JP2009242931A - Electrolytic cleaning device and electrolytic cleaning method - Google Patents

Electrolytic cleaning device and electrolytic cleaning method Download PDF

Info

Publication number
JP2009242931A
JP2009242931A JP2008094552A JP2008094552A JP2009242931A JP 2009242931 A JP2009242931 A JP 2009242931A JP 2008094552 A JP2008094552 A JP 2008094552A JP 2008094552 A JP2008094552 A JP 2008094552A JP 2009242931 A JP2009242931 A JP 2009242931A
Authority
JP
Japan
Prior art keywords
electrolytic cleaning
anode
electrolytic
positive
negative electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094552A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshizawa
一裕 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOMAKKUSU KK
Original Assignee
SOMAKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOMAKKUSU KK filed Critical SOMAKKUSU KK
Priority to JP2008094552A priority Critical patent/JP2009242931A/en
Publication of JP2009242931A publication Critical patent/JP2009242931A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic cleaning device and an electrolytic cleaning method which can enhance a cleaning effect. <P>SOLUTION: The electrolytic cleaning device 1 and the electrolytic cleaning method comprise immersing an anode 10 and a cathode 20 holding a cleaning object M in an electrolytic cleaning liquid and applying a current between the anode 10 and the cathode 20 to subject the cleaning object to electrolytic cleaning. The anode 10 comprises anodes 10 in which currents are variable with respect to the cathode 20, and is controlled to vary the current with time between the anode 10 and the cathode 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電解洗浄装置及び電解洗浄方法に関し、より詳しくは、Feや鋼、ステンレス鋼、Ni、Ti、希金属類を材質とする精密金型等の金属部品を腐食又は溶解させることなく、樹脂、ガラス、ゴム、研磨剤、スマット等の付着汚れや、錆、酸化皮膜等の金属酸化物、変色等の汚れを好適に除去することのできる電解洗浄装置及び電解洗浄方法に関する。   The present invention relates to an electrolytic cleaning apparatus and an electrolytic cleaning method, and more specifically, without corroding or dissolving metal parts such as precision molds made of Fe, steel, stainless steel, Ni, Ti, rare metals, The present invention relates to an electrolytic cleaning apparatus and an electrolytic cleaning method capable of suitably removing adhered dirt such as resin, glass, rubber, abrasive, and smut, metal oxides such as rust and oxide film, and dirt such as discoloration.

金型を用いて高温・高圧下で樹脂成形を繰り返すと、金型に樹脂や添加剤が熱分解して発生したガスが焼きついたり、焼けただれた樹脂が付着したりし、場合によっては腐食性物質を含む酸化皮膜が形成されることがある。これを適切な方法でメンテナンスせずに放置すると、金型が腐食して破損してしまうこともある。従来、これらの汚れが付着した金型等の金属部品は、手作業で磨いて取り除くといった方法や超音波洗浄によりメンテナンスされることが多かった。しかし、これらの方法は、作業が面倒であり、しかも、結合力の強い汚れは充分に除去することができなかった。   If resin molding is repeated using a mold at high temperature and high pressure, the gas generated by the thermal decomposition of the resin and additives will burn into the mold, or burnt resin may adhere, and in some cases, corrosion will occur. In some cases, an oxide film containing an active substance is formed. If this is left without proper maintenance, the mold may be corroded and damaged. Conventionally, metal parts such as molds with such dirt attached are often maintained by a method of manually polishing and removing them or by ultrasonic cleaning. However, these methods are troublesome, and the stains with strong binding force cannot be removed sufficiently.

そこで、このような結合力の強い汚れをも効果的に除去することのできる洗浄方法として、電解を利用した洗浄方法が提案されている(例えば、特許文献1、特許文献2、特許文献3)。   Therefore, as a cleaning method that can effectively remove such a stain having a strong binding force, a cleaning method using electrolysis has been proposed (for example, Patent Document 1, Patent Document 2, and Patent Document 3). .

電解洗浄は、電解洗浄液を電解したときに発生するガスによって汚れを押し上げて剥離することが基本原理となっている。また、一般的に、電解洗浄液にはキレート剤等の添加剤が加えられており、これら添加剤が電解洗浄液中に溶解した金属イオンを配位して封鎖することで、金属イオンが洗浄対象物に焼けや変色等の損傷を与えるのを防止している。   The basic principle of electrolytic cleaning is to push up the dirt with gas generated when the electrolytic cleaning solution is electrolyzed and peel it off. In general, additives such as chelating agents are added to the electrolytic cleaning solution, and these additives coordinate and block the metal ions dissolved in the electrolytic cleaning solution, so that the metal ions are cleaned. This prevents damage such as burning and discoloration.

ところが、これら添加剤は、電解反応によって徐々に分解・消耗されていくものであり、一定量以上洗浄液成分が分解・消耗すると、上述したような金属イオンを封鎖する機能が急速に失われ、洗浄対象物に損傷が生じるようになる。従って、使用前の状態からこの状態になるまでの期間が電解洗浄液の寿命となる。なお、電解洗浄液の寿命と通電量は、ファラデーの電気分解の法則に従い、反比例の関係にあることが知られている(例えば、非特許文献1)。即ち、通電量を増やせば寿命は短くなり、逆に通電量を減らせば寿命は長くなる。   However, these additives are gradually decomposed and consumed by the electrolytic reaction, and when the cleaning liquid components are decomposed and consumed more than a certain amount, the function of sequestering metal ions as described above is rapidly lost, and cleaning is performed. The object becomes damaged. Therefore, the period from the state before use to this state is the life of the electrolytic cleaning solution. It is known that the life of the electrolytic cleaning solution and the energization amount are in an inversely proportional relationship according to Faraday's law of electrolysis (for example, Non-Patent Document 1). That is, if the energization amount is increased, the life is shortened, and conversely if the energization amount is decreased, the life is lengthened.

特開平11−128853号公報JP-A-11-128853 特開平7−214570号公報JP 7-214570 A 特開平9−164533号公報JP-A-9-164533 「プラスチックス」 日本プラスチックス工業連盟、58巻(2007年12月号)、p55−57“Plastics” Japan Plastics Federation, 58 (December 2007), p55-57

ところで、現在まで、洗浄効果と通電量とは比例関係にあると考えられてきた。従って、洗浄効果を高めるために、通電量を増加させる方法が採られていた。   Until now, it has been considered that the cleaning effect and the energization amount are in a proportional relationship. Therefore, in order to increase the cleaning effect, a method of increasing the energization amount has been adopted.

しかしながら、電解洗浄においては、ある通電量を超えると洗浄対象物に焼けや変色等の損傷が生じる可能性が急激に高まる場合があり、増加させることのできる通電量には限界があった。従って、洗浄効果を高める方法として、単純に通電量を増加させる従来法とは異なる方法が必要とされている。   However, in electrolytic cleaning, there is a case where the possibility of causing damage such as burning or discoloration to the object to be cleaned increases rapidly when a certain amount of energization is exceeded, and there is a limit to the amount of energization that can be increased. Therefore, a method different from the conventional method for simply increasing the energization amount is required as a method for enhancing the cleaning effect.

そこで、本発明は、洗浄効果を向上させることができる電解洗浄装置及び電解洗浄方法を提供することを目的とする。   Then, an object of this invention is to provide the electrolytic cleaning apparatus and the electrolytic cleaning method which can improve a cleaning effect.

本発明に係る電解洗浄装置は、陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽陰極間に直流で通電して洗浄対象物を電解洗浄する電解洗浄装置であって、陽陰極間の通電量が時間的に変化するように制御可能に構成されることを特徴とする。   The electrolytic cleaning apparatus according to the present invention is an electrolytic cleaning apparatus for electrolytically cleaning an object to be cleaned by immersing an anode and a cathode holding an object to be cleaned in an electrolytic cleaning liquid, and applying a direct current between the positive and negative electrodes. It is configured to be controllable so that the energization amount between the positive and negative electrodes changes with time.

また、本発明に係る電解洗浄方法は、陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽陰極間に直流で通電して洗浄対象物を電解洗浄する電解洗浄方法であって、前記陽陰極間の通電量が時間的に変化するように制御することを特徴とする。   In addition, the electrolytic cleaning method according to the present invention is an electrolytic cleaning method in which an anode and a cathode holding an object to be cleaned are immersed in an electrolytic cleaning liquid, and the object to be cleaned is electrolytically cleaned by applying a direct current between the positive and negative electrodes. The amount of current flowing between the positive and negative electrodes is controlled to change with time.

上記構成からなる電解洗浄装置及び電解洗浄方法によれば、陽陰極間の通電量が常時一定である従来の電解洗浄装置及び電解洗浄方法の場合に比べて、洗浄効果を向上させることができる。かかる効果が発揮される理由の一つとしては、通電量が常時変化することで、陰極に保持された洗浄対象物における気体の発生状態が常時変化するため、剥離作用等の洗浄作用を洗浄対象物に付着した汚れに対して効果的に加えることができるということが考えられる。   According to the electrolytic cleaning apparatus and the electrolytic cleaning method configured as described above, the cleaning effect can be improved as compared with the conventional electrolytic cleaning apparatus and the electrolytic cleaning method in which the amount of current flowing between the positive and negative electrodes is always constant. One of the reasons why such an effect is exhibited is that the gas generation state in the object to be cleaned held by the cathode constantly changes because the amount of current constantly changes, so that the cleaning action such as the peeling action is the object to be cleaned. It is conceivable that it can be effectively added to dirt attached to an object.

また、前記通電量は、前記陽陰極間に印加する電圧によって制御される構成が好ましい。   Further, it is preferable that the energization amount is controlled by a voltage applied between the positive and negative electrodes.

このようにすれば、通電量の制御を電圧の制御によって行うことができるため、通電量の制御が容易となる。   In this way, since the amount of energization can be controlled by controlling the voltage, the amount of energization can be easily controlled.

また、上記構成においては、大きさの異なる複数の電圧を前記陽陰極間に印加可能に構成され、これら複数の電圧がが所定時間毎に交互に切り替えられる構成が好ましい。   Further, in the above configuration, it is preferable that a plurality of voltages having different magnitudes can be applied between the positive and negative electrodes, and the plurality of voltages are alternately switched every predetermined time.

このようにすれば、通電量を容易に数値制御することができる。   In this way, the energization amount can be easily numerically controlled.

なお、前記陽陰極間に印加される電圧の時間平均値は、3.25V以上6.25V以下となるように設定される構成が好ましい。   In addition, the structure set so that the time average value of the voltage applied between the said positive and negative electrodes may be 3.25V or more and 6.25V or less is preferable.

このようにすれば、電解洗浄液の寿命をより長く維持することができる。   In this way, the lifetime of the electrolytic cleaning liquid can be maintained longer.

また、前記陽極は、Fe,Pt,Pd,Ir,Ru若しくはこれらの合金を用いて形成されること構成が好ましい。   The anode is preferably formed using Fe, Pt, Pd, Ir, Ru, or an alloy thereof.

或いは、前記陽極は、Tiからなる陽極本体をPt,Pd,Ir,Ru若しくはこれらの合金によって被覆して形成される構成であってもよい。   Alternatively, the anode may be formed by coating an anode body made of Ti with Pt, Pd, Ir, Ru, or an alloy thereof.

また、前記電解洗浄装置は、前記電解洗浄液を超音波振動させる超音波発生器を備える構成が好ましい。   The electrolytic cleaning apparatus preferably includes an ultrasonic generator that ultrasonically vibrates the electrolytic cleaning liquid.

このようにすれば、電解洗浄液が超音波振動することにより洗浄対象物に付着した汚れの剥離を促進することができる。   In this way, the electrolytic cleaning liquid can vibrate ultrasonically, thereby facilitating the removal of dirt attached to the object to be cleaned.

また、前記電解洗浄液は、電解質として、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有し、キレート剤として、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤と、グルコン酸塩とを含有し、界面活性剤として、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有する構成が好ましい。   The electrolytic cleaning solution contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium citrate as an electrolyte, and carboxy as a chelating agent. Contains a chelating agent that coordinates a metal ion with a rate group (COO-) and a nitrogen (N) atom, and a gluconate, and as a surfactant, a neutral surfactant, an amphoteric surfactant, an anionic interface A configuration containing at least one of the activators is preferable.

以上のように、本発明によれば、洗浄効果を向上させることができる。従って、短い洗浄時間で電解洗浄を行うことができるため、長時間に亘って電解洗浄液を使用することが可能であるので、ランニングコストを低減でき、また、廃液の発生頻度を少なくして環境への負荷をも低減することができる。   As described above, according to the present invention, the cleaning effect can be improved. Therefore, since the electrolytic cleaning can be performed in a short cleaning time, it is possible to use the electrolytic cleaning liquid for a long time, so that the running cost can be reduced, and the frequency of waste liquid generation is reduced and the environment is reduced. This can also reduce the load.

以下に、本発明に係る電解洗浄装置及び電解洗浄方法の実施形態について、図面に基づいて説明する。   Embodiments of an electrolytic cleaning apparatus and an electrolytic cleaning method according to the present invention will be described below with reference to the drawings.

第一実施形態に係る電解洗浄装置1は、図1及び図2に示すように、陽極10と洗浄対象物Mを保持する陰極20とを電解洗浄液中に浸漬し、陽極10及び陰極20間に直流電流を流して洗浄対象物Mを電解洗浄するものである。以下では、まず、電解洗浄装置1自体の構成について概略的な説明を行う。前記電解洗浄装置1は、前記陽極10及び陰極20の他、筐体2と、該筐体2の上部に配置され、電解洗浄液を収容する洗浄槽3と、陽陰極(陽極10及び陰極20)間の通電量を時間的に変化させて給電できるように制御可能な電源4を筐体2の内部に備える。   As shown in FIGS. 1 and 2, the electrolytic cleaning apparatus 1 according to the first embodiment immerses the anode 10 and the cathode 20 holding the object to be cleaned M in an electrolytic cleaning solution, and between the anode 10 and the cathode 20. The object to be cleaned M is electrolytically cleaned by flowing a direct current. In the following, first, a schematic description will be given of the configuration of the electrolytic cleaning apparatus 1 itself. The electrolytic cleaning apparatus 1 includes, in addition to the anode 10 and the cathode 20, a housing 2, a cleaning tank 3 that is disposed on the top of the housing 2 and stores an electrolytic cleaning liquid, and a positive cathode (anode 10 and cathode 20). A controllable power source 4 is provided inside the housing 2 so that power can be supplied by changing the energization amount between them.

前記陽極10は、後述する金属の放電部分12aが洗浄槽3の内部に位置するように設けられ、電解洗浄の際には前記放電部分12aが電解洗浄液に浸漬される。具体的には、図2に示すように、前記陽極10は、洗浄槽3の上端の開口部から吊り下げられる。   The anode 10 is provided such that a metal discharge portion 12a, which will be described later, is located inside the cleaning tank 3, and the discharge portion 12a is immersed in an electrolytic cleaning solution during electrolytic cleaning. Specifically, as shown in FIG. 2, the anode 10 is suspended from the opening at the upper end of the cleaning tank 3.

陽極10は、前記放電部分12aが水平面に沿う平面上に位置するように配置され、具体的には、前記放電部分12aを有する陽極体12と、該陽極体12を支持する支持体13とを備えて構成される。また、前記陽極10は、図3(A)にも示されるような部材であり、陽極体12を複数(例えば、4〜10個)有する。陽極体12としては、円形状の平面部分を有する円盤状金属(直径36mm)が用いられる。なお、陽極体12は、二つ一組で設けられる。また、陽極体12は、図3(b)に示すように、前記放電部分12aを除き、電解洗浄液中に浸漬される部分は外周を樹脂等の絶縁体12bによって被覆される。   The anode 10 is disposed so that the discharge portion 12a is positioned on a plane along a horizontal plane. Specifically, the anode 10 includes the anode body 12 having the discharge portion 12a and a support body 13 that supports the anode body 12. It is prepared for. The anode 10 is a member as shown in FIG. 3A, and has a plurality (for example, 4 to 10) of anode bodies 12. As the anode body 12, a disk-shaped metal (diameter 36 mm) having a circular plane portion is used. The anode bodies 12 are provided in pairs. Further, as shown in FIG. 3B, the anode body 12 is covered with an insulator 12b such as a resin at the outer periphery of the portion immersed in the electrolytic cleaning liquid except for the discharge portion 12a.

前記陽極体12は、支持体13に対する高さ位置を調整可能に構成され、任意の高さ方向位置で固定される。また、陽極体12は、金属の放電部分12aと洗浄対象物Mの上端面との間隔が20〜50mmとなるように配置され、特に、30mmが好ましい。このようにすると、洗浄対象物Mに焼けや変色等の損傷を発生されることなく、好適に洗浄を行うことができる。   The anode body 12 is configured such that the height position relative to the support body 13 can be adjusted, and is fixed at an arbitrary height direction position. Moreover, the anode body 12 is arrange | positioned so that the space | interval of the metal discharge part 12a and the upper end surface of the cleaning target M may be 20-50 mm, and 30 mm is especially preferable. If it does in this way, it can wash suitably, without generating damage, such as a burn and discoloration, to washing object M.

なお、前記陽極10(即ち、陽極体12)は、Feを用いて形成される。Feは、安価なため、電解洗浄装置1のコストダウンを図ることができる。ただし、電解洗浄液中に金属イオンが蓄積すると、酸化物などに変化して洗浄対象物Mに吸着する可能性が高まるため、これを防止する観点からは、陽極10(即ち、陽極体12)は、Pt,Pd,Ir,Ru等のイオン化傾向が小さい白金族金属、若しくはこれらの合金を用いて形成することが好ましい。さらに、陽極体12は、Tiからなる陽極本体をPt,Pd,Ir,Ru若しくはこれらの合金によって被覆して形成したものであってもよい。このようにすれば、高価な白金族金属の使用量を少なくすることができるため、経済的である。   The anode 10 (that is, the anode body 12) is formed using Fe. Since Fe is inexpensive, the cost of the electrolytic cleaning apparatus 1 can be reduced. However, since accumulation of metal ions in the electrolytic cleaning liquid increases the possibility of adsorption to the cleaning object M by changing to oxides or the like, from the viewpoint of preventing this, the anode 10 (that is, the anode body 12) is , Pt, Pd, Ir, Ru, or the like, or a platinum group metal having a low ionization tendency, or an alloy thereof is preferably used. Furthermore, the anode body 12 may be formed by covering an anode body made of Ti with Pt, Pd, Ir, Ru, or an alloy thereof. In this way, the amount of expensive platinum group metal used can be reduced, which is economical.

前記陰極20は、図2及び図4、図5に示すように、洗浄対象物と電気的に接続した状態で該洗浄対象物Mを支持する支持部材21と、該支持部材21を吊り下げる吊下部材22とを備えて構成される。また、前記支持部材21は、洗浄対象物Mと接触するように構成される金属の導電部分21aを有する。さらに、前記支持部材21は、該支持部材21の両面間を連通する空間部23を有する。このようにすれば、電解洗浄液が前記支持部材21に形成された空間部23を流通することができるため、支持部材21と洗浄対象物Mの隙間に消耗した電解洗浄液が滞留して電解洗浄液の分解成分が洗浄対象物Mに焼き付くのを好適に防止することができる。   As shown in FIGS. 2, 4, and 5, the cathode 20 includes a support member 21 that supports the cleaning object M in a state of being electrically connected to the cleaning object, and a suspension that suspends the support member 21. The lower member 22 is provided. The support member 21 has a metal conductive portion 21 a configured to come into contact with the cleaning object M. Further, the support member 21 has a space 23 that communicates between both surfaces of the support member 21. In this way, since the electrolytic cleaning liquid can flow through the space portion 23 formed in the support member 21, the consumed electrolytic cleaning liquid stays in the gap between the support member 21 and the cleaning object M, and the electrolytic cleaning liquid It is possible to suitably prevent the decomposition component from being seized on the cleaning object M.

より具体的には、支持部材21は、図4に示すように、複数の棒状体24と、該複数の棒状体24を取り囲む枠体25とを備えて構成される。前記複数の棒状体24は、間隔を空けて平行に配置される。ただし、陰極としては、上述のものに限定されず、ステンレス等の金属製のトレイやかごとして設けられるものであってもよい。なお、支持部材21は、開口上端部(具体的には、枠体25の上端部)を樹脂等の絶縁体21bによって縁取りされている。また、吊下部材22は、支持部材21との接続部分22a及び電源4との接続部分22bを除き、樹脂等の絶縁体22cによって被覆されている。   More specifically, as shown in FIG. 4, the support member 21 includes a plurality of rod bodies 24 and a frame body 25 that surrounds the plurality of rod bodies 24. The plurality of rod-like bodies 24 are arranged in parallel at intervals. However, the cathode is not limited to those described above, and may be provided as a tray or basket made of metal such as stainless steel. The support member 21 has an opening upper end portion (specifically, an upper end portion of the frame body 25) bordered by an insulator 21b such as a resin. The suspension member 22 is covered with an insulator 22c such as a resin except for the connection portion 22a to the support member 21 and the connection portion 22b to the power source 4.

また、陰極20は、特に平板状の洗浄対象物Mを保持するのに適しており、具体的には、図5に示すような前記洗浄対象物Mを固定するための固定部材30が備えられる。該固定部材30は、前記支持部材21に着脱可能に取り付けられる取付部31と、前記洗浄対象物Mを固定する固定部32とを備え、該固定部32が洗浄対象物Mを前記支持部材21との間に挟み込むように構成される。   Further, the cathode 20 is particularly suitable for holding a flat object to be cleaned M, and specifically includes a fixing member 30 for fixing the object to be cleaned M as shown in FIG. . The fixing member 30 includes an attachment portion 31 that is detachably attached to the support member 21 and a fixing portion 32 that fixes the cleaning object M. The fixing portion 32 attaches the cleaning object M to the support member 21. It is comprised so that it may be pinched | interposed between.

前記取付部31は、前記支持部材21の下面に当接する当接部33a及び外周面に螺子部が形成され前記支持部材21の空間部23に挿通される挿通部33bを有する下側部材33と、下側部材33の挿通部33bが挿通される挿通孔を有し、前記支持部材21の上面に当接する上側部材34と、前記下側部材33及び上側部材34が前記支持部材21を挟み付けた状態で固定するためのナット35とを備える。また、前記固定部32は、前記下側部材33の挿通部33bが挿通される挿通孔を有し、挿通部33bに挿通された状態でナット36によって取付部31側に固定される。   The attachment portion 31 includes a contact portion 33 a that contacts the lower surface of the support member 21, and a lower member 33 that includes a screw portion formed on the outer peripheral surface thereof and an insertion portion 33 b that is inserted into the space portion 23 of the support member 21. The upper member 34 has an insertion hole through which the insertion portion 33b of the lower member 33 is inserted, and is in contact with the upper surface of the support member 21, and the lower member 33 and the upper member 34 sandwich the support member 21. And a nut 35 for fixing in a closed state. The fixing portion 32 has an insertion hole through which the insertion portion 33b of the lower member 33 is inserted, and is fixed to the attachment portion 31 side by a nut 36 while being inserted into the insertion portion 33b.

前記電解洗浄装置1には、電解洗浄以外にも前記電解洗浄液を超音波振動させて洗浄対象物の超音波洗浄を行うための超音波発生器(図示しない)が備えられている。該超音波発生器は、前記洗浄槽3の下部に設けられる。超音波洗浄は、電解洗浄と同時に又は交互に行うことができるが、電解洗浄と同時に行われるのが好ましい。   In addition to the electrolytic cleaning, the electrolytic cleaning apparatus 1 includes an ultrasonic generator (not shown) for ultrasonically cleaning the object to be cleaned by ultrasonically vibrating the electrolytic cleaning liquid. The ultrasonic generator is provided in the lower part of the cleaning tank 3. The ultrasonic cleaning can be performed simultaneously with the electrolytic cleaning or alternately, but is preferably performed simultaneously with the electrolytic cleaning.

このようにすれば、電解洗浄液が超音波振動することにより洗浄対象物Mに付着した汚れの剥離を促進することができる。具体的には、超音波振動によってキャビテーションが発生し、これによって汚れの剥離が促進されるとともに、電解反応が活性化される。従って、陽極体12と対面していない箇所や、凹んだ部分に対しても洗浄効果を高く発揮することができる。   In this way, it is possible to promote the peeling of dirt adhered to the cleaning object M by ultrasonic vibration of the electrolytic cleaning liquid. Specifically, cavitation is generated by ultrasonic vibration, which promotes peeling of dirt and activates the electrolytic reaction. Therefore, a high cleaning effect can be exerted even on a portion not facing the anode body 12 or a recessed portion.

また、前記電解洗浄装置1は、前記電解洗浄液を加熱する加熱装置(図示しない)を備える構成が好ましい。なお、電解洗浄を行う液温は、20〜70℃が好ましく、この場合には、洗浄対象物Mが焼けや変色を生じることなく好適に洗浄を実施することができる。さらに、液温が50〜60℃の場合には、金属酸化皮膜、錆、樹脂付着物、ガス焼けなどの比較的結合の強い金型汚れに対しても、洗浄対象物Mに損傷を与えることなく短時間で最も効率よく洗浄することができる。   Further, the electrolytic cleaning apparatus 1 preferably includes a heating device (not shown) for heating the electrolytic cleaning liquid. In addition, as for the liquid temperature which performs electrolytic cleaning, 20-70 degreeC is preferable, In this case, it can wash | clean suitably, without the washing | cleaning target object M producing a burn or discoloration. Furthermore, when the liquid temperature is 50 to 60 ° C., the object to be cleaned M is also damaged by mold stains having relatively strong bonds such as metal oxide film, rust, resin deposits, and gas burn. And can be cleaned most efficiently in a short time.

また、前記電解洗浄装置1は、電解洗浄液を洗浄槽3から排出し、夾雑物を除去し、再度洗浄槽3内に投入する循環機構(図示しない)を備える。ここで、循環機構について具体的に説明する。前記洗浄槽3は、底部分から電解洗浄液が供給されるように構成されており、洗浄槽3が満杯となると、所定の高さ位置に設けられた排出部から電解洗浄液がオーバーフローするようになっている。電解洗浄の際には、洗浄対象物Mから剥離した付着物などの夾雑物や泡が発生するものであるが、電解洗浄液をオーバーフローさせることで、これら夾雑物や泡も電解洗浄液とともに洗浄槽3から排出される。排出された電解洗浄液は、例えばフィルターによる濾過等の周知の方法によって浄化処理され、浄化された電解洗浄液は再度前記洗浄槽3に供給される。   Further, the electrolytic cleaning apparatus 1 includes a circulation mechanism (not shown) that discharges the electrolytic cleaning liquid from the cleaning tank 3, removes impurities, and throws the electrolytic cleaning liquid into the cleaning tank 3 again. Here, the circulation mechanism will be specifically described. The cleaning tank 3 is configured such that the electrolytic cleaning liquid is supplied from the bottom, and when the cleaning tank 3 is full, the electrolytic cleaning liquid overflows from a discharge portion provided at a predetermined height. Yes. When electrolytic cleaning is performed, foreign substances such as deposits and bubbles peeled off from the cleaning object M are generated. By overflowing the electrolytic cleaning liquid, these foreign substances and bubbles are also washed with the electrolytic cleaning liquid in the cleaning tank 3. Discharged from. The discharged electrolytic cleaning liquid is purified by a known method such as filtration using a filter, and the cleaned electrolytic cleaning liquid is supplied to the cleaning tank 3 again.

なお、前記電解洗浄装置1によって洗浄される洗浄対象物Mは、例えば、フラットパネルディスプレイの導光板やシート状光学レンズ、携帯電話の超小型精密なカメラレンズ、車両用リフレクター等を射出成型する金型である。   The cleaning object M to be cleaned by the electrolytic cleaning apparatus 1 is, for example, a gold for injection molding a light guide plate or a sheet-like optical lens of a flat panel display, an ultra-small and precise camera lens of a mobile phone, a vehicle reflector, or the like. It is a type.

また、電解洗浄液としては、電解質と、キレート剤と、界面活性剤とを含有するものが用いられる。電解質としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有するものが好ましい。キレート剤としては、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤を含有するもの、及び、グルコン酸塩が好ましい。界面活性剤としては、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有するものが好ましく、特に、両性界面活性剤が好ましい。また、電解洗浄液は、pHが8〜14のアルカリ性水溶液であり、pH値が高いほど洗浄効果が高くなる。また、このpH範囲で洗浄を行えば、Feや鋼、ステンレス鋼、Ni、Ti、希金属類を材質とする洗浄対象物の腐食は無視できる。   In addition, as the electrolytic cleaning liquid, one containing an electrolyte, a chelating agent, and a surfactant is used. The electrolyte preferably contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium citrate. As the chelating agent, those containing a chelating agent that coordinates a metal ion with a carboxylate group (COO-) and a nitrogen (N) atom, and a gluconate are preferable. As the surfactant, those containing at least one of a neutral surfactant, an amphoteric surfactant and an anionic surfactant are preferable, and an amphoteric surfactant is particularly preferable. The electrolytic cleaning liquid is an alkaline aqueous solution having a pH of 8 to 14, and the higher the pH value, the higher the cleaning effect. Further, if cleaning is performed in this pH range, corrosion of the cleaning object made of Fe, steel, stainless steel, Ni, Ti, or rare metals can be ignored.

上記電解洗浄液において、キレート剤は、電解洗浄液中に溶解した金属イオンを配位して封鎖するため、金属イオンに由来する洗浄対象物の変色を好適に防止することができる。また、界面活性剤は、電解洗浄液の表面張力を小さくするため、汚れの隙間に対する浸透性を高めて洗浄効果を高めることができる。また、界面活性剤によって電解洗浄液の液面に泡が発生するため、電解洗浄によって発生した気体が液面で弾けるときに発生するアルカリ性のミストが飛散するのを好適に防止することができる。   In the above electrolytic cleaning solution, the chelating agent coordinates and blocks the metal ions dissolved in the electrolytic cleaning solution, so that it is possible to suitably prevent discoloration of the cleaning object derived from the metal ions. In addition, since the surfactant reduces the surface tension of the electrolytic cleaning liquid, it can increase the permeability with respect to the gaps in the dirt and enhance the cleaning effect. Moreover, since bubbles are generated on the surface of the electrolytic cleaning liquid by the surfactant, it is possible to suitably prevent the alkaline mist generated when the gas generated by the electrolytic cleaning is repelled on the liquid surface.

さらに、長時間に亘って電解洗浄を行うと、電解洗浄液の蒸発や水の電気分解によって液量が減少するため、電解洗浄開始時の液量を維持すべく、補充液を適宜補充する。補充液は、水であってもよいが、電解質とキレート剤とグルコン酸塩とを含有するものが好ましく、界面活性剤を含有するものがさらに好ましい。なお、上述の電解洗浄液と同様に、電解質としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有するものが好ましい。キレート剤として、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤を含有するものが好ましい。界面活性剤としては、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有するものが好ましく、特に、両性界面活性剤が好ましい。   Furthermore, if the electrolytic cleaning is performed for a long time, the amount of the liquid decreases due to the evaporation of the electrolytic cleaning liquid or the electrolysis of water. Therefore, the replenisher is appropriately replenished in order to maintain the liquid amount at the start of the electrolytic cleaning. The replenisher may be water, but preferably contains an electrolyte, a chelating agent, and a gluconate, and more preferably contains a surfactant. As with the above-described electrolytic cleaning solution, the electrolyte contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, and sodium citrate. preferable. The chelating agent preferably contains a chelating agent that coordinates a metal ion with a carboxylate group (COO-) and a nitrogen (N) atom. As the surfactant, those containing at least one of a neutral surfactant, an amphoteric surfactant and an anionic surfactant are preferable, and an amphoteric surfactant is particularly preferable.

次に、本実施形態に係る電解洗浄装置1及び電解洗浄方法の特徴的部分である電圧(通電量)の制御について説明する。   Next, control of voltage (energization amount), which is a characteristic part of the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present embodiment, will be described.

前記電解洗浄装置1は、図6に示すように、前記陽極10と前記陰極20との通電量が時間的に変化するように制御可能に構成される。具体的には、前記通電量は、前記陽極10と前記陰極部20間に印加する電圧によって制御される。
As shown in FIG. 6, the electrolytic cleaning apparatus 1 is configured to be controllable so that the energization amount between the anode 10 and the cathode 20 changes with time. Specifically, the energization amount is controlled by a voltage applied between the anode 10 and the cathode portion 20.

また、前記電解洗浄装置1は、大きさの異なる複数の電圧を前記陽極10と前記陰極20間に印加可能に構成され、これら複数の電圧の間で陽極10と陰極20間に印加する電圧が交互に切り替えられる。また、前記電解洗浄装置1は、前記陽極10と前記陰極20間に印加する電圧が所定時間毎に切り替えられる。   The electrolytic cleaning apparatus 1 is configured to be able to apply a plurality of voltages of different sizes between the anode 10 and the cathode 20, and a voltage applied between the anode 10 and the cathode 20 is between these voltages. It can be switched alternately. In the electrolytic cleaning apparatus 1, the voltage applied between the anode 10 and the cathode 20 is switched every predetermined time.

なお、印加される電圧が約2V(いわゆる過電圧)を下回ると電流が流れなくなり、電解ガスを発生させることができない状態となるため、時間変動する印加電圧の最大値は、少なくとも過電圧以上に設定される。また、印加電圧が大きくなると通電過多となり、電解洗浄液の寿命が急激に短くなる上に、洗浄対象物Mに焼けや変色等の損傷が発生しやすくなる。従って、陽極10と陰極20間に印加される電圧は、少なくとも12Vを超えないように設定されるのが好ましく、10Vを超えないことがより好ましい。   Note that when the applied voltage falls below about 2 V (so-called overvoltage), the current stops flowing and the electrolytic gas cannot be generated. Therefore, the maximum value of the applied voltage that varies over time is set to at least the overvoltage or more. The Further, when the applied voltage is increased, the energization is excessive, the life of the electrolytic cleaning solution is rapidly shortened, and the cleaning target M is easily damaged or burned. Therefore, the voltage applied between the anode 10 and the cathode 20 is preferably set so as not to exceed at least 12V, and more preferably does not exceed 10V.

ところで、電解洗浄液は、一般に高価である上にランニングコストに占める割合が高いため、寿命が短いとランニングコストが高くなってしまうという問題もある。また、使用済みの電解洗浄液を頻繁に廃棄しなければないことは、廃液量が増えることによって環境負荷を増大させるため好ましくない。さらに、交換頻度が高いと、電解洗浄全体の作業効率が低下するという問題がある。従って、電解洗浄液の寿命を長く維持することができることが好ましい。このため、前記電解洗浄装置1は、前記陽陰極間に印加される電圧の時間平均値が3.25V以上6.25V以下となるように設定される。   By the way, since the electrolytic cleaning liquid is generally expensive and has a high ratio to the running cost, there is a problem that the running cost becomes high if the life is short. Also, it is not preferable to frequently discard the used electrolytic cleaning liquid because the environmental load is increased by increasing the amount of waste liquid. Furthermore, if the replacement frequency is high, there is a problem that the working efficiency of the entire electrolytic cleaning is lowered. Therefore, it is preferable that the lifetime of the electrolytic cleaning liquid can be maintained long. For this reason, the electrolytic cleaning apparatus 1 is set such that the time average value of the voltage applied between the positive and negative electrodes is 3.25V or more and 6.25V or less.

以下、試験例を挙げて本発明についてさらに詳細に説明する。ただし、本発明は、これらの試験例のみの記載に限定されるものではなく、本発明の目的の範囲内において適宜変更することができる。   Hereinafter, the present invention will be described in more detail with reference to test examples. However, the present invention is not limited to the description of only these test examples, and can be appropriately changed within the scope of the object of the present invention.

<試験例1>
試験例1では、図7に示すような実験装置を使用し、Fe板41の表面の4箇所に円形状(φ6mm)の樹脂Rを付着させた試料Sを電解洗浄する試験を行った。なお、洗浄力評価に用いる試料Sは、樹脂Rの付着状態(大きさや形状)によって剥離しやすさに差が生じるため、正確な洗浄力評価を行うために、均質な試料を次の方法によって作製した。まず、Fe板(長さ100mm、幅25mm、厚さ0.25mm)を、5重量%水酸化ナトリウム水溶液中で数秒間陰極電解して脱脂洗浄し、流水で水洗・乾燥した。次に、直径6mmの穴が10mm間隔で4箇所に設けられたマスキングテープをFe板に貼り付け、その上からアクリルーシリコン樹脂(アサヒペン株式会社製の油性スーパーコート)を塗布した後、マスキングテープを剥がし、常温・常圧下で14時間以上乾燥させた。
<Test Example 1>
In Test Example 1, using an experimental apparatus as shown in FIG. 7, a test was performed in which a sample S in which a circular (φ6 mm) resin R was adhered to four locations on the surface of the Fe plate 41 was electrolytically cleaned. In addition, since the sample S used for the detergency evaluation has a difference in ease of peeling depending on the adhesion state (size and shape) of the resin R, in order to accurately evaluate the detergency, a homogeneous sample is obtained by the following method. Produced. First, an Fe plate (length 100 mm, width 25 mm, thickness 0.25 mm) was degreased and washed by cathodic electrolysis in a 5 wt% aqueous sodium hydroxide solution for several seconds, washed with water and dried. Next, a masking tape having 6 mm diameter holes provided at four intervals at intervals of 10 mm is applied to the Fe plate, and an acrylic silicon resin (an oily supercoat manufactured by Asahi Pen Co., Ltd.) is applied on the masking tape. Was peeled off and dried at room temperature and normal pressure for 14 hours or more.

そして、図7に示すように、上記試料S(樹脂を付着させたFe板41)を陰極とし、何も付着していないFe板42を陽極とし、これら陽極及び陰極を50mm離して対面させた状態で、100mLの電解洗浄液を収容する100mLビーカー内に配置した。   Then, as shown in FIG. 7, the sample S (Fe plate 41 with the resin attached) was used as a cathode, the Fe plate 42 with nothing attached was used as an anode, and the anode and the cathode were separated from each other by 50 mm. In a state, it was placed in a 100 mL beaker containing 100 mL of electrolytic cleaning solution.

電解洗浄液としては、4.5重量%水酸化ナトリウム、5重量%エチレンジアミン四酢酸・四ナトリウム、2%グルコン酸ナトリウム、及び微量(例えば、1重量%以下)の両性界面活性剤を含むアルカリ性水溶液からなる電解洗浄液(pH13.6)を用いた。   As an electrolytic cleaning solution, an alkaline aqueous solution containing 4.5 wt% sodium hydroxide, 5 wt% ethylenediaminetetraacetic acid / tetrasodium, 2% sodium gluconate, and a trace amount (for example, 1 wt% or less) of an amphoteric surfactant is used. An electrolytic cleaning solution (pH 13.6) was used.

そして、前記陽極としてのFe板42に印加する電圧として、第1の電圧E1と第2の電圧E2とを設定し、この二つの電圧値を所定の時間T内に所定の割合で切り替えて印加した。第2の電圧E2での印加時間は、前記所定の時間(即ち、周期T)に対してX%とした。(従って、第1の電圧E1での印加時間は周期Tに対して100%−X%となる。)かかる印加電圧の時間平均は、Ea=E1×(100%−X%)+E2×X%で求めることができる。なお、液温は25〜35℃に維持した。   Then, a first voltage E1 and a second voltage E2 are set as voltages to be applied to the Fe plate 42 serving as the anode, and these two voltage values are switched and applied at a predetermined ratio within a predetermined time T. did. The application time at the second voltage E2 was X% with respect to the predetermined time (that is, the period T). (Therefore, the application time at the first voltage E1 is 100% −X% with respect to the period T.) The time average of the applied voltage is Ea = E1 × (100% −X%) + E2 × X% Can be obtained. The liquid temperature was maintained at 25 to 35 ° C.

そして、前記Fe板41に付着した樹脂Rが剥離したことが確認される時間を測定した。樹脂Rの剥離時間は、4つの樹脂Rが剥離した時間の平均とした。具体的には、表1に示すように、第1の電圧E1、第2の電圧E2、周期Tの設定を変更して、試験例1a〜1qとした。これらを表1に示す。   And the time when it was confirmed that the resin R adhering to the Fe plate 41 was peeled was measured. The peeling time of the resin R was the average of the time when the four resins R were peeled. Specifically, as shown in Table 1, the settings of the first voltage E1, the second voltage E2, and the period T were changed to be test examples 1a to 1q. These are shown in Table 1.

<比較例1>
比較例1は、陽極としてのFe板42に印加する電圧に関するものを除いて、各種の条件は基本的に上記試験例1と同様である。比較例1では、印加する電圧を変化させることなく、一定の電圧を常時印加した。そして、前記Fe板41に付着した樹脂Rが剥離したことが確認される時間を測定した。具体的には、印加する電圧の設定を変更して、比較例1a〜1dとした。これらを表1に示す。
<Comparative Example 1>
Comparative Example 1 is basically the same as Test Example 1 except for the voltage applied to the Fe plate 42 as the anode. In Comparative Example 1, a constant voltage was always applied without changing the applied voltage. And the time when it was confirmed that the resin R adhering to the Fe plate 41 was peeled was measured. Specifically, the setting of the voltage to be applied was changed to be Comparative Examples 1a to 1d. These are shown in Table 1.

Figure 2009242931
Figure 2009242931

上記測定の結果、電解洗浄力は、試験例1の方が比較例1に比べて高いことが確認された。特に、試験例1bの印加電圧の時間平均と比較例1bの印加電圧とは同じ値(6V)である(即ち、通電量は同じ)にもかかわらず、試験例1bの方が樹脂の剥離時間が短い(即ち、洗浄効果が高い)ことが確認された。   As a result of the above measurement, it was confirmed that the electrolytic cleaning power of Test Example 1 was higher than that of Comparative Example 1. In particular, although the time average of the applied voltage of Test Example 1b and the applied voltage of Comparative Example 1b are the same value (6V) (that is, the energization amount is the same), Test Example 1b has the resin peeling time. Was short (that is, the cleaning effect was high).

<試験例2>
試験例2は、電解洗浄液に関するものを除いて、各種の条件は基本的に上記試験例1と同様である。試験例2では、電解洗浄液に含まれる電解質として、10重量%炭酸カリウムを用いた。電解洗浄液のpHは、12.3であった。具体的には、表2に示すように、第1の電圧E1、第2の電圧E2、周期Tの設定を変更して、試験例2a〜2hとした。
<Test Example 2>
Test Example 2 is basically the same as Test Example 1 except for those related to the electrolytic cleaning solution. In Test Example 2, 10 wt% potassium carbonate was used as the electrolyte contained in the electrolytic cleaning solution. The pH of the electrolytic cleaning solution was 12.3. Specifically, as shown in Table 2, the settings of the first voltage E1, the second voltage E2, and the cycle T were changed to be Test Examples 2a to 2h.

<比較例2>
比較例2は、陽極としてのFe板42に印加する電圧に関するものを除いて、各種の条件は基本的に上記試験例1と同様であり、比較例1では、印加する電圧を変化させることなく、一定の電圧を常時印加した。そして、これら試験例2及び比較例2において、前記Fe板41に付着した樹脂が剥離したことが確認される時間を測定した。具体的には、印加する電圧の設定を変更して、比較例1a〜1dとした。これらを表2に示す。
<Comparative Example 2>
In Comparative Example 2, various conditions are basically the same as in Test Example 1 except for the voltage applied to the Fe plate 42 as the anode. In Comparative Example 1, the applied voltage is not changed. A constant voltage was always applied. And in these Test Example 2 and Comparative Example 2, the time when it was confirmed that the resin adhered to the Fe plate 41 was peeled was measured. Specifically, the setting of the voltage to be applied was changed to be Comparative Examples 1a to 1d. These are shown in Table 2.

Figure 2009242931
Figure 2009242931

上記測定の結果、電解洗浄力は、試験例2の方が比較例2に比べて高いことが確認された。特に、試験例2b及び試験例2dの印加電圧の時間平均と比較例2bの印加電圧とは同じ値(6V)である(即ち、通電量は同じ)にもかかわらず、試験例2b及び試験例2dの方が樹脂の剥離時間が短い(即ち、洗浄効果が高い)ことが確認された。   As a result of the above measurement, it was confirmed that the electrolytic cleaning power was higher in Test Example 2 than in Comparative Example 2. In particular, although the time average of the applied voltages of Test Example 2b and Test Example 2d and the applied voltage of Comparative Example 2b are the same value (6 V) (that is, the energization amount is the same), Test Example 2b and Test Example It was confirmed that 2d had a shorter resin peeling time (that is, a higher cleaning effect).

<試験例3>
試験例3は、電解洗浄液に関するものを除いて、各種の条件は基本的に上記試験例1aと同様である。試験例3では、電解洗浄液に含まれる電解質として、表3に示すようなものを用いた。具体的には、表3に示すように、電解洗浄液に含まれる電解質を変更するとともに、第1の電圧E1、第2の電圧E2、周期Tの設定を変更して、試験例3a〜3jとした。なお、上記試験例3eと上記試験例2a、及び、上記試験例3jと上記試験例2bとは、同一の実験条件である。
<Test Example 3>
Test Example 3 is basically the same as Test Example 1a except for those relating to the electrolytic cleaning solution. In Test Example 3, the electrolyte shown in Table 3 was used as the electrolyte contained in the electrolytic cleaning solution. Specifically, as shown in Table 3, while changing the electrolyte contained in the electrolytic cleaning solution, the settings of the first voltage E1, the second voltage E2, and the period T were changed, and Test Examples 3a to 3j did. The test example 3e and the test example 2a, and the test example 3j and the test example 2b have the same experimental conditions.

<比較例3>
比較例3は、電解洗浄液に関するものを除いて、各種の条件は基本的に上記比較例1と同様であり、比較例1では、印加する電圧を変化させることなく、一定の電圧を常時印加した。なお、上記比較例3eと上記比較例2aとは、同一の実験条件である。そして、これら試験例2及び比較例2において、前記Fe板41に付着した樹脂が剥離したことが確認される時間を測定した。具体的には、表3に示すように、電解洗浄液に含まれる電解質を変更して、比較例3a〜3eとした。これらを表3に示す。
<Comparative Example 3>
Comparative Example 3 was basically the same as Comparative Example 1 except for those related to the electrolytic cleaning solution. In Comparative Example 1, a constant voltage was constantly applied without changing the applied voltage. . The comparative example 3e and the comparative example 2a have the same experimental conditions. And in these Test Example 2 and Comparative Example 2, the time when it was confirmed that the resin adhered to the Fe plate 41 was peeled was measured. Specifically, as shown in Table 3, the electrolytes contained in the electrolytic cleaning solution were changed to Comparative Examples 3a to 3e. These are shown in Table 3.

Figure 2009242931
Figure 2009242931

上記測定の結果、pHが高いほど、電解洗浄力も高くなる傾向が確認された。また、試験例3a〜3eと試験例3f〜3jとを比較した場合、試験例3f〜3jの方が印加電圧の平均値が6Vと小さい(即ち、通電量が少ない)にもかかわらず、印加電圧の平均値が6.25Vである試験例3a〜3eよりも剥離時間が短い(即ち、洗浄効果が高い)ことが確認された。   As a result of the above measurement, it was confirmed that the higher the pH, the higher the electrolytic cleaning power. In addition, when the test examples 3a to 3e and the test examples 3f to 3j are compared, the test examples 3f to 3j are applied even though the average value of the applied voltage is smaller than 6V (that is, the energization amount is small). It was confirmed that the peeling time was shorter (that is, the cleaning effect was higher) than in Test Examples 3a to 3e where the average value of the voltage was 6.25V.

<試験例4>
試験例4では、図8に示す電解洗浄装置50を使用した。陽極51は、円盤状の陽極体(直径36mm)によって構成され、陰極52は、メッシュ構造を有するステンレス製のかごを用いて構成される。洗浄対象物Mとしては、金型や金属部品の素材に利用される鋼材(幅30mm、長さ30mm、高さ10mm)を用いた。そして、洗浄対象物Mを陰極52に載置し、陽極51の放電部分と前記洗浄対象物Mの上端面との間隔が30mmとなるように対面させた状態で、1Lの電解洗浄液を収容する1Lビーカー内に配置した。
<Test Example 4>
In Test Example 4, the electrolytic cleaning apparatus 50 shown in FIG. 8 was used. The anode 51 is composed of a disc-shaped anode body (diameter 36 mm), and the cathode 52 is composed of a stainless steel basket having a mesh structure. As the cleaning object M, a steel material (width 30 mm, length 30 mm, height 10 mm) used as a material for a mold or a metal part was used. Then, the object to be cleaned M is placed on the cathode 52, and 1 L of electrolytic cleaning liquid is accommodated in a state where the discharge portion of the anode 51 and the upper end surface of the object to be cleaned M face each other so as to be 30 mm. Placed in a 1 L beaker.

電解洗浄液としては、4.5重量%水酸化ナトリウム、5重量%エチレンジアミン四酢酸・四ナトリウム、2%グルコン酸ナトリウム、及び微量(例えば、1重量%以下)の両性界面活性剤を含むアルカリ性水溶液からなる電解洗浄液(pH13.6)を用いた。   As an electrolytic cleaning solution, an alkaline aqueous solution containing 4.5 wt% sodium hydroxide, 5 wt% ethylenediaminetetraacetic acid / tetrasodium, 2% sodium gluconate, and a trace amount (for example, 1 wt% or less) of an amphoteric surfactant is used. An electrolytic cleaning solution (pH 13.6) was used.

そして、前記陽極に対して、第1の電圧E1と第2の電圧E2とを設定し、この二つの電圧値を所定の時間T内に所定の割合で切り替えて印加した。具体的には、第2の電圧E2での印加時間を前記所定の時間(即ち、周期T)に対してX%とした。(第1の電圧E1での印加時間は周期Tに対して100%−X%となる。)かかる印加電圧の時間平均は、Ea=E1×(100%−X%)+E2×X%で求めることができる。なお、液温は50〜60℃に維持した。   Then, a first voltage E1 and a second voltage E2 were set for the anode, and these two voltage values were switched and applied at a predetermined ratio within a predetermined time T. Specifically, the application time at the second voltage E2 is set to X% with respect to the predetermined time (that is, the period T). (The application time at the first voltage E1 is 100% −X% with respect to the period T.) The time average of the applied voltage is obtained by Ea = E1 × (100% −X%) + E2 × X%. be able to. The liquid temperature was maintained at 50-60 ° C.

そして、1時間ごとに、洗浄対象物Mに損傷(具体的には、焼けや変色)が発生しているか否かの検証を行い、洗浄対象物Mに損傷が確認されるまでの時間を測定した。検証としては、洗浄対象物Mを電解洗浄装置50から取り出し、流水で水洗して電解洗浄液を取り除いた後、アルゴンガスを吹き付けて乾燥させ、照明等のある明るい環境下で肉眼及び光学顕微鏡を用いて損傷(具体的には、焼けや変色)の有無を調べる作業を行った。具体的には、表1に示すように、第1の電圧E1、第2の電圧E2、周期Tの設定を変更して、試験例4a〜4pとした。これらを表4に示す。   Then, every hour, it is verified whether or not the cleaning object M is damaged (specifically, burnt or discolored), and the time until the cleaning object M is confirmed to be damaged is measured. did. For verification, the object to be cleaned M is taken out from the electrolytic cleaning apparatus 50, washed with running water to remove the electrolytic cleaning liquid, then blown and dried with argon gas, and using the naked eye and an optical microscope in a bright environment with illumination or the like. Work to check for damage (specifically, burns and discoloration). Specifically, as shown in Table 1, the settings of the first voltage E1, the second voltage E2, and the period T were changed to be Test Examples 4a to 4p. These are shown in Table 4.

<比較例4>
比較例4は、陽極に印加する電圧に関するものを除いて、各種の条件は基本的に上記試験例1と同様である。比較例4では、印加する電圧を変化させることなく、一定の電圧を常時印加した。具体的には、印加する電圧の設定を変更して、比較例4a〜4eとした。これらを表4に示す。
<Comparative example 4>
Comparative Example 4 is basically the same as Test Example 1 except for the voltage applied to the anode. In Comparative Example 4, a constant voltage was always applied without changing the applied voltage. Specifically, the setting of the voltage to be applied was changed to be Comparative Examples 4a to 4e. These are shown in Table 4.

Figure 2009242931
Figure 2009242931

全ての試験例4a〜4pにおいて、最も寿命の短い比較例4dよりも寿命が長いことが確認された。また、上記測定の結果、印加電圧の時間平均が6.25V以下の場合、6.5Vより大きい場合に比べて寿命が長くなることが確認された。また、印加電圧の時間平均が3.75V以上の場合、3.5Vより小さい場合に比べて寿命が長くなることが確認された。従って、印加電圧の時間平均は、3.75V以上、6.25V以下に設定されると好適であることが確認された。   In all the test examples 4a to 4p, it was confirmed that the lifetime was longer than that of the comparative example 4d having the shortest lifetime. Moreover, as a result of the above measurement, it was confirmed that when the time average of the applied voltage was 6.25 V or less, the life was longer than when it was greater than 6.5 V. In addition, it was confirmed that the lifetime was longer when the time average of the applied voltage was 3.75 V or more than when it was less than 3.5 V. Therefore, it was confirmed that the time average of the applied voltage is preferably set to 3.75V or more and 6.25V or less.

<試験例5>
試験例5は、電解洗浄液に関するものを除いて、各種の条件は基本的に上記試験例4と同様である。試験例5では、電解洗浄液に含まれる電解質として、10重量%炭酸カリウムを用いた。電解洗浄液のpHは、12.3であった。また、比較例5は、陽極に印加する電圧に関するものを除いて、各種の条件は基本的に試験例5と同様であり、比較例5では、印加する電圧を変化させることなく、一定の電圧を常時印加した。そして、洗浄対象物Mに損傷が発生していることが確認されるまでの時間を測定した。これらを表5に示す。
<Test Example 5>
Test Example 5 is basically the same as Test Example 4 except for those related to the electrolytic cleaning solution. In Test Example 5, 10 wt% potassium carbonate was used as the electrolyte contained in the electrolytic cleaning solution. The pH of the electrolytic cleaning solution was 12.3. In Comparative Example 5, various conditions are basically the same as in Test Example 5 except for the voltage applied to the anode. In Comparative Example 5, a constant voltage is applied without changing the applied voltage. Was constantly applied. And the time until it was confirmed that the cleaning target M was damaged was measured. These are shown in Table 5.

Figure 2009242931
Figure 2009242931

<試験例6>
洗浄対象物Mとして、金型や金属部品に利用される鋼材(幅30mm、長さ30mm、高さ10mm)を用いた。また、測定に際しては、4つの洗浄対象物Mを用いた。
<Test Example 6>
As the cleaning object M, a steel material (width 30 mm, length 30 mm, height 10 mm) used for a mold or a metal part was used. In the measurement, four cleaning objects M were used.

試験例6では、図1に示す電解洗浄装置1を使用した。具体的には、陽極10は、円盤状の陽極体12(直径36mm)を6つ有する。そして、上記洗浄対象物Mを前記トレイ上に並べて電解洗浄装置にセットした。また、前記陽極は、金属の放電部分と前記洗浄対象物Mの上端面との間隔が30mmとなるように配置した。   In Test Example 6, the electrolytic cleaning apparatus 1 shown in FIG. 1 was used. Specifically, the anode 10 has six disc-shaped anode bodies 12 (diameter 36 mm). And the said washing | cleaning target object M was put side by side on the said tray, and was set to the electrolytic cleaning apparatus. The anode was arranged so that the distance between the metal discharge portion and the upper end surface of the cleaning object M was 30 mm.

電解洗浄液としては、4.5重量%水酸化ナトリウム、5重量%エチレンジアミン四酢酸・四ナトリウム、2%グルコン酸ナトリウム、及び微量(例えば、1重量%以下)の両性界面活性剤を含むアルカリ性水溶液からなる電解洗浄液(pH13.6)を用いた。なお、電解洗浄装置1の洗浄槽3は10Lの容量を有するものであり、この電解洗浄液を前記洗浄槽に9L投入した。   As an electrolytic cleaning solution, an alkaline aqueous solution containing 4.5 wt% sodium hydroxide, 5 wt% ethylenediaminetetraacetic acid / tetrasodium, 2% sodium gluconate, and a trace amount (for example, 1 wt% or less) of an amphoteric surfactant is used. An electrolytic cleaning solution (pH 13.6) was used. The cleaning tank 3 of the electrolytic cleaning apparatus 1 has a capacity of 10 L, and 9 L of this electrolytic cleaning liquid was charged into the cleaning tank.

なお、電解洗浄中に電解洗浄液が減少するため、補充液として水を適宜補充した。測定が終了するまでに補充した補充液の量は約1500mLであった。また、電解洗浄と同時に40kHzの超音波を照射した。なお、液温は45〜60℃に維持した。   Since the electrolytic cleaning solution decreased during the electrolytic cleaning, water was appropriately supplemented as a replenisher. The amount of replenisher replenished by the end of the measurement was about 1500 mL. Moreover, 40 kHz ultrasonic waves were irradiated simultaneously with the electrolytic cleaning. The liquid temperature was maintained at 45-60 ° C.

そして、1時間ごとに、洗浄対象物Mに損傷(具体的には、焼けや変色)が発生しているか否かの検証を行い、洗浄対象物Mに損傷が確認されるまでの時間を測定した。検証としては、洗浄対象物Mを電解洗浄装置から取り出し、流水で水洗して電解洗浄液を取り除いた後、アルゴンガスを吹き付けて乾燥させ、照明等のある明るい環境下で肉眼及び光学顕微鏡を用いて損傷(具体的には、焼けや変色)の有無を調べる作業を行った。この結果を表6に示す。   Then, every hour, it is verified whether or not the cleaning object M is damaged (specifically, burnt or discolored), and the time until the cleaning object M is confirmed to be damaged is measured. did. As a verification, the object to be cleaned M is taken out from the electrolytic cleaning apparatus, washed with running water to remove the electrolytic cleaning liquid, blown and dried with argon gas, and using the naked eye and an optical microscope in a bright environment with illumination. Work was done to check for damage (specifically, burns and discoloration). The results are shown in Table 6.

<比較例6>
比較例6は、陽極に印加する電圧に関するものを除いて、各種の条件は基本的に上記試験例2と同様である。比較例6では、陽極に印加する電圧を変化させることなく、5Vの電圧を常時印加した。測定が終了するまでに補充した補充液(水)の量は約1500mLであった。この結果を表6に示す。
<Comparative Example 6>
In Comparative Example 6, various conditions are basically the same as those in Test Example 2 except for the voltage applied to the anode. In Comparative Example 6, a voltage of 5 V was constantly applied without changing the voltage applied to the anode. The amount of replenisher (water) replenished by the end of the measurement was about 1500 mL. The results are shown in Table 6.

Figure 2009242931
Figure 2009242931

また、参考例として、次のような試験を行った。   Moreover, the following tests were conducted as reference examples.

<参考例1>
試験例4で用いたものと同様の鋼材及びステンレス鋼(幅25mm、長さ25mm、高さ2mm)を試料とし、酸性水溶液中に浸漬した際の影響を検証した。具体的には、100mLビーカー中に、2重量%アニリンを含む10重量%塩酸水溶液100mLを加え、温度を40℃に保ち、各試料の表面の変化を観察した。その結果、浸漬後約10分の段階において、鋼材及びステンレス鋼の両方の表面から水素ガスが発生していることが確認された。また、約60分浸漬した後に資料を取り出して肉眼及び光学顕微鏡によって観察すると、鋼材とステンレス鋼の両方が腐食して薄灰色に変色していることが確認された。
<Reference Example 1>
The same steel material and stainless steel (25 mm in width, 25 mm in length, 2 mm in height) as those used in Test Example 4 were used as samples, and the effects when immersed in an acidic aqueous solution were verified. Specifically, 100 mL of a 10 wt% hydrochloric acid aqueous solution containing 2 wt% aniline was added to a 100 mL beaker, the temperature was kept at 40 ° C., and changes in the surface of each sample were observed. As a result, it was confirmed that hydrogen gas was generated from the surfaces of both the steel material and the stainless steel at about 10 minutes after immersion. Further, when the material was taken out after being immersed for about 60 minutes and observed with the naked eye and an optical microscope, it was confirmed that both the steel material and the stainless steel were corroded and turned light gray.

<参考例2>
試験例4で用いたものと同様の電解洗浄装置50(図8参照)を準備し、試料として試験例4で用いたものと同様の試料に対して、5V一定の直流電圧を印加して電解洗浄を行なった。その結果、電解洗浄を開始して30分後に鋼材の表面が黒褐色に変色した。また、陰極として用いたステンレス製のかごの表面も黒褐色に変色した。
<Reference Example 2>
An electrolytic cleaning device 50 (see FIG. 8) similar to that used in Test Example 4 was prepared, and a constant DC voltage of 5 V was applied to the sample similar to that used in Test Example 4 as an example for electrolysis. Washing was performed. As a result, the surface of the steel material changed to blackish brown 30 minutes after the start of electrolytic cleaning. The surface of the stainless steel basket used as the cathode also turned black brown.

これらの結果から、酸性水溶液中で鋼材やステンレス鋼が腐食・溶解されにくいのは比較的短時間に限られることが分かった。また、該酸性水溶液と接触させるだけでステンレス鋼が徐々に腐食することから、洗浄装置の洗浄槽がステンレス製であると洗浄槽が徐々に腐食されるため取扱いが困難であることが分かった。   From these results, it was found that steel and stainless steel are hardly corroded and dissolved in an acidic aqueous solution for a relatively short time. Moreover, since stainless steel gradually corroded only by making it contact with this acidic aqueous solution, when the washing tank of the washing | cleaning apparatus was made from stainless steel, since the washing tank was gradually corroded, it turned out that handling is difficult.

以上のように、本実施形態に係る電解洗浄装置1及び電解洗浄方法によれば、洗浄効果を向上させることができる。従って、短い洗浄時間で電解洗浄を行うことができるため、長時間に亘って電解洗浄液を使用することが可能であるので、ランニングコストを低減でき、また、廃液の発生頻度を少なくして環境への負荷をも低減することができる。   As described above, according to the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present embodiment, the cleaning effect can be improved. Therefore, since the electrolytic cleaning can be performed in a short cleaning time, it is possible to use the electrolytic cleaning liquid for a long time, so that the running cost can be reduced, and the frequency of waste liquid generation is reduced and the environment is reduced. This can also reduce the load.

即ち、本実施形態に係る電解洗浄装置1及び電解洗浄方法によれば、陽極10及び陰極20間の通電量が常時一定である従来の電解洗浄装置及び電解洗浄方法の場合に比べて、洗浄効果を向上させることができる。かかる効果が発揮される理由の一つとしては、陰極20に対する陽極10と前記陰極20間の通電量が常時変化することで、陰極20に保持された洗浄対象物Mにおける気体の発生状態が常時変化するため、剥離作用等の洗浄作用を洗浄対象物Mに付着した汚れに対して効果的に加えることができるということが考えられる。   That is, according to the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present embodiment, the cleaning effect is greater than in the case of the conventional electrolytic cleaning apparatus and electrolytic cleaning method in which the energization amount between the anode 10 and the cathode 20 is always constant. Can be improved. One of the reasons why such an effect is exhibited is that the amount of current flowing between the anode 10 and the cathode 20 with respect to the cathode 20 constantly changes, so that the state of gas generation in the cleaning object M held by the cathode 20 is always constant. Since it changes, it can be considered that a cleaning action such as a peeling action can be effectively applied to dirt adhering to the cleaning object M.

さらに、通電量が多い状態から少ない状態に変化すると気体の発生が抑制される。ここで、電解洗浄液は、前記循環手段による流れや、超音波振動による振動や、温度差によって発生する対流や、気体の上昇によって発生する対流等によって、常時撹拌される状態となっている。従って、気体の発生が抑制されている間に電解洗浄液の撹拌によって洗浄対象物Mの表面から気体が除去されるため、洗浄対象物Mの表面に電解洗浄液を好適に供給することができ、電解洗浄効果がさらに高まる。   Further, when the energization amount is changed from a large state to a small state, the generation of gas is suppressed. Here, the electrolytic cleaning liquid is in a state of being constantly stirred by the flow by the circulation means, the vibration by the ultrasonic vibration, the convection generated by the temperature difference, the convection generated by the rising of the gas, or the like. Accordingly, since the gas is removed from the surface of the cleaning object M by stirring the electrolytic cleaning liquid while the generation of gas is suppressed, the electrolytic cleaning liquid can be suitably supplied to the surface of the cleaning object M. The cleaning effect is further enhanced.

しかも、常時一定の電圧を印加する場合に比べて通電量を抑えることができ、その分電解洗浄液の寿命を長くできる。また、通電量が減少することにより、陽極10からの発熱量が小さくなることで電解洗浄液の急速な温度上昇を抑えることができる。従って、電解洗浄液の温度制御を容易に行うことができるとともに、電解洗浄液に添加されている界面活性剤による泡が過剰に発生することも好適に防止することができる。   In addition, the amount of energization can be suppressed as compared with the case where a constant voltage is constantly applied, and the life of the electrolytic cleaning solution can be extended accordingly. Moreover, since the amount of heat generated from the anode 10 is reduced by reducing the energization amount, a rapid temperature rise of the electrolytic cleaning liquid can be suppressed. Therefore, it is possible to easily control the temperature of the electrolytic cleaning liquid, and it is also possible to suitably prevent excessive generation of bubbles due to the surfactant added to the electrolytic cleaning liquid.

また、前記通電量は、前記陽極10と前記陰極20間に印加する電圧の制御によって行うことができるため、通電量の制御が容易となる。   Further, since the energization amount can be controlled by controlling the voltage applied between the anode 10 and the cathode 20, the energization amount can be easily controlled.

また、前記電解洗浄装置1では、大きさの異なる複数の電圧を前記陽極10と前記陰極20間に印加可能に構成され、これら複数の電圧の間で陽極10と前記陰極20間に印加する電圧が交互に切り替えられる。従って、通電量を容易に数値制御することができる。   The electrolytic cleaning apparatus 1 is configured to be able to apply a plurality of voltages having different sizes between the anode 10 and the cathode 20, and a voltage applied between the anode 10 and the cathode 20 between the plurality of voltages. Are switched alternately. Accordingly, the energization amount can be easily numerically controlled.

特に、前記陽極10と前記陰極20間に印加される電圧の時間平均値が3.25V以上6.25V以下となるように設定される構成によれば、電解洗浄液の寿命をより長く維持することができる。   In particular, according to the configuration in which the time average value of the voltage applied between the anode 10 and the cathode 20 is set to be 3.25V or more and 6.25V or less, the life of the electrolytic cleaning solution can be maintained longer. Can do.

なお、本発明に係る電解洗浄装置及び電解洗浄方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The electrolytic cleaning apparatus and the electrolytic cleaning method according to the present invention are not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、陽陰極間に印加される電圧の波形は、図6に示したもの以外にも、図9に示すようなものを例示することができる。図9(A)に示すものは、大きさの異なる3つの電圧を陽陰極間に印加可能に構成され、これら3つの電圧値の間で陽陰極間に印加する電圧が交互に切り替えられるものである。また、図9(B)に示すものは、印加される電圧値が一定ではなく、低い状態から高い状態まで連続的に変動するものである。また、前記陽陰極間に印加される電圧が瞬間的に変化するものであってもよく、例えば、図9(C)に示すものは、電圧が瞬間的に立ち上がった後、連続的に下がるものであり、図9(D)に示すものは、電圧が連続的に上昇した後、瞬間的に立ち下がるものである。また、図9(E)に示すものは、電圧が一定に保たれることなく常時変化するものである。図9(F)に示すものは、電圧が低い一定値から最大値を経て最大値よりも低い値まで急激に変化した後、その値を所定の時間維持し、その後、前記低い一定値まで急激に変化するものである。   For example, the waveform of the voltage applied between the positive and negative electrodes can be exemplified as shown in FIG. 9 in addition to that shown in FIG. The configuration shown in FIG. 9A is configured such that three voltages having different magnitudes can be applied between the positive and negative electrodes, and the voltage applied between the positive and negative electrodes is alternately switched between these three voltage values. is there. In the case shown in FIG. 9B, the applied voltage value is not constant, but continuously fluctuates from a low state to a high state. The voltage applied between the positive and negative electrodes may change instantaneously. For example, the voltage shown in FIG. 9C is a voltage that rises instantaneously and then decreases continuously. FIG. 9D shows a case where the voltage falls instantaneously after the voltage continuously rises. In the case of FIG. 9E, the voltage constantly changes without being kept constant. In FIG. 9 (F), the voltage rapidly changes from a low constant value through a maximum value to a value lower than the maximum value, then maintains that value for a predetermined time, and then suddenly decreases to the low constant value. It will change to.

また、上記実施形態においては、前記通電量は前記陽陰極間に印加する電圧によって制御されるものとして説明したが、前記陽極と前記陰極との通電量が時間的に変化するように制御可能なものであればこれに限定されるものではなく、例えば、電流を変化させるものであってもよい。このことから、上記波形など、電圧を変化させることで達成されるものとして説明された事項は、原則として、通電量を変化させる方法でも達成することができる。   In the above embodiment, the energization amount is controlled by the voltage applied between the positive and negative electrodes. However, the energization amount between the anode and the cathode can be controlled to change with time. As long as it is a thing, it will not be limited to this, For example, you may change an electric current. Therefore, in principle, the items described as being achieved by changing the voltage, such as the waveform, can also be achieved by a method of changing the energization amount.

また、上記実施形態においては、超音波洗浄を併せて行い、電解洗浄液を循環し、電解洗浄液を濾過し、電解洗浄中に補充液を補充するものであったが、これに限定されるものではなく、これらの付随的な操作は、電解洗浄の際に行われないものであってもよく、これらの付随的な操作の中の一部が行われるものであってもよい。   In the above embodiment, the ultrasonic cleaning is performed together, the electrolytic cleaning liquid is circulated, the electrolytic cleaning liquid is filtered, and the replenishing liquid is replenished during the electrolytic cleaning. However, the present invention is not limited to this. Rather, these incidental operations may not be performed during the electrolytic cleaning, and some of these incidental operations may be performed.

本発明の実施形態に係る電解洗浄装置の平面図を示す。The top view of the electrolytic cleaning apparatus which concerns on embodiment of this invention is shown. 同実施形態に係る電解洗浄装置の断面図を示す。Sectional drawing of the electrolytic cleaning apparatus which concerns on the same embodiment is shown. 同実施形態に係る電解洗浄装置の陽極を示し、(A)は、陽極全体の斜視図を示し、(B)は、陽極の陽極体の斜視図を示す。The anode of the electrolytic cleaning apparatus which concerns on the embodiment is shown, (A) shows the perspective view of the whole anode, (B) shows the perspective view of the anode body of an anode. 同実施形態に係る電解洗浄装置の陰極の斜視図を示す。The perspective view of the cathode of the electrolytic cleaning apparatus concerning the embodiment is shown. 同実施形態に係る電解洗浄装置の陰極に備えられる固定部材を説明する図を示し、(A)は、固定部材を用いて洗浄対象物を陰極に固定した状態の正面図、(B)は固定部材を構成する下側部材の上面図、(C)は下側部材の正面図、(D)は下側部材の側面図を示す。The figure explaining the fixing member with which the cathode of the electrolytic cleaning apparatus which concerns on the embodiment is equipped is shown, (A) is a front view of the state which fixed the washing | cleaning target object to the cathode using the fixing member, (B) is fixing. The top view of the lower member which comprises a member, (C) is a front view of a lower member, (D) shows the side view of a lower member. 同実施形態に係る電解洗浄装置及び電解洗浄方法において、陽極に印加される電圧の波形のグラフを示す。In the electrolytic cleaning apparatus and the electrolytic cleaning method which concern on the same embodiment, the graph of the waveform of the voltage applied to an anode is shown. 本発明の効果を検証するための試験例に係る実験装置を示す。The experimental apparatus which concerns on the test example for verifying the effect of this invention is shown. 本発明の効果を検証するための試験例に係る電解洗浄装置を示す。The electrolytic cleaning apparatus which concerns on the test example for verifying the effect of this invention is shown. 本発明の他の実施形態に係る電解洗浄装置及び電解洗浄方法において、陽陰極間に印加される電圧の波形のグラフを示す。In the electrolytic cleaning apparatus and the electrolytic cleaning method which concern on other embodiment of this invention, the graph of the waveform of the voltage applied between positive and negative electrodes is shown.

符号の説明Explanation of symbols

1…電解洗浄装置、2…筐体、3…洗浄槽、4…電源、10…陽極、12…陽極体、12a…放電部分、12b…絶縁体、13…支持体、20…陰極、21…支持部材、21a…導電部分、21b…絶縁体、22…吊下部材、22a…支持部材との接続部分、22b…電源との接続部分、22c…絶縁体、23…空間部、24…棒状体、25…枠体、30…固定部材、31…取付部、32…固定部、33…下側部材、33a…当接部、33b…挿通部、34…上側部材、35…ナット、36…ナット、41…陰極としてのFe板、42…陽極としてのFe板、50…電解洗浄装置、51…陽極、52…陰極、E1…第1の電圧、E2…第2の電圧、M…洗浄対象物、R…樹脂、S…試料、T…周期   DESCRIPTION OF SYMBOLS 1 ... Electrolytic cleaning apparatus, 2 ... Housing | casing, 3 ... Cleaning tank, 4 ... Power supply, 10 ... Anode, 12 ... Anode body, 12a ... Discharge part, 12b ... Insulator, 13 ... Support body, 20 ... Cathode, 21 ... Support member, 21a ... conductive portion, 21b ... insulator, 22 ... suspension member, 22a ... connection portion with support member, 22b ... connection portion with power source, 22c ... insulator, 23 ... space portion, 24 ... rod-shaped body 25 ... Frame, 30 ... Fixing member, 31 ... Mounting part, 32 ... Fixing part, 33 ... Lower member, 33a ... Abutting part, 33b ... Insertion part, 34 ... Upper member, 35 ... Nut, 36 ... Nut 41 ... Fe plate as cathode, 42 ... Fe plate as anode, 50 ... electrolytic cleaning device, 51 ... anode, 52 ... cathode, E1 ... first voltage, E2 ... second voltage, M ... object to be cleaned , R ... resin, S ... sample, T ... period

Claims (12)

陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽陰極間に直流で通電して洗浄対象物を電解洗浄する電解洗浄装置であって、
陽陰極間の通電量が時間的に変化するように制御可能に構成されることを特徴とする電解洗浄装置。
An electrolytic cleaning apparatus in which an anode and a cathode holding an object to be cleaned are immersed in an electrolytic cleaning liquid, and the object to be cleaned is electrolytically cleaned by applying a direct current between the positive and negative electrodes,
An electrolytic cleaning apparatus configured to be controllable so that an energization amount between the positive and negative electrodes changes with time.
前記通電量は、前記陽陰極間に印加する電圧によって制御されることを特徴とする請求項1に記載の電解洗浄装置。   The electrolytic cleaning apparatus according to claim 1, wherein the energization amount is controlled by a voltage applied between the positive and negative electrodes. 大きさの異なる複数の電圧を前記陽陰極間に印加可能に構成され、
これら複数の電圧が所定時間毎に交互に切り替えられることを特徴とする請求項2に記載の電解洗浄装置。
A plurality of voltages having different sizes are configured to be applied between the positive and negative electrodes,
The electrolytic cleaning apparatus according to claim 2, wherein the plurality of voltages are alternately switched every predetermined time.
前記陽陰極間に印加される電圧の時間平均値が3.25V以上6.25V以下となるように設定されることを特徴とする請求項2又は3に記載の電解洗浄装置。   4. The electrolytic cleaning apparatus according to claim 2, wherein a time average value of a voltage applied between the positive and negative electrodes is set to be 3.25V or more and 6.25V or less. 前記陽極は、Fe,Pt,Pd,Ir,Ru若しくはこれらの合金を用いて形成されることを特徴とする請求項1〜4のいずれか一項に記載の電解洗浄装置。   5. The electrolytic cleaning apparatus according to claim 1, wherein the anode is formed using Fe, Pt, Pd, Ir, Ru, or an alloy thereof. 前記陽極は、Tiからなる陽極本体をPt,Pd,Ir,Ru若しくはこれらの合金によって被覆して形成されることを特徴とする請求項1〜4のいずれか一項に記載の電解洗浄装置。   5. The electrolytic cleaning apparatus according to claim 1, wherein the anode is formed by coating an anode body made of Ti with Pt, Pd, Ir, Ru, or an alloy thereof. 前記電解洗浄液を超音波振動させる超音波発生器を備えることを特徴とする請求項1〜6のいずれか一項に記載の電解洗浄装置。   The electrolytic cleaning apparatus according to claim 1, further comprising an ultrasonic generator that ultrasonically vibrates the electrolytic cleaning liquid. 陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽陰極間に直流で通電して洗浄対象物を電解洗浄する電解洗浄方法であって、
前記陽陰極間の通電量が時間的に変化するように制御することを特徴とする電解洗浄方法。
An electrolytic cleaning method in which an anode and a cathode holding an object to be cleaned are immersed in an electrolytic cleaning liquid, and the object to be cleaned is electrolytically cleaned by applying a direct current between the positive and negative electrodes,
An electrolytic cleaning method, wherein the amount of current flowing between the positive and negative electrodes is controlled to change with time.
前記陽陰極間に対して、所定時間毎に大きさの異なる複数の電圧を交互に切り替えて印加することを特徴とする請求項8に記載の電解洗浄方法。   9. The electrolytic cleaning method according to claim 8, wherein a plurality of voltages having different magnitudes are alternately switched and applied between the positive and negative electrodes every predetermined time. 前記陽陰極間に印加される電圧の時間平均値が3.25V以上6.25V以下であることを特徴とする請求項9に記載の電解洗浄方法。   The electrolytic cleaning method according to claim 9, wherein a time average value of a voltage applied between the positive and negative electrodes is 3.25 V or more and 6.25 V or less. 前記電解洗浄液は、アルカリ性水溶液からなるものであることを特徴とする請求項8〜10のいずれか一項に記載の電解洗浄方法。   The said electrolytic cleaning liquid consists of alkaline aqueous solution, The electrolytic cleaning method as described in any one of Claims 8-10 characterized by the above-mentioned. 前記電解洗浄液は、
電解質として、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有し、
キレート剤として、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤と、グルコン酸塩とを含有し、
界面活性剤として、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有することを特徴とする請求項11に記載の電解洗浄方法。
The electrolytic cleaning liquid is
As an electrolyte, it contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium citrate,
As a chelating agent, a chelating agent that coordinates a metal ion with a carboxylate group (COO-) and a nitrogen (N) atom, and a gluconate,
The electrolytic cleaning method according to claim 11, wherein the surfactant contains at least one of a neutral surfactant, an amphoteric surfactant, and an anionic surfactant.
JP2008094552A 2008-04-01 2008-04-01 Electrolytic cleaning device and electrolytic cleaning method Pending JP2009242931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094552A JP2009242931A (en) 2008-04-01 2008-04-01 Electrolytic cleaning device and electrolytic cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094552A JP2009242931A (en) 2008-04-01 2008-04-01 Electrolytic cleaning device and electrolytic cleaning method

Publications (1)

Publication Number Publication Date
JP2009242931A true JP2009242931A (en) 2009-10-22

Family

ID=41305154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094552A Pending JP2009242931A (en) 2008-04-01 2008-04-01 Electrolytic cleaning device and electrolytic cleaning method

Country Status (1)

Country Link
JP (1) JP2009242931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098118A (en) * 2011-11-04 2013-05-20 Ngk Spark Plug Co Ltd Method for manufacturing spark plug
CN103820845A (en) * 2014-02-26 2014-05-28 湖北京山轻工机械股份有限公司 Solution for electrochemical treatment of surface of tungsten carbide workpiece
JP2020203269A (en) * 2019-06-18 2020-12-24 合同会社アイル・Mtt Bubble scattering inhibitor and method for using the same
CN114108064A (en) * 2021-11-03 2022-03-01 崇辉半导体(深圳)有限公司 Electro-release film agent and preparation method thereof, treatment method of silver-plated surface mount LED and surface mount LED

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148699A (en) * 1991-11-22 1993-06-15 Kanbayashi Seisakusho:Kk Electrolytic cleaning method and device
JPH07214570A (en) * 1994-01-31 1995-08-15 Somatsukusu Kk Device of cleaning synthetic resin die
JPH11140699A (en) * 1997-11-12 1999-05-25 Nippon Steel Corp Method for removing adherend to surface of stainless steel
JP2003313688A (en) * 2002-02-20 2003-11-06 Nippon Steel Corp Continuous ultrasonic-cleaning apparatus
JP2005280280A (en) * 2004-03-30 2005-10-13 Somakkusu Kk Mold cleaning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148699A (en) * 1991-11-22 1993-06-15 Kanbayashi Seisakusho:Kk Electrolytic cleaning method and device
JPH07214570A (en) * 1994-01-31 1995-08-15 Somatsukusu Kk Device of cleaning synthetic resin die
JPH11140699A (en) * 1997-11-12 1999-05-25 Nippon Steel Corp Method for removing adherend to surface of stainless steel
JP2003313688A (en) * 2002-02-20 2003-11-06 Nippon Steel Corp Continuous ultrasonic-cleaning apparatus
JP2005280280A (en) * 2004-03-30 2005-10-13 Somakkusu Kk Mold cleaning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098118A (en) * 2011-11-04 2013-05-20 Ngk Spark Plug Co Ltd Method for manufacturing spark plug
CN103820845A (en) * 2014-02-26 2014-05-28 湖北京山轻工机械股份有限公司 Solution for electrochemical treatment of surface of tungsten carbide workpiece
JP2020203269A (en) * 2019-06-18 2020-12-24 合同会社アイル・Mtt Bubble scattering inhibitor and method for using the same
CN114108064A (en) * 2021-11-03 2022-03-01 崇辉半导体(深圳)有限公司 Electro-release film agent and preparation method thereof, treatment method of silver-plated surface mount LED and surface mount LED
CN114108064B (en) * 2021-11-03 2023-03-07 崇辉半导体(深圳)有限公司 Electric release film agent and preparation method thereof, treatment method of surface mounted LED after silver plating and surface mounted LED

Similar Documents

Publication Publication Date Title
JP4695932B2 (en) Mold cleaning apparatus and mold cleaning method
JP2005344210A (en) Mold cleaning solution, mold cleaning method and mold cleaning apparatus
JP2009242931A (en) Electrolytic cleaning device and electrolytic cleaning method
JP2001241000A (en) Metal mold electrolytic cleaning device for molding synthetic resin
RU2009102042A (en) METHOD FOR ELECTROCHEMICAL REMOVAL OF METAL COATING FROM STRUCTURAL PART
JPH0317288A (en) Electrolytic cleaning solution for stamper
JP4938714B2 (en) Electrolytic cleaning apparatus and electrolytic cleaning method
KR101267201B1 (en) Method for recovering precious-metal ions from plating wastewater
KR101972663B1 (en) Deep type electro polishing apparatus
JP2000001799A (en) Electrolytic cleaning composition for die, and die cleaning device using the composition
JP2010227811A (en) Washing method for work, work, and watch
JPH0615275A (en) Method for washing electrode plate for oil-containing waste water purifying treatment
JP2013071062A (en) Vapor deposition mask cleaning device, vapor deposition mask cleaning system and vapor deposition mask cleaning method
JP5450233B2 (en) Method for detecting solidification structure of steel
JP3982885B2 (en) Mold cleaning equipment
US7118665B2 (en) Surface treatment process for enhancing a release rate of metal ions from a sacrificial electrode and a related sacrificial electrode
JP2007216431A (en) Mold washing apparatus
JP2005097745A (en) Electrolytic cleaning liquid for die cleaning
RU190529U1 (en) DEVICE TO REMOVE COATING DETAILS
CN214032742U (en) Surface rust removing device for hardware machining
JP4765411B2 (en) Surface treatment method of aluminum and aluminum alloy
JP2010101662A (en) Method and apparatus for cleaning probe
JP2007136955A (en) Method for cleaning mold
JP2005138046A (en) Method of removing deposit from die, extrusion pin and their accessary part and similar part
JPH01101115A (en) Electrolytic washing of mold for synthetic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120330