JP2004301369A - Combustion apparatus for heating furnace - Google Patents

Combustion apparatus for heating furnace Download PDF

Info

Publication number
JP2004301369A
JP2004301369A JP2003092161A JP2003092161A JP2004301369A JP 2004301369 A JP2004301369 A JP 2004301369A JP 2003092161 A JP2003092161 A JP 2003092161A JP 2003092161 A JP2003092161 A JP 2003092161A JP 2004301369 A JP2004301369 A JP 2004301369A
Authority
JP
Japan
Prior art keywords
furnace
combustion
gas fuel
containing gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003092161A
Other languages
Japanese (ja)
Other versions
JP4836399B2 (en
Inventor
Makoto Hirano
誠 平野
Kazuma Kiyohira
一眞 清飛羅
Yoshihiro Ogura
啓宏 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003092161A priority Critical patent/JP4836399B2/en
Publication of JP2004301369A publication Critical patent/JP2004301369A/en
Application granted granted Critical
Publication of JP4836399B2 publication Critical patent/JP4836399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion apparatus for a heating furnace, of which maintenance work can be simplified while allowing heating inside the furnace in the condition of uniforming temperature distribution. <P>SOLUTION: The combustion apparatus is constituted by being provided with an oxygen containing gas supply part for supplying combustion oxygen containing gas flowing with the existence of its horizontal width from a lateral side portion of the heating furnace to the upper side of a heated object in the furnace and a gas fuel jet nozzle 11 for jetting gas fuel from the lower side of an oxygen containing gas supply portion of the oxygen containing gas supply part at a lateral side portion of the heating furnace to an in-furnace combustion region S to which the oxygen containing gas is supplied flowing with the existence of its horizontal width. Herein, as the gas fuel jet nozzle 11, one gas fuel jet nozzle 11 is provided in an integrated condition for jetting the gas fuel from a plurality of jetting portions N radially in a plan view so that sector flames are formed to spread over all or almost all of the horizontal width of the in-furnace combustion region S to which the oxygen containing gas is supplied flowing with the existence of its horizontal width. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、加熱炉横側部から炉内における加熱対象物の上方に向けて、横幅がある流動状態で燃焼用酸素含有ガスを供給する酸素含有ガス供給部と、
前記加熱炉横側部における前記酸素含有ガス供給部の酸素含有ガス供給箇所の下方から、酸素含有ガスが前記横幅がある流動状態で供給されている炉内燃焼域に向けてガス燃料を噴出するガス燃料噴出ノズルとが設けられた加熱炉用の燃焼装置に関する。
【0002】
【従来の技術】
かかる加熱炉用の燃焼装置(以下、単に燃焼装置と称する場合がある)は、酸素含有ガス供給部により、加熱炉横側部から炉内における加熱対象物の上方に向けて、横幅がある流動状態で酸素含有ガスを供給し、ガス燃料噴出ノズルにより、加熱炉横側部における酸素含有ガス供給部の酸素含有ガス供給箇所の下方から、酸素含有ガスが前記横幅がある流動状態で供給されている炉内燃焼域(以下、単に炉内燃焼域と称する場合がある)に向けてガス燃料を噴出して、ガス燃料と燃焼用酸素含有ガスとを炉内で接触させて、加熱対象物の上方に火炎を形成するように燃焼させるものである。
そして、このような燃焼装置では、温度分布を均一化する状態で炉内を加熱することが望まれ、そのように炉内の温度分布を均一化する場合には、ガス燃料噴出ノズルにて、炉内燃焼域の横幅方向の全幅又は略全幅に亘って火炎を形成するように、ガス燃料を噴出するように構成する必要がある。
【0003】
このため、従来では、ガス燃料噴出ノズルとして、炉内燃焼域の横幅よりも狭い幅の火炎を形成するようにガス燃料を噴出する複数のガス燃料噴出ノズルを、加熱炉横側部に横方向に間隔を開けて並べて設けて、炉内燃焼域の横幅方向の全幅又は略全幅に亘って火炎を形成するように構成していた。ちなみに、前述のように炉内の温度分布を均一化するためにガス燃料噴出ノズルとして複数のガス燃料噴出ノズルを設ける場合において、1個のガス燃料噴出ノズルにて形成される火炎の幅は、炉内燃焼域の横幅をガス燃料噴出ノズルの設置数で除した幅以下になるように、例えば、3個のガス燃料噴出ノズルを設ける場合は、炉内燃焼域の横幅の1/3よりも狭い幅になるように構成していた。
【0004】
又、複数の酸素含有ガス供給部を加熱炉横側部に横方向に並べて設ける場合があるが、その場合は、複数の酸素含有ガス供給部夫々の前方に、夫々に対応する炉内燃焼域を存在させるようにして、各酸素含有ガス供給部に対応するガス燃料噴出ノズルとして、それぞれ炉内燃焼域の横幅よりも狭い幅の火炎を形成するようにガス燃料を噴出する複数のガス燃料噴出ノズルを、各酸素含有ガス供給部に対応する炉内燃焼域の横幅方向の全幅又は略全幅に亘って火炎を形成するように、加熱炉横側部に横方向に間隔を開けて並べて設けていた(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2001−201262号公報参照
【0006】
【発明が解決しようとする課題】
ところで、このような燃焼装置では、ガス燃料噴出ノズルのメンテナンスを行う必要があり、そのメンテナンスの際には、ガス燃料噴出ノズルを加熱炉横側部から取り外して点検整備した後、再び、加熱炉横側部に取り付けることになる。
しかしながら、従来の燃焼装置では、ガス燃料噴出ノズルとして、上述のように、1つの酸素含有ガス供給部に対して複数のガス燃料噴出ノズルを設けていたことから、複数のガス燃料噴出ノズルの夫々についてメンテナンス作業が必要となり、メンテナンス作業が全体として煩雑なものになっていた。
【0007】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、温度分布を均一化する状態で炉内を加熱することが可能でありながら、メンテナンス作業を簡略化し得る加熱炉用の燃焼装置を提供することにある。
【0008】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の加熱炉用に燃焼装置は、加熱炉横側部から炉内における加熱対象物の上方に向けて、横幅がある流動状態で燃焼用酸素含有ガスを供給する酸素含有ガス供給部と、
前記加熱炉横側部における前記酸素含有ガス供給部の酸素含有ガス供給箇所の下方から、酸素含有ガスが前記横幅がある流動状態で供給されている炉内燃焼域に向けてガス燃料を噴出するガス燃料噴出ノズルとが設けられたものであって、
前記ガス燃料噴出ノズルとして、酸素含有ガスが前記横幅がある流動状態で供給されている前記炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎を形成するように、複数の噴出部にてガス燃料を平面視にて放射状に噴出するように一体状態に構成された1個のガス燃料噴出ノズルが設けられている点を特徴構成とする。
即ち、1個のガス燃料噴出ノズルの複数の噴出部にて、ガス燃料が平面視にて放射状に噴出されて、炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎が形成されることになって、炉内の温度分布を均一化することが可能になる。
そして、ガス燃料噴出ノズルとしては、1つの酸素含有ガス供給部に対して1個のガス燃料噴出ノズルを設けることになるので、ガス燃料噴出ノズルのメンテナンスの際に、メンテナンスを行うガス燃料噴出ノズルの数が少なくなり、メンテナンス作業の簡略化を図ることが可能になる。
ちなみに、複数の酸素含有ガス供給部を加熱炉横側部に横方向に並べて設ける場合は、複数の酸素含有ガス供給部夫々の前方に、夫々に対応する炉内燃焼域を存在させるようにして、各酸素含有ガス供給部に対応するガス燃料噴出ノズルとして、前述のように、炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎を形成するように、複数の噴出部にてガス燃料を平面視にて放射状に噴出するように一体状態に構成された1個のガス燃料噴出ノズルを設けることになる。
従って、温度分布を均一化する状態で炉内を加熱することが可能でありながら、メンテナンス作業を簡略化し得る加熱炉用の燃焼装置を提供することができるようになった。
【0009】
〔請求項2記載の発明〕
請求項2に記載の加熱炉用の燃焼装置は、請求項1において、前記ガス燃料噴出ノズルが、ノズル形成体に前記複数の燃料噴出部としての複数の噴出孔を平面視で放射状になるように形成して構成されている点を特徴構成とする。
即ち、ノズル形成体に平面視で放射状になるように形成された複数の噴出孔により、ガス燃料が平面視にて放射状に噴出されて、炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎が形成される。
つまり、ノズル形成体に平面視で放射状になるように複数の噴出孔を形成する簡単な構成にて、ガス燃料噴出ノズルを構成することができるので、燃焼装置の低廉化を図ることが可能となる。
ちなみに、複数の噴出部としての複数の管状体を平面視で放射状になるように配置した状態で一体的に組み付ける構成にて、ガス燃料噴出ノズルを構成することが考えられるが、この場合は、ガス燃料噴出ノズルの構成が複雑化するので、燃焼装置が高騰化する。
従って、加熱炉用の燃焼装置の低廉化を図ることができるようになった。
【0010】
〔請求項3記載の発明〕
請求項3に記載の加熱炉用の燃焼装置は、請求項2において、前記噴出孔が、孔の長さが孔の直径の2倍以上になるように形成されている点を特徴構成とする。
即ち、孔の長さが孔の直径の2倍以上になるように形成された各噴出孔により、直進性良くガス燃料が噴出されるので、炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎が安定した形状にて形成される。
つまり、噴出孔を形成するにしても、その孔の直径に対する孔の長さの比率が小さくなるほど噴出孔からのガス燃料噴出の直進性が低下するので、前記比率が小さくなり過ぎると、火炎形状を安定化させる上で好ましくなく、噴出孔を前記比率が2以上になるように形成すると、直進性を効果的に与えた状態でガス燃料を噴出することが可能となり、火炎の形状を安定化することが可能になる。
そして、炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎が安定した形状にて形成されるので、炉内の温度分布を一層均一化することができる。
従って、炉内の温度分布を一層均一化するに当たって好ましい具体構成を提供することができる。
【0011】
〔請求項4記載の発明〕
請求項4に記載の加熱炉用の燃焼装置は、請求項1〜3のいずれかにおいて、前記複数の噴出部が、平面視にて、前記ガス燃料噴出ノズルの設置箇所を通り且つ前記酸素含有ガス供給部からの燃焼用酸素含有ガスの供給方向に沿う仮想線の両側にガス燃料を噴出するように構成されている点を特徴構成とする。
即ち、複数の噴出部により、平面視にて、ガス燃料が、前記ガス燃料噴出ノズルの設置箇所を通り且つ前記酸素含有ガス供給部からの燃焼用酸素含有ガスの供給方向に沿う仮想線の両側に噴出されるので、平面視にて、前記ガス燃料噴出ノズルの設置箇所を通り且つ前記酸素含有ガス供給部からの燃焼用酸素含有ガスの供給方向に沿う仮想線の両側に拡がる扇形状の火炎が形成される。
そして、平面視で、前記ガス燃料噴出ノズルの設置箇所を通り且つ前記酸素含有ガス供給部からの燃焼用酸素含有ガスの供給方向に沿う仮想線の両側に拡がる扇形状の火炎が形成されるので、加熱対象物の上方を横幅方向に極力広い範囲にわたって均一に火炎で覆うことが可能になるので、炉内の温度分布を一層均一化することができる。
従って、炉内の温度分布を一層均一化するに当たって好ましい具体構成を提供することができる。
【0012】
【発明の実施の形態】
以下、図面に基づいて、本発明を加熱炉としてのガラス溶解炉用の燃焼装置に適用した場合の実施形態を説明する。
先ず、燃焼装置を設けるガラス溶解炉について説明する。
図1及び図2に示すように、ガラス溶解炉は、炉本体1内の下部に平面視で矩形状の溶解槽2を備え、その溶解槽2の一側縁側の燃焼装置設置用の炉壁4に、その燃焼装置設置用の炉壁4に対向する炉壁4に向ける状態で炉内3にガス燃料Gを噴出して溶解槽2の上方に火炎Fを形成すべく燃焼装置を設けるように構成してある。
【0013】
前記燃焼装置設置用の炉壁4の横方向一端に連なる炉壁4における燃焼装置設置側の端部には、ガラス原料を前記燃焼装置からのガス燃料噴出方向と略直交する方向に供給する投入口4iを設け、前記燃焼装置設置用の炉壁4に対向する炉壁4の外部に作業槽9を設けると共に、その作業槽9と溶解槽2との間の炉壁4に、溶解槽2と作業槽9とを連通させる開口部4eを溶解槽2の炉床部に位置させて形成して、所謂、エンドポート式に構成してある。
つまり、前記燃焼装置にて形成される火炎Fにて溶解槽2のガラス原料を溶融させ、投入口4iからガラス原料を溶解槽2に投入して、そのガラス原料を開口部4e側に向かって蛇行状に流動させながら溶融させ、炉床部の開口部4eを通じて、清浄な溶融ガラスを作業槽9に導くように構成してある。
【0014】
前記燃焼装置について説明を加えると、前記燃焼装置は、前記燃焼装置設置用の炉壁4に左右に並べて設ける一対の燃焼部を備えて構成して、それら一対の燃焼部を一定時間(例えば、約15〜30分)毎に交互に燃焼させる、所謂交番燃焼を行わせるようにしてある。
前記一対の燃焼部夫々は、燃焼装置設置用の炉壁4に形成した空気口5を通して燃焼用酸素含有ガスとして燃焼用空気Aを炉内3における溶解槽2の上方に向けて斜め下向きに横幅がある流動状態で供給する酸素含有ガス供給部としての1個の空気供給路6と、前記空気口5の下方から、燃焼用空気Aが前記横幅がある流動状態で供給されている炉内燃焼域Sに向けてガス燃料Gを噴出する1個のガスバーナBとを備えて、所謂、アンダーポート式に構成し、更には、前記空気供給路6に連通し且つ蓄熱材を備えた1個の蓄熱室8を備えて、蓄熱式に構成してある。尚、前記燃焼装置設置用の炉壁4が前記加熱炉横側部に相当し、前記空気口5が、前記加熱炉横側部における前記空気供給路6の燃焼用酸素含有ガス供給箇所に相当する。
【0015】
つまり、前記一対の空気供給路6の空気口5夫々の前方に、夫々に対応する炉内燃焼域Sを存在させるようにし、各炉内燃焼域Sの横幅(空気口5からの燃焼用空気供給方向に沿う燃焼用空気供給方向視での横幅)は、燃焼用空気供給方向視での炉内3の横幅の略1/2となる。
そして、前記一対の空気供給路6夫々に対応して、即ち、各炉内燃焼域Sに対応して、前記ガスバーナBを1個ずつ設けてある。
【0016】
前記一対の燃焼部のガスバーナBは、前記一定時間毎に交互に、ガス燃料Gを前記炉内燃焼域Sに噴出する噴出状態と、ガス燃料Gの噴出を停止する噴出停止状態とに切り換えるように構成し、前記一対の燃焼部の空気供給路6は、前記噴出状態のガスバーナBの方の燃焼部の空気供給路6を通じて、前記蓄熱室8を通って前記蓄熱材にて高温(1000〜1200°C程度)に予熱された燃焼用空気Aが前記空気口5から前記炉内燃焼域Sに供給される給気状態と、前記噴出停止状態のガスバーナBの方の燃焼部の空気供給路6を通じて、前記空気口5から炉内3の燃焼ガスEが排出されると共にその燃焼排ガスEの排熱を前記蓄熱材に蓄熱させる排気状態とに切り換えるように構成してある。
そして、前記一定時間毎に交互に、前記一対の燃焼部のガスバーナBを前記噴出状態と噴出停止状態とに切り換え、且つ、前記一対の燃焼部の空気供給路6を前記給気状態と前記排気状態とに切り換えて、前述のように前記一対の燃焼部を交互に燃焼させるようにしてある。尚、図1及び図2は、右側の燃焼部が燃焼し、左側の燃焼部が消火している状態を示している。
【0017】
以下、ガスバーナBについて説明を加える。
図3ないし図6に示すように、前記ガスバーナBは、炉内3の前記炉内燃焼域Sにガス燃料Gを噴出する1個のガス燃料噴出ノズル11と、そのガス燃料噴出ノズル11を冷却する冷却水ジャケット12と、そのガス燃料噴出ノズル11にガス燃料Gを供給する燃料供給部13とを備えて構成してある。そして、ガス燃料噴出ノズル11は燃料供給部13に着脱自在なように構成すると共に、後述するように複数種を用意してあり、複数種のガス燃料噴出ノズル11からいずれか1個を選択して、燃料供給部13に取り付けるように構成してある。
【0018】
つまり、前記一対の空気供給路6夫々に対応して、前記ガスバーナBを1個ずつ設けるので、前記一対の空気供給路6夫々に対応するガス燃料噴出ノズル11として、以下のように構成した1個のガス燃料噴出ノズル11を設けてある。
【0019】
図3ないし図6に加えて、図7も参照して、ガス燃料噴出ノズル11について説明を加える。尚、図7の(イ)はガス燃料噴出ノズル11の一部切り欠き平面図であり、(ロ)はガス燃料噴出ノズル11の縦断側面図である。
前記ガス燃料噴出ノズル11は、燃焼用空気Aが前記横幅がある流動状態で供給されている炉内燃焼域Sの横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎Fを形成するように、複数の噴出部Nにてガス燃料Gを平面視にて放射状に噴出するように一体状態に構成してある。
具体的には、前記ガス燃料噴出ノズル11は、平面視にて、直径方向の両側を欠いた概半円状部分11bと、その概半円状部分11bにおける直径に相当する部分に連なる角筒状の嵌め込み部11cとを備えた半円状に類する形状のノズル形成体に、概半円状部分11bにおける円弧状の前面11dをガス燃料噴出側とするように、複数の噴出部Nとしての3個の噴出孔11aを平面視で放射状に形成して構成してある。前記3個の噴出孔11aは、平面視で噴出孔並び方向の中央の噴出孔11aの軸心を対称軸にして左右対称になるように形成してあり、もって、複数の噴出部Nを、平面視にて、ガス燃料噴出ノズル11の設置箇所を通り且つ空気供給路6からの燃焼用空気Aの供給方向に沿う仮想線にて左右対称になるようにガス燃料Gを噴出するように構成してある。つまり、複数の噴出部Nを、平面視にて、ガス燃料噴出ノズル11の設置箇所を通り且つ空気供給路6からの燃焼用空気の供給方向に沿う仮想線の両側にガス燃料を噴出するように構成してある。
各噴出孔11aは、孔の長さが孔の直径の2倍以上になるように形成してある。
【0020】
前記嵌め込み部11cにおける概半円状部分11bの直径方向に沿う方向の幅は、概半円状部分11bの直径方向の幅よりも狭くし、嵌め込み部11cにおける概半円状部分11bの軸心方向での厚さは、概半円状部分11bの軸心方向での厚さよりも薄くしてある。
【0021】
前記ガス燃料噴出ノズル11としては、平面視で両端の噴出孔11aの軸心にて形成される角度を例えば、40°、50°、60°等に異ならせることにより、放射状の3個の噴出孔11aの放射角度の異なるものを複数用意してある。
そして、3個の噴出孔11aの放射角度の異なる複数のガス燃料噴出ノズル11から、炉内燃焼域Sの横幅方向の全幅又は略全幅に亘るように拡がるように扇形の火炎Fを適正に形成可能なものを選択して、燃料供給部13に取り付けることになる。
【0022】
前記燃料供給部13は、円筒状の箱状に形成し、その先端面に前記ガス燃料噴出ノズル11の嵌め込み部11cを嵌め込むための開口部13wを形成してある。そして、ガス燃料噴出ノズル11の嵌め込み部11cに嵌め込んで、図示しないビスを嵌め込み部11cに螺入することにより、ガス燃料噴出ノズル11を燃料供給部13に取り付けるように構成してある。
燃料供給部13の後端には、都市ガス等のガス燃料Aを供給するガス燃料供給管(図示省略)を接続して、ガス燃料Gを燃料供給部13を通してガス燃料噴出ノズル11に供給して、複数の噴出孔11aから上述のように放射状に噴出するようになっている。
【0023】
前記冷却水ジャケット12は、ガス燃料噴出ノズル11の側周部を囲む角筒状に形成し、冷却水供給口12iに冷却水供給管(図示省略)を接続し、並びに、冷却水排出口12eに冷却水排出管(図示省略)を接続して、内部に冷却水を通流させるように構成してある。
その冷却水ジャケット12は、燃料供給部13の先端に固定して取り付けてあり、その角筒状の冷却水ジャケット12を通してガス燃料噴出ノズル11を挿脱することにより、ガス燃料噴出ノズル11を燃料供給部13に取り付けたり、燃料供給部13から取り外したりするように構成してある。
【0024】
図3及び図4に示すように、上述のように構成したガスバーナBを、ガス燃料噴出ノズル11の先端側から炉壁4のバーナ挿通孔4bに挿入して配置し、ガスバーナBの周囲とバーナ挿通孔4bとの間の隙間を封止材10にて封止して、ガスバーナBの外周部を通じて外部から炉内3に空気が浸入するのを遮断するようにしてある。
【0025】
上述のようにガス燃料噴出ノズル11を構成したことにより、図2及び図4に示すように、平面視にてガス燃料Gを左右対称な放射状に噴出して、平面視で、炉内燃焼域Sの横幅方向の全幅又は略全幅に亘るように拡がる略左右対称な扇形状の火炎Fを形成することが可能になるので、炉内3の温度分布を均一化することができる。
【0026】
〔別実施形態〕
次に別実施形態を説明する。
(イ) ガス燃料噴出ノズル11を、炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎を形成するように、複数の噴出部Nにてガス燃料を平面視にて放射状に噴出するように一体状態に構成するに当たって、その具体構成は、上記の実施形態において例示した構成に限定されるものではない。
例えば、図8に示すように、ガス燃料噴出ノズル11を、複数の燃料噴出部Nとしての複数本(図8では3本)の円筒状の噴出管15を平面視で放射状になるように一体的に組み付けて構成しても良い。
【0027】
(ロ) 上記の実施形態においては、本発明をエンドポート式のガラス溶解炉に適用する場合について例示したが、これ以外にも、例えば、所謂サイドポート式のガラス溶解炉にも適用することができる。
サイドポート式のガラス溶解炉は、図9に示すように、平面視で矩形状の溶解槽2の一側縁側の炉壁4に投入口4iを設け、その投入口4iを設けた炉壁4に対向する炉壁4の外部に作業槽9を設けると共に、その作業槽9と溶解槽2との間の炉壁4に、溶解槽2と作業槽9とを連通させる開口部4e(図示省略)を溶解槽2の炉床部に位置させて形成して構成してある。
燃焼装置は、前記投入口4iから作業槽9に向かって左右に位置する炉壁4に夫々設ける一対の燃焼部を備えて構成してある。
前記一対の燃焼部夫々は、燃焼装置設置用の炉壁4に形成した空気口5(図示省略)を通して燃焼用空気を炉内3に向けて斜め下向きに横幅がある流動状態で供給する1個の前記空気供給路6(図示省略)と、前記空気口5の下方から、燃焼用空気が前記横幅がある流動状態で供給されている炉内燃焼域Sに向けてガス燃料を噴出する1個のガスバーナBとからなるガスバーナ組の複数(図9では4組)を横方向に並べて備えると共に、前記複数のガスバーナ組に含まれる複数の空気供給路6に連通する1個の蓄熱室8を備えて構成してある。
そして、前記一対の燃焼部を一定時間毎に交互に燃焼させて、交番燃焼を行わせ、投入口4iからガラス原料を溶解槽2に投入して、そのガラス原料を溶融させながら、取出し孔4eに向かって流下させて、取出し孔4eを通じて、清浄な溶融ガラスを作業槽9に導くよう構成してある。
この場合も、各空気供給路6の空気口5夫々の前方に、夫々に対応する炉内燃焼域Sが存在し、各空気供給路6に対応して、即ち、各炉内燃焼域Sに対応して、前記ガスバーナBを1個ずつ設けることになる。そして、各ガスバーナBのガス燃料噴出ノズル11の複数の噴出部Nにより、対応する炉内燃焼域Sの横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎Fを形成するように、ガス燃料を平面視にて放射状に噴出する。
【0028】
(ハ) 複数の噴出部Nを、平面視にて、ガス燃料噴出ノズル11の設置箇所を通り且つ空気供給路6からの燃焼用空気の供給方向に沿う仮想線の両側にガス燃料を噴出するように構成する場合に、上記の実施形態において例示したように平面視にてガス燃料を左右対称な放射状に噴出するよう構成する場合に限定されるものではない。
例えば、ガス燃料噴出ノズル11を炉内燃焼域Sの横幅方向の中央に配置する場合は、平面視にて左右対称な放射状に噴出するのが好ましいが、炉内燃焼域Sの横幅方向の中央から左右いずれかにずれた位置に配置する場合は、配置位置に対応して、炉内燃焼域Sの横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎を形成可能なように、平面視にて左右の噴出部Nの噴出角度を異ならせるのが好ましい。
【0029】
(ニ) ガス燃料噴出ノズル11に備える噴出部Nの個数は上記の実施形態において例示した3個に限定されるものではなく、2個でも、4個以上でも良い。
【0030】
(ホ) 噴出孔11aの直径に対する長さの比率は、上記の実施形態において例示した2以上に限定されるものではなく、2より小さくても良いが、小さくする程ガス燃料噴出の直進性が劣るので、極力大きくする方が良い。
【0031】
(へ) ガス燃料噴出ノズル11を、ノズル形成体に複数の噴出部Nとしての複数の噴出孔11aを平面視で放射状に形成して構成する場合において、ノズル形成体の平面視での形状は、上記の実施形態において例示した如き半円状に類する形状に限定されるものではなく、半円状でも良く、あるいは、矩形状でも良い。
【0032】
(ト) ガス燃料噴出ノズル11を冷却する手段として、上記の実施形態においては、冷却水を通流させてガス燃料噴出ノズル11を冷却する冷却水ジャケット12を設ける場合について例示したが、空気を通流させてガス燃料噴出ノズル11を冷却する空冷ジャケットを設けても良い。
あるいは、炉内3の温度が低い場合は、ガス燃料噴出ノズル11を冷却する手段を省略することが可能である。
【0033】
(チ) 空気口5から炉内3に供給する燃焼用酸素含有ガスとしては、上記の実施形態において例示した空気以外に、空気に炉内3から排出した燃焼排ガスを混合したものや、酸素含有率を高くした酸素富化空気等、種々のものを用いることができる。
【0034】
(リ) 本発明は、上記の実施形態で例示したガラス溶解炉や、図9にて示す別実施形態で例示したガラス溶解炉以外にも、種々の加熱炉用の燃焼装置に適用することができる。
例えば、ガスバーナBを交番燃焼させる形式以外に、連続燃焼式のものにも適用することができる。
又、空気口5を1個設けて、酸素含有ガス供給部としての空気供給路6を1個設けた加熱炉用の燃焼装置にも適用することができる。
【図面の簡単な説明】
【図1】実施形態に係る加熱炉用の燃焼装置を設けたガラス溶解炉の縦断側面図
【図2】図1におけるI−I矢視図
【図3】実施形態に係る加熱炉用の燃焼装置を設けたガラス溶解炉の要部の縦断側面図
【図4】実施形態に係る加熱炉用の燃焼装置を設けたガラス溶解炉の要部の横断平面図
【図5】実施形態に係る加熱炉用の燃焼装置のガスバーナの縦断側面図
【図6】実施形態に係る加熱炉用の燃焼装置のガスバーナの正面図
【図7】実施形態に係る加熱炉用の燃焼装置のガス燃料噴出ノズルを示す図
【図8】別実施形態に係る加熱炉用の燃焼装置のガス燃料噴出ノズルの平面図
【図9】別実施形態に係る加熱炉用の燃焼装置を備えたガラス溶解炉の横断面図
【符号の説明】
3 炉内
6 酸素含有ガス供給部
11 ガス燃料噴出ノズル
11a 噴出孔
11b,11c ノズル形成体
N 噴出部
S 炉内燃焼域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to an oxygen-containing gas supply unit that supplies an oxygen-containing gas for combustion in a fluid state having a width from the side of the heating furnace toward the upper side of the object to be heated in the furnace,
From the lower part of the oxygen-containing gas supply part of the oxygen-containing gas supply part on the lateral side of the heating furnace, gaseous fuel is ejected toward the in-furnace combustion zone where the oxygen-containing gas is supplied in a flow state having the lateral width. The present invention relates to a combustion device for a heating furnace provided with a gas fuel ejection nozzle.
[0002]
[Prior art]
Such a combustion device for a heating furnace (hereinafter, may be simply referred to as a combustion device) has a flow having a lateral width from the lateral side of the heating furnace to an upper side of a heating target in the furnace by an oxygen-containing gas supply unit. The oxygen-containing gas is supplied in a state, and the oxygen-containing gas is supplied by the gas fuel jet nozzle from below the oxygen-containing gas supply point of the oxygen-containing gas supply unit on the side of the heating furnace in a flow state having the lateral width. Gas fuel toward the in-furnace combustion zone (hereinafter, sometimes simply referred to as the in-furnace combustion zone), bringing the gas fuel into contact with the oxygen-containing gas for combustion in the furnace, and It burns so as to form a flame upward.
In such a combustion device, it is desired to heat the furnace in a state where the temperature distribution is made uniform, and in such a case where the temperature distribution in the furnace is made uniform, the gas fuel ejection nozzle is It is necessary to discharge the gaseous fuel so as to form a flame over the entire width or substantially the entire width of the in-furnace combustion zone.
[0003]
For this reason, conventionally, a plurality of gas fuel ejection nozzles for ejecting gas fuel so as to form a flame having a width smaller than the width of the in-furnace combustion zone are provided on the lateral side of the heating furnace as gas fuel ejection nozzles. The flame is formed over the entire width or substantially the entire width in the width direction of the in-furnace combustion zone. Incidentally, as described above, when providing a plurality of gas fuel ejection nozzles as gas fuel ejection nozzles in order to equalize the temperature distribution in the furnace, the width of the flame formed by one gas fuel ejection nozzle is: For example, when three gas fuel ejection nozzles are provided so as to be equal to or less than the width obtained by dividing the width of the in-furnace combustion zone by the number of installed gas fuel ejection nozzles, the width is less than 1/3 of the width of the in-furnace combustion zone. It was configured to have a narrow width.
[0004]
In some cases, a plurality of oxygen-containing gas supply units are provided side by side on the lateral side of the heating furnace. In such a case, in-furnace combustion zones corresponding to the plurality of oxygen-containing gas supply units are provided in front of each of the plurality of oxygen-containing gas supply units. And a plurality of gas fuel jets for jetting gas fuel so as to form a flame having a width narrower than the width of the in-furnace combustion zone as a gas fuel jet nozzle corresponding to each oxygen-containing gas supply section. Nozzles are provided side by side at intervals in the lateral direction of the heating furnace so as to form a flame over the entire width or substantially the entire width of the in-furnace combustion zone corresponding to each oxygen-containing gas supply unit. (For example, see Patent Document 1).
[0005]
[Patent Document 1]
See Japanese Patent Application Laid-Open No. 2001-201262
[Problems to be solved by the invention]
By the way, in such a combustion device, it is necessary to perform maintenance of the gas fuel ejection nozzle, and at the time of the maintenance, the gas fuel ejection nozzle is removed from the side portion of the heating furnace to perform inspection and maintenance. It will be attached to the side.
However, in the conventional combustion device, as described above, a plurality of gas fuel ejection nozzles are provided for one oxygen-containing gas supply unit as the gas fuel ejection nozzles, and thus each of the plurality of gas fuel ejection nozzles is provided. Requires maintenance work, and the maintenance work becomes complicated as a whole.
[0007]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a combustion furnace for a heating furnace capable of simplifying maintenance work while heating the inside of the furnace in a state where the temperature distribution is uniform. It is to provide a device.
[0008]
[Means for Solving the Problems]
[Invention of claim 1]
The oxygen-containing gas supply for supplying the oxygen-containing gas for combustion in a fluid state with a width from the lateral side of the heating furnace toward the upper side of the object to be heated in the furnace, the combustion device for a heating furnace according to claim 1. Department and
From the lower part of the oxygen-containing gas supply part of the oxygen-containing gas supply part on the lateral side of the heating furnace, gaseous fuel is ejected toward the in-furnace combustion zone where the oxygen-containing gas is supplied in a flow state having the lateral width. A gas fuel jet nozzle is provided,
As the gas fuel ejection nozzle, so as to form a fan-shaped flame that spreads over the entire width or substantially the entire width in the width direction of the in-furnace combustion zone in which the oxygen-containing gas is supplied in a flow state with the horizontal width, A characteristic feature is that one gas fuel ejection nozzle is integrally provided so as to eject gas fuel radially in a plurality of ejection portions in plan view.
That is, at a plurality of ejection portions of one gas fuel ejection nozzle, the gas fuel is ejected radially in a plan view, and spreads over the entire width or substantially the entire width of the in-furnace combustion area in a fan shape. The formation of the flame makes it possible to make the temperature distribution in the furnace uniform.
In addition, since one gas fuel ejection nozzle is provided for one oxygen-containing gas supply unit as the gas fuel ejection nozzle, the gas fuel ejection nozzle that performs maintenance when the gas fuel ejection nozzle is maintained Is reduced, and the maintenance work can be simplified.
By the way, in the case where a plurality of oxygen-containing gas supply units are provided side by side on the heating furnace side portion, in front of each of the plurality of oxygen-containing gas supply units, there is a corresponding in-furnace combustion zone. As described above, as the gas fuel ejection nozzle corresponding to each oxygen-containing gas supply unit, a plurality of fan-shaped flames are formed so as to form a fan-shaped flame that extends over the entire width or substantially the entire width in the in-furnace combustion zone, as described above. A single gas fuel ejection nozzle is integrally provided so as to eject gas fuel radially at the ejection portion in plan view.
Therefore, it is possible to provide a combustion apparatus for a heating furnace that can simplify the maintenance work while heating the inside of the furnace in a state where the temperature distribution is made uniform.
[0009]
[Invention of claim 2]
According to a second aspect of the present invention, in the combustion apparatus for a heating furnace according to the first aspect, the gas fuel ejection nozzle is formed such that a plurality of ejection holes as the plurality of fuel ejection portions are radially formed in a nozzle forming body in a plan view. The feature of the present invention is that it is formed in the following manner.
In other words, the gas fuel is radially ejected in plan view by the plurality of ejection holes formed in the nozzle forming body so as to be radial in plan view, and extends over the entire width or substantially the entire width of the in-furnace combustion area in the lateral width direction. A fan-shaped flame spreading like this is formed.
In other words, the gas fuel ejection nozzle can be configured with a simple configuration in which a plurality of ejection holes are formed in the nozzle forming body so as to be radial in a plan view, so that the cost of the combustion device can be reduced. Become.
By the way, it is conceivable to configure the gas fuel ejection nozzle in a configuration in which a plurality of tubular bodies as a plurality of ejection portions are integrally arranged in a state of being arranged radially in a plan view, but in this case, Since the configuration of the gas fuel ejection nozzle is complicated, the cost of the combustion device rises.
Accordingly, it has become possible to reduce the cost of the combustion device for the heating furnace.
[0010]
[Invention of claim 3]
A combustion apparatus for a heating furnace according to a third aspect is characterized in that, in the second aspect, the ejection hole is formed so that the length of the hole is at least twice the diameter of the hole. .
That is, the gas fuel is jetted with good straightness by each jet hole formed so that the length of the hole becomes twice or more the diameter of the hole, so that the entire width or almost the entire width of the in-furnace combustion zone is obtained. A fan-shaped flame that spreads over is formed in a stable shape.
That is, even if the ejection hole is formed, the straightness of gas fuel ejection from the ejection hole decreases as the ratio of the length of the hole to the diameter of the hole decreases. If the ejection holes are formed so that the ratio becomes 2 or more, it is possible to eject the gas fuel in a state where the straightness is effectively given, thereby stabilizing the shape of the flame. It becomes possible to do.
Further, since the fan-shaped flame which spreads over the entire width or substantially the entire width in the in-furnace combustion area is formed in a stable shape, the temperature distribution in the furnace can be made more uniform.
Therefore, it is possible to provide a preferred specific configuration for making the temperature distribution in the furnace even more uniform.
[0011]
[Invention of claim 4]
The combustion apparatus for a heating furnace according to claim 4 is the combustion apparatus according to any one of claims 1 to 3, wherein the plurality of ejection sections pass through a location where the gas fuel ejection nozzle is installed in plan view and include the oxygen-containing gas. It is characterized in that gas fuel is ejected to both sides of an imaginary line along the supply direction of the oxygen-containing gas for combustion from the gas supply unit.
That is, by a plurality of ejection parts, in plan view, the gas fuel passes through the installation location of the gas fuel ejection nozzle and on both sides of an imaginary line along the supply direction of the oxygen-containing gas for combustion from the oxygen-containing gas supply part. So that, in plan view, the fan-shaped flame spreads on both sides of an imaginary line passing through the installation location of the gas fuel ejection nozzle and along the supply direction of the oxygen-containing gas for combustion from the oxygen-containing gas supply unit. Is formed.
Then, in plan view, a fan-shaped flame is formed which extends through both sides of an imaginary line passing through the installation location of the gas fuel ejection nozzle and along the supply direction of the oxygen-containing gas for combustion from the oxygen-containing gas supply unit. Since it is possible to uniformly cover the upper part of the object to be heated with the flame over a wide range as much as possible in the lateral width direction, the temperature distribution in the furnace can be made more uniform.
Therefore, it is possible to provide a preferred specific configuration for making the temperature distribution in the furnace even more uniform.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a combustion apparatus for a glass melting furnace as a heating furnace will be described with reference to the drawings.
First, a glass melting furnace provided with a combustion device will be described.
As shown in FIGS. 1 and 2, the glass melting furnace includes a melting tank 2 having a rectangular shape in a plan view at a lower portion in a furnace body 1, and a furnace wall for installing a combustion device on one side of the melting tank 2. 4, a combustion device is provided so as to blow gas fuel G into the furnace 3 and form a flame F above the melting tank 2 in a state facing the furnace wall 4 facing the furnace wall 4 for installing the combustion device. It is configured in.
[0013]
At the end on the combustion device installation side of the furnace wall 4 connected to the lateral end of the furnace wall 4 for installing the combustion device, a glass material is supplied in a direction substantially orthogonal to the direction of gas fuel ejection from the combustion device. An opening 4i is provided, a work tank 9 is provided outside the furnace wall 4 facing the furnace wall 4 for installing the combustion device, and a melting tank 2 is provided on the furnace wall 4 between the work tank 9 and the melting tank 2. An opening 4e for communication between the melting tank 2 and the work tank 9 is formed at the hearth of the melting tank 2 to form a so-called end port.
That is, the glass raw material in the melting tank 2 is melted by the flame F formed by the combustion device, the glass raw material is charged into the melting tank 2 through the inlet 4i, and the glass raw material is directed toward the opening 4e. It is configured to melt while flowing in a meandering manner, and to lead clean molten glass to the work tank 9 through the opening 4e of the hearth.
[0014]
The combustion device will be described in more detail. The combustion device includes a pair of combustion units provided side by side on the furnace wall 4 for installing the combustion device, and the pair of combustion units is operated for a predetermined time (for example, Every 15 to 30 minutes), so-called alternating combustion is performed.
Each of the pair of combustion units is provided with a combustion air A as a combustion oxygen-containing gas through an air port 5 formed in a furnace wall 4 for installing a combustion device, and a width of the combustion air A obliquely downward toward the upper part of the melting tank 2 in the furnace 3. In-furnace combustion in which combustion air A is supplied in a flow state with a certain width from below one air supply path 6 as an oxygen-containing gas supply section to be supplied in a certain flow state and the air port 5. A gas burner B for ejecting gaseous fuel G toward the region S, so-called underport type, and further, one gas burner communicating with the air supply passage 6 and having a heat storage material. It has a heat storage chamber 8 and is configured as a heat storage type. The furnace wall 4 for installing the combustion device corresponds to the side portion of the heating furnace, and the air port 5 corresponds to a supply point of the oxygen-containing gas for combustion in the air supply passage 6 in the side portion of the heating furnace. I do.
[0015]
That is, the in-furnace combustion zones S corresponding to the respective air inlets 5 of the pair of air supply passages 6 are provided in front of the respective air inlets 5, and the width of each in-furnace combustion zone S (combustion air from the air outlet 5). The horizontal width along the supply direction when viewed in the combustion air supply direction) is approximately の of the horizontal width of the furnace interior 3 when viewed in the combustion air supply direction.
One gas burner B is provided for each of the pair of air supply passages 6, that is, for each in-furnace combustion zone S.
[0016]
The gas burners B of the pair of combustion units alternately switch between an ejection state in which the gas fuel G is ejected to the in-furnace combustion zone S and an ejection stop state in which the gas fuel G is stopped being ejected at regular intervals. The air supply passages 6 of the pair of combustion sections pass through the heat storage chamber 8 through the air supply passages 6 of the combustion section toward the gas burner B in the jetting state and have a high temperature (1000 to 1000). An air supply path in which combustion air A preheated to about 1200 ° C. is supplied from the air port 5 to the in-furnace combustion zone S, and an air supply passage of a combustion section of the gas burner B in the injection stopped state. Through the air passage 6, the combustion gas E in the furnace 3 is discharged from the air port 5, and the exhaust gas E is switched to an exhaust state in which the exhaust heat of the combustion exhaust gas E is stored in the heat storage material.
Then, the gas burners B of the pair of combustion sections are alternately switched to the ejection state and the ejection stop state at regular intervals, and the air supply path 6 of the pair of combustion sections is switched between the supply state and the exhaust state. The state is switched to the state, and the pair of combustion sections are alternately burned as described above. FIGS. 1 and 2 show a state in which the right burning part is burning and the left burning part is extinguished.
[0017]
Hereinafter, the gas burner B will be described.
As shown in FIGS. 3 to 6, the gas burner B cools one gas fuel jet nozzle 11 for jetting gas fuel G into the in-furnace combustion zone S of the furnace 3. And a fuel supply unit 13 that supplies gas fuel G to the gas fuel ejection nozzle 11. The gas fuel jet nozzle 11 is configured to be detachable from the fuel supply unit 13 and a plurality of gas fuel jet nozzles 11 are prepared as described later, and one of the plurality of gas fuel jet nozzles 11 is selected. Then, it is configured to be attached to the fuel supply unit 13.
[0018]
That is, since one gas burner B is provided for each of the pair of air supply passages 6, the gas fuel ejection nozzle 11 corresponding to each of the pair of air supply passages 6 is configured as follows. A plurality of gas fuel ejection nozzles 11 are provided.
[0019]
The gas fuel ejection nozzle 11 will be described with reference to FIG. 7 in addition to FIGS. 3 to 6. 7A is a partially cutaway plan view of the gas fuel ejection nozzle 11, and FIG. 7B is a vertical side view of the gas fuel ejection nozzle 11.
The gas fuel ejection nozzle 11 forms a fan-shaped flame F that spreads over the entire width or substantially the entire width of the in-furnace combustion zone S in which the combustion air A is supplied in a flow state with the horizontal width. As described above, the gas fuel G is integrally formed so as to be radially ejected from the plurality of ejection portions N in plan view.
Specifically, the gas fuel ejection nozzle 11 has, in a plan view, a substantially semicircular portion 11b lacking both sides in the diametric direction, and a square cylinder connected to a portion corresponding to the diameter of the substantially semicircular portion 11b. The nozzle forming body having a shape similar to a semicircle provided with a fitting portion 11c having a shape of a circle has a plurality of jetting portions N such that an arc-shaped front surface 11d of the substantially semicircular portion 11b is a gas fuel jetting side. The three ejection holes 11a are formed radially in a plan view. The three orifices 11a are formed so as to be bilaterally symmetric with respect to the axis of the central orifice 11a at the center in the direction in which the orifices are arranged in plan view, so that the plurality of orifices N are formed. In a plan view, the gas fuel G is ejected so as to be symmetrical with respect to an imaginary line passing through the installation location of the gas fuel ejection nozzle 11 and along the supply direction of the combustion air A from the air supply passage 6. I have. That is, the plurality of ejection portions N are configured to eject the gas fuel to both sides of an imaginary line passing through the installation location of the gas fuel ejection nozzle 11 and along the supply direction of the combustion air from the air supply passage 6 in a plan view. It is configured in.
Each ejection hole 11a is formed such that the length of the hole is at least twice the diameter of the hole.
[0020]
The width in the diametrical direction of the substantially semicircular portion 11b of the fitting portion 11c is smaller than the diametrical width of the approximately semicircular portion 11b, and the axial center of the substantially semicircular portion 11b in the fitting portion 11c. The thickness in the direction is smaller than the thickness in the axial direction of the substantially semicircular portion 11b.
[0021]
The gas fuel jet nozzle 11 has three radial jets formed by making the angles formed by the axial centers of the jet holes 11a at both ends different from, for example, 40 °, 50 °, 60 °, etc. in plan view. A plurality of holes 11a having different radiation angles are prepared.
Then, from the plurality of gas fuel ejection nozzles 11 having different emission angles of the three ejection holes 11a, a fan-shaped flame F is appropriately formed so as to spread over the entire width or substantially the entire width of the in-furnace combustion zone S in the width direction. A possible one is selected and attached to the fuel supply unit 13.
[0022]
The fuel supply unit 13 is formed in a cylindrical box shape, and an opening 13w for fitting the fitting portion 11c of the gas fuel ejection nozzle 11 is formed at a tip end surface thereof. Then, the gas fuel ejection nozzle 11 is attached to the fuel supply unit 13 by being fitted into the fitting portion 11c of the gas fuel ejection nozzle 11 and screwing a screw (not shown) into the fitting portion 11c.
A gas fuel supply pipe (not shown) for supplying gas fuel A such as city gas is connected to the rear end of the fuel supply unit 13 to supply gas fuel G to the gas fuel ejection nozzle 11 through the fuel supply unit 13. Thus, the plurality of ejection holes 11a are ejected radially as described above.
[0023]
The cooling water jacket 12 is formed in a rectangular tube shape surrounding the side peripheral portion of the gas fuel jet nozzle 11, connects a cooling water supply pipe (not shown) to a cooling water supply port 12i, and has a cooling water discharge port 12e. Is connected to a cooling water discharge pipe (not shown) so as to allow the cooling water to flow therethrough.
The cooling water jacket 12 is fixedly attached to the tip of the fuel supply unit 13. By inserting and removing the gas fuel ejection nozzle 11 through the rectangular tubular cooling water jacket 12, the gas fuel ejection nozzle 11 is It is configured to be attached to the supply unit 13 or detached from the fuel supply unit 13.
[0024]
As shown in FIGS. 3 and 4, the gas burner B configured as described above is inserted into the burner insertion hole 4 b of the furnace wall 4 from the tip side of the gas fuel jet nozzle 11, and is disposed around the gas burner B. The gap between the insertion hole 4b and the insertion hole 4b is sealed with a sealing material 10 to block air from entering the inside of the furnace 3 from outside through the outer peripheral portion of the gas burner B.
[0025]
By configuring the gas fuel ejection nozzle 11 as described above, as shown in FIGS. 2 and 4, the gas fuel G is ejected in a symmetrical radial shape in plan view, and the in-furnace combustion zone in plan view. Since it is possible to form a substantially symmetrical fan-shaped flame F extending over the entire width or substantially the entire width in the lateral width direction of S, the temperature distribution in the furnace 3 can be made uniform.
[0026]
[Another embodiment]
Next, another embodiment will be described.
(A) The gas fuel is sprayed at a plurality of ejection portions N in a plan view so that the gas fuel ejection nozzle 11 forms a fan-shaped flame that extends over the entire width or substantially the entire width of the in-furnace combustion area. In the case where the fuel cell is integrally formed so as to eject radially, the specific structure is not limited to the structure exemplified in the above embodiment.
For example, as shown in FIG. 8, a plurality of (three in FIG. 8) cylindrical ejection pipes 15 as a plurality of fuel ejection sections N are integrally formed so that the gas fuel ejection nozzles 11 are radially formed in a plan view. Alternatively, it may be configured by assembling them.
[0027]
(B) In the above embodiment, the case where the present invention is applied to an end-port type glass melting furnace is illustrated. However, for example, the present invention can also be applied to a so-called side-port type glass melting furnace. it can.
As shown in FIG. 9, the side-port type glass melting furnace is provided with an inlet 4i in a furnace wall 4 on one side of a rectangular melting tank 2 in a plan view, and the furnace wall 4 provided with the inlet 4i. A work tank 9 is provided outside the furnace wall 4 facing the furnace, and an opening 4e (not shown) for communicating the melting tank 2 and the work tank 9 to the furnace wall 4 between the work tank 9 and the melting tank 2. ) Is formed on the hearth of the melting tank 2.
The combustion device is provided with a pair of combustion sections provided on the furnace wall 4 located on the left and right sides from the input port 4i toward the work tank 9, respectively.
Each of the pair of combustion units supplies combustion air to the furnace 3 in a flow state having a width that is obliquely downward toward the inside of the furnace 3 through an air port 5 (not shown) formed in a furnace wall 4 for installing a combustion device. A gas fuel is injected from below the air supply path 6 (not shown) and below the air port 5 toward the in-furnace combustion zone S in which the combustion air is supplied in a flow state having the lateral width. And a plurality of gas burner sets (four in FIG. 9) including the gas burners B, and one heat storage chamber 8 communicating with a plurality of air supply passages 6 included in the plurality of gas burner sets. It is configured.
Then, the pair of combustion sections are alternately burned at regular intervals to perform alternating combustion, and the glass material is charged into the melting tank 2 through the charging port 4i, and the glass material is melted while taking out the glass hole 4e. , And the clean molten glass is guided to the work tank 9 through the extraction hole 4e.
Also in this case, in-furnace combustion zones S corresponding to the respective air supply paths 6 exist in front of the air ports 5 of the respective air supply paths 6. Correspondingly, the gas burners B are provided one by one. Then, the plurality of ejection portions N of the gas fuel ejection nozzles 11 of each gas burner B form a fan-shaped flame F that spreads over the entire width or substantially the entire width of the corresponding in-furnace combustion zone S in the lateral direction. The gas fuel is jetted radially in plan view.
[0028]
(C) A plurality of ejection portions N eject gas fuel on both sides of an imaginary line passing through the installation location of the gas fuel ejection nozzle 11 and along the direction in which the combustion air is supplied from the air supply passage 6 in plan view. The configuration is not limited to the configuration in which the gas fuel is ejected in a symmetrical radial manner in plan view as exemplified in the above embodiment.
For example, when the gas fuel ejection nozzle 11 is disposed at the center in the width direction of the in-furnace combustion zone S, it is preferable to eject the gas fuel in a radially symmetric manner in plan view. When arranged at a position shifted to the left or right from the corresponding, corresponding to the arrangement position, so that it is possible to form a fan-shaped flame that spreads over the entire width or substantially the entire width of the in-furnace combustion zone S, It is preferable to make the ejection angles of the left and right ejection portions N different in plan view.
[0029]
(D) The number of the ejection portions N provided in the gas fuel ejection nozzle 11 is not limited to the three illustrated in the above embodiment, but may be two or four or more.
[0030]
(E) The ratio of the length to the diameter of the ejection hole 11a is not limited to two or more as exemplified in the above embodiment, and may be smaller than two. Since it is inferior, it is better to make it as large as possible.
[0031]
(F) When the gas fuel ejection nozzle 11 is configured by forming a plurality of ejection holes 11a as a plurality of ejection portions N in a nozzle formation body in a radial manner in a plan view, the shape of the nozzle formation body in a plan view is as follows. However, the shape is not limited to the shape similar to the semicircle as exemplified in the above embodiment, and may be a semicircle or a rectangle.
[0032]
(G) As a means for cooling the gas fuel ejection nozzle 11, in the above-described embodiment, the case where the cooling water jacket 12 that allows the cooling water to flow to cool the gas fuel ejection nozzle 11 is provided. An air cooling jacket that cools the gas fuel jet nozzle 11 by flowing the gas may be provided.
Alternatively, when the temperature in the furnace 3 is low, the means for cooling the gas fuel ejection nozzle 11 can be omitted.
[0033]
(H) As the oxygen-containing gas for combustion supplied from the air port 5 to the inside 3 of the furnace, in addition to the air exemplified in the above embodiment, a mixture of air and a combustion exhaust gas discharged from the inside of the furnace 3 or an oxygen-containing gas may be used. Various materials such as oxygen-enriched air with a high rate can be used.
[0034]
(I) The present invention can be applied to various types of heating furnace combustion devices other than the glass melting furnace exemplified in the above embodiment and the glass melting furnace exemplified in another embodiment shown in FIG. it can.
For example, in addition to the type in which the gas burner B is alternately burned, the present invention can be applied to a continuous combustion type.
Further, the present invention can be applied to a combustion device for a heating furnace provided with one air port 5 and one air supply path 6 as an oxygen-containing gas supply unit.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional side view of a glass melting furnace provided with a heating furnace combustion device according to an embodiment. FIG. 2 is a view taken along the line II in FIG. 1. FIG. FIG. 4 is a longitudinal sectional side view of a main part of a glass melting furnace provided with the apparatus. FIG. 4 is a cross-sectional plan view of a main part of a glass melting furnace provided with a combustion device for a heating furnace according to the embodiment. FIG. 6 is a vertical sectional side view of a gas burner of a combustion device for a furnace. FIG. 6 is a front view of a gas burner of a combustion device for a heating furnace according to the embodiment. FIG. FIG. 8 is a plan view of a gas fuel ejection nozzle of a combustion apparatus for a heating furnace according to another embodiment. FIG. 9 is a cross-sectional view of a glass melting furnace provided with a combustion apparatus for a heating furnace according to another embodiment. [Explanation of symbols]
3 In-furnace 6 Oxygen-containing gas supply unit 11 Gas fuel ejection nozzle 11a Injection holes 11b, 11c Nozzle body N Injection unit S In-furnace combustion zone

Claims (4)

加熱炉横側部から炉内における加熱対象物の上方に向けて、横幅がある流動状態で燃焼用酸素含有ガスを供給する酸素含有ガス供給部と、
前記加熱炉横側部における前記酸素含有ガス供給部の酸素含有ガス供給箇所の下方から、酸素含有ガスが前記横幅がある流動状態で供給されている炉内燃焼域に向けてガス燃料を噴出するガス燃料噴出ノズルとが設けられた加熱炉用の燃焼装置であって、
前記ガス燃料噴出ノズルとして、酸素含有ガスが前記横幅がある流動状態で供給されている前記炉内燃焼域の横幅方向の全幅又は略全幅に亘るように拡がる扇形状の火炎を形成するように、複数の噴出部にてガス燃料を平面視にて放射状に噴出するように一体状態に構成された1個のガス燃料噴出ノズルが設けられている加熱炉用の燃焼装置。
An oxygen-containing gas supply unit that supplies the oxygen-containing gas for combustion in a fluid state with a width from the side of the heating furnace toward the upper side of the object to be heated in the furnace,
From the lower part of the oxygen-containing gas supply part of the oxygen-containing gas supply part on the lateral side of the heating furnace, gaseous fuel is ejected toward the in-furnace combustion zone where the oxygen-containing gas is supplied in a flow state having the lateral width. A combustion device for a heating furnace provided with a gas fuel ejection nozzle,
As the gas fuel ejection nozzle, so as to form a fan-shaped flame that spreads over the entire width or substantially the entire width in the width direction of the in-furnace combustion zone in which the oxygen-containing gas is supplied in a flow state with the horizontal width, A combustion device for a heating furnace provided with a single gas fuel ejection nozzle integrally formed so as to eject gas fuel radially in a plan view from a plurality of ejection portions.
前記ガス燃料噴出ノズルが、ノズル形成体に前記複数の燃料噴出部としての複数の噴出孔を平面視で放射状になるように形成して構成されている請求項1記載の加熱炉用の燃焼装置。The combustion device for a heating furnace according to claim 1, wherein the gas fuel ejection nozzle is formed by forming a plurality of ejection holes as the plurality of fuel ejection portions in a nozzle forming body so as to be radial in plan view. . 前記噴出孔が、孔の長さが孔の直径の2倍以上になるように形成されている請求項2記載の加熱炉用の燃焼装置。The combustion device for a heating furnace according to claim 2, wherein the ejection hole is formed such that the length of the hole is at least twice the diameter of the hole. 前記複数の噴出部が、平面視にて、前記ガス燃料噴出ノズルの設置箇所を通り且つ前記酸素含有ガス供給部からの燃焼用酸素含有ガスの供給方向に沿う仮想線の両側にガス燃料を噴出するように構成されている請求項1〜3のいずれか1項に記載の加熱炉用の燃焼装置。The plurality of ejection sections eject gas fuel on both sides of a virtual line passing through the installation location of the gas fuel ejection nozzle and along the supply direction of the oxygen-containing gas for combustion from the oxygen-containing gas supply section in plan view. The combustion device for a heating furnace according to any one of claims 1 to 3, wherein the combustion device is configured to perform heating.
JP2003092161A 2003-03-28 2003-03-28 Combustion equipment for heating furnace Expired - Fee Related JP4836399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092161A JP4836399B2 (en) 2003-03-28 2003-03-28 Combustion equipment for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092161A JP4836399B2 (en) 2003-03-28 2003-03-28 Combustion equipment for heating furnace

Publications (2)

Publication Number Publication Date
JP2004301369A true JP2004301369A (en) 2004-10-28
JP4836399B2 JP4836399B2 (en) 2011-12-14

Family

ID=33405342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092161A Expired - Fee Related JP4836399B2 (en) 2003-03-28 2003-03-28 Combustion equipment for heating furnace

Country Status (1)

Country Link
JP (1) JP4836399B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275334A (en) * 2005-03-28 2006-10-12 Osaka Gas Co Ltd Combustion device for heating furnace
JP2007139380A (en) * 2005-11-22 2007-06-07 Osaka Gas Co Ltd Combustion device for heating furnace
JP2009243853A (en) * 2008-03-31 2009-10-22 Osaka Gas Co Ltd Combustion device for heating furnace
WO2011048878A1 (en) 2009-10-23 2011-04-28 大阪瓦斯株式会社 Combustion device for melting furnace, and melting furnace
CN103807858A (en) * 2014-03-13 2014-05-21 杜建吉 Burner for hydrogenation reforming device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275334A (en) * 2005-03-28 2006-10-12 Osaka Gas Co Ltd Combustion device for heating furnace
JP4516873B2 (en) * 2005-03-28 2010-08-04 大阪瓦斯株式会社 Combustion equipment for heating furnace
JP2007139380A (en) * 2005-11-22 2007-06-07 Osaka Gas Co Ltd Combustion device for heating furnace
JP2009243853A (en) * 2008-03-31 2009-10-22 Osaka Gas Co Ltd Combustion device for heating furnace
WO2011048878A1 (en) 2009-10-23 2011-04-28 大阪瓦斯株式会社 Combustion device for melting furnace, and melting furnace
US9109836B2 (en) 2009-10-23 2015-08-18 Osaka Gas Co., Ltd. Combustion device for melting furnace and melting furnace
KR101792124B1 (en) 2009-10-23 2017-10-31 오사까 가스 가부시키가이샤 Melting furnace
CN103807858A (en) * 2014-03-13 2014-05-21 杜建吉 Burner for hydrogenation reforming device

Also Published As

Publication number Publication date
JP4836399B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5122369B2 (en) Combustion equipment for glass melting furnace
JP4516873B2 (en) Combustion equipment for heating furnace
KR101792124B1 (en) Melting furnace
TWI539117B (en) Combustion device for glass furnace and glass furnace
JP2004301369A (en) Combustion apparatus for heating furnace
JP4326490B2 (en) Combustion equipment for heating furnace
JP2002286225A (en) Operating method and device of combustion device for heating furnace
JP5313535B2 (en) Combustion equipment for heating furnace
JP2007139380A (en) Combustion device for heating furnace
JP4139525B2 (en) Combustion equipment for heating furnace
JP4046633B2 (en) Combustion equipment for heating furnace
JP3888916B2 (en) Combustion equipment for heating furnace
JP4225981B2 (en) Combustion equipment for heating furnace
JP4201731B2 (en) Combustion equipment for heating furnace
JP6642802B2 (en) Glass melting furnace
JP4194624B2 (en) Combustion equipment for heating furnace
JP2007093089A (en) Combustion device for heating furnace
JP3552976B2 (en) melting furnace
JP2008202854A (en) Combustion device for heating furnace
KR100414174B1 (en) Glass furnace
JP5297230B2 (en) Combustion device
JP6671638B2 (en) Through port burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090903

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees