JP2009238921A - Optimal operating temperature control method for high-output diamond semiconductor element - Google Patents

Optimal operating temperature control method for high-output diamond semiconductor element Download PDF

Info

Publication number
JP2009238921A
JP2009238921A JP2008081374A JP2008081374A JP2009238921A JP 2009238921 A JP2009238921 A JP 2009238921A JP 2008081374 A JP2008081374 A JP 2008081374A JP 2008081374 A JP2008081374 A JP 2008081374A JP 2009238921 A JP2009238921 A JP 2009238921A
Authority
JP
Japan
Prior art keywords
diamond semiconductor
operating temperature
diamond
semiconductor device
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008081374A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ikeda
和寛 池田
Hitoshi Umezawa
仁 梅澤
Shinichi Shikada
真一 鹿田
Natsuo Tatsumi
夏生 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008081374A priority Critical patent/JP2009238921A/en
Publication of JP2009238921A publication Critical patent/JP2009238921A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimal operating temperature control method for a high-output diamond semiconductor element that makes energy-saving operation possible by providing an optimal doping density for each temperature area and minimizing the resistance of a high-temperature operating diamond semiconductor in its operation. <P>SOLUTION: The optimal operating temperature control method for the high-output diamond semiconductor element is characterized in that the optimal operating temperature of the high-output diamond semiconductor element is set by controlling impurity doping density, the high-output diamond semiconductor element having a structure comprising a Schottky electrode as a cathode, a diamond p<SP>-</SP>drift layer, a diamond p<SP>+</SP>ohmic layer, and an ohmic electrode as an anode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高出力ダイヤモンド半導体素子の最適作動温度制御方法に関し、特に代表的には、ダイヤモンドショットキーバリアダイオード、ダイヤモンド電界効果トランジスタなどに好適な高出力ダイヤモンド半導体素子の最適作動温度制御方法である。   The present invention relates to a method for controlling the optimum operating temperature of a high-power diamond semiconductor device, and more specifically, is typically a method for controlling the optimum operating temperature of a high-power diamond semiconductor device suitable for a diamond Schottky barrier diode, a diamond field effect transistor, or the like. .

従来の技術では、ダイヤモンドは、大きなバンドギャップ(5.5eV)、高いアバランシェ破壊電界(10MV/cm)、高い飽和キャリア移動度(4000cm2/Vs)、高い熱伝導率(20W/cmK)を有し、高温度や放射線曝露環境下で実用動作可能な素子として期待されている。これまでにこれらの特徴を生かした電子素子を開発するため、ダイヤモンドダイオードの構造および作製方法が提案されている。
同時に、高温動作には、用途ごとの定常温度、最適温度の違いをふまえた設計が必要である。
In the prior art, diamond has a large band gap (5.5 eV), high avalanche breakdown electric field (10 MV / cm), high saturated carrier mobility (4000 cm 2 / Vs), and high thermal conductivity (20 W / cmK). It is expected as a device that can be practically operated under high temperature and radiation exposure environment. In order to develop an electronic device taking advantage of these characteristics, a structure and a manufacturing method of a diamond diode have been proposed.
At the same time, high temperature operation requires a design that takes into account the difference between the steady temperature and the optimum temperature for each application.

ダイヤモンドは高温動作を行うことの出来る半導体として有望である。これまでは動作温度領域に最適なドーピング濃度について、詳細に議論はされていなかった。
本発明では、各温度領域における最適なドーピング濃度を提供し、高温動作ダイヤモンド半導体での動作時の抵抗を最低限にし、大電流省エネルギー動作を可能にする高出力ダイヤモンド半導体素子の最適作動温度制御方法を提供する。
Diamond is promising as a semiconductor capable of high temperature operation. Until now, the optimum doping concentration in the operating temperature region has not been discussed in detail.
The present invention provides an optimum operating temperature control method for a high-power diamond semiconductor device that provides optimum doping concentration in each temperature region, minimizes resistance during operation in a high-temperature operating diamond semiconductor, and enables high-current energy-saving operation. I will provide a.

上記目的を達成するために本発明は、各温度領域において最適なドリフト層不純物濃度を与えることで、目的とする定常運転時の温度でオン抵抗が最も低く、損失が少ない高出力ダイヤモンド半導体素子の最適作動温度制御方法を見出すに至った。
すなわち、本発明は、ショットキー電極をカソードとし、オーミック電極をアノードとし、ショットキー電極、ダイヤモンドpドリフト層、ダイヤモンドpオーミック層、オーミック電極からなる構造の高出力ダイヤモンド半導体素子において、不純物ドーピング濃度をコントロールすることにより、高出力ダイヤモンド半導体素子の最適作動温度を設定することを特徴とする高出力ダイヤモンド半導体素子の最適作動温度制御方法である。
また、本発明では、不純物をボロンとすることができる。
さらに、本発明では、キャリアを正孔でとすることができる。
また、本発明では、アクセプタ濃度を1×1014から1×1018 cm-3とすることができる。
さらに、本発明では、pもしくはp-ドリフト層膜厚を0.1〜100μmとすることができる。
また、本発明では、アクセプタ濃度が1×1014〜1×1015であり、定常運転時に100℃〜200℃で動作させることができる。
さらに、本発明では、アクセプタ濃度が1×1015〜1×1016であり、定常運転時に150℃〜250℃で動作させることができる。
また、本発明では、アクセプタ濃度が1×1016〜1×1017であり、定常運転時に200℃〜300℃で動作させることができる。
さらに、本発明では、高出力ダイヤモンド半導体素子をショットキーバリヤーダイオードとすることができる。
In order to achieve the above object, the present invention provides an optimum drift layer impurity concentration in each temperature region, so that the on-resistance is the lowest at the target steady-state temperature and the loss of the high-power diamond semiconductor device is low. The optimal operating temperature control method has been found.
That is, the present invention relates to a high-power diamond semiconductor device having a structure including a Schottky electrode as a cathode, an ohmic electrode as an anode, and a Schottky electrode, a diamond p - drift layer, a diamond p + ohmic layer, and an ohmic electrode. An optimum operating temperature control method for a high-power diamond semiconductor device is characterized in that the optimum operating temperature of the high-power diamond semiconductor device is set by controlling the concentration.
In the present invention, the impurity can be boron.
Furthermore, in the present invention, carriers can be holes.
In the present invention, the acceptor concentration can be 1 × 10 14 to 1 × 10 18 cm −3 .
Furthermore, in the present invention, the p or p-drift layer thickness can be 0.1 to 100 μm.
Moreover, in this invention, acceptor density | concentration is 1 * 10 < 14 > -1 * 10 < 15 >, and it can be made to operate | move at 100 to 200 degreeC at the time of steady operation.
Furthermore, in this invention, acceptor density | concentration is 1 * 10 < 15 > -1 * 10 < 16 >, and it can be made to operate | move at 150 to 250 degreeC at the time of steady operation.
Moreover, in this invention, acceptor density | concentration is 1 * 10 < 16 > -1 * 10 < 17 >, It can be made to operate | move at 200 to 300 degreeC at the time of steady operation.
Furthermore, in the present invention, the high-power diamond semiconductor element can be a Schottky barrier diode.

本発明の高出力ダイヤモンド半導体素子の最適作動温度制御方法により、定常運転時の抵抗値を最低にすることができるので、熱暴走を防ぐことはもとより、省エネルギーデバイスを作ることができる。   According to the optimum operating temperature control method of the high-power diamond semiconductor element of the present invention, the resistance value during the steady operation can be minimized, so that not only thermal runaway can be prevented but also an energy saving device can be made.

本発明のショットキーバリアダイオードに供するダイヤモンドpドリフト層のボロン濃度はボロン濃度を1×1014〜1×1018とすることが出来る。
ショットキー電極の形状はどのような形状でもよいが、通常ダイヤモンドドリフト層上に1個以上配置されている。
The boron concentration of the diamond p - drift layer used in the Schottky barrier diode of the present invention can be set to 1 × 10 14 to 1 × 10 18 .
The Schottky electrode may have any shape, but usually one or more are arranged on the diamond drift layer.

本発明で用いるボロン濃度を1×1014〜1×1018のダイヤモンド半導体は、作成方法は限定されない。ボロン濃度1×1020以上のp+層上に好ましくはCVD法により0.1〜100μm形成する。 The method for producing the diamond semiconductor having a boron concentration of 1 × 10 14 to 1 × 10 18 used in the present invention is not limited. Preferably, 0.1 to 100 μm is formed on the p + layer having a boron concentration of 1 × 10 20 or more by the CVD method.

さらに本発明においては、ダイヤモンドならどのタイプのものでも良いが、結晶構造(001)、(111)、(110)などが挙げられ、ダイヤモンド表面では、炭素終端ダイヤモンド、水素終端ダイヤモンド、酸素終端のダイヤモンドなどが挙げられる。
しかし、少なくともショットキー電極に接合するダイヤモンドは、ダイヤモンド表面が酸素終端のダイヤモンドが特に適していることが判明している。
本発明では、オーミック電極の作成についても、周知の材料と周知方法を用いてどのような手順で行っても良い。
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
Furthermore, in the present invention, any type of diamond may be used, but examples thereof include crystal structures (001), (111), and (110). On the diamond surface, carbon-terminated diamond, hydrogen-terminated diamond, and oxygen-terminated diamond. Etc.
However, it has been found that at least diamond bonded to the Schottky electrode is particularly suitable for diamond whose diamond surface is oxygen-terminated.
In the present invention, the ohmic electrode may be formed by any procedure using a known material and a known method.
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

まず、p+膜状に濃度の異なるp-膜を成膜した酸素終端ダイヤモンドそれぞれに対して、電子線描画装置にて30ミクロンの直径を持つショットキー電極パターンを作製し、Mo薄膜を電子線蒸着法30nm形成した。なお、オーミック電極はp-膜の一部をICPエッチングによりp+層まで切削し、そこにTi、Pt、Auと順に成膜し、RTA炉において420℃という条件で30分アニールすることで得た。図1に構造を示す。   First, a Schottky electrode pattern with a diameter of 30 microns was prepared with an electron beam lithography system for each oxygen-terminated diamond in which p- films with different concentrations were formed in a p + film, and a Mo thin film was deposited by electron beam evaporation. Method 30 nm was formed. The ohmic electrode was obtained by cutting a part of the p- film down to the p + layer by ICP etching, forming Ti, Pt, and Au in that order in that order, and annealing in an RTA furnace at 420 ° C. for 30 minutes. . Figure 1 shows the structure.

実施例1で得られた各ダイヤモンド半導体素子について、電圧電流特性を測定したものを図2に示す。濃度の違いにより、オン抵抗値が最低になる温度がことなることがわかる。
このことから、それぞれ所望する動作温度においての最適濃度を与えることができることが判明した。
FIG. 2 shows the voltage-current characteristics of each diamond semiconductor element obtained in Example 1. It can be seen that the temperature at which the on-resistance value is minimized varies depending on the concentration.
From this, it has been found that the optimum concentration at each desired operating temperature can be provided.

実施例1を元として詳細に濃度とオン抵抗−温度の関係を示したものが図3である。図3に基づいて、所望の最適作動温度を設定し、最適のボロン濃度とオン抵抗-温度の関係を求めて、ボロン濃度を設定することができる。
このボロン濃度に基づいて、高出力ダイヤモンド半導体素子を製造することができる。
FIG. 3 shows the relationship between concentration and on-resistance-temperature in detail based on Example 1. Based on FIG. 3, it is possible to set a desired optimum operating temperature, obtain an optimum boron concentration and a relationship between on-resistance and temperature, and set the boron concentration.
Based on this boron concentration, a high-power diamond semiconductor element can be manufactured.

本発明の高出力ダイヤモンド半導体素子は、ダイヤモンドショットキーバリアダイオード、ダイヤモンドpnダイオード、ダイヤモンドサイリスタ、ダイヤモンドトランジスタ、ダイヤモンド電界効果トランジスタなどに適用が可能であり、産業上の利用価値が高い。   The high-power diamond semiconductor element of the present invention can be applied to diamond Schottky barrier diodes, diamond pn diodes, diamond thyristors, diamond transistors, diamond field effect transistors, and the like, and has high industrial utility value.

実施例の構造Example structure ボロン濃度とドリフト層1μmあたりのオン抵抗-温度の関係(測定値)Relation between boron concentration and on-resistance / temperature per 1μm drift layer (measured value) 拡張したボロン濃度とドリフト層1μmあたりのオン抵抗-温度の関係Relationship between expanded boron concentration and on-resistance per 1 μm drift layer vs. temperature

Claims (9)

ショットキー電極をカソードとし、オーミック電極をアノードとし、ショットキー電極、ダイヤモンドpドリフト層、ダイヤモンドpオーミック層、オーミック電極からなる構造の高出力ダイヤモンド半導体素子において、不純物ドーピング濃度をコントロールすることにより、高出力ダイヤモンド半導体素子の最適作動温度を設定することを特徴とする高出力ダイヤモンド半導体素子の最適作動温度制御方法。 By controlling the impurity doping concentration in a high-power diamond semiconductor device having a structure comprising a Schottky electrode as a cathode, an ohmic electrode as an anode, a Schottky electrode, a diamond p - drift layer, a diamond p + ohmic layer, and an ohmic electrode A method for controlling an optimum operating temperature of a high-power diamond semiconductor device, characterized in that an optimum operating temperature of the high-power diamond semiconductor device is set. 不純物がボロンである請求項1に記載した高出力ダイヤモンド半導体素子の最適作動温度制御方法。   The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to claim 1, wherein the impurity is boron. キャリアは正孔である請求項1に記載した高出力ダイヤモンド半導体素子の最適作動温度制御方法。   The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to claim 1, wherein the carriers are holes. アクセプタ濃度が1×1014から1×1018 cm-3である請求項1に記載した高出力ダイヤモンド半導体素子の最適作動温度制御方法。 The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to claim 1, wherein the acceptor concentration is 1 x 10 14 to 1 x 10 18 cm -3 . pもしくはp-ドリフト層膜厚は0.1〜20μmである請求項1〜4のいずれかひとつに示した高出力ダイヤモンド半導体素子の最適作動温度制御方法。   The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to any one of claims 1 to 4, wherein the thickness of the p or p- drift layer is 0.1 to 20 µm. アクセプタ濃度が1×1014〜1×1015であり、定常運転時に100℃〜200℃で動作させる請求項5に記載した高出力ダイヤモンド半導体素子の最適作動温度制御方法。 The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to claim 5, wherein the acceptor concentration is 1 × 10 14 to 1 × 10 15 and the operation is performed at 100 ° C. to 200 ° C. during steady operation. アクセプタ濃度が1×1015〜1×1016であり、定常運転時に150℃〜250℃で動作させる請求項5に記載した高出力ダイヤモンド半導体素子の最適作動温度制御方法。 The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to claim 5, wherein the acceptor concentration is 1 × 10 15 to 1 × 10 16 and the operation is performed at 150 ° C. to 250 ° C. during steady operation. アクセプタ濃度が1×1016〜1×1017であり、定常運転時に200℃〜300℃で動作させる請求項5に記載した高出力ダイヤモンド半導体素子の最適作動温度制御方法。 The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to claim 5, wherein the acceptor concentration is 1 × 10 16 to 1 × 10 17 and the operation is performed at 200 ° C. to 300 ° C. during steady operation. 高出力ダイヤモンド半導体素子がショットキーバリヤーダイオードである請求項6〜請求項8のいずれかひとつに記載された高出力ダイヤモンド半導体素子の最適作動温度制御方法。   The method for controlling the optimum operating temperature of a high-power diamond semiconductor device according to any one of claims 6 to 8, wherein the high-power diamond semiconductor device is a Schottky barrier diode.
JP2008081374A 2008-03-26 2008-03-26 Optimal operating temperature control method for high-output diamond semiconductor element Pending JP2009238921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081374A JP2009238921A (en) 2008-03-26 2008-03-26 Optimal operating temperature control method for high-output diamond semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081374A JP2009238921A (en) 2008-03-26 2008-03-26 Optimal operating temperature control method for high-output diamond semiconductor element

Publications (1)

Publication Number Publication Date
JP2009238921A true JP2009238921A (en) 2009-10-15

Family

ID=41252540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081374A Pending JP2009238921A (en) 2008-03-26 2008-03-26 Optimal operating temperature control method for high-output diamond semiconductor element

Country Status (1)

Country Link
JP (1) JP2009238921A (en)

Similar Documents

Publication Publication Date Title
JP5781291B2 (en) Fast recovery diode
US11637182B2 (en) Silicon carbide semiconductor device
JP5439215B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP7263740B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2009076642A (en) Semiconductor device
JP2010067901A (en) Semiconductor device and method of manufacturing the same
JP2011071281A (en) Semiconductor device and method of manufacturing the same
JP5651410B2 (en) Silicon carbide Schottky barrier diode and manufacturing method thereof
JP2013140974A (en) Power element and manufacturing method therefore
JP5802333B2 (en) Semiconductor device manufacturing method and semiconductor device
JPWO2009104299A1 (en) Semiconductor device and manufacturing method of semiconductor device
US9837275B2 (en) Fabrication method of fast recovery diode
JP2022060802A (en) Silicon carbide semiconductor device
US9978598B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2009238921A (en) Optimal operating temperature control method for high-output diamond semiconductor element
JP2011100948A (en) Semiconductor device, and method for manufacturing the same
JP7127748B2 (en) Silicon carbide semiconductor device, power conversion device, and method for manufacturing silicon carbide semiconductor device
JP2018082017A (en) Silicon carbide semiconductor device manufacturing method
JP2022038594A (en) Silicon carbide semiconductor device, and method of manufacturing the same
JP2018503248A (en) A method of manufacturing a wide bandgap junction barrier Schottky diode.
JP6305751B2 (en) Schottky diode and manufacturing method thereof
JPWO2019224913A1 (en) Semiconductor device
JP7276407B2 (en) Silicon carbide semiconductor device
JP6243214B2 (en) Bipolar transistor and manufacturing method thereof
JP5524403B2 (en) Semiconductor device