat storage chamber 3 is burned by the heat storage of the heat storage material. Preheat air A. The combustion air A thus preheated flows through the air supply path 6 and is supplied from the air port 5 to the furnace 7.

以下、図1ないし図4に基づいて、燃焼装置について説明を加える。
燃料噴出体Bは、基端側から先端側に向けてガス燃料Gを通流させるガス燃料流路20を内部に備えた長尺状に形成してあり、先端側を空気供給路6内に突入させる状態で設けてある。
そして、前記燃料噴出体Bにおける先端側でかつ炉内7に対向する周壁部分に、前記ガス燃料流路20から供給されるガス燃料Gを炉内7側に向けて噴出する複数の噴出孔9aを前記空気供給路6における供給路横幅方向に並べる状態で備えるガス燃料噴出ノズル9を設けて、火炎形成範囲を前記供給路横幅方向に拡がる扇形状となる火炎Fを形成するように構成してある。
Hereinafter, the combustion apparatus will be described with reference to FIGS.
The fuel ejection body B is formed in a long shape having a gas fuel flow path 20 for allowing the gas fuel G to flow from the base end side toward the front end side, and the front end side in the air supply path 6. It is provided in a state of rushing.
A plurality of ejection holes 9a for ejecting the gas fuel G supplied from the gas fuel flow path 20 toward the inside of the furnace 7 on the peripheral wall portion facing the inside of the furnace 7 on the front end side of the fuel ejection body B. Are arranged so as to be arranged in the width direction of the supply path in the air supply path 6, and the flame formation range is configured to form a fan-shaped flame F extending in the width direction of the supply path. is there.

前記燃料噴出体Bを、前記空気供給路6に対して、前記供給路横幅方向の中央位置よりも前記火炎形成範囲を大きく拡げる側とは反対側に偏った位置に設けてある。
具体的には、ガラス原料の移送方向Tに沿って並ぶ4つの空気供給路6のうち、投入口4i側から1つ目と3つ目の空気供給路6には、空気供給路6に対して供給路横幅方向の中央位置よりも投入口4i側に偏った位置に燃料噴出体Bを1本設け、これら1つ目と3つ目の空気供給路6における燃料噴出体Bに設けられたガス燃料噴出ノズル9を、取り出し口4e側を一方側とし、投入口4i側を他方側として、火炎形成範囲が上述の如く供給路横幅方向に拡がる扇形状で且つ供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎Fを形成するようにガス燃料Gを噴出する状態に構成してある。
また、投入口4i側から2つめと4つめの空気供給路6には、空気供給路6に対して供給路横幅方向の中央位置よりも取り出し口4e側に偏った位置に燃料噴出体Bを1本設け、これら2つ目と4つ目の空気供給路6における燃料噴出体Bに設けられたガス燃料噴出ノズル9を、投入口4i側を一方側とし、取り出し口4e側を他方側として、火炎形成範囲が供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するようにガス燃料Gを噴出する状態に構成してある。
The fuel ejection body B is provided at a position that is offset from the air supply path 6 on the side opposite to the side that greatly expands the flame formation range from the center position in the supply path lateral width direction.
Specifically, out of the four air supply paths 6 arranged along the transfer direction T of the glass material, the first and third air supply paths 6 from the inlet 4 i side are connected to the air supply path 6. Thus, one fuel jet B is provided at a position deviated from the center position in the lateral direction of the supply passage toward the inlet 4i, and provided on the fuel jet B in the first and third air supply passages 6. The gas fuel injection nozzle 9 has a fan shape in which the discharge port 4e side is one side and the input port 4i side is the other side, and the flame formation range extends in the supply passage width direction as described above, and one side in the supply passage width direction is The gas fuel G is ejected so as to form a flame F that expands more than the other side.
Further, in the second and fourth air supply passages 6 from the inlet 4i side, the fuel ejection body B is placed at a position that is biased toward the take-out port 4e with respect to the air supply passage 6 from the center position in the lateral direction of the supply passage. One gas fuel injection nozzle 9 provided in the fuel injection body B in the second and fourth air supply passages 6 is provided on the one side on the inlet 4i side and on the other side on the outlet 4e side. The gas fuel G is jetted out so as to form a flame in which the flame forming range is widened from one side of the supply passage width direction to the other side.

換言すると、投入口4iや取り出し口4eを形成する炉壁4と隣接する空気供給路6(1つ目と4つ目の空気供給路6)には、燃料噴出体Bを空気供給路6に対して供給路横幅方向の中央位置よりも隣接する炉壁4側に偏った位置に設け、これら炉壁4と隣接する空気供給路6における燃料噴出体Bに設けられたガス燃料噴出ノズル9を、隣接する炉壁4から離れる側を一方側とし、隣接する炉壁4側を他方側として、火炎形成範囲が供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎Fを形成するようにガス燃料Gを噴出する状態に構成してある。   In other words, in the air supply path 6 (first and fourth air supply paths 6) adjacent to the furnace wall 4 that forms the inlet 4 i and the outlet 4 e, the fuel jet B is connected to the air supply path 6. On the other hand, a gas fuel injection nozzle 9 provided in the fuel injection body B in the air supply path 6 adjacent to the furnace wall 4 is provided at a position deviated to the furnace wall 4 side adjacent to the center position in the horizontal direction of the supply path. A flame F is formed in which the side away from the adjacent furnace wall 4 is one side, the adjacent furnace wall 4 side is the other side, and the flame formation range is larger than the other side in one side in the lateral direction of the supply path. Thus, the gas fuel G is ejected.

ガス燃料噴出ノズル9は、燃料噴出体Bの側周壁の先端側に形成したノズル嵌め込み用開口10に嵌め込み状態で装着してあり、ガス燃料流路20から供給されるガス燃料Gを噴出する噴出孔9aを、ノズル嵌め込み用開口10より露出するガス燃料噴出側の前面9cと燃料噴出体Bの内部に位置する内面における後面9dとの間に亘る状態で形成してある。   The gas fuel ejection nozzle 9 is fitted in a nozzle fitting opening 10 formed on the distal end side of the side peripheral wall of the fuel ejection body B, and is ejected to eject the gas fuel G supplied from the gas fuel flow path 20. The hole 9a is formed between the front surface 9c on the gas fuel ejection side exposed from the nozzle fitting opening 10 and the rear surface 9d on the inner surface located inside the fuel ejection body B.

次に、燃料噴出体Bについて説明を加えるが、左側の4つの空気供給路6のうちの最も投入口4i側の空気供給路6に設けた燃料噴出体Bとその他の燃料噴出体Bとは、同じ又は左右勝手違いに構成されているものであるため、左側の4つの空気供給路6のうちの最も投入口4i側の空気供給路6に設けた燃料噴出体Bについて説明を加え、その他の燃料噴出体Bの説明は省略する。   Next, the fuel jet B will be described. The fuel jet B provided in the air supply path 6 closest to the inlet 4i of the four left air supply paths 6 and the other fuel jets B are: Since the left and right air supply paths 6 are configured to be the same or different from each other, the fuel ejection body B provided in the air supply path 6 on the most inlet side 4i side of the left four air supply paths 6 will be described. The description of the fuel jet body B will be omitted.

図1ないし図4に示すように、燃料噴出体Bは、それぞれ横断面形状が円筒状の外筒体11とこれより短い内筒体12とを略同軸芯状に配置して、外筒体11及び内筒体12の基端部を、底板13にて閉塞し、内筒体12の先端は外筒体11の先端よりも引退させて、その外筒体11の先端部を半球形状のキャップ14にて閉塞して構成してある。つまり、横断面形状が円筒状の燃料噴出体Bの周壁部分は、外筒体11及び内筒体12から構成されている。   As shown in FIGS. 1 to 4, the fuel ejection body B includes an outer cylindrical body 11 having a cylindrical cross section and an inner cylindrical body 12 shorter than the outer cylindrical body 11 arranged in a substantially coaxial core shape. 11 and the base end portion of the inner cylindrical body 12 are closed by the bottom plate 13, the tip of the inner cylindrical body 12 is retracted from the tip of the outer cylindrical body 11, and the tip of the outer cylindrical body 11 is hemispherically shaped. The cap 14 is closed. That is, the peripheral wall portion of the fuel ejection body B having a cylindrical cross section is composed of the outer cylinder body 11 and the inner cylinder body 12.

そして、燃料噴出体Bの先端側において、内筒体12の上端箇所に周方向における略半分にわたる切り欠きを形成し、外筒体11の上端から間隔を隔てた箇所に周方向における略半分にわたる切り欠きを形成して、その切り欠き部分における外筒体11と内筒体12との間を、その切り欠き部分の上部に位置する上部閉じ板15、切り欠き部分の下部に位置する下部閉じ板16、切り欠き部分の左右両側に夫々位置する一対の側方閉じ板17により閉じることにより、燃料噴出体Bの側周壁の先端側に略半周にわたって凹入する凹入部を形成して、その凹入部をノズル嵌め込み用開口10としてある。   Then, on the front end side of the fuel ejection body B, a notch extending approximately half in the circumferential direction is formed at the upper end portion of the inner cylinder body 12 and extending approximately half in the circumferential direction at a position spaced from the upper end of the outer cylinder body 11. A notch is formed, and an upper closing plate 15 positioned above the notched portion and a lower closed position positioned below the notched portion between the outer cylindrical body 11 and the inner cylindrical body 12 at the notched portion. The plate 16 is closed by a pair of side closing plates 17 located on both the left and right sides of the cutout portion, thereby forming a recessed portion that is recessed substantially half a circumference on the distal end side of the side peripheral wall of the fuel ejector B. The recessed portion is used as a nozzle fitting opening 10.

前記上部閉じ板15は、外径が内筒体12の外径と略同一の円状部と内径が内筒体12の外形と略同一で且つ外径が外筒体11の外径と略同一の円弧状部を備えた形状に形成して、燃料噴出体Bの径方向に沿う姿勢で設けた上部閉じ板15により、内筒体12の上端開口の全体、及び、前記切り欠き部分における上部部分の内筒体12と外筒体11との間を閉塞してある。
前記下部閉じ板16は、内径が内筒体12の外形と略同一で且つ外径が外筒体11の外径と略同一の円弧状に形成して、燃料噴出体Bの径方向に沿う姿勢で設けた下部閉じ板16により、前記切り欠き部分における下部部分の内筒体12と外筒体11との間を閉塞してある。
前記側方閉じ板17は、長方形状に形成して、燃料噴出体Bの長手方向に沿う姿勢で設けた一対の側方閉じ板17により、前記切り欠き部分における左右夫々の側の部分の内筒体12と外筒体11との間を閉塞してある。
The upper closing plate 15 has a circular portion whose outer diameter is substantially the same as the outer diameter of the inner cylindrical body 12, an inner diameter that is substantially the same as the outer diameter of the inner cylindrical body 12, and an outer diameter that is substantially the same as the outer diameter of the outer cylindrical body 11. The upper closing plate 15 formed in a shape having the same arcuate portion and provided in a posture along the radial direction of the fuel ejection body B is used in the entire upper end opening of the inner cylinder 12 and in the notch portion. The space between the inner cylinder 12 and the outer cylinder 11 in the upper part is closed.
The lower closing plate 16 is formed in an arc shape whose inner diameter is substantially the same as the outer shape of the inner cylinder body 12 and whose outer diameter is substantially the same as the outer diameter of the outer cylinder body 11, and is along the radial direction of the fuel ejection body B. A lower closing plate 16 provided in a posture closes the space between the inner cylindrical body 12 and the outer cylindrical body 11 in the lower portion of the cutout portion.
The side closing plate 17 is formed in a rectangular shape and is provided with a pair of side closing plates 17 provided in a posture along the longitudinal direction of the fuel jet B. The space between the cylinder 12 and the outer cylinder 11 is closed.

更に、左右夫々の側方閉じ板17の炉内7側に向く板面には、燃料噴出体Bの長手方向に沿う姿勢のノズル装着用柱18を取り付けてあり、各ノズル装着用柱18には、横幅方向に貫通するようにネジ挿通孔18bを形成してある。   Further, nozzle mounting columns 18 in a posture along the longitudinal direction of the fuel jet B are attached to the plate surfaces of the left and right side closing plates 17 facing the inside of the furnace 7, and the nozzle mounting columns 18 are attached to the nozzle mounting columns 18. Is formed with a screw insertion hole 18b so as to penetrate in the lateral width direction.

そして、前記上部閉じ板15、前記下部閉じ板16及び前記一対のノズル装着用柱18によりノズル9の装着部Bn(以下、ノズル装着部と記載する場合がある)を構成してある。   The upper closing plate 15, the lower closing plate 16, and the pair of nozzle mounting columns 18 constitute a mounting portion Bn of the nozzle 9 (hereinafter sometimes referred to as a nozzle mounting portion).

図3及び図4に示すように、内筒体12の内部を、基端側から先端側に向けてガス燃料Gを通流させるガス燃料流路20とし、底板13に燃料流路20に連通する状態でガス燃料供給管19を接続して、このガス燃料供給管19を通してガス燃料Gが燃料流路20に供給されるように構成してある。   As shown in FIGS. 3 and 4, the inside of the inner cylinder 12 is a gas fuel flow path 20 through which the gas fuel G flows from the base end side toward the tip end side, and the bottom plate 13 communicates with the fuel flow path 20. In this state, the gas fuel supply pipe 19 is connected, and the gas fuel G is supplied to the fuel flow path 20 through the gas fuel supply pipe 19.

又、外筒体11と内筒体12との間に形成された閉塞空間を、冷却水を通流させる冷却ジャケット21とし、外筒体11の下部に冷却ジャケット21に連通する状態で冷却水供給管22を接続して、この冷却水供給管22を通して冷却水が冷却ジャケット21に供給され、また、キャップ14の上端部に冷却ジャケット21に連通する状態で冷却水排水管23を接続して、この冷却水排水管23を通して冷却ジャケット21の冷却水が排出されるように構成してある。   The closed space formed between the outer cylinder 11 and the inner cylinder 12 is used as a cooling jacket 21 through which cooling water flows, and the cooling water is communicated with the cooling jacket 21 below the outer cylinder 11. The supply pipe 22 is connected, and the cooling water is supplied to the cooling jacket 21 through the cooling water supply pipe 22, and the cooling water drain pipe 23 is connected to the upper end portion of the cap 14 in communication with the cooling jacket 21. The cooling water of the cooling jacket 21 is discharged through the cooling water drain pipe 23.

図1ないし図4に示すように、ガス燃料噴出ノズル9をノズル嵌め込み用開口10に挿入して、前記ガス燃料流路20のガス燃料通流方向において上手側に位置する下面9fの前記前面9c側に隣接する部分を前記下部閉じ板16に接触させ、前記ガス燃料通流方向において下手側に位置する上面9eを前記上部閉じ板15に接触させ、前記燃料噴出体Bの長手方向視にて両端側に位置する両端側部分夫々を各ノズル装着用柱18に接触させた状態で、燃料噴出体Bに嵌め込み状態で装着するように構成してある。
更に、各ノズル装着用柱18のネジ挿通孔18bに外れ止め用ネジ25を挿通してガス燃料噴出ノズル9の取付板24に螺入することにより、ガス燃料噴出ノズル9の外れを止めるように構成してある。
As shown in FIGS. 1 to 4, the front surface 9 c of the lower surface 9 f located on the upper side in the gas fuel flow direction of the gas fuel flow path 20 is inserted by inserting the gas fuel injection nozzle 9 into the nozzle fitting opening 10. A portion adjacent to the side is brought into contact with the lower closing plate 16, and an upper surface 9 e located on the lower side in the gas fuel flow direction is brought into contact with the upper closing plate 15, as viewed in the longitudinal direction of the fuel ejection body B The both end portions located on both end sides are configured to be fitted in the fuel ejection body B in contact with the nozzle mounting columns 18.
Further, the screw for fixing the gas fuel injection nozzle 9 is stopped by inserting a screw 25 for preventing the screw into the screw insertion hole 18b of each nozzle mounting column 18 and screwing it into the mounting plate 24 of the gas fuel injection nozzle 9. It is configured.

ガス燃料噴出ノズル9は、外周面9c及び内周面9d等で形成される外形が前記燃料噴出体Bに対して左右対称となる状態で装着されて、前記火炎形成範囲が前記供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎Fを形成するようにガス燃料Gを噴出する状態に構成してある。
ちなみに、上述の如くガス燃料噴出ノズル9が燃料噴出体Bに装着されることにより、ガス燃料噴出ノズル9は、その外周面9cの周方向の中心箇所が空気口5と対向している。また、ガス燃料噴出ノズル9が燃料噴出体Bに対して左右対称となる状態とは、ガス燃料噴出ノズル9が供給路横幅方向に対称となる状態である。
The gas fuel injection nozzle 9 is mounted such that the outer shape formed by the outer peripheral surface 9c, the inner peripheral surface 9d, and the like is symmetrical with respect to the fuel jet B, and the flame forming range is in the supply passage width direction. The gas fuel G is ejected so as to form a flame F that is in a state in which one side of the gas is larger than the other side.
Incidentally, the gas fuel ejection nozzle 9 is mounted on the fuel ejection body B as described above, so that the gas fuel ejection nozzle 9 is opposed to the air port 5 at the center in the circumferential direction of the outer peripheral surface 9c. In addition, the state in which the gas fuel injection nozzle 9 is symmetric with respect to the fuel injection body B is a state in which the gas fuel injection nozzle 9 is symmetric in the lateral direction of the supply path.

次に、図1ないし図4に基づいて、前記ガス燃料噴出ノズル9について説明を加える。
ガス燃料噴出ノズル9は、燃料噴出体Bの長手方向視にて、ガス燃料噴出ノズル9の外周面9cを外筒体11の外形(燃料噴出体Bの外周面)に沿う円弧状に形成し、ガス燃料噴出ノズル9の内周面9dを内筒体12の外形(燃料噴出体の内周面)に沿う円弧状に形成して、外周面9c及び内周面9dを同心の円弧状とする円弧状体に形成してある。
また、ガス燃料噴出ノズル9は、燃料噴出体Bの長手方向に並ぶ上面9e及び下面9fを互いに平行で且つ前記外周面9cに直交する平面状に形成してあり、周方向の両端部夫々には、取付板24をガス燃料噴出ノズル9の内周面9dから炉内7側とは反対側に延びる状態で突設してある。
ちなみに、ガス燃料噴出ノズル9は、その外周面9cを燃料噴出体Bの周方向の略半周にわたる円弧状体としてある。
Next, the gas fuel injection nozzle 9 will be described with reference to FIGS.
The gas fuel injection nozzle 9 has an outer circumferential surface 9c of the gas fuel ejection nozzle 9 formed in an arc shape along the outer shape of the outer cylinder 11 (the outer circumferential surface of the fuel ejection body B) when viewed in the longitudinal direction of the fuel ejection body B. The inner peripheral surface 9d of the gas fuel injection nozzle 9 is formed in an arc shape along the outer shape of the inner cylinder 12 (the inner peripheral surface of the fuel jet body), and the outer peripheral surface 9c and the inner peripheral surface 9d are concentric arc shapes. It is formed in an arcuate body.
Further, the gas fuel injection nozzle 9 has an upper surface 9e and a lower surface 9f aligned in the longitudinal direction of the fuel ejector B formed in a planar shape parallel to each other and perpendicular to the outer peripheral surface 9c, and at both ends in the circumferential direction. The mounting plate 24 protrudes from the inner peripheral surface 9d of the gas fuel injection nozzle 9 so as to extend to the opposite side of the furnace 7 side.
Incidentally, the gas fuel ejection nozzle 9 has an outer peripheral surface 9c as an arc-shaped body that extends over a substantially half circumference in the circumferential direction of the fuel ejection body B.

図5に示すように、前記複数の噴出孔9aとしての5個の噴出孔9aを、前記燃料噴出体Bの前記供給路横幅方向における中央位置(ガス燃料噴出ノズル9の横幅方向における中央位置)よりも、前記火炎形成範囲を大きく拡げる側とは反対側に偏った位置を中心とする放射状に形成してある。
具体的には、ガス燃料噴出ノズル9には、燃料噴出体Bの周方向に並ぶ状態で5個の噴出孔9aが放射状に形成されており、これら5個の噴出孔9aを、燃料噴出体Bの平面視にて、時計回りの順に第1〜第5の噴出孔9aとして、第4の噴出孔との広がり角度が、第5の噴出孔は15°、第3の噴出孔は18.33°、第2の噴出孔は36.66°、第1の噴出孔は55°として、燃料噴出体Bの供給路横幅方向における中央位置よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った位置を中心とする放射状に形成してある。
また、上述の放射状に形成される5個の噴出孔9aは、燃料噴出体Bの長手方向に2列形成してあり、ガス燃料噴出ノズル9には計10個の噴出孔9aを形成してある。
As shown in FIG. 5, the five ejection holes 9a as the plurality of ejection holes 9a are arranged at a central position in the supply passage lateral direction of the fuel ejection body B (a central position in the lateral width direction of the gas fuel ejection nozzle 9). Rather, it is formed in a radial pattern centered on a position that is biased to the side opposite to the side that greatly expands the flame formation range.
Specifically, the gas fuel ejection nozzle 9 is formed with five ejection holes 9a radially in a state of being aligned in the circumferential direction of the fuel ejection body B, and these five ejection holes 9a are connected to the fuel ejection body. In the plan view of B, as the first to fifth ejection holes 9a in the clockwise order, the spread angle with the fourth ejection hole is 15 °, the fifth ejection hole is 15 °, and the third ejection hole is 18. 33 °, the second ejection hole is 36.66 °, the first ejection hole is 55 °, and the side opposite to the side that greatly expands the flame formation range than the central position in the lateral direction of the fuel ejection body B It is formed in a radial shape centering on the position biased to the center.
Further, the five ejection holes 9a formed radially are formed in two rows in the longitudinal direction of the fuel ejection body B, and the gas fuel ejection nozzle 9 is formed with a total of 10 ejection holes 9a. is there.

ちなみに、第4の噴出孔9aは、ガス燃料噴出ノズル9における横幅方向の中央位置よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った箇所に形成されており、燃料噴出体の平面視にて、空気供給路6の長手方向に沿った姿勢に形成してある。
また、第1〜第3の噴出孔9a、及び、第5の噴出孔9aは、燃料噴出体9の平面視にて、空気供給路6の長手方向に対して傾いた姿勢に形成されており、第1〜第3の噴出孔9aは、外周面9c側の開口が内周面9d側の開口よりも、火炎形成範囲を大きく拡げる側に偏った箇所となる姿勢に形成してあり、第5の噴出孔9aは、外周面9c側の開口が内周面9d側の開口よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った箇所となる姿勢に形成してある。
尚、第3の噴出孔9aを、ガス燃料噴出ノズル9における横幅方向の中央位置に形成してある。また、第1の噴出孔9aと第2の噴出孔9aとは、内周面9d側の端部において互いに連通させてある。
Incidentally, the 4th injection hole 9a is formed in the location biased to the opposite side to the side which expands a flame formation range largely rather than the center position of the horizontal direction in the gas fuel injection nozzle 9, and the plane of a fuel injection body It is formed in a posture along the longitudinal direction of the air supply path 6 as viewed.
Further, the first to third ejection holes 9 a and the fifth ejection hole 9 a are formed in a posture inclined with respect to the longitudinal direction of the air supply path 6 in a plan view of the fuel ejection body 9. The first to third ejection holes 9a are formed in a posture in which the opening on the outer peripheral surface 9c side is biased toward the side that greatly expands the flame formation range than the opening on the inner peripheral surface 9d side, No. 5 ejection hole 9a is formed in a posture in which the opening on the outer peripheral surface 9c side is shifted to the opposite side to the side that greatly expands the flame formation range than the opening on the inner peripheral surface 9d side.
In addition, the 3rd ejection hole 9a is formed in the center position of the horizontal width direction in the gas fuel ejection nozzle 9. FIG. Moreover, the 1st ejection hole 9a and the 2nd ejection hole 9a are mutually connected in the edge part by the side of the internal peripheral surface 9d.

燃料噴出体Bの径方向に沿う径方向視にて、各噴出孔9aの噴出方向は燃料噴出体Bの軸心に直交する方向になるように構成してある。
又、複数の噴出孔9aの夫々は、孔の長さが孔の直径の2倍以上になるように形成してある。
The ejection direction of each ejection hole 9 a is configured to be perpendicular to the axis of the fuel ejection body B when viewed in the radial direction along the radial direction of the fuel ejection body B.
Each of the plurality of ejection holes 9a is formed so that the length of the hole is at least twice the diameter of the hole.

次に、上述のように構成した加熱炉用の燃焼装置の性能を検証した結果を説明する。
図11〜図13に示すように、検証試験においては、上述した従来のように供給路横幅方向の中央位置の両側の夫々に燃料噴出体Bを設けた場合(2本燃焼と称する)と、上記実施の形態のように供給路横幅方向の中央位置から一方側に偏った位置に燃料噴出体Bを1本設けた場合(1本燃焼と称する)とを比較した。
検証試験に用いたテスト炉の寸法(外寸)は、燃料噴出体Bから噴出されるガス燃料の噴出方向に沿う縦幅が8.8m、横幅が1.8m、高さが1.5mである。燃焼装置の燃焼量は900kW、予熱された後の燃焼用空気の温度は1000°C、燃焼ガス中の酸素濃度は約2.5%、床面より1.5m地点の炉圧は5Pa前後、火炎の長さは3m前後(図17参照)である。
また、詳細な図示は省略するが、1本燃焼及び2本燃焼のガス燃料噴出ノズルには、5個の噴出孔を放射状に形成し、これら5個の噴出孔を、燃料噴出体Bの長手方向に3列形成して、ガス燃料噴出ノズル9には計15個の噴出孔9aを形成してある。
そして、1本燃焼の噴出孔の直径を7mm、火炎幅角度を50°に設定し、2本燃焼の噴出孔の直径を4mm、火炎角度を10°に設定してある。
Next, the result of verifying the performance of the combustion apparatus for a heating furnace configured as described above will be described.
As shown in FIGS. 11 to 13, in the verification test, when the fuel ejection bodies B are provided on both sides of the center position in the lateral direction of the supply path as in the conventional case (referred to as two-combustion), A comparison was made with the case where one fuel jet B was provided at a position deviated to one side from the center position in the lateral direction of the supply path as in the above embodiment (referred to as single combustion).
The dimensions (outside dimensions) of the test furnace used for the verification test are 8.8 m in vertical width, 1.8 m in horizontal width, and 1.5 m in height along the jet direction of the gas fuel ejected from the fuel ejector B. is there. The combustion amount of the combustion device is 900 kW, the temperature of the combustion air after preheating is 1000 ° C., the oxygen concentration in the combustion gas is about 2.5%, the furnace pressure at a point 1.5 m from the floor is around 5 Pa, The length of the flame is around 3 m (see FIG. 17).
Although not shown in detail, the gas fuel injection nozzles for single combustion and double combustion are formed with five injection holes radially, and these five injection holes are formed in the longitudinal direction of the fuel injection body B. Three rows are formed in the direction, and a total of 15 ejection holes 9 a are formed in the gas fuel ejection nozzle 9.
The diameter of the single-combustion injection hole is set to 7 mm, the flame width angle is set to 50 °, the diameter of the two-combustion injection hole is set to 4 mm, and the flame angle is set to 10 °.

テスト炉には、天井における横幅方向中央箇所の温度分布を計測するための複数の天井用熱電対31、床面における横幅方向中央箇所の温度分布を計測するための複数の床面中央用熱電対32、及び、床面おける横幅方向の中央よりも火炎形成範囲を大きく拡げる側(右側)とは反対側に偏った箇所の温度分布を計測するための複数の床面右側用熱電対33の夫々を、縦幅方向に沿って設けてある。
また、テスト炉における縦幅方向の空気供給路6が備えられた側とは反対側の天井には、煙道が形成されており、その煙道には、煙道の燃焼ガスを採取する取出口34を設けてある。
そして、空気供給路6の炉内側の端部から2250mm離れた床面の中央温度が、1000°Cに達してから28分24秒経過した後のデータを測定した結果を図14〜19に示す。ちなみに、図14は、天井における横幅方向中央箇所の温度分布を示す図、図15は、煙道での燃焼ガスの温度を示す図、図16は、床面における横幅方向中央箇所の温度分布を示す図、図17は、床面おける横幅方向の中央よりも右側箇所の温度分布を示す図、図18は、火炎長を示す図、図19は、燃焼ガスのNO量を示す図である。
The test furnace includes a plurality of ceiling thermocouples 31 for measuring the temperature distribution at the center in the width direction on the ceiling, and a plurality of center thermocouples for measuring the temperature distribution at the center in the width direction on the floor. 32 and each of a plurality of thermocouples 33 on the right side of the floor surface for measuring the temperature distribution at a location that is biased to the side opposite to the side (right side) that greatly expands the flame formation range from the center in the width direction on the floor surface. Are provided along the vertical width direction.
In addition, a flue is formed in the ceiling on the side opposite to the side of the test furnace where the longitudinal air supply path 6 is provided, and in the flue, the combustion gas from the flue is collected. An outlet 34 is provided.
And the result of having measured the data after 28 minutes and 24 second have passed since the center temperature of the floor surface 2250mm away from the edge part inside a furnace of the air supply path 6 reached | attained 1000 degreeC is shown to FIGS. . Incidentally, FIG. 14 is a diagram showing the temperature distribution at the center in the width direction on the ceiling, FIG. 15 is a diagram showing the temperature of the combustion gas in the flue, and FIG. 16 is the temperature distribution at the center in the width direction on the floor. FIG. 17 is a diagram showing the temperature distribution at the right side of the center in the width direction on the floor, FIG. 18 is a diagram showing the flame length, and FIG. 19 is a diagram showing the NO amount of the combustion gas.

図14、図16、図17に示すように、路内温度分布を比較した場合、火炎長の2/3付近(約2m)を境に、1本燃焼と2本燃焼とで顕著な違いが見られる。
つまり、1本燃焼は、2本燃焼に比べて、火炎長の2/3付近(約2m)より空気供給路6側では温度が高く、空気供給路6とは反対側では温度が低くなり、結果として図15に示すように、煙道での燃焼ガスの温度を約20°C低減させることができた。
また、図19に示すように、NOについては、1本燃焼は、2本燃焼に比べて、1割弱削減することができた。これは、1本燃焼は、2本燃焼に比べて、燃焼ガスと燃焼用空気との混合促進が抑制され、火炎のヒートスポットが低減されているためだと考えられる。
従って、1本燃焼では、2本燃焼に比べて、煙道の燃焼ガスの温度が低減し、NOが削減されるため、環境及び効率の良い加熱炉用の燃焼装置を得ることができる。
As shown in FIGS. 14, 16, and 17, when comparing the temperature distribution in the road, there is a significant difference between the single combustion and the double combustion at the boundary of about 2/3 of the flame length (about 2 m). It can be seen.
That is, in the single combustion, the temperature is higher on the side of the air supply path 6 than in the vicinity of 2/3 of the flame length (about 2 m), and the temperature is lower on the side opposite to the air supply path 6, As a result, as shown in FIG. 15, the temperature of the combustion gas in the flue could be reduced by about 20 ° C.
Further, as shown in FIG. 19, with respect to NO, the single combustion could be reduced by less than 10% compared with the double combustion. This is thought to be due to the fact that the single combustion is less likely to promote mixing of the combustion gas and the combustion air, and the heat spot of the flame is reduced, as compared to the double combustion.
Therefore, in the single combustion, the temperature of the flue combustion gas is reduced and NO is reduced as compared with the double combustion, so that a combustion apparatus for a heating furnace with high environment and efficiency can be obtained.

〔別実施の形態〕
(1) 上記実施の形態では、ガス燃料噴出ノズル9における複数の噴出孔9aを、放射状に形成したが、放射状以外に、例えば、第1〜第3の噴出孔9aを、燃料噴出体Bの平面視にて、空気供給路6の長手方向に対して傾けた姿勢に形成し、第4〜第5の噴出孔9aを、燃料噴出体Bの平面視にて、空気供給路6の長手方向に沿った姿勢に形成する等、放射状以外に形成してもよい。
[Another embodiment]
(1) In the above-described embodiment, the plurality of ejection holes 9a in the gas fuel ejection nozzle 9 are formed in a radial shape. In addition to the radial shape, for example, the first to third ejection holes 9a are formed on the fuel ejection body B. It is formed in a posture inclined with respect to the longitudinal direction of the air supply path 6 in plan view, and the fourth to fifth ejection holes 9a are formed in the longitudinal direction of the air supply path 6 in plan view of the fuel ejection body B. For example, it may be formed in a posture other than the radial direction.

(2) 上記実施の形態では、ガス燃料噴出ノズル9を、外周面9c及び内周面9dの夫々を同心の円弧状とする円弧状体に形成したが、外周面9cを円弧状に形成し且つ内面(内周面9d)を直線状とする半円状体に形成してもよい (2) In the above embodiment, the gas fuel injection nozzle 9 is formed in an arcuate body in which the outer peripheral surface 9c and the inner peripheral surface 9d are concentric arcs, but the outer peripheral surface 9c is formed in an arcuate shape. Further, the inner surface (inner peripheral surface 9d) may be formed in a semicircular body having a linear shape.

(3) 上記実施の形態では、ガス燃料噴出ノズル9を、燃料噴出体Bに対して左右対称となる状態、つまり、外周面9cの周方向の中心箇所が炉内7に最も近い状態で装着したが、ガス燃料噴出ノズル9を、その外周面9cの周方向の中心箇所から周方向に偏った箇所が炉内7に最も近い状態として、燃料噴出体Bに対して左右非対称となる状態で装着してもよい。
この場合、複数の噴出孔9aを、ガス燃料噴出ノズル9の横幅方向における中央位置を中心とする放射状に形成するとよい。
(3) In the above-described embodiment, the gas fuel injection nozzle 9 is mounted in a state that is bilaterally symmetric with respect to the fuel injection body B, that is, in a state in which the central portion in the circumferential direction of the outer peripheral surface 9c is closest to the furnace 7 However, the gas fuel ejection nozzle 9 is asymmetrical with respect to the fuel ejection body B, assuming that the location of the circumferential surface of the outer peripheral surface 9c that is biased in the circumferential direction is closest to the inside of the furnace 7. You may wear it.
In this case, the plurality of ejection holes 9a may be formed radially with the center position in the lateral width direction of the gas fuel ejection nozzle 9 as the center.

(4) 上記実施の形態では、燃料噴出体Bを、空気供給路6に対して、供給路横幅方向の中央位置よりも、火炎形成範囲を大きく拡げる側とは反対側に偏った位置に設けたが、燃料噴出体Bを、空気供給路6に対して、供給路横幅方向の中央位置よりも、火炎形成範囲を大きく拡げる側に偏った位置に設けてもよく、また、燃料噴出体Bを、空気供給路6に対して、供給路横幅方向の中央位置に設けてもよい。 (4) In the above embodiment, the fuel ejector B is provided at a position that is biased to the side opposite to the side that greatly expands the flame formation range with respect to the air supply path 6 rather than the center position in the width direction of the supply path. However, the fuel ejector B may be provided at a position biased toward the side where the flame formation range is greatly expanded with respect to the air supply path 6 relative to the center position in the lateral direction of the supply path. The air supply path 6 may be provided at the center position in the lateral direction of the supply path.

(5) 上記の実施の形態では、サイドポート式のガラス溶解炉に適用したが、図8及び図9に示すように、所謂エンドポート式のガラス溶解炉の燃焼装置にも適用することができる。
以下、エンドポート式のガラス溶解炉について説明する。
炉体1の一側面を形成する炉壁4の外側に、2室の蓄熱室3を設けると共に、その炉壁4に、各蓄熱室3に対応させて空気口5を形成し、各蓄熱室3と各空気口5とを空気供給路6にて連通させて、各空気供給路6に対して、上記の実施の形態と同様の燃料噴出体Bを上記の実施の形態と同様に設けて、左右の燃料噴出体Bを用いて交番燃焼を行わせるように構成してある。
燃料噴出体Bを設けた側面に隣接する側面を形成する炉壁4における燃料噴出体Bの側の端部に、ガラス原料の投入口4iを設け、燃料噴出体Bを設けた側面に対向する側面を形成する炉壁4の外部に作業槽8を設けると共に、その作業槽8と溶解槽2との間の炉壁4には、溶解槽2と作業槽8とを連通させる取り出し孔4e形成してある。
つまり、投入口4iからガラス原料を溶解槽2に投入して、そのガラス原料を、取り出し孔4eの側に向かって蛇行状に流動させながら溶融させ、取り出し孔4eを通じて、清浄な溶融ガラスを作業槽8に導くように構成してある。
(5) In the above embodiment, the present invention is applied to a side port type glass melting furnace, but as shown in FIGS. 8 and 9, it can also be applied to a so-called end port type glass melting furnace combustion apparatus. .
Hereinafter, the endport type glass melting furnace will be described.
Two heat storage chambers 3 are provided outside the furnace wall 4 forming one side surface of the furnace body 1, and air ports 5 are formed in the furnace wall 4 corresponding to the respective heat storage chambers 3. 3 and each air port 5 are communicated with each other through an air supply path 6, and a fuel jet B similar to that in the above embodiment is provided in each air supply path 6 in the same manner as in the above embodiment. The left and right fuel ejectors B are used to perform alternating combustion.
A glass raw material inlet 4i is provided at the end of the side of the fuel jet B in the furnace wall 4 that forms a side surface adjacent to the side provided with the fuel jet B, and faces the side provided with the fuel jet B. A work tank 8 is provided outside the furnace wall 4 forming the side surface, and a take-out hole 4e is formed in the furnace wall 4 between the work tank 8 and the melting tank 2 to allow the melting tank 2 and the working tank 8 to communicate with each other. It is.
That is, a glass raw material is introduced into the melting tank 2 from the inlet 4i, and the glass raw material is melted while flowing in a meandering manner toward the outlet hole 4e, and clean molten glass is operated through the outlet hole 4e. It is configured to lead to the tank 8.

(6) 上記実施の形態では、燃料噴出体Bを、空気供給路6の夫々に1本設けたが、燃料噴出体Bを、空気供給路6の夫々に2本以上設けてもよい。
つまり、例えば、燃料噴出体Bを、空気供給路6の夫々に2本設ける場合は、図10に示すように、燃料噴出体Bを、空気供給路6に対して、供給路横幅方向の中央位置よりも、一方側に偏った位置と他方側に偏った位置との夫々に設ける。
(6) In the above embodiment, one fuel jet B is provided for each air supply path 6, but two or more fuel jets B may be provided for each air supply path 6.
That is, for example, when two fuel ejectors B are provided in each of the air supply passages 6, the fuel ejector B is arranged at the center in the supply passage lateral direction with respect to the air supply passage 6 as shown in FIG. 10. It is provided at each of a position biased to one side and a position biased to the other side of the position.

(7) 上記実施の形態では、ガス燃料噴出ノズル9に複数の噴出孔9aとして5個の噴出孔9aを備えたが、ガス燃料噴出ノズル9に複数の噴出孔9aとして2個〜4個の噴出孔9aを備えてもよく、また、ガス燃料噴出ノズル9に複数の噴出孔9aとして6個以上の噴出孔9aを備えてもよい。 (7) In the above embodiment, the gas fuel injection nozzle 9 is provided with the five ejection holes 9a as the plurality of ejection holes 9a, but the gas fuel ejection nozzle 9 has two to four as the plurality of ejection holes 9a. The ejection holes 9a may be provided, and the gas fuel ejection nozzle 9 may be provided with six or more ejection holes 9a as the plurality of ejection holes 9a.

加熱炉用の燃焼装置における燃料噴出体の要部の分解斜視図Exploded perspective view of main part of fuel jetting body in combustion apparatus for heating furnace 加熱炉用の燃焼装置における燃料噴出体の要部の斜視図The perspective view of the principal part of the fuel ejection body in the combustion apparatus for heating furnaces 加熱炉用の燃焼装置における燃料噴出体の縦断側面図Longitudinal side view of fuel jet in combustion apparatus for heating furnace 加熱炉用の燃焼装置における燃料噴出体の横断面図Cross-sectional view of fuel jet in combustion apparatus for heating furnace 加熱炉用の燃焼装置のノズルを示す平面図Plan view showing nozzle of combustion apparatus for heating furnace 加熱炉用の燃焼装置を備えたガラス溶解炉の縦断側面図Longitudinal side view of a glass melting furnace equipped with a combustion device for a heating furnace 図6のVII−VII矢視図VII-VII arrow view of FIG. 別実施形態に係る加熱炉用の燃焼装置を備えたガラス溶解炉の縦断面図Vertical sectional view of a glass melting furnace provided with a combustion apparatus for a heating furnace according to another embodiment 図8のIX−IX矢視図IX-IX arrow view of FIG. 別実施形態にかかる加熱炉用の燃焼装置を備えたガラス溶解炉の縦断面図Vertical section of a glass melting furnace provided with a combustion apparatus for a heating furnace according to another embodiment テスト炉の縦断側面図Longitudinal side view of test furnace 燃料噴出体を2本設けたテスト炉の縦断側面図Longitudinal side view of a test furnace with two fuel jets 燃料噴出体を1本設けたテスト炉の縦断側面図Longitudinal side view of a test furnace with a single fuel jet 天井における横幅方向中央箇所の温度分布を示す図Diagram showing the temperature distribution at the center in the horizontal direction on the ceiling 煙道での燃焼ガスの温度を示す図Diagram showing the temperature of the combustion gas in the flue 床面における横幅方向中央箇所の温度分布を示す図Figure showing the temperature distribution at the center in the width direction on the floor 床面おける横幅方向の中央よりも右側箇所の温度分布を示す図Diagram showing temperature distribution on the right side of the floor in the width direction center 火炎長を示す図Illustration showing flame length 燃焼ガスのNO量を示す図The figure which shows NO quantity of combustion gas 従来の加熱炉用の燃焼装置を備えたガラス炉用の横断平面図Cross-sectional plan view for a glass furnace equipped with a combustion apparatus for a conventional heating furnace

符号の説明Explanation of symbols

4 加熱炉側壁部
5 供給口
6 酸素含有ガス供給路
9 ガス燃料噴出ノズル
9a 噴出孔
20 ガス燃料流路
B 燃料噴出体
4 Heating furnace side wall part 5 Supply port 6 Oxygen-containing gas supply path 9 Gas fuel injection nozzle 9a Injection hole 20 Gas fuel flow path B Fuel injection body

Claims (5)

基端側から先端側に向けてガス燃料を通流させるガス燃料流路を内部に備えた上下方向に沿う姿勢で長尺状の燃料噴出体が、加熱炉側壁部の供給口を通して炉内に燃焼用酸素含有ガスを供給する酸素含有ガス供給路内に突入させる状態で設けられ、
前記燃料噴出体における先端側でかつ炉内に対向する周壁部分に、前記ガス燃料流路から供給されるガス燃料を炉内側に向けて噴出する複数の噴出孔を前記酸素含有ガス供給路における供給路横幅方向に並べる状態で備えるガス燃料噴出ノズルが設けられて、火炎形成範囲が前記供給路横幅方向に拡がる扇形状となる火炎を形成するように構成された加熱炉用の燃焼装置であって、
前記ガス燃料噴出ノズルが、前記火炎形成範囲が前記供給路横幅方向の一方側を他方側よりも大きく拡がる状態となる火炎を形成するようにガス燃料を噴出する状態に構成されている加熱炉用の燃焼装置。
A long fuel jet is installed in the furnace through the supply port on the side wall of the heating furnace, with a gas fuel flow path that allows gas fuel to flow from the base end side toward the tip end side, and a posture along the vertical direction. Provided in a state of rushing into the oxygen-containing gas supply path for supplying the oxygen-containing gas for combustion,
Supplying in the oxygen-containing gas supply path a plurality of injection holes for injecting the gas fuel supplied from the gas fuel flow path toward the inside of the furnace on the tip side of the fuel spray body and facing the inside of the furnace A combustion apparatus for a heating furnace provided with gas fuel injection nozzles arranged in a state arranged in a width direction of a road, and configured to form a flame having a flame forming range extending in the width direction of the supply path. ,
For the heating furnace, the gas fuel ejection nozzle is configured to eject gas fuel so that the flame formation range forms a flame in which one side of the supply passage width direction is larger than the other side. Combustion equipment.
前記ガス燃料噴出ノズルにおける複数の噴出孔が、放射状に形成されている請求項1記載の加熱炉用の燃焼装置。   The combustion apparatus for a heating furnace according to claim 1, wherein the plurality of ejection holes in the gas fuel ejection nozzle are formed in a radial pattern. 前記ガス燃料噴出ノズルが、外周面及び内周面の夫々を同心の円弧状とする円弧状体に形成されている請求項2記載の加熱炉用の燃焼装置。   The combustion apparatus for a heating furnace according to claim 2, wherein the gas fuel injection nozzle is formed in an arcuate body in which each of an outer peripheral surface and an inner peripheral surface is a concentric arc shape. 前記ガス燃料噴出ノズルが、前記燃料噴出体に対して左右対称となる状態で装着され、
前記複数の噴出孔が、前記燃料噴出体の前記供給路横幅方向における中央位置よりも、前記火炎形成範囲を大きく拡げる側とは反対側に偏った位置を中心とする放射状に形成されている請求項3記載の加熱炉用の燃焼装置。
The gas fuel ejection nozzle is mounted in a state of being symmetrical with respect to the fuel ejection body,
The plurality of ejection holes are formed in a radial shape centering on a position that is biased to a side opposite to a side that greatly expands the flame formation range, rather than a center position of the fuel ejection body in the lateral direction of the supply path. Item 4. A combustion apparatus for a heating furnace according to Item 3.
前記燃料噴出体が、前記酸素含有ガス供給路に対して、前記供給路横幅方向の中央位置よりも、前記火炎形成範囲を大きく拡げる側とは反対側に偏った位置に設けられている請求項1〜4のいずれか1項に記載の加熱路用の燃焼装置。   The fuel jet body is provided at a position that is biased toward a side opposite to a side that greatly expands the flame forming range with respect to the oxygen-containing gas supply path, rather than a central position in the width direction of the supply path. The combustion apparatus for a heating path according to any one of 1 to 4.
JP2008093789A 2008-03-31 2008-03-31 Combustion equipment for heating furnace Active JP5313535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093789A JP5313535B2 (en) 2008-03-31 2008-03-31 Combustion equipment for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093789A JP5313535B2 (en) 2008-03-31 2008-03-31 Combustion equipment for heating furnace

Publications (3)

Publication Number Publication Date
JP2009243853A true JP2009243853A (en) 2009-10-22
JP2009243853A5 JP2009243853A5 (en) 2011-02-17
JP5313535B2 JP5313535B2 (en) 2013-10-09

Family

ID=41305954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093789A Active JP5313535B2 (en) 2008-03-31 2008-03-31 Combustion equipment for heating furnace

Country Status (1)

Country Link
JP (1) JP5313535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689128B2 (en) * 2010-09-14 2015-03-25 大阪瓦斯株式会社 Combustion apparatus for glass melting furnace and glass melting furnace
JP2016161216A (en) * 2015-03-02 2016-09-05 大阪瓦斯株式会社 Heating furnace
CN109099421A (en) * 2018-10-08 2018-12-28 浙江明新能源科技有限公司 Evaporation combustion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766322U (en) * 1980-10-09 1982-04-20
JPH06207708A (en) * 1992-11-19 1994-07-26 British Gas Plc Gas burner
JPH11346174A (en) * 1998-06-02 1999-12-14 Yokohama Rubber Co Ltd:The Transponder reader
JP2004301369A (en) * 2003-03-28 2004-10-28 Osaka Gas Co Ltd Combustion apparatus for heating furnace
JP2006275395A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Combustion device for heating furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766322U (en) * 1980-10-09 1982-04-20
JPH06207708A (en) * 1992-11-19 1994-07-26 British Gas Plc Gas burner
JPH11346174A (en) * 1998-06-02 1999-12-14 Yokohama Rubber Co Ltd:The Transponder reader
JP2004301369A (en) * 2003-03-28 2004-10-28 Osaka Gas Co Ltd Combustion apparatus for heating furnace
JP2006275395A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Combustion device for heating furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689128B2 (en) * 2010-09-14 2015-03-25 大阪瓦斯株式会社 Combustion apparatus for glass melting furnace and glass melting furnace
US9822970B2 (en) 2010-09-14 2017-11-21 Osaka Gas Co., Ltd. Combustion device for melting furnace, and melting furnace
JP2016161216A (en) * 2015-03-02 2016-09-05 大阪瓦斯株式会社 Heating furnace
CN109099421A (en) * 2018-10-08 2018-12-28 浙江明新能源科技有限公司 Evaporation combustion device
CN109099421B (en) * 2018-10-08 2024-04-02 浙江明新能源科技有限公司 Vaporization combustion device

Also Published As

Publication number Publication date
JP5313535B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5313535B2 (en) Combustion equipment for heating furnace
KR101456515B1 (en) Reaction furnace using a hot air burning technology
JP5421728B2 (en) Combustion apparatus and melting furnace for melting furnace
JP5689128B2 (en) Combustion apparatus for glass melting furnace and glass melting furnace
JP4326490B2 (en) Combustion equipment for heating furnace
JP2006250429A (en) Regeneration burner system
JP2007139380A (en) Combustion device for heating furnace
JP4836399B2 (en) Combustion equipment for heating furnace
JP4201731B2 (en) Combustion equipment for heating furnace
JP5812618B2 (en) Combustion apparatus and melting furnace for melting furnace
JP3888916B2 (en) Combustion equipment for heating furnace
JP4225981B2 (en) Combustion equipment for heating furnace
JP4148965B2 (en) Combustion equipment for heating furnace
JP4194624B2 (en) Combustion equipment for heating furnace
JP2004294042A (en) Combustion apparatus for heating furnace
JP2005121329A (en) Single end type heat accumulation radiant tube burner
JP2003279002A (en) Regenerative radiant tube combustion device
KR101532880B1 (en) Heat recovering burner of multi cooling and burning structure
JP4139525B2 (en) Combustion equipment for heating furnace
JP6642802B2 (en) Glass melting furnace
JP2005055036A (en) Heat storage type burner
JP4043162B2 (en) Burner for heating furnace
JP4223046B2 (en) Structure for preventing scattering of heat storage in a heat storage burner.
JP3901558B2 (en) Combustion device
JP3552976B2 (en) melting furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Ref document number: 5313535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150