JP2009242186A - Glass forming unit, spherical glass gob production device, and spherical glass gob production method - Google Patents

Glass forming unit, spherical glass gob production device, and spherical glass gob production method Download PDF

Info

Publication number
JP2009242186A
JP2009242186A JP2008092084A JP2008092084A JP2009242186A JP 2009242186 A JP2009242186 A JP 2009242186A JP 2008092084 A JP2008092084 A JP 2008092084A JP 2008092084 A JP2008092084 A JP 2008092084A JP 2009242186 A JP2009242186 A JP 2009242186A
Authority
JP
Japan
Prior art keywords
glass
spherical
molten glass
glass lump
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008092084A
Other languages
Japanese (ja)
Inventor
Makoto Kidachi
誠 木立
Masanao Shinozaki
正尚 篠▲ざき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008092084A priority Critical patent/JP2009242186A/en
Publication of JP2009242186A publication Critical patent/JP2009242186A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/101Forming solid beads by casting molten glass into a mould or onto a wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass forming unit and a spherical glass gob production device by which production cost and environmental load can be reduced and glass gobs can be improved in sphericity. <P>SOLUTION: The spherical glass gob production device 10 includes the glass forming unit and a molten glass feed unit 50. The glass forming unit includes forming dies 20 for forming spherical glass gobs from molten glass fed from the molten glass feed unit 50 and a vibration part 30 for vibrating the forming dies 20. Each forming die 20 has a recessed portion which has a partially spherical bottom and receives molten glass, wherein the recessed portion preferably has a maximum depth ≥1.5 times the curvature radius of the bottom. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、球状ガラスを製造するための技術に関し、より詳しくはガラス成形装置、球状ガラス塊製造装置、及び球状ガラス塊製造方法に関する。   The present invention relates to a technique for manufacturing spherical glass, and more particularly to a glass forming apparatus, a spherical glass lump manufacturing apparatus, and a spherical glass lump manufacturing method.

従来、光学素子等に成形されるプリフォームは、ガラスブロックの切断片を球形へと研削、研磨することで製造されてきた。しかし、かかる方法では、研削及び研磨に多大なコストがかかるし、ガラス屑が大量発生するため、環境への負荷が大きい。   Conventionally, a preform formed into an optical element or the like has been manufactured by grinding and polishing a cut piece of a glass block into a spherical shape. However, in such a method, grinding and polishing are very expensive, and a large amount of glass waste is generated, so that the burden on the environment is large.

そこで、略球面の凹部を有する成形型を用い、気体を噴出する凹部へと溶融ガラスを滴下し冷却することで、ガラス塊を製造する技術が開発されている(例えば、特許文献1参照)。この技術によれば、凹部に対応した形状のガラス塊が自然に成形されるため、研削及び研磨の負担が軽減される。このため、製造コスト及び環境への負荷を軽減できる。
特開平2−14839号公報
Therefore, a technique for producing a glass lump by using a molding die having a substantially spherical recess and dropping and cooling molten glass into the recess that ejects gas has been developed (see, for example, Patent Document 1). According to this technique, a glass lump having a shape corresponding to the recess is naturally formed, so that the burden of grinding and polishing is reduced. For this reason, the manufacturing cost and the burden on the environment can be reduced.
JP-A-2-14839

しかし、特許文献1に示される技術では、滴下された溶融ガラスにおいて、凹部に接触する面は凹部に沿った形状となり、凹部に接触していない面は溶融ガラスの重力によって扁平になる。また、特許文献1に記載の方法では、滴下される溶融ガラスの大きさ、形状によっては、溶融ガラスの回転が生じにくく、球状のプリフォームを作りにくい。このため、製造される溶融ガラスは、非対称の歪な形状になり、真球度の低いものであった。   However, in the technique shown in Patent Document 1, in the dropped molten glass, the surface that contacts the recess has a shape along the recess, and the surface that does not contact the recess becomes flat due to the gravity of the molten glass. Moreover, according to the method described in Patent Document 1, depending on the size and shape of the molten glass to be dropped, the molten glass is difficult to rotate and it is difficult to make a spherical preform. For this reason, the molten glass to be produced has an asymmetric and distorted shape and has a low sphericity.

本発明は、以上の実情に鑑みてなされたものであり、製造コスト及び環境への負荷を軽減でき且つガラス塊の真球度を向上できるガラス成形装置、球状ガラス塊製造装置、及び球状ガラス塊製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, a glass forming apparatus, a spherical glass lump manufacturing apparatus, and a spherical glass lump that can reduce the manufacturing cost and the burden on the environment and improve the sphericity of the glass lump. An object is to provide a manufacturing method.

本発明者らは、成形型を振動することで、成形型に滴下された溶融ガラスが回転し、球形化することを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The inventors of the present invention have found that the molten glass dropped on the mold is rotated and spheroidized by vibrating the mold, and the present invention has been completed. Specifically, the present invention provides the following.

(1) 溶融ガラスから球状ガラス塊を成形する成形型と、この成形型を振動させる振動手段と、を備えるガラス成形装置。   (1) A glass forming apparatus comprising a forming die for forming a spherical glass lump from molten glass, and vibration means for vibrating the forming die.

(2) 前記成形型は、部分球面状の底部を有し溶融ガラスを受容する凹部を備え、この凹部の最大深さは、前記底部の曲率半径の1.5倍以上である(1)記載のガラス成形装置。   (2) The mold has a concave portion that has a partially spherical bottom and receives molten glass, and the maximum depth of the concave is 1.5 times or more the curvature radius of the bottom (1). Glass forming equipment.

(3) 前記凹部は多孔質で形成されている(2)記載のガラス成形装置。   (3) The glass forming apparatus according to (2), wherein the concave portion is formed of a porous material.

(4) 気体を前記凹部に供給し、前記多孔質の部分から噴出させる気体供給手段を更に備える(3)記載のガラス成形装置。   (4) The glass forming apparatus according to (3), further comprising gas supply means for supplying gas to the recess and ejecting the gas from the porous portion.

(5) 前記成形型は複数設けられ、
前記ガラス成形装置は、前記成形型を溶融ガラス受容位置から球状ガラス塊導出位置まで順次移動する移動手段を更に備え、
前記振動手段は、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流において前記成形型を振動させる(1)から(4)いずれか記載のガラス成形装置。
(5) A plurality of the molds are provided,
The glass forming apparatus further comprises moving means for sequentially moving the mold from a molten glass receiving position to a spherical glass lump derivation position,
The glass forming apparatus according to any one of (1) to (4), wherein the vibration means vibrates the forming die downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position.

(6) 前記振動手段は、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流に移動した前記成形型へ振動エネルギが伝導可能な位置に固定されている(5)記載のガラス成形装置。   (6) The glass forming device according to (5), wherein the vibration means is fixed at a position where vibration energy can be conducted to the forming mold moved downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position. apparatus.

(7) (1)から(6)いずれか記載のガラス成形装置と、前記成形型に溶融ガラスを供給する溶融ガラス供給装置と、を備える球状ガラス塊製造装置。   (7) A spherical glass lump manufacturing apparatus comprising: the glass forming apparatus according to any one of (1) to (6); and a molten glass supply apparatus that supplies molten glass to the mold.

(8) (7)記載の球状ガラス塊製造装置と、この球状ガラス塊製造装置で製造される球状ガラス塊を精密プレス成形する精密プレス成形装置と、を備える光学素子の製造装置。   (8) An optical element manufacturing apparatus comprising: the spherical glass lump manufacturing apparatus according to (7); and a precision press molding apparatus that performs precision press molding of the spherical glass lump manufactured by the spherical glass lump manufacturing apparatus.

(9) 溶融ガラスから球状ガラス塊を製造する球状ガラス塊製造方法であって、
溶融ガラスから球状ガラス塊を成形する成形型を振動させる振動工程を有する球状ガラス塊製造方法。
(9) A spherical glass lump manufacturing method for manufacturing a spherical glass lump from molten glass,
A method for producing a spherical glass lump comprising a vibration step of vibrating a mold for forming a spherical glass lump from molten glass.

(10) 前記成形型は、部分球面状の底部を有し溶融ガラスを受容する凹部を備え、この凹部の最大深さは、前記底部の曲率半径の1.5倍以上であり、
前記方法は、前記凹部に、溶融ガラスを供給する供給工程を有する(9)記載の球状ガラス塊製造方法。
(10) The mold includes a concave portion having a partially spherical bottom portion that receives molten glass, and the maximum depth of the concave portion is 1.5 times or more the curvature radius of the bottom portion,
The said method is a spherical glass lump manufacturing method as described in (9) which has a supply process which supplies a molten glass to the said recessed part.

(11) 前記凹部は多孔質で形成されている(10)記載の球状ガラス塊製造方法。   (11) The spherical glass lump manufacturing method according to (10), wherein the concave portion is formed of a porous material.

(12) 気体を前記凹部に供給し、前記多孔質の部分から噴出させる気体噴出工程を更に有する(11)記載の球状ガラス塊製造方法。   (12) The spherical glass lump manufacturing method according to (11), further comprising a gas ejection step of supplying gas to the recess and ejecting the gas from the porous portion.

(13) 前記成形型を複数設け、溶融ガラス受容位置から球状ガラス塊導出位置まで順次移動する移動工程を更に有し、
前記振動工程は、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流において行う(9)から(12)いずれか記載の球状ガラス塊製造方法。
(13) A plurality of the molds are provided, and further includes a moving step of sequentially moving from the molten glass receiving position to the spherical glass lump derivation position,
The spherical glass lump manufacturing method according to any one of (9) to (12), wherein the vibration step is performed downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position.

(14) 前記振動の振動源を、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流に移動した前記成形型へ振動エネルギが伝導可能な位置に固定する(13)記載の球状ガラス塊製造方法。   (14) The spherical glass according to (13), wherein the vibration source of vibration is fixed at a position where vibration energy can be conducted to the mold moved downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position. Mass production method.

(15) (9)から(14)いずれか記載の球状ガラス塊製造方法により製造された球状ガラス塊を精密プレス成形する光学素子の製造方法。   (15) A method for producing an optical element, comprising subjecting a spherical glass mass produced by the spherical glass mass production method according to any one of (9) to (14) to precision press molding.

(16) 溶融ガラスから球状ガラス塊を成形する成形型であって、
部分球面状の底部を有し溶融ガラスを受容する凹部を備え、この凹部の最大深さは、前記底部の曲率半径の1.5倍以上である成形型。
(16) A mold for molding a spherical glass lump from molten glass,
A mold having a concave part having a partially spherical bottom and receiving molten glass, wherein the maximum depth of the concave part is at least 1.5 times the radius of curvature of the bottom.

(17) 前記凹部は多孔質で形成されている(16)記載の成形型。   (17) The mold according to (16), wherein the concave portion is formed of a porous material.

(18) 気体を前記凹部に供給し、前記多孔質の部分から噴出させる気体供給手段を更に備える(17)記載の成形型。   (18) The mold according to (17), further comprising gas supply means for supplying gas to the recess and ejecting the gas from the porous portion.

本発明によれば、成形型が振動するため、成形型に受容された溶融ガラス塊がランダムに回転し、球状化する。よって、ガラス塊の真球度を向上でき、球状化のための研削及び研磨の負担が軽減されるため、製造コスト及び環境への負荷を軽減できる。   According to the present invention, since the mold vibrates, the molten glass lump received in the mold is randomly rotated and spheroidized. Therefore, the sphericity of the glass lump can be improved, and the burden of grinding and polishing for spheroidization is reduced, so that the manufacturing cost and the burden on the environment can be reduced.

以下、本発明の実施形態について、図面を参照しながら説明する。実施形態以外の変形例の説明において、実施形態と共通するものについては、同一符号を付し、その説明を省略する。なお、本明細書において、構成要素が複数存在する場合、a〜g等の添字を付して説明する(例えば、成形型20a)場合もあるし、総称として添字を付さずに説明する(例えば、成形型20)場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the modified example other than the embodiment, the same reference numerals are given to those common to the embodiment, and the description thereof is omitted. In addition, in this specification, when there are a plurality of constituent elements, subscripts such as “a” to “g” may be added (for example, the mold 20a) or may be described without adding subscripts as a generic name ( For example, there may be a mold 20).

図1は、本発明の一実施形態に係る球状ガラス塊製造装置10の概略構成図である。図2は、図1の球状ガラス塊製造装置10をP方向から見た側面図である。図3は、凹部22の中心軸を通る断面における図1の成形型20の断面図である。   FIG. 1 is a schematic configuration diagram of a spherical glass lump manufacturing apparatus 10 according to an embodiment of the present invention. FIG. 2 is a side view of the spherical glass lump manufacturing apparatus 10 of FIG. 1 viewed from the P direction. FIG. 3 is a cross-sectional view of the mold 20 of FIG. 1 in a cross section passing through the central axis of the recess 22.

本実施形態に係る球状ガラス塊製造装置10は、成形型20、振動手段としての振動部30、移動手段としての移動部40、及び溶融ガラス供給装置50を備える。これらのうち、成形型20及び振動部30はガラス成形装置を構成し、本実施形態に係るガラス成形装置は移動部40を更に備えている。各構成要素について、以下詳細に説明する。   The spherical glass lump manufacturing apparatus 10 according to the present embodiment includes a molding die 20, a vibrating unit 30 as a vibrating unit, a moving unit 40 as a moving unit, and a molten glass supply device 50. Among these, the shaping | molding die 20 and the vibration part 30 comprise a glass forming apparatus, and the glass forming apparatus which concerns on this embodiment is further provided with the moving part 40. FIG. Each component will be described in detail below.

〔成形型〕
成形型20は、溶融ガラスから球状ガラス塊を成形する。成形型20は、図3に示されるように凹部22を備え、この凹部22は溶融ガラス供給装置50からの溶融ガラスを受容する。凹部22は部分球面状の底部221を有し、この底部221は側部223へとつながって、やがて成形型20の表面に至る。後述の凹部22内における溶融ガラス塊の回転を円滑化できる点で、底部221及び側部223の境界は滑らかであることが好ましい。つまり本実施形態では境界に若干の角部が存在するが、かかる境界は曲面で構成することが好ましい。
[Molding mold]
The mold 20 forms a spherical glass lump from molten glass. As shown in FIG. 3, the mold 20 includes a recess 22 that receives the molten glass from the molten glass supply device 50. The concave portion 22 has a partially spherical bottom portion 221, which is connected to the side portion 223 and eventually reaches the surface of the mold 20. The boundary between the bottom part 221 and the side part 223 is preferably smooth in that the molten glass lump can be smoothly rotated in the concave part 22 described later. That is, in the present embodiment, there are some corners at the boundary, but it is preferable that the boundary is formed of a curved surface.

凹部22に受容された溶融ガラス塊MGに、凹部22から外部(図3における上方向)へとはみだした部分が存在すると、その部分が他の部分よりも極めて急速に冷却される。すると、溶融ガラス塊MGの密度が偏重化するため、円滑な回転が阻害され得る。そこで、凹部22は、溶融ガラス塊MGが外部へとはみださない程度に充分に深いことが望まれる。   If there is a portion of the molten glass block MG received in the recess 22 that protrudes from the recess 22 to the outside (upward in FIG. 3), the portion is cooled much more rapidly than the other portions. Then, since the density of the molten glass lump MG becomes uneven, smooth rotation can be inhibited. Therefore, it is desirable that the recess 22 is sufficiently deep so that the molten glass lump MG does not protrude outside.

ここで、凹部22に受容された溶融ガラス塊MGの径は、基本的には溶融ガラス供給装置50の先端径に依存するが、溶融ガラス塊MGの径上限は凹部22の寸法によって制限される。つまり、底部221が中心角2Θの部分球面であり、その曲率半径をrとした場合、凹部22の幅が2rsinΘである(図3(a)参照)ので、溶融ガラス塊MGの径上限も2rsinΘになる(図3(b)参照)。このため、凹部22の最大深さDは2rsinΘ以上であればよく、通常は曲率半径rの1.5倍以上であることが好ましく、より好ましくは1.6倍以上、最も好ましくは2.0倍以上である。ここで凹部22の最大深さとは、凹部22の軸方向に関する底部221の最深部と、凹部22が形成する開口との距離を指す。   Here, the diameter of the molten glass lump MG received in the recess 22 basically depends on the tip diameter of the molten glass supply device 50, but the upper limit of the diameter of the molten glass lump MG is limited by the size of the recess 22. . That is, when the bottom 221 is a partial spherical surface having a central angle 2Θ and the radius of curvature is r, the width of the recess 22 is 2rsinΘ (see Fig. 3 (a)), so the upper limit of the diameter of the molten glass block MG is also 2rsinΘ. (See FIG. 3B). For this reason, the maximum depth D of the concave portion 22 only needs to be 2 rsinΘ or more, and is usually preferably 1.5 times or more, more preferably 1.6 times or more, and most preferably 2.0 times the radius of curvature r. It is more than double. Here, the maximum depth of the concave portion 22 refers to the distance between the deepest portion of the bottom portion 221 in the axial direction of the concave portion 22 and the opening formed by the concave portion 22.

凹部22の素材は、特に限定されず、多孔質、炭素、及び公知の金属等であってよい。ただし、本実施形態における凹部22は、高温な溶融ガラス塊MGが凹部22に癒着することを抑制するべく、多孔質で形成されている。本実施形態では、型本体の金属製の基材211の窪みに、内面U字状の多孔質体213が嵌合されているが、成形型全体が多孔質体であってもよい。   The material of the recess 22 is not particularly limited, and may be porous, carbon, a known metal, or the like. However, the recess 22 in the present embodiment is formed to be porous so as to suppress the high-temperature molten glass lump MG from adhering to the recess 22. In the present embodiment, the inner surface U-shaped porous body 213 is fitted in the recess of the metal base 211 of the mold body, but the entire mold may be a porous body.

多孔質体213は、連通路233を介して導入口231に連通されている。この導入口231には気体供給源23が接続され、この気体供給源23から圧縮気体が導入口231へと導入される。すると、圧縮気体は連通路233を通じて多孔質体213へと流入し、凹部22の内方へと噴出するため、溶融ガラス塊MGの凹部22への癒着がより抑制される。以上の気体供給源23、導入口231、及び連通路233は気体供給手段を構成する。   The porous body 213 is communicated with the introduction port 231 through the communication path 233. A gas supply source 23 is connected to the introduction port 231, and compressed gas is introduced from the gas supply source 23 into the introduction port 231. Then, since the compressed gas flows into the porous body 213 through the communication path 233 and is ejected inward of the concave portion 22, adhesion of the molten glass lump MG to the concave portion 22 is further suppressed. The gas supply source 23, the inlet 231 and the communication path 233 described above constitute a gas supply means.

本実施形態では、連通路233を多孔質体213の最深部に連通したが、これに限られず多孔質体213の任意の箇所に連通してよい。また、多孔質体213に連通させる部分は1箇所に限られず、複数箇所としてもよい。これにより、多方向から気体が噴出されるため、溶融ガラスMGの凹部22への癒着をより抑制できる。   In the present embodiment, the communication path 233 communicates with the deepest portion of the porous body 213, but is not limited thereto, and may communicate with an arbitrary portion of the porous body 213. Moreover, the part connected to the porous body 213 is not limited to one place, and may be a plurality of places. Thereby, since gas is ejected from many directions, adhesion to the recessed part 22 of molten glass MG can be suppressed more.

本実施形態における21には、凹部22の軸方向に延びる延出部25が設けられ、この延出部25は後述の設置台41を貫通する。そして、延出部25は、設置台41の下方に位置する後述の振動部30と接触可能であり、振動部30に接触すると振動部30からの振動エネルギを21へと伝導する。   In the present embodiment, an extension part 25 extending in the axial direction of the recess 22 is provided in 21, and the extension part 25 penetrates an installation table 41 described later. The extending portion 25 can contact a vibration portion 30 described below located below the installation table 41, and conducts vibration energy from the vibration portion 30 to 21 when contacting the vibration portion 30.

本実施形態における延出部25は設置台41に緩く嵌合して貫通している。このため、21及び延出部25が設置台41に対して上下に摺動可能である。ここで、図示はしていないが、延出部25の側面に鍔が設けられている。延出部25が上方向に摺動してゆくと、やがて鍔が設置台41に係止されるため、延出部25が設置台41から離脱してしまうことを抑制できる。   In the present embodiment, the extending portion 25 is loosely fitted to and penetrates the installation base 41. For this reason, 21 and the extension part 25 can slide up and down with respect to the installation base 41. Here, although not shown, a ridge is provided on the side surface of the extending portion 25. When the extension portion 25 slides upward, the heel is eventually locked to the installation base 41, so that the extension portion 25 can be prevented from being detached from the installation base 41.

〔移動部〕
移動部40は、溶融ガラス供給装置50からの溶融ガラスGDを凹部22が受容する溶融ガラス受容位置から、凹部22内のガラス塊を導出する球状ガラス塊導出位置まで成形型20を移動する。このように成形型20が位置を移動してゆくので、後述のように成形型20が複数設けられていても、溶融ガラス供給装置50や球状ガラス塊導出手段を多数設置する必要性が少ない。なお、ガラス塊の導出は、常法に従って行えばよく、例えばガラス塊の吸引により行えばよい。
[Moving part]
The moving unit 40 moves the molding die 20 from a molten glass receiving position where the recessed portion 22 receives the molten glass GD from the molten glass supply device 50 to a spherical glass lump derivation position where the glass lump in the recessed portion 22 is derived. Since the mold 20 moves in this way, even if a plurality of molds 20 are provided as described later, there is little need to install a large number of molten glass supply devices 50 and spherical glass lump deriving means. In addition, what is necessary is just to perform the derivation | leading-out of a glass lump in accordance with a conventional method, for example by suction of a glass lump.

本実施形態に係る移動部40は、図1に示されるように円板状の設置台41を有し、この設置台41の中央には回転軸43が設けられている。この回転軸43は図示しない駆動源(例えばモータ)に接続され、この駆動源の駆動力によって回転させられる。一方、設置台41の非中央には成形型20が設置されており、回転軸43が回転すると成形型20が円周軌道で移動することになる。   As shown in FIG. 1, the moving unit 40 according to the present embodiment includes a disk-shaped installation table 41, and a rotation shaft 43 is provided at the center of the installation table 41. The rotating shaft 43 is connected to a driving source (not shown) (for example, a motor) and is rotated by the driving force of the driving source. On the other hand, the molding die 20 is installed in the non-center of the installation table 41, and when the rotary shaft 43 rotates, the molding die 20 moves on a circumferential track.

本実施形態では、設置台41に複数の成形型20が設置され、特に同心円状且つ略等間隔に配置されている。これにより、回転軸43が回転すると、成形型20の各々が順次移動し、溶融ガラス受容位置及び球状ガラス塊導出位置を通過してゆく。説明の便宜上、ある時点において、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流に位置する成形型に符号20a〜20fを付す。   In the present embodiment, a plurality of molding dies 20 are installed on the installation table 41, and are particularly arranged concentrically and at approximately equal intervals. Thereby, when the rotating shaft 43 rotates, each of the molds 20 sequentially moves and passes through the molten glass receiving position and the spherical glass lump derivation position. For convenience of explanation, reference numerals 20a to 20f are given to molds located downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position at a certain point in time.

本実施形態における成形型20の移動形式は、特に限定されないが、溶融ガラス受容位置において溶融ガラスの液滴GDを確実に凹部22で受けることができるよう、低速で移動したり、通常速度状態の間に所定時間の停止もしくは徐行状態を挟んだりすることが好ましい。また、移動部40は円盤状の設置台でなく、任意の方向に成形型を移動できるコンベアのようなものでもよい。   Although the movement form of the mold 20 in this embodiment is not particularly limited, it can be moved at a low speed or in a normal speed state so that the molten glass droplet GD can be reliably received by the recess 22 at the molten glass receiving position. It is preferable to put a stop or slow-down state for a predetermined time between them. Further, the moving unit 40 is not a disk-shaped installation table, but may be a conveyor that can move the mold in an arbitrary direction.

〔振動部〕
振動部30は、成形型20を振動させる。かかる振動部30は図示しない振動源を有し、この振動源によって振動台31が振動させられる。振動台31は上面313を有し、この上面313は成形型20の設置位置の下方に配置されている。上面313の一端は入口傾斜面311につながって下方に傾斜し、他端は出口傾斜部315につながって下方に傾斜する。
(Vibration part)
The vibration unit 30 vibrates the mold 20. The vibration unit 30 has a vibration source (not shown), and the vibration table 31 is vibrated by the vibration source. The vibration table 31 has an upper surface 313, and the upper surface 313 is disposed below the installation position of the mold 20. One end of the upper surface 313 is connected to the inlet inclined surface 311 and inclined downward, and the other end is connected to the outlet inclined portion 315 and inclined downward.

かかる振動部30は、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流において成形型20を振動させる。本実施形態では、移動した成形型20b〜20eへ振動エネルギが伝導可能な位置に固定されている。具体的には、入口傾斜面311が溶融ガラス受容位置の直後に位置し、出口傾斜部315は球状ガラス受容位置の直前に位置する。そして、溶融ガラス受容位置を通過した成形型20の延出部25は、入口傾斜面311に乗りあがり、上面313を摺動した後、出口傾斜部315を滑りおり、球状ガラス受容位置に至る。これにより、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流に移動した成形型20b〜20eのみが振動することになる。なお、成形型を振動させるのは、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流の一部だけでもよく、逆に、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流以外に亘ってもよい。   The vibration unit 30 vibrates the mold 20 downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position. In this embodiment, it is fixed to a position where vibration energy can be conducted to the moved molds 20b to 20e. Specifically, the inlet inclined surface 311 is positioned immediately after the molten glass receiving position, and the outlet inclined portion 315 is positioned immediately before the spherical glass receiving position. Then, the extended portion 25 of the mold 20 that has passed the molten glass receiving position rides on the inlet inclined surface 311, slides on the upper surface 313, then slides on the outlet inclined portion 315, and reaches the spherical glass receiving position. As a result, only the molds 20b to 20e moved downstream of the molten glass receiving position and upstream of the spherical glass lump deriving position vibrate. The mold may be vibrated only in a part downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position, and conversely, other than downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position. It may span.

振動部30の振動は、特に限定されないが、凹部22内の溶融ガラス塊MGの回転をより促進できる点で、重力方向に上下動することが好ましい。なお、重力方向に上下動は、振動のベクトルが重力方向に関する上下方向への成分を有していればよく、他方向への成分を有していてはならないことを意味しない。   Although the vibration of the vibration part 30 is not specifically limited, It is preferable to move up and down in the direction of gravity in that the rotation of the molten glass lump MG in the recess 22 can be further promoted. Note that the vertical movement in the direction of gravity does not mean that the vibration vector has a component in the vertical direction with respect to the direction of gravity and should not have a component in the other direction.

入口傾斜面311及び上面313の交差部、並びに上面313及び出口傾斜部315の交差部は、成形型20の移動を円滑化できる点で滑らかであることが好ましい。つまり本実施形態では交差部に若干の角部が存在するが、かかる交差部は曲面で構成することが好ましい。   It is preferable that the intersecting portion of the entrance inclined surface 311 and the upper surface 313 and the intersecting portion of the upper surface 313 and the exit inclined portion 315 are smooth in that the movement of the mold 20 can be smoothed. In other words, in the present embodiment, there are some corners at the intersection, but it is preferable that the intersection be a curved surface.

[使用方法]
次に、以上の球状ガラス塊製造装置10を用いた球状ガラス塊製造方法について説明する。
[how to use]
Next, the spherical glass lump manufacturing method using the above spherical glass lump manufacturing apparatus 10 will be described.

まず、駆動源を駆動し、設置台41の回転を通じて複数の成形型20の移動を開始する。以下、成形型20aを例にとって説明する。成形型20aが溶融ガラス受容位置に移動してくると、溶融ガラス供給装置50の先端から溶融ガラスの液滴GDが落下し、凹部22に受容される(供給工程)。特に本実施形態では、凹部22が多孔質で形成されている。そして、気体供給源23から供給された気体が多孔質体213の部分から噴出されている(気体噴出工程)ため、気体が溶融ガラス塊MGに作用し、溶融ガラス塊MGを徐々に冷却してゆく。   First, the drive source is driven, and the movement of the plurality of molds 20 is started through the rotation of the installation table 41. Hereinafter, the molding die 20a will be described as an example. When the molding die 20a moves to the molten glass receiving position, a molten glass droplet GD falls from the tip of the molten glass supply device 50 and is received in the recess 22 (supplying step). In particular, in this embodiment, the recess 22 is formed of a porous material. And since the gas supplied from the gas supply source 23 is ejected from the part of the porous body 213 (gas ejection process), the gas acts on the molten glass lump MG and gradually cools the molten glass lump MG. go.

続いて、溶融ガラス塊MGを受けた成形型20aは球状ガラス塊導出位置へと順次移動させられる(移動工程)。前述のように、振動部30は溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流に移動した成形型へ振動エネルギが伝導可能な位置に固定されているので、移動工程の過程で延出部25aが入口傾斜面311に乗り上げ、続いて上面313を摺動する。この間、振動台31からの振動エネルギが延出部25aを介して成形型20aへと伝導し、成形型20aが振動させられる(振動工程)。すると、図4に示されるように、凹部22上の溶融ガラス塊MGに作用する噴出気体の方向及び力が変動するため、溶融ガラス塊MGがランダムに回転し、略球状へと徐々に成形されてゆく。   Subsequently, the mold 20a that has received the molten glass lump MG is sequentially moved to the spherical glass lump derivation position (moving step). As described above, the vibration part 30 is fixed at a position where vibration energy can be conducted to the mold that has moved downstream of the molten glass receiving position and upstream of the spherical glass lump extraction position. The portion 25a rides on the entrance inclined surface 311 and then slides on the upper surface 313. During this time, vibration energy from the vibration table 31 is conducted to the mold 20a through the extending portion 25a, and the mold 20a is vibrated (vibration process). Then, as shown in FIG. 4, since the direction and force of the jet gas acting on the molten glass lump MG on the concave portion 22 fluctuate, the molten glass lump MG rotates at random and is gradually formed into a substantially spherical shape. Go.

溶融ガラス塊MGの回転は、噴出された気体により凹部22から浮上させた状態で行うことが好ましい。このためには、溶融ガラス塊MGの質量、凹部22の形状等を考慮して、気体の噴出量を調節することが好ましい。なお、浮上状態は、球状ガラス塊導出位置までの移動の間の全時間において維持されることが好ましいが、一部に非浮上状態が存在してもよい。   The rotation of the molten glass block MG is preferably performed in a state where the molten glass block MG is floated from the recess 22 by the jetted gas. For this purpose, it is preferable to adjust the gas ejection amount in consideration of the mass of the molten glass block MG, the shape of the recess 22 and the like. In addition, although it is preferable that a floating state is maintained in the whole time between the movement to a spherical glass lump derivation | leading-out position, a non-floating state may exist in part.

やがて成形型20aの延出部25aが出口傾斜部315を滑りおり終えると、成形型20a及び振動部30の接触がなくなるため、成形型20aの振動が収まり、振動工程が終了する。その後、成形型20aは球状ガラス塊導出位置(図2における成形型20fの位置)に到達し、凹部22内に成形された球状ガラス塊が導出される。このように、振動工程は、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流において行われる。   When the extension part 25a of the mold 20a finishes sliding on the outlet inclined part 315, the mold 20a and the vibration part 30 are no longer in contact with each other, so that the vibration of the mold 20a is settled and the vibration process ends. Thereafter, the mold 20a reaches the spherical glass lump derivation position (position of the mold 20f in FIG. 2), and the spherical glass lump molded in the recess 22 is derived. Thus, the vibration process is performed downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position.

このようにして製造されたガラス塊は、高い真球度を有するため、公知の精密プレス成形装置を用いて精密プレス成形することで優れた光学素子を製造できる。   Since the glass lump thus produced has a high sphericity, an excellent optical element can be produced by precision press molding using a known precision press molding apparatus.

[作用効果]
本実施形態によれば、以下のような作用効果が得られる。
[Function and effect]
According to this embodiment, the following effects can be obtained.

成形型20が振動するため、成形型20の凹部22に受容された溶融ガラス塊MGがランダムに回転し、球状化する。よって、ガラス塊の真球度を向上でき、球状化のための研削及び研磨の負担が軽減されるため、製造コスト及び環境への負荷を軽減できる。   Since the mold 20 vibrates, the molten glass lump MG received in the recess 22 of the mold 20 rotates at random and spheroidizes. Therefore, the sphericity of the glass lump can be improved, and the burden of grinding and polishing for spheroidization is reduced, so that the manufacturing cost and the burden on the environment can be reduced.

凹部22の最大深さDを凹部22の底部221の曲率半径rの1.5倍以上としたので、溶融ガラス塊MGが凹部22に囲まれ、密度の偏重化が抑制される。これにより、円滑な回転が促進されるため、ガラス塊の真球度をより向上できる。   Since the maximum depth D of the recess 22 is 1.5 times or more the radius of curvature r of the bottom 221 of the recess 22, the molten glass lump MG is surrounded by the recess 22, and uneven density is suppressed. Thereby, since smooth rotation is accelerated | stimulated, the sphericity of a glass lump can be improved more.

凹部22を多孔質で形成し、気体を噴出できるので、溶融ガラスの凹部22への癒着が抑制され、ガラス塊の純度を増加できる。   Since the concave portion 22 is formed of a porous material and gas can be ejected, adhesion of the molten glass to the concave portion 22 is suppressed, and the purity of the glass lump can be increased.

気体が溶融ガラス塊MGへと噴出されるので、溶融ガラスの凹部22への癒着がより抑制され、ガラス塊の純度をより増加できる。しかも、振動部30による成形型20の振動に伴い、噴出気体が溶融ガラス塊MGに与える力のバランスがくずれるため、溶融ガラス塊MGのランダムな回転がより促進される。これにより、ガラス塊の真球度をより向上できる。   Since the gas is ejected to the molten glass lump MG, adhesion of the molten glass to the concave portion 22 is further suppressed, and the purity of the glass lump can be further increased. In addition, since the balance of the force exerted by the ejected gas on the molten glass lump MG is lost due to the vibration of the mold 20 by the vibration unit 30, random rotation of the molten glass lump MG is further promoted. Thereby, the sphericity of a glass lump can be improved more.

複数の成形型20を設けたので、多量のガラス塊を製造できる。成形型20の数が増えた分、必要な振動エネルギが増し、製造コストの増加が懸念されるが、本実施形態によれば、溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流においてのみ成形型20が振動する構成としたので、振動エネルギが必要最低限に抑えられ、製造コストを削減できる。   Since a plurality of molds 20 are provided, a large amount of glass lump can be produced. As the number of molding dies 20 increases, the required vibration energy increases, and there is a concern about an increase in manufacturing cost. However, according to this embodiment, only downstream of the molten glass receiving position and upstream of the spherical glass lump deriving position. Since the mold 20 is configured to vibrate, vibration energy is suppressed to the minimum necessary, and the manufacturing cost can be reduced.

溶融ガラス受容位置の下流且つ球状ガラス塊導出位置の上流に移動した成形型20に自然に振動エネルギが伝導し、溶融ガラス塊MGの球状化が行われる。このため、振動部30を移動する機構や、かかる機構の制御手段を別途設ける必要性が低く、装置10の構成を簡素化できる。   Vibration energy is naturally conducted to the mold 20 moved downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position, and the molten glass lump MG is spheroidized. For this reason, it is not necessary to separately provide a mechanism for moving the vibration unit 30 and a control unit for the mechanism, and the configuration of the apparatus 10 can be simplified.

〔変形例〕
本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。例えば、以下のような変形例が挙げられる。
[Modification]
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. For example, the following modifications are mentioned.

図5は、本発明の変形例に係る球状ガラス塊製造装置10Aの断面図である。本変形例は、振動部30Aの構成において前記実施形態と異なる。   FIG. 5 is a cross-sectional view of a spherical glass lump manufacturing apparatus 10A according to a modification of the present invention. This modification is different from the above embodiment in the configuration of the vibration unit 30A.

即ち、振動部30Aは複数の振動台31Aa〜31Adを有し、これら振動台31Aa〜31Adは延出部25との間隔を調節する図示しない間隔調節手段を有している。これにより、球状ガラス塊導出位置の上流を通過した延出部25へと振動台31Aが接近して接触し、延出部25を介して振動エネルギを凹部22へと伝導させる。この状態をしばらく維持した後、延出部25が25eの位置に到達すると、振動台31Aが延出部25から離間し、振動工程が終了する。離間した振動台31Aは再び31Aaの位置に戻って、延出部25への接近を繰り返す。   That is, the vibration unit 30A includes a plurality of vibration tables 31Aa to 31Ad, and these vibration tables 31Aa to 31Ad include a distance adjusting unit (not shown) that adjusts the distance from the extending portion 25. As a result, the vibration table 31 </ b> A approaches and contacts the extension portion 25 that has passed upstream of the spherical glass lump derivation position, and the vibration energy is conducted to the recess 22 via the extension portion 25. After this state is maintained for a while, when the extension part 25 reaches the position 25e, the vibration table 31A is separated from the extension part 25, and the vibration process ends. The separated vibration table 31A returns again to the position of 31Aa and repeats approaching to the extending portion 25.

本発明の一実施形態に係る球状ガラス塊製造装置の全体斜視図である。It is a whole perspective view of the spherical glass lump manufacturing apparatus concerning one embodiment of the present invention. 図1の球状ガラス塊製造装置をP方向から見た側面図である。It is the side view which looked at the spherical glass lump manufacturing apparatus of FIG. 1 from the P direction. 凹部の中心軸を通る断面における図1の成形型の断面図である。It is sectional drawing of the shaping | molding die of FIG. 1 in the cross section which passes along the central axis of a recessed part. 図1の球状ガラス塊製造装置を構成する成形型の切欠斜視図である。It is a notch perspective view of the shaping | molding die which comprises the spherical glass lump manufacturing apparatus of FIG. 本発明の変形例に係る球状ガラス塊製造装置の概略構成図である。It is a schematic block diagram of the spherical glass lump manufacturing apparatus which concerns on the modification of this invention.

符号の説明Explanation of symbols

10、10A 球状ガラス塊製造装置
20 成形型
213 多孔質体
22 凹部
221 底部
30、30A 振動部(振動手段)
40 移動部(移動手段)
50 溶融ガラス供給装置
MG 溶融ガラス塊
DESCRIPTION OF SYMBOLS 10, 10A spherical glass lump manufacturing apparatus 20 Mold 213 Porous body 22 Recessed part 221 Bottom part 30, 30A Vibration part (vibration means)
40 Moving part (moving means)
50 Molten glass supply device MG Molten glass lump

Claims (18)

溶融ガラスから球状ガラス塊を成形する成形型と、この成形型を振動させる振動手段と、を備えるガラス成形装置。   A glass forming apparatus comprising a forming die for forming a spherical glass lump from molten glass, and vibration means for vibrating the forming die. 前記成形型は、部分球面状の底部を有し溶融ガラスを受容する凹部を備え、この凹部の最大深さは、前記底部の曲率半径の1.5倍以上である請求項1記載のガラス成形装置。   2. The glass molding according to claim 1, wherein the mold has a concave portion that has a partially spherical bottom and receives molten glass, and the maximum depth of the concave is 1.5 times or more the radius of curvature of the bottom. apparatus. 前記凹部は多孔質で形成されている請求項2記載のガラス成形装置。   The glass forming apparatus according to claim 2, wherein the recess is formed of a porous material. 気体を前記凹部に供給し、前記多孔質の部分から噴出させる気体供給手段を更に備える請求項3記載のガラス成形装置。   The glass forming apparatus according to claim 3, further comprising gas supply means for supplying a gas to the recess and ejecting the gas from the porous portion. 前記成形型は複数設けられ、
前記ガラス成形装置は、前記成形型を溶融ガラス受容位置から球状ガラス塊導出位置まで順次移動する移動手段を更に備え、
前記振動手段は、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流において前記成形型を振動させる請求項1から4いずれか記載のガラス成形装置。
A plurality of the molds are provided,
The glass forming apparatus further comprises moving means for sequentially moving the mold from a molten glass receiving position to a spherical glass lump derivation position,
5. The glass forming apparatus according to claim 1, wherein the vibration unit vibrates the forming die downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position.
前記振動手段は、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流に移動した前記成形型へ振動エネルギが伝導可能な位置に固定されている請求項5記載のガラス成形装置。   6. The glass forming apparatus according to claim 5, wherein the vibration means is fixed at a position where vibration energy can be conducted to the forming mold moved downstream of the molten glass receiving position and upstream of the spherical glass lump extracting position. 請求項1から6いずれか記載のガラス成形装置と、前記成形型に溶融ガラスを供給する溶融ガラス供給装置と、を備える球状ガラス塊製造装置。   A spherical glass lump manufacturing apparatus comprising: the glass forming apparatus according to claim 1; and a molten glass supply apparatus that supplies molten glass to the mold. 請求項7記載の球状ガラス塊製造装置と、この球状ガラス塊製造装置で製造される球状ガラス塊を精密プレス成形する精密プレス成形装置と、を備える光学素子の製造装置。   An apparatus for manufacturing an optical element, comprising: the spherical glass lump manufacturing apparatus according to claim 7; and a precision press molding apparatus for precisely press-molding the spherical glass lump manufactured by the spherical glass lump manufacturing apparatus. 溶融ガラスから球状ガラス塊を製造する球状ガラス塊製造方法であって、
溶融ガラスから球状ガラス塊を成形する成形型を振動させる振動工程を有する球状ガラス塊製造方法。
A spherical glass lump production method for producing a spherical glass lump from molten glass,
A method for producing a spherical glass lump comprising a vibration step of vibrating a mold for forming a spherical glass lump from molten glass.
前記成形型は、部分球面状の底部を有し溶融ガラスを受容する凹部を備え、この凹部の最大深さは、前記底部の曲率半径の1.5倍以上であり、
前記方法は、前記凹部に、溶融ガラスを供給する供給工程を有する請求項9記載の球状ガラス塊製造方法。
The mold has a concave portion that has a partially spherical bottom and receives molten glass, and the maximum depth of the concave is 1.5 times or more the radius of curvature of the bottom,
The spherical glass lump manufacturing method according to claim 9, wherein the method includes a supplying step of supplying molten glass to the concave portion.
前記凹部は多孔質で形成されている請求項10記載の球状ガラス塊製造方法。   The spherical glass lump manufacturing method according to claim 10, wherein the recess is formed of a porous material. 気体を前記凹部に供給し、前記多孔質の部分から噴出させる気体噴出工程を更に有する請求項11記載の球状ガラス塊製造方法。   The spherical glass lump manufacturing method according to claim 11, further comprising a gas ejection step of supplying a gas to the recess and ejecting the gas from the porous portion. 前記成形型を複数設け、溶融ガラス受容位置から球状ガラス塊導出位置まで順次移動する移動工程を更に有し、
前記振動工程は、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流において行う請求項9から12いずれか記載の球状ガラス塊製造方法。
A plurality of the molds are provided, and further includes a moving step of sequentially moving from the molten glass receiving position to the spherical glass lump leading position,
The spherical glass lump manufacturing method according to claim 9, wherein the vibration step is performed downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position.
前記振動の振動源を、前記溶融ガラス受容位置の下流且つ前記球状ガラス塊導出位置の上流に移動した前記成形型へ振動エネルギが伝導可能な位置に固定する請求項13記載の球状ガラス塊製造方法。   The spherical glass lump manufacturing method according to claim 13, wherein the vibration source of vibration is fixed at a position where vibration energy can be conducted to the mold moved downstream of the molten glass receiving position and upstream of the spherical glass lump derivation position. . 請求項9から14いずれか記載の球状ガラス塊製造方法により製造された球状ガラス塊を精密プレス成形する光学素子の製造方法。   The manufacturing method of the optical element which carries out precision press molding of the spherical glass lump manufactured by the spherical glass lump manufacturing method in any one of Claims 9-14. 溶融ガラスから球状ガラス塊を成形する成形型であって、
部分球面状の底部を有し溶融ガラスを受容する凹部を備え、この凹部の最大深さは、前記底部の曲率半径の1.5倍以上である成形型。
A mold for molding a spherical glass lump from molten glass,
A mold having a concave part having a partially spherical bottom and receiving molten glass, wherein the maximum depth of the concave part is at least 1.5 times the radius of curvature of the bottom.
前記凹部は多孔質で形成されている請求項16記載の成形型。   The mold according to claim 16, wherein the recess is formed of a porous material. 気体を前記凹部に供給し、前記多孔質の部分から噴出させる気体供給手段を更に備える請求項17記載の成形型。   The mold according to claim 17, further comprising gas supply means for supplying gas to the recess and ejecting the gas from the porous portion.
JP2008092084A 2008-03-31 2008-03-31 Glass forming unit, spherical glass gob production device, and spherical glass gob production method Pending JP2009242186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092084A JP2009242186A (en) 2008-03-31 2008-03-31 Glass forming unit, spherical glass gob production device, and spherical glass gob production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092084A JP2009242186A (en) 2008-03-31 2008-03-31 Glass forming unit, spherical glass gob production device, and spherical glass gob production method

Publications (1)

Publication Number Publication Date
JP2009242186A true JP2009242186A (en) 2009-10-22

Family

ID=41304553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092084A Pending JP2009242186A (en) 2008-03-31 2008-03-31 Glass forming unit, spherical glass gob production device, and spherical glass gob production method

Country Status (1)

Country Link
JP (1) JP2009242186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018484A1 (en) * 2011-07-29 2013-02-07 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing glass molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018484A1 (en) * 2011-07-29 2013-02-07 コニカミノルタアドバンストレイヤー株式会社 Method for manufacturing glass molding

Similar Documents

Publication Publication Date Title
JP5198036B2 (en) Precision press molding preform manufacturing apparatus, precision press molding preform manufacturing method, and optical element manufacturing method
JP6800627B2 (en) Glass manufacturing method, lens manufacturing method and melting equipment
CN100339322C (en) Method and apparatus for producing glass blocks
JP2003095670A (en) Methods for producing glass molding, press-molded article and glass optical element, and apparatus for producing glass optical molding
JP2009242186A (en) Glass forming unit, spherical glass gob production device, and spherical glass gob production method
JP4306163B2 (en) Manufacturing method of glass microdrop, manufacturing method of glass microoptical element, and manufacturing apparatus thereof
JP5202610B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP5222928B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP2002154834A5 (en)
CN1301222C (en) Press-molding method and apparatus and method of producing an optical element
JP3974376B2 (en) Method for producing glass lump, method for producing glass molded product, and method for producing optical element
JP5932846B2 (en) Glass lump manufacturing method, glass lump molding apparatus, press molding material, glass molded product, spherical preform, and optical element manufacturing method
CN104229439B (en) Direction adjusting mechanism for ceramic insertion cores
JP2009242177A (en) Glass gob production method and glass gob production device
JP3888664B2 (en) Method for producing glass lump, method for producing molded glass, and apparatus used in these methods
CN205294004U (en) Feeding device
JP2013170116A (en) Apparatus and method for producing spherical glass material
CN116174606B (en) Automatic cake feeding, stamping and cover discharging integrated forming equipment for pump cover
JP4949324B2 (en) Glass molded body manufacturing method and glass molded body manufacturing apparatus
CN113423669B (en) Silica glass crucible manufacturing device and manufacturing method
CN208929014U (en) A kind of baking tray molding anti-deformation stress reduction mold
JPH0959031A (en) Device for molding glass bottle and plunger device therefor
JP5813140B2 (en) Glass lump forming apparatus, glass lump manufacturing method, and glass molded product manufacturing method
CN1044247A (en) Make the equipment of the method and this method of enforcement of metal wire
JP2000317810A (en) Fluid polishing apparatus