JP2009238583A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2009238583A
JP2009238583A JP2008083215A JP2008083215A JP2009238583A JP 2009238583 A JP2009238583 A JP 2009238583A JP 2008083215 A JP2008083215 A JP 2008083215A JP 2008083215 A JP2008083215 A JP 2008083215A JP 2009238583 A JP2009238583 A JP 2009238583A
Authority
JP
Japan
Prior art keywords
electrode
dye
power generation
radial
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008083215A
Other languages
Japanese (ja)
Inventor
Rei Fushiki
怜 伏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2008083215A priority Critical patent/JP2009238583A/en
Publication of JP2009238583A publication Critical patent/JP2009238583A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell capable of obtaining high current collection efficiency despite a top-face contour shape of a power generating part. <P>SOLUTION: The dye-sensitized solar cell 10 includes: a transparent substrate 11; a collector electrode 12 formed at an underside of the transparent substrate 11; a flat-face electrode 13 formed so as to cover the underside of the transparent substrate 11 as well as the collector electrode 12; and a power generating part 14 with a top-face contour circular formed at an underside of the flat-face electrode 13. The collector electrode 12 comprises: a plurality of radial electrode lines 12a radially extended outward from a cell center; and a plurality of circular ring electrode lines 12b electrically connected with each radial electrode line 12a and arranged concentrically outward from the cell center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

色素増感型太陽電池は、一般に、透明基板と、該透明基板に付設された平面電極(負極側電極)と、該平面電極に付設された発電部と、対向基板と、該対向基板に付設された平面電極(正極側電極)と、発電部を囲むようにして一方の平面電極と他方の平面電極との間を封止する封止部と、発電部,他方の平面電極及び封止部によって画成された空間に充填された電荷輸送材とを備えたセル構造を有している。   A dye-sensitized solar cell generally includes a transparent substrate, a planar electrode (negative electrode) attached to the transparent substrate, a power generation unit attached to the planar electrode, a counter substrate, and a counter substrate. The planar electrode (positive electrode), a sealing portion that seals between the one planar electrode and the other planar electrode so as to surround the power generation portion, and the power generation portion, the other planar electrode, and the sealing portion. It has a cell structure provided with a charge transport material filled in the formed space.

両平面電極は錫ドープ酸化インジウム(ITO)等から成り、発電部は多孔質半導体膜及びその表面に吸着された色素とから構成され、電荷輸送材はヨウ素レドックスカップル(I-/I3 -)を含むアセトニトリル系溶媒等から成る。 Both planar electrodes are made of tin-doped indium oxide (ITO) or the like, the power generation part is composed of a porous semiconductor film and a dye adsorbed on the surface, and the charge transport material is iodine redox couple (I / I 3 ). It consists of an acetonitrile-based solvent containing

この色素増感型太陽電池によれば、太陽光等の光を透明基板及び平面電極を介して発電部に照射したときの色素増感作用により生じた電流を、一方の平面電極の端子と他方の平面電極の端子から取り出すことができる。   According to this dye-sensitized solar cell, the current generated by the dye-sensitizing action when the power generation unit is irradiated with light such as sunlight through the transparent substrate and the flat electrode is changed to the terminal of one flat electrode and the other. It can take out from the terminal of this plane electrode.

ところで、平面電極に用いられている錫ドープ酸化インジウム(ITO)の比抵抗は金や銀等の金属の比抵抗よりも高く、該平面電極を通じて取り出される電流の値がその比抵抗の影響によって低減してしまう。このような事情に鑑み、格子状または櫛歯状の集電電極を平面電極に電気的に接続したセル構造が提案されている(特許文献1参照)。   By the way, the specific resistance of tin-doped indium oxide (ITO) used for a planar electrode is higher than that of a metal such as gold or silver, and the value of the current extracted through the planar electrode is reduced by the influence of the specific resistance. Resulting in. In view of such circumstances, a cell structure in which a grid-like or comb-like collecting electrode is electrically connected to a planar electrode has been proposed (see Patent Document 1).

しかし、格子状または櫛歯状の集電電極は何れもその上面輪郭形状が四角形となるため、四角形以外の上面輪郭形状を有する発電部を備えたセル構造には採用することができない。例えば、上面輪郭形状が円形の発電部を備えたセル構造に前記集電電極を採用すると、該集電電極が及ばない領域が発電部の外周部分に生じ該領域からの集電が難しくなって全体としての集電効率が低下してしまう。
特開2003−203683
However, any of the grid-shaped or comb-shaped collecting electrodes has a quadrangular upper surface contour shape, and thus cannot be employed in a cell structure including a power generation unit having a top surface contour shape other than a quadrangle. For example, if the current collecting electrode is employed in a cell structure having a power generation part with a circular top surface profile, a region that does not reach the current collecting electrode occurs in the outer peripheral portion of the power generation part, making it difficult to collect current from the region. The current collection efficiency as a whole is reduced.
JP2003-203683A

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、発電部の上面輪郭形状に拘わらずに高い集電効率が得られる色素増感型太陽電池を提供することにある。   The present invention was created in view of the above circumstances, and an object of the present invention is to provide a dye-sensitized solar cell capable of obtaining high current collection efficiency regardless of the top surface contour shape of the power generation unit. .

本発明を達成するため、本発明の色素増感型太陽電池は、発電部,負極側電極及び正極側電極を備えたセル構造を有する色素増感型太陽電池であって、正極側電極と負極側電極の少なくとも一方は、セル中心から外側に向けて放射状に延びる複数の放射状電極線と、各放射状電極線と電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状と相似の形状を有する複数の環状電極線とから構成された集電電極を備えている。   In order to achieve the present invention, a dye-sensitized solar cell of the present invention is a dye-sensitized solar cell having a cell structure including a power generation unit, a negative electrode, and a positive electrode, and includes a positive electrode and a negative electrode At least one of the side electrodes is connected to a plurality of radial electrode lines extending radially outward from the cell center and electrically connected to each radial electrode line, and is concentrically arranged outward from the cell center to generate power. The collector electrode comprised from the some annular electrode wire which has a shape similar to the upper surface outline shape of a part is provided.

この色素増感型太陽電池によれば、集電電極が、セル中心から外側に向けて放射状に延びる複数の放射状電極線と、各放射状電極線と電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状と相似の形状を有する複数の環状電極線とから構成されているので、集電電極の各放射状電極線及び各環状電極線を発電部の上面輪郭形状のほぼ全域に対応するように及ばせて該各放射状電極線及び各環状電極線を通じて所期の集電を効率的に行うことができる。要するに、上面輪郭形状が四角形の発電部に限らず、上面輪郭形状が四角形以外、例えば円形や三角形や六角形等の発電部を備えたセル構造であっても、該発電部の上面輪郭形状に拘わらずに高い集電効率を得ることができる。   According to this dye-sensitized solar cell, the collector electrode is electrically connected to the plurality of radial electrode lines extending radially outward from the cell center, and to each radial electrode line, and from the cell center to the outside. Is formed of a plurality of annular electrode wires that are concentrically arranged and have a shape similar to the upper surface contour shape of the power generation unit, so that each radial electrode wire and each annular electrode wire of the collector electrode are connected to the power generation unit. The desired current collection can be efficiently performed through the radial electrode lines and the annular electrode lines so as to correspond to almost the entire region of the upper surface contour shape. In short, not only the power generation section having a quadrangular top surface shape but also a cell structure including a power generation section such as a circle, a triangle, or a hexagon other than the quadrangular top surface contour shape, the top surface contour shape of the power generation section Regardless, high current collection efficiency can be obtained.

本発明によれば、発電部の上面輪郭形状に拘わらずに高い集電効率が得られる色素増感型太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dye-sensitized solar cell which can obtain high current collection efficiency irrespective of the upper surface outline shape of an electric power generation part can be provided.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

[第1実施形態]
図1及び図2は本発明の第1実施形態を示すもので、図1は色素増感型太陽電池のセルの上面図、図2は図1のa−a線縦断面図である。
[First Embodiment]
1 and 2 show a first embodiment of the present invention. FIG. 1 is a top view of a cell of a dye-sensitized solar cell, and FIG. 2 is a longitudinal sectional view taken along line aa in FIG.

図1及び図2に示した色素増感型太陽電池10は、透明基板11と、集電電極12と、平面電極13と、発電部14と、対向基板15と、平面電極16と、封止部17と、電荷輸送材18とを備えたセル構造を有している。   The dye-sensitized solar cell 10 shown in FIGS. 1 and 2 includes a transparent substrate 11, a collecting electrode 12, a planar electrode 13, a power generation unit 14, a counter substrate 15, a planar electrode 16, and a sealing. It has a cell structure including a portion 17 and a charge transport material 18.

透明基板11は、ポリエチレンテレフタレートやアクリル樹脂等の透明プラスチックや透明ガラス等から上面輪郭形状が円形に形成されており、その外周一部に切除部11aを有している。この透明基板11はその上面に照射される太陽光等の光を下方に向けて透過する。   The transparent substrate 11 is formed with a circular top shape from a transparent plastic such as polyethylene terephthalate or acrylic resin, transparent glass, or the like, and has a cutout portion 11a at a part of the outer periphery thereof. The transparent substrate 11 transmits light such as sunlight irradiated on the upper surface thereof downward.

集電電極12は、図1に破線で示すように、セル中心から外側に向けて放射状に延びる複数(図中は12本)の放射状電極線12aと、各放射状電極線12aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部14の上面輪郭形状(円形)と相似の形状(円形)を有する複数(図中は6本)の環状電極線12bとから構成されている。   As shown by a broken line in FIG. 1, the current collecting electrode 12 is electrically connected to a plurality of (in the figure, 12) radial electrode lines 12a extending radially outward from the cell center and to each radial electrode line 12a. And a plurality of (six in the figure) annular electrode wires 12b that are concentrically arranged outward from the cell center and have a shape (circular) similar to the upper surface contour shape (circular) of the power generation unit 14. It is configured.

各放射状電極線12aは最も内側の環状電極線12bと最も外側の環状電極線12bとの間に存在し、好ましくはこれら環状電極線12bから内外には突出していない。本第1実施形態にあっては最も外側の環状電極線12bが電流引出部分として利用される。   Each radial electrode line 12a exists between the innermost annular electrode line 12b and the outermost annular electrode line 12b, and preferably does not protrude inward or outward from these annular electrode lines 12b. In the first embodiment, the outermost annular electrode wire 12b is used as a current extraction portion.

また、隣接する2本の放射状電極線12aの2線分と隣接する2本の環状電極線12bの2線分によって囲まれる複数(図中は60個)の領域ERそれぞれの面積はほぼ一致している。各領域ERそれぞれの面積をほぼ一致させることを容易に行うために、各環状電極線12bの隣接間隔はセル中心から外側に向かうに従って減少している。また、発電部14の上面輪郭形状が円形であることから、各領域ERの面積調整が容易に行えるように各放射状電極線12aの隣接角度を全て等しくしてある(図中は30度)。各領域ERそれぞれの面積をほぼ一致させる理由については後に詳述する。   The areas of the plurality of (60 in the figure) regions ER surrounded by two line segments of the two adjacent radial electrode lines 12a and two line segments of the two annular electrode lines 12b are substantially the same. ing. In order to easily make the areas of the respective regions ER substantially coincide with each other, the adjacent interval between the annular electrode lines 12b decreases from the cell center toward the outside. Moreover, since the upper surface contour shape of the power generation unit 14 is circular, the adjacent angles of the radial electrode lines 12a are all equal (30 degrees in the drawing) so that the area of each region ER can be easily adjusted. The reason why the areas of the respective regions ER are substantially matched will be described in detail later.

集電電極12の各放射状電極線12a及び各環状電極線12bは、平面電極13よりも比抵抗の低い金属または合金、例えば金や銀や白金やクロムやニッケル等の金属またはこれらの合金から形成されている。この集電電極12の形成方法としては、(1)金属粉または合金粉を含む導電ペーストを透明基板11の下面に図1に破線で示すパターンで塗布して焼き付ける方法や、(2)スパッタ法やCVD法等の薄膜形成手法によって金属または合金を透明基板11の下面に図1に破線で示すパターンで成膜する方法等が好ましく採用できる。各放射状電極線12a及び各環状電極線12bの縦断面形は基本的には任意であるが、前記(1)及び(2)の方法を採用した場合には該縦断面形は矩形や半円形やこれらに近似の形状となる。また、各放射状電極線12a及び各環状電極線12bの線幅は太陽光等の光の入射を遮らないためにも極力小さいほうが好ましい。   Each radial electrode wire 12a and each annular electrode wire 12b of the collecting electrode 12 are formed of a metal or alloy having a specific resistance lower than that of the planar electrode 13, for example, a metal such as gold, silver, platinum, chromium, nickel, or an alloy thereof. Has been. As a method of forming the current collecting electrode 12, (1) a method of applying and baking a conductive paste containing metal powder or alloy powder on the lower surface of the transparent substrate 11 in a pattern shown by a broken line in FIG. A method of forming a metal or alloy with a pattern shown by a broken line in FIG. The radial sectional shape of each radial electrode line 12a and each annular electrode line 12b is basically arbitrary, but when the methods (1) and (2) are adopted, the longitudinal sectional shape is rectangular or semicircular. And approximate shapes. Moreover, it is preferable that the line width of each radial electrode line 12a and each annular electrode line 12b is as small as possible in order not to block the incidence of light such as sunlight.

平面電極13は、錫ドープ酸化インジウム(ITO)やフッ素ドープ酸化錫(FTO)等から成り、スパッタ法やCVD法等の薄膜形成手法等によって透明基板11の下面並びに集電電極12を覆うように形成されている。この平面基板13はその上面に照射される太陽光等の光を下方に向けて透過する。本第1実施形態にあってはこの平面電極13と前記集電電極12によって負極側電極が構成されている。   The planar electrode 13 is made of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or the like, and covers the lower surface of the transparent substrate 11 and the collecting electrode 12 by a thin film formation method such as sputtering or CVD. Is formed. The flat substrate 13 transmits light such as sunlight irradiated on the upper surface thereof downward. In the first embodiment, the planar electrode 13 and the collecting electrode 12 constitute a negative electrode.

発電部14は、多孔質半導体膜及びその表面に吸着された色素とから構成され、平面電極13の下面にその上面輪郭形状が円形になるように形成されている。多孔質半導体膜は、半導体特性を有する酸化物または複合酸化物、例えばTiO2,SnO2,ZnO,Nb25,Nb26,ZrO2,CeO2,WO3,SiO2,Al23,NiO,Ta25,CuAlO2,SrCu22,SrTiO3,CaTiO3,KTaO3等から成る。この多孔質半導体膜は多数の微細孔をほぼ均一に有することから、微細孔の内面を含む全体の表面積は極めて大きい。また、色素は、ルテニウム金属錯体色素や、ルテニウム以外のオスミウム,鉄,レニウム,銅等の金属錯体色素や、メチン色素,マーキュロクロム色素,キサンテン系色素,ポリフィリン色素,フタロシアニン色素,クマリン系色素等の有機色素等から成る。 The power generation unit 14 is composed of a porous semiconductor film and a dye adsorbed on the surface thereof, and is formed on the lower surface of the flat electrode 13 so that the upper surface contour shape is circular. The porous semiconductor film is an oxide or composite oxide having semiconductor characteristics, such as TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , Nb 2 O 6 , ZrO 2 , CeO 2 , WO 3 , SiO 2 , Al 2. O 3 , NiO, Ta 2 O 5 , CuAlO 2 , SrCu 2 O 2 , SrTiO 3 , CaTiO 3 , KTaO 3 and the like. Since this porous semiconductor film has a large number of micropores substantially uniformly, the entire surface area including the inner surfaces of the micropores is extremely large. In addition, the dyes are ruthenium metal complex dyes, metal complex dyes such as osmium, iron, rhenium and copper other than ruthenium, organic substances such as methine dyes, mercurochrome dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes and coumarin dyes. Consists of pigments and the like.

対向基板15は、ポリエチレンテレフタレートやアクリル樹脂等の透明プラスチックや透明ガラス等から上面輪郭形状が透明基板11と同一サイズの円形に形成されており、前記切除部11aと対向する外周一部に切除部15aを有している。この対向基板15は前記透明基板11のように太陽光等の光を透過する必要がないため必ずしも透明である必要はない。また、対向基板15はチタン等の金属板から形成することも可能であり、この場合には後述の平面電極16を排除することができる。   The counter substrate 15 is formed of a transparent plastic such as polyethylene terephthalate or acrylic resin, transparent glass, or the like, and the upper surface contour shape is a circle having the same size as the transparent substrate 11, and a cut portion is formed on a part of the outer periphery facing the cut portion 11a. 15a. Unlike the transparent substrate 11, the counter substrate 15 does not necessarily need to be transparent because it does not need to transmit light such as sunlight. Further, the counter substrate 15 can be formed of a metal plate such as titanium. In this case, the planar electrode 16 described later can be eliminated.

平面電極16は、白金や金等の金属やカーボンや導電性高分子化合物等から成り、スパッタ法やCVD法等の薄膜形成手法、或いは、スピンコート法やディップコート法やスプレーパイロシス法等のコーティング手法等によって対向基板15の上面を覆うように形成されている。本第1実施形態にあってはこの平面電極16によって正極側電極が構成されているが、該正極側電極は、錫ドープ酸化インジウム(ITO)やフッ素ドープ酸化錫(FTO)等から成り対向基板15の上面を覆うように形成された平面電極と該平面電極を覆うように形成された前記平面電極16との2層構造としても構わない。   The planar electrode 16 is made of a metal such as platinum or gold, carbon, a conductive polymer compound, or the like, and is formed by a thin film forming method such as a sputtering method or a CVD method, or a spin coating method, a dip coating method, a spray pyrolysis method, or the like. It is formed so as to cover the upper surface of the counter substrate 15 by a coating technique or the like. In the first embodiment, the flat electrode 16 constitutes a positive electrode, and the positive electrode is made of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or the like. The planar electrode 16 formed so as to cover the upper surface of 15 and the planar electrode 16 formed so as to cover the planar electrode may be used.

封止部17は、シリコーン系樹脂やエポキシ樹脂やアクリル樹脂等の熱硬化性プラスチックや光硬化性プラスチック等から成り、発電部14の外周を囲むようにして円形枠状に形成されている。本第1実施形態にあってはこの封止部17は、平面電極13と平面電極16との間を封止する他に、平面電極13の下面と平面電極16の上面との間隔を規定するスペーサとしての役目を果たしているが、該封止部17とは別に専用のスペーサを併用しても良い。   The sealing portion 17 is made of a thermosetting plastic such as a silicone resin, an epoxy resin, or an acrylic resin, a photocurable plastic, or the like, and is formed in a circular frame shape so as to surround the outer periphery of the power generation portion 14. In the first embodiment, the sealing portion 17 seals the space between the planar electrode 13 and the planar electrode 16 and defines the distance between the lower surface of the planar electrode 13 and the upper surface of the planar electrode 16. Although serving as a spacer, a dedicated spacer may be used in combination with the sealing portion 17.

電荷輸送材18は、酸化還元性電解質を含む液体或いはゲル、例えばヨウ素レドックスカップル(I-/I3 -)を含むアセトニトリル系溶媒や、これにゲル化剤を添加したもの等から成る。この電荷輸送材18は発電部14,平面電極16及び封止部17によって画成された空間に充填されている。 The charge transport material 18 is made of a liquid or gel containing a redox electrolyte, for example, an acetonitrile-based solvent containing iodine redox couple (I / I 3 ), or a material added with a gelling agent. The charge transport material 18 is filled in a space defined by the power generation unit 14, the planar electrode 16, and the sealing unit 17.

図示を省略したが、色素増感型太陽電池10の負極側端子は、集電電極12の最も外側の環状電極線12bと平面電極13の外周部に電気的に接続するように、該色素増感型太陽電池10を下面側から見たときに対向基板15の切除部15aを通じて露出する透明基板11の一部分に設けられている。また、色素増感型太陽電池10の正極側端子は、平面電極16の外周部に電気的に接続するように、該色素増感型太陽電池10を上面側から見たときに透明基板11の切除部11aを通じて露出する対向基板15の一部分に設けられている。   Although not shown, the negative electrode side terminal of the dye-sensitized solar cell 10 is connected to the outermost annular electrode wire 12b of the collector electrode 12 and the outer periphery of the planar electrode 13 so that the dye-sensitized solar cell 10 is electrically connected. It is provided on a part of the transparent substrate 11 exposed through the cut portion 15a of the counter substrate 15 when the sensitive solar cell 10 is viewed from the lower surface side. Further, the positive electrode side terminal of the dye-sensitized solar cell 10 is electrically connected to the outer peripheral portion of the planar electrode 16 when the dye-sensitized solar cell 10 is viewed from the upper surface side. It is provided on a part of the counter substrate 15 exposed through the cut portion 11a.

前述の色素増感型太陽電池10では以下のようなサイクルで所期の光電変換が行われる。即ち、透明基板11に太陽光等の光が照射されると、該光は集電電極12の各領域ERを通じ平面電極13を介して発電部14の色素に到達し、光エネルギーによる励起によって色素から電子が放出され、該電子が発電部14の多孔質半導体膜を経由して平面電極13と集電電極12の各放射状電極線12a及び各環状電極線12bに移動し、該電子がさらに負極側端子と正極側端子との間に接続された外部回路を介して平面電極16に移動する。電子を放出して酸化した色素は電荷輸送材18から電子を受け取って中性化し、電子を失って酸化した電荷輸送材18は平面電極16に移動した電子を受け取って還元される。   In the dye-sensitized solar cell 10 described above, desired photoelectric conversion is performed in the following cycle. That is, when light such as sunlight is irradiated on the transparent substrate 11, the light reaches the pigment of the power generation unit 14 through the planar electrode 13 through each region ER of the collector electrode 12, and the pigment is excited by light energy. The electrons are emitted from the planar electrode 13 and the radial electrode lines 12a and the annular electrode lines 12b of the current collecting electrode 12 via the porous semiconductor film of the power generation unit 14, and the electrons are further It moves to the planar electrode 16 through an external circuit connected between the side terminal and the positive electrode side terminal. The dye oxidized by emitting electrons receives the electrons from the charge transport material 18 to be neutralized, and the charge transport material 18 oxidized by losing electrons receives the electrons transferred to the planar electrode 16 and is reduced.

要するに、太陽光等の光を透明基板11及び平面電極13を介して発電部14に照射したときの色素増感作用により生じた電流を、負極側端子及び正極側端子から取り出すことができる。   In short, the current generated by the dye sensitizing action when the power generation unit 14 is irradiated with light such as sunlight through the transparent substrate 11 and the planar electrode 13 can be taken out from the negative terminal and the positive terminal.

前述の色素増感型太陽電池10にあっては、集電電極12が平面電極13よりも比抵抗の低い材料から成ることから、該集電電極12は平面電極13の集電作用(電子移動作用も含む)を補って光電変換効率を高める役目を果たしている。   In the dye-sensitized solar cell 10 described above, the current collecting electrode 12 is made of a material having a specific resistance lower than that of the flat electrode 13, so that the current collecting electrode 12 has a current collecting action (electron transfer) of the flat electrode 13. It also plays a role in increasing photoelectric conversion efficiency by compensating for the effects.

先に述べたように、集電電極12は、セル中心から外側に向けて放射状に延びる複数の放射状電極線12aと、各放射状電極線12aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部14の上面輪郭形状(円形)と相似の形状(円形)を有する複数の環状電極線12bとから構成されているので、発電部14の上面輪郭形状が円形であっても該発電部14の上面輪郭形状(円形)のほぼ全域に対応するように集電電極12の各放射状電極線12a及び各環状電極線12bを及ばせて該各放射状電極線12a及び各環状電極線12bを通じて所期の集電を高効率で行うことができる。   As described above, the collecting electrode 12 is electrically connected to the plurality of radial electrode lines 12a extending radially outward from the cell center and to each radial electrode line 12a, and outward from the cell center. Since the upper surface contour shape of the power generation unit 14 is circular, the upper surface contour shape of the power generation unit 14 is circular. Even so, the radial electrode lines 12a and the annular electrode lines 12b of the collecting electrode 12 are extended so as to correspond to almost the entire region of the upper surface contour shape (circular shape) of the power generation unit 14, and the radial electrode lines 12a and The desired current collection can be performed with high efficiency through the annular electrode wire 12b.

また、集電電極12の隣接する2本の放射状電極線12aの2線分と隣接する2本の環状電極線12bの2線分によって囲まれる複数の領域ERそれぞれの面積をほぼ一致させてあるので、発電部14の各領域ERに対応する部分それぞれで発生した電流をほぼ同じ抵抗値下で該領域ERを画成する4線分で集電することができ、これにより各領域ER毎の集電効率に差異が生じることを防止して前記集電効率をより高めることができる。   The areas of the plurality of regions ER surrounded by two line segments of the two adjacent radial electrode lines 12a of the current collecting electrode 12 and two line segments of the two annular electrode lines 12b adjacent to each other are substantially matched. Therefore, the current generated in each of the portions corresponding to each region ER of the power generation unit 14 can be collected by the four line segments that define the region ER under substantially the same resistance value. The current collection efficiency can be further increased by preventing a difference in current collection efficiency.

さらに、集電電極12の各環状電極線12bの隣接間隔をセル中心から外側に向かうに従って減少させてあるので、各領域ERそれぞれの面積をほぼ一致させることを容易に行うことができる。   Furthermore, since the interval between the annular electrode lines 12b of the current collecting electrode 12 is decreased from the center of the cell toward the outside, the areas of the respective regions ER can be easily matched.

尚、前述の説明では、集電電極12の最も外側の環状電極線12bが封止部17の内側に位置するように該集電電極12を発電部14の上側に配置したものを例示したが、該集電電極12は最も外側の環状電極線12bが封止部17の上側に位置するように配置されていても良い。この場合には集電電極12の最も外側の環状電極線12bの表面一部が露出するようにしても構わない。   In the above description, the example in which the current collecting electrode 12 is arranged on the upper side of the power generation unit 14 so that the outermost annular electrode wire 12b of the current collecting electrode 12 is located inside the sealing portion 17 is exemplified. The current collecting electrode 12 may be arranged such that the outermost annular electrode wire 12 b is positioned above the sealing portion 17. In this case, a part of the surface of the outermost annular electrode line 12b of the collecting electrode 12 may be exposed.

また、前述の説明では、集電電極12を透明基板11と平面電極13との間に配置したものを例示したが、該集電電極12を平面電極13と発電部14との間に配置しても前記同様の作用効果を得ることができる。この構造の場合は集電電極12に電荷輸送材18が接触するため、該接触によって劣化を生じ得る材料を集電電極12に用いるときには、電荷輸送材17に対して耐性があり、且つ、集電性能を阻害しない材料、例えばガラスフリットや有機高分子化合物等の絶縁材料等によって該集電電極12を被覆するようにすると良い。また、集電電極12のみで十分な集電作用が期待できる場合には平面電極13を排除することも可能であり、この構造の場合も電荷輸送材18の接触によって劣化を生じ得る材料を集電電極12に用いるときには、電荷輸送材18に対して耐性があり、且つ、集電性能を阻害しない前記同様の材料によって該集電電極12を被覆するようにすると良い。   In the above description, the collector electrode 12 is disposed between the transparent substrate 11 and the planar electrode 13. However, the collector electrode 12 is disposed between the planar electrode 13 and the power generation unit 14. However, the same effect as described above can be obtained. In the case of this structure, since the charge transport material 18 is in contact with the current collecting electrode 12, when a material that can be deteriorated by the contact is used for the current collecting electrode 12, the material is resistant to the charge transport material 17, and The current collecting electrode 12 may be covered with a material that does not impede electrical performance, for example, an insulating material such as glass frit or an organic polymer compound. Further, in the case where a sufficient current collecting action can be expected with only the current collecting electrode 12, the planar electrode 13 can be eliminated. In this structure, a material that can be deteriorated by contact with the charge transporting material 18 is collected. When used for the current electrode 12, the current collection electrode 12 is preferably covered with the same material as described above that is resistant to the charge transport material 18 and does not impair the current collection performance.

さらに、前述の説明では、集電電極12を負極側電極に用いたものを例示したが、該集電電極12と同じ構成を有する別の集電電極を正極側電極に用いても良い。具体的には、正極側電極である平面電極16の代わりに集電電極12と同じ構成を有する集電電極を用いたり、先に述べた2層構造の正極側電極の平面電極16の代わりに集電電極12と同じ構成を有する集電電極を用いても良い。この場合の電荷輸送材18に対する集電電極の耐性向上については前段落で述べた手法が採用できる。   Further, in the above description, the current collector electrode 12 is used as the negative electrode. However, another current collector electrode having the same configuration as the current collector electrode 12 may be used as the positive electrode. Specifically, a current collecting electrode having the same configuration as the current collecting electrode 12 is used in place of the flat electrode 16 that is the positive electrode, or instead of the flat electrode 16 in the two-layered positive electrode described above. A current collecting electrode having the same configuration as the current collecting electrode 12 may be used. In this case, the technique described in the previous paragraph can be used to improve the resistance of the current collecting electrode to the charge transport material 18.

さらに、前述の説明では、太陽光等の光の入射を遮らないために集電電極12の各放射状電極線12a及び各環状電極線12bの線幅を極力小さくする点について述べたが、放射状電極線12a及び環状電極線12bの負極側端子から離れた位置に存する部分の線幅を負極側端子に近い位置に存する部分の線幅よりも大きくすれば、放射状電極線12a及び環状電極線12bの負極側端子から離れた位置に存する部分の電気的長さを短縮して当該部分の抵抗値による通電損失を抑制することができる。   Furthermore, in the above description, the radial electrode lines 12a and the annular electrode lines 12b of the current collecting electrode 12 are described as being made as small as possible so as not to block the incidence of light such as sunlight. If the line width of the part existing in the position away from the negative electrode side terminal of the line 12a and the annular electrode line 12b is made larger than the line width of the part existing in the position close to the negative electrode side terminal, the radial electrode line 12a and the annular electrode line 12b It is possible to reduce the electrical length of the portion located at a position away from the negative electrode side terminal and suppress the conduction loss due to the resistance value of the portion.

[第2実施形態]
図3及び図4は本発明の第2実施形態を示すもので、図3は色素増感型太陽電池のセルの上面図、図4は図3のb−b線縦断面図である。
[Second Embodiment]
3 and 4 show a second embodiment of the present invention. FIG. 3 is a top view of a cell of a dye-sensitized solar cell, and FIG. 4 is a longitudinal sectional view taken along the line bb of FIG.

図3及び図4に示した色素増感型太陽電池20は、透明基板21と、集電電極22と、平面電極23と、発電部24と、対向基板25と、平面電極26と、2つの封止部27-1及び27-2と、電荷輸送材28とを備えたセル構造を有している。   The dye-sensitized solar cell 20 shown in FIGS. 3 and 4 includes a transparent substrate 21, a collecting electrode 22, a planar electrode 23, a power generation unit 24, a counter substrate 25, a planar electrode 26, The cell structure includes sealing portions 27-1 and 27-2 and a charge transport material 28.

透明基板21は、ポリエチレンテレフタレートやアクリル樹脂等の透明プラスチックや透明ガラス等から上面輪郭形状が円形に形成されており、その中心に所定内径の貫通孔21aを有している。この透明基板21はその上面に照射される太陽光等の光を下方に向けて透過する。   The transparent substrate 21 is formed of a transparent plastic such as polyethylene terephthalate or acrylic resin, transparent glass, or the like in a circular shape on the upper surface, and has a through hole 21a having a predetermined inner diameter at the center thereof. The transparent substrate 21 transmits light such as sunlight irradiated on the upper surface thereof downward.

集電電極22は、図3に破線で示すように、セル中心から外側に向けて放射状に延びる複数(図中は12本)の放射状電極線22aと、各放射状電極線22aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部24の上面輪郭形状(円形)と相似の形状(円形)を有する複数(図中は6本)の環状電極線22bとから構成されている。   As shown by a broken line in FIG. 3, the collector electrode 22 is electrically connected to a plurality of (12 in the figure) radial electrode wires 22a extending radially outward from the cell center and to each radial electrode wire 22a. And a plurality of (six in the figure) annular electrode wires 22b that are concentrically arranged outward from the cell center and have a shape (circular) similar to the upper surface contour shape (circular) of the power generation unit 24. It is configured.

各放射状電極線22aは最も内側の環状電極線22bと最も外側の環状電極線22bとの間に存在し、好ましくはこれら環状電極線22bから内外には突出していない。本第1実施形態にあっては最も内側の環状電極線12bが電流引出部分として利用される。   Each radial electrode line 22a exists between the innermost annular electrode line 22b and the outermost annular electrode line 22b, and preferably does not protrude inward or outward from these annular electrode lines 22b. In the first embodiment, the innermost annular electrode wire 12b is used as a current extraction portion.

また、隣接する2本の放射状電極線22aの2線分と隣接する2本の環状電極線22bの2線分によって囲まれる複数(図中は60個)の領域ERそれぞれの面積はほぼ一致している。各領域ERそれぞれの面積をほぼ一致させることを容易に行うために、各環状電極線22bの隣接間隔はセル中心から外側に向かうに従って減少している。また、発電部24の上面輪郭形状が円形であることから、各領域ERの面積調整が容易に行えるように各放射状電極線22aの隣接角度を全て等しくしてある(図中は30度)。各領域ERそれぞれの面積をほぼ一致させる理由については後に詳述する。   The areas of the plurality of (60 in the figure) regions ER surrounded by two line segments of two adjacent radial electrode lines 22a and two line segments of two adjacent annular electrode lines 22b substantially coincide with each other. ing. In order to easily make the areas of the respective regions ER substantially coincide with each other, the adjacent interval between the annular electrode lines 22b decreases from the cell center toward the outside. Further, since the upper surface contour shape of the power generation unit 24 is circular, the adjacent angles of the radial electrode lines 22a are all equal (30 degrees in the figure) so that the area of each region ER can be easily adjusted. The reason why the areas of the respective regions ER are substantially matched will be described in detail later.

集電電極22の各放射状電極線22a及び各環状電極線22bは、平面電極23よりも比抵抗の低い金属または合金、例えば金や銀や白金やクロムやニッケル等の金属またはこれらの合金から形成されている。この集電電極22の形成方法としては、(1)金属粉または合金粉を含む導電ペーストを透明基板21の下面に図3に破線で示すパターンで塗布して焼き付ける方法や、(2)スパッタ法やCVD法等の薄膜形成手法によって金属または合金を透明基板11の下面に図3に破線で示すパターンで成膜する方法が好ましく採用できる。各放射状電極線22a及び各環状電極線22bの縦断面形は基本的には任意であるが、前記(1)及び(2)の方法を採用した場合には該縦断面形は矩形や半円形やこれらに近似の形状となる。また、各放射状電極線22a及び各環状電極線22bの線幅は太陽光等の光の入射を遮らないためにも極力小さいほうが好ましい。   Each radial electrode line 22a and each annular electrode line 22b of the collecting electrode 22 are formed of a metal or alloy having a specific resistance lower than that of the planar electrode 23, for example, a metal such as gold, silver, platinum, chromium, nickel, or an alloy thereof. Has been. As a method of forming the current collecting electrode 22, (1) a method of applying and baking a conductive paste containing metal powder or alloy powder on the lower surface of the transparent substrate 21 in a pattern indicated by a broken line in FIG. A method of forming a metal or alloy with a pattern indicated by a broken line in FIG. 3 on the lower surface of the transparent substrate 11 by a thin film forming method such as CVD or CVD can be preferably employed. The radial sectional shape of each radial electrode line 22a and each annular electrode line 22b is basically arbitrary, but when the methods (1) and (2) are adopted, the longitudinal sectional shape is rectangular or semicircular. And approximate shapes. Moreover, it is preferable that the line width of each radial electrode line 22a and each annular electrode line 22b is as small as possible in order not to block the incidence of light such as sunlight.

平面電極23は、錫ドープ酸化インジウム(ITO)やフッ素ドープ酸化錫(FTO)等から成り、スパッタ法やCVD法等の薄膜形成手法等によって透明基板21の下面並びに集電電極22を覆うように形成されており、その中心に前記貫通孔21aと同一内径の貫通孔23aを有している。この平面基板23はその上面に照射される太陽光等の光を下方に向けて透過する。本第2実施形態にあってはこの平面電極23と前記集電電極22によって負極側電極が構成されている。   The planar electrode 23 is made of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or the like, and covers the lower surface of the transparent substrate 21 and the current collecting electrode 22 by a thin film formation method such as sputtering or CVD. A through hole 23a having the same inner diameter as the through hole 21a is formed at the center thereof. The planar substrate 23 transmits light such as sunlight irradiated on the upper surface thereof downward. In the second embodiment, the planar electrode 23 and the collecting electrode 22 constitute a negative electrode.

発電部24は、多孔質半導体膜及びその表面に吸着された色素とから構成され、平面電極13の下面にその上面輪郭形状が円形で中心に円形孔を有するように形成されている。多孔質半導体膜は、半導体特性を有する酸化物または複合酸化物、例えばTiO2,SnO2,ZnO,Nb25,Nb26,ZrO2,CeO2,WO3,SiO2,Al23,NiO,Ta25,CuAlO2,SrCu22,SrTiO3,CaTiO3,KTaO3等から成る。この多孔質半導体膜は多数の微細孔をほぼ均一に有することから、微細孔の内面を含む全体の表面積は極めて大きい。また、色素は、ルテニウム金属錯体色素や、ルテニウム以外のオスミウム,鉄,レニウム,銅等の金属錯体色素や、メチン色素,マーキュロクロム色素,キサンテン系色素,ポリフィリン色素,フタロシアニン色素,クマリン系色素等の有機色素等から成る。 The power generation unit 24 includes a porous semiconductor film and a dye adsorbed on the surface thereof, and is formed on the lower surface of the planar electrode 13 so that the upper surface contour shape is circular and has a circular hole in the center. The porous semiconductor film is an oxide or composite oxide having semiconductor characteristics, such as TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , Nb 2 O 6 , ZrO 2 , CeO 2 , WO 3 , SiO 2 , Al 2. O 3 , NiO, Ta 2 O 5 , CuAlO 2 , SrCu 2 O 2 , SrTiO 3 , CaTiO 3 , KTaO 3 and the like. Since this porous semiconductor film has a large number of micropores substantially uniformly, the entire surface area including the inner surfaces of the micropores is extremely large. In addition, the dyes are ruthenium metal complex dyes, metal complex dyes such as osmium, iron, rhenium and copper other than ruthenium, organic substances such as methine dyes, mercurochrome dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes and coumarin dyes. Consists of pigments and the like.

対向基板25は、ポリエチレンテレフタレートやアクリル樹脂等の透明プラスチックや透明ガラス等から上面輪郭形状が透明基板21と同一サイズの円形に形成されており、その中心に前記貫通孔21aと同一内径の貫通孔25aを有している。この対向基板25は前記透明基板21のように太陽光等の光を透過する必要がないため必ずしも透明である必要はない。また、対向基板25はチタン等の金属板から形成することも可能であり、この場合には後述の平面電極26を排除することができる。   The counter substrate 25 is formed of a transparent plastic such as polyethylene terephthalate or acrylic resin, transparent glass, or the like, and the upper surface contour shape is a circle having the same size as that of the transparent substrate 21, and a through hole having the same inner diameter as the through hole 21a is formed at the center thereof. 25a. Unlike the transparent substrate 21, the counter substrate 25 does not necessarily need to be transparent because it does not need to transmit light such as sunlight. Further, the counter substrate 25 can be formed of a metal plate such as titanium. In this case, the planar electrode 26 described later can be eliminated.

平面電極26は、白金や金等の金属やカーボンや導電性高分子化合物等から成り、スパッタ法やCVD法等の薄膜形成手法、或いは、スピンコート法やディップコート法やスプレーパイロシス法等のコーティング手法等によって対向基板25の上面を覆うように形成されており、その中心に前記貫通孔21aと同一内径の貫通孔26aを有している。本第2実施形態にあってはこの平面電極26によって正極側電極が構成されているが、該正極側電極は、錫ドープ酸化インジウム(ITO)やフッ素ドープ酸化錫(FTO)等から成り対向基板25の上面を覆うように形成された平面電極と該平面電極を覆うように形成された前記平面電極26との2層構造としても構わない。   The planar electrode 26 is made of a metal such as platinum or gold, carbon, a conductive polymer compound, or the like, and includes a thin film forming method such as a sputtering method or a CVD method, a spin coating method, a dip coating method, a spray pyrolysis method, or the like. It is formed so as to cover the upper surface of the counter substrate 25 by a coating technique or the like, and has a through hole 26a having the same inner diameter as the through hole 21a at the center. In the second embodiment, the planar electrode 26 constitutes a positive electrode, and the positive electrode is made of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), or the like. Alternatively, a two-layer structure of a planar electrode formed so as to cover the upper surface of 25 and the planar electrode 26 formed so as to cover the planar electrode may be employed.

封止部27-1及び27-2は、シリコーン系樹脂やエポキシ樹脂やアクリル樹脂等の熱硬化性プラスチックや光硬化性プラスチック等から成る。一方の封止部27-1は発電部24の外周を囲むようにして円形枠状に形成され、他方の封止部27-2は発電部24の内周を囲むようにして円筒形状に形成されており、該封止部27-2の内径は前記貫通孔21aと同である。本第2実施形態にあってはこれら封止部27-1及び27-2は、平面電極23と平面電極26の間を封止する他に、平面電極23の下面と平面電極26の上面との間隔を規定するスペーサとしての役目を果たしているが、該封止部27-1及び27-2とは別に専用のスペーサを併用しても良い。。   The sealing portions 27-1 and 27-2 are made of a thermosetting plastic such as a silicone resin, an epoxy resin, or an acrylic resin, a photocurable plastic, or the like. One sealing part 27-1 is formed in a circular frame shape so as to surround the outer periphery of the power generation part 24, and the other sealing part 27-2 is formed in a cylindrical shape so as to surround the inner periphery of the power generation part 24, The inner diameter of the sealing portion 27-2 is the same as that of the through hole 21a. In the second embodiment, these sealing portions 27-1 and 27-2 seal the gap between the planar electrode 23 and the planar electrode 26, as well as the lower surface of the planar electrode 23 and the upper surface of the planar electrode 26. However, in addition to the sealing portions 27-1 and 27-2, a dedicated spacer may be used in combination. .

電荷輸送材28は、酸化還元性電解質を含む液体或いはゲル、例えばヨウ素レドックスカップル(I-/I3 -)を含むアセトニトリル系溶媒や、これにゲル化剤を添加したもの等から成る。この電荷輸送材28は発電部24,平面電極26,封止部27-1及び27-2によって画成された空間に充填されている。 The charge transport material 28 is composed of a liquid or gel containing a redox electrolyte, for example, an acetonitrile-based solvent containing iodine redox couple (I / I 3 ), or a material obtained by adding a gelling agent thereto. The charge transport material 28 is filled in a space defined by the power generation unit 24, the planar electrode 26, and the sealing units 27-1 and 27-2.

図4から分かるように、透明基板21の貫通孔21aと平面電極23の貫通孔23aと内側の封止部27-2の内孔と平面電極26の貫通孔26aと対向基板25の貫通孔25aはセルの厚さ方向で連続しており、該連続した孔群はセンターホールSHを形成している。   As can be seen from FIG. 4, the through hole 21 a of the transparent substrate 21, the through hole 23 a of the planar electrode 23, the inner hole of the inner sealing portion 27-2, the through hole 26 a of the planar electrode 26, and the through hole 25 a of the counter substrate 25. Are continuous in the cell thickness direction, and the continuous hole group forms a center hole SH.

図示を省略したが、色素増感型太陽電池20の負極側端子は、集電電極22の最も内側の環状電極線22bと平面電極23の内周部に電気的に接続するように、センターホールSHに内面に設けられている。また、色素増感型太陽電池20の正極側端子は、平面電極26の内周部に電気的に接続するように、センターホールSHの内面に設けられている。   Although not shown, the negative electrode side terminal of the dye-sensitized solar cell 20 is connected to the innermost annular electrode line 22b of the current collecting electrode 22 and the inner periphery of the planar electrode 23 so as to be electrically connected to the center hole. SH is provided on the inner surface. The positive electrode side terminal of the dye-sensitized solar cell 20 is provided on the inner surface of the center hole SH so as to be electrically connected to the inner peripheral portion of the planar electrode 26.

前述の色素増感型太陽電池20では以下のようなサイクルで所期の光電変換が行われる。即ち、透明基板21に太陽光等の光が照射されると、該光は集電電極22の各領域ERを通じ平面電極23を介して発電部24の色素に到達し、光エネルギーによる励起によって色素から電子が放出され、該電子が発電部24の多孔質半導体膜を経由して平面電極23と集電電極22の各放射状電極線22a及び各環状電極線22bに移動し、該電子がさらに負極側端子と正極側端子との間に接続された外部回路を介して平面電極26に移動する。電子を放出して酸化した色素は電荷輸送材28から電子を受け取って中性化し、電子を失って酸化した電荷輸送材28は平面電極26に移動した電子を受け取って還元される。   In the dye-sensitized solar cell 20 described above, desired photoelectric conversion is performed in the following cycle. That is, when light such as sunlight is irradiated on the transparent substrate 21, the light reaches the dye of the power generation unit 24 through the planar electrode 23 through each region ER of the current collecting electrode 22, and the dye is excited by light energy. The electrons are emitted from the planar electrode 23 and the radial electrode lines 22a and the annular electrode lines 22b of the current collecting electrode 22 via the porous semiconductor film of the power generation unit 24, and the electrons further move to the negative electrode. It moves to the planar electrode 26 via an external circuit connected between the side terminal and the positive electrode side terminal. The dye oxidized by emitting electrons receives the electrons from the charge transport material 28 to neutralize, and the charge transport material 28 oxidized by losing electrons receives the electrons transferred to the planar electrode 26 and is reduced.

要するに、太陽光等の光を透明基板21及び平面電極23を介して発電部24に照射したときの色素増感作用により生じた電流を、負極側端子及び正極側端子から取り出すことができる。   In short, the current generated by the dye sensitizing action when the power generation unit 24 is irradiated with light such as sunlight through the transparent substrate 21 and the planar electrode 23 can be taken out from the negative terminal and the positive terminal.

前述の色素増感型太陽電池20にあっては、集電電極22が平面電極23よりも比抵抗の低い材料から成ることから、該集電電極22は平面電極23の集電作用(電子移動作用も含む)を補って光電変換効率を高める役目を果たしている。   In the dye-sensitized solar cell 20 described above, the current collecting electrode 22 is made of a material having a specific resistance lower than that of the planar electrode 23. It also plays a role in increasing photoelectric conversion efficiency by compensating for the effects.

先に述べたように、集電電極22は、セル中心から外側に向けて放射状に延びる複数の放射状電極線22aと、各放射状電極線22aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部24の上面輪郭形状(円形)と相似の形状(円形)を有する複数の環状電極線22bとから構成されているので、発電部24の上面輪郭形状が円形であっても該発電部24の上面輪郭形状(円形)のほぼ全域に対応するように集電電極22の各放射状電極線22a及び各環状電極線22bを及ばせて該各放射状電極線22a及び各環状電極線22bを通じて所期の集電を高効率で行うことができる。   As described above, the collector electrode 22 is electrically connected to the radial electrode lines 22a and the radial electrode lines 22a extending radially outward from the cell center and outward from the cell center. Since the upper surface contour shape of the power generation unit 24 is circular, the upper surface contour shape of the power generation unit 24 is circular. Even in such a case, the radial electrode lines 22a and the annular electrode lines 22b of the current collecting electrode 22 are extended so as to correspond to almost the entire region of the upper surface contour shape (circular shape) of the power generation unit 24. The desired current collection can be performed with high efficiency through the annular electrode wire 22b.

また、集電電極22の隣接する2本の放射状電極線22aの2線分と隣接する2本の環状電極線22bの2線分によって囲まれる複数の領域ERそれぞれの面積をほぼ一致させてあるので、発電部24の各領域ERに対応する部分それぞれで発生した電流をほぼ同じ抵抗値下で該領域ERを画成する4線分で集電することができ、これにより各領域ER毎の集電効率に差異が生じることを防止して前記集電効率をより高めることができる。   The areas of the plurality of regions ER surrounded by two line segments of the two adjacent radial electrode lines 22a of the current collecting electrode 22 and two line segments of the two adjacent annular electrode lines 22b are substantially matched. Therefore, the current generated in each of the portions corresponding to each region ER of the power generation unit 24 can be collected by four line segments defining the region ER under substantially the same resistance value. The current collection efficiency can be further increased by preventing a difference in current collection efficiency.

さらに、集電電極22の各環状電極線22bの隣接間隔をセル中心から外側に向かうに従って減少させてあるので、各領域ERそれぞれの面積をほぼ一致させることを容易に行うことができる。   Furthermore, since the interval between the annular electrode lines 22b of the current collecting electrode 22 is decreased from the cell center toward the outside, it is possible to easily make the areas of the respective regions ER substantially coincide with each other.

尚、前述の説明では、集電電極22の最も外側の環状電極線22bが外側の封止部27-1の内側に位置し、且つ、最も内側の環状電極線22bが内側の封止部27-2の外側に位置するように該集電電極12を発電部24の上側に配置したものを例示したが、該集電電極22は最も外側の環状電極線22bが外側の封止部27-1の上側に位置し、且つ、最も内側の環状電極線22bが内側の封止部27-2の上側に位置するように配置されていても良い。この場合には集電電極12の最も外側の環状電極線12bの表面一部と最も内側の環状電極線12bの表面一部が露出するようにしても構わない。   In the above description, the outermost annular electrode line 22b of the collecting electrode 22 is positioned inside the outer sealing portion 27-1, and the innermost annular electrode line 22b is positioned inside the inner sealing portion 27-1. Although the example in which the current collecting electrode 12 is arranged on the upper side of the power generation part 24 so as to be located outside the power generation part 24 is illustrated, the current collecting electrode 22 has the outermost annular electrode line 22b as the outer sealing part 27-. 1 and the innermost annular electrode line 22b may be disposed above the inner sealing portion 27-2. In this case, a part of the surface of the outermost annular electrode line 12b of the current collecting electrode 12 and a part of the surface of the innermost annular electrode line 12b may be exposed.

また、前述の説明では、集電電極22を透明基板21と平面電極23との間に配置したものを例示したが、該集電電極22を平面電極23と発電部24との間に配置しても前記同様の作用効果を得ることができる。この構造の場合は集電電極22に電荷輸送材28が接触するため、該接触によって劣化を生じ得る材料を集電電極22に用いるときには、電荷輸送材28に対して耐性があり、且つ、集電性能を阻害しない材料、例えばガラスフリットや有機高分子化合物等の絶縁材料等によって該集電電極22を被覆するようにすると良い。また、集電電極22のみで十分な集電作用が期待できる場合には平面電極23を排除することも可能であり、この構造の場合も電荷輸送材28の接触によって劣化を生じ得る材料を集電電極22に用いるときには、電荷輸送材28に対して耐性があり、且つ、集電性能を阻害しない前記同様の材料によって該集電電極22を被覆するようにすると良い。   In the above description, the collector electrode 22 is disposed between the transparent substrate 21 and the planar electrode 23. However, the collector electrode 22 is disposed between the planar electrode 23 and the power generation unit 24. However, the same effect as described above can be obtained. In the case of this structure, since the charge transport material 28 is in contact with the current collecting electrode 22, when a material that can be deteriorated by the contact is used for the current collecting electrode 22, it is resistant to the charge transport material 28, and The current collecting electrode 22 may be covered with a material that does not impede electrical performance, for example, an insulating material such as glass frit or an organic polymer compound. Further, when a sufficient current collecting action can be expected with only the current collecting electrode 22, the planar electrode 23 can be eliminated. In this structure, a material that can be deteriorated by contact with the charge transport material 28 is collected. When used for the current electrode 22, the current collection electrode 22 is preferably covered with the same material as described above that is resistant to the charge transport material 28 and does not impair the current collection performance.

さらに、前述の説明では、集電電極22を負極側電極に用いたものを例示したが、該集電電極22と同じ構成を有する集電電極を正極側電極に用いても良い。具体的には、正極側電極である平面電極26の代わりに集電電極22と同じ構成を有する集電電極を用いたり、先に述べた2層構造の正極側電極の平面電極26の代わりに集電電極22と同じ構成を有する集電電極を用いても良い。この場合の電荷輸送材28に対する集電電極の耐性向上については前段落で述べた手法が採用できる。   Further, in the above description, the current collector electrode 22 is used as the negative electrode. However, a current collector electrode having the same configuration as the current collector electrode 22 may be used as the positive electrode. Specifically, a current collecting electrode having the same configuration as the current collecting electrode 22 is used in place of the flat electrode 26 that is the positive electrode, or the flat electrode 26 of the positive electrode on the two-layer structure described above is used. A collecting electrode having the same configuration as the collecting electrode 22 may be used. In this case, the technique described in the previous paragraph can be used to improve the resistance of the current collecting electrode to the charge transport material 28.

さらに、前述の説明では、太陽光等の光の入射を遮らないために集電電極22の各放射状電極線22a及び各環状電極線22bの線幅を極力小さくする点について述べたが、放射状電極線22a及び環状電極線22bの負極側端子から離れた位置に存する部分の線幅を負極側端子に近い位置に存する部分の線幅よりも大きくすれば、放射状電極線22a及び環状電極線22bの負極側端子から離れた位置に存する部分の電気的長さを短縮して当該部分の抵抗値による通電損失を抑制することができる。   Furthermore, in the above description, the radial electrode lines 22a and the annular electrode lines 22b of the collecting electrode 22 are described as being made as small as possible so as not to block the incidence of light such as sunlight. If the line width of the part existing in the position away from the negative electrode side terminal of the line 22a and the annular electrode line 22b is made larger than the line width of the part present in the position close to the negative electrode side terminal, the radial electrode line 22a and the annular electrode line 22b It is possible to reduce the electrical length of the portion located at a position away from the negative electrode side terminal and suppress the conduction loss due to the resistance value of the portion.

[第3実施形態]
図5は本発明の第3実施形態を示す、色素増感型太陽電池のセルの上面図である。
[Third Embodiment]
FIG. 5 is a top view of a cell of a dye-sensitized solar cell according to a third embodiment of the present invention.

図5に示した色素増感型太陽電池30は、第2実施形態のセル構造と同様に、透明基板31と、集電電極32と、平面電極(図示省略)と、発電部(図示省略)と、対向基板(図示省略)と、平面電極(図示省略)と、2つの封止部(図示省略)と、電荷輸送材(図示省略)と、センターホールSHを備えたセル構造を有している。   Similar to the cell structure of the second embodiment, the dye-sensitized solar cell 30 shown in FIG. 5 includes a transparent substrate 31, a current collecting electrode 32, a planar electrode (not shown), and a power generation unit (not shown). A cell structure including a counter substrate (not shown), a planar electrode (not shown), two sealing portions (not shown), a charge transport material (not shown), and a center hole SH. Yes.

本第3実施形態のセル構造が第2実施形態のセル構造と異なるところは、透明基板31と平面電極と発電部と対向基板と平面電極のそれぞれの上面輪郭形状を正三角形とした点と、発電部の上面輪郭形状に合わせて集電電極32の形態を変更した点にある。   The difference between the cell structure of the third embodiment and the cell structure of the second embodiment is that the transparent substrate 31, the planar electrode, the power generation unit, the counter substrate, and the planar electrode each have a regular triangular top surface shape, It is in the point which changed the form of the current collection electrode 32 according to the upper surface outline shape of the electric power generation part.

集電電極32は、図5に破線で示すように、セル中心から外側に向けて放射状に延びる複数(図中は12本)の放射状電極線32aと、各放射状電極線32aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状(正三角形)と相似の形状(正三角形)を有する複数(図中は6本)の環状電極線32bとから構成されている。   As shown by broken lines in FIG. 5, the current collecting electrode 32 is electrically connected to a plurality of (in the figure, 12) radial electrode lines 32a extending radially outward from the cell center and to each radial electrode line 32a. And a plurality (six in the figure) of annular electrode wires 32b that are concentrically arranged outward from the cell center and have a shape (regular triangle) similar to the upper surface contour shape (regular triangle) of the power generation unit; It is composed of

各放射状電極線32aは最も内側の環状電極線32bと最も外側の環状電極線32bとの間に存在し、好ましくはこれら環状電極線32bから内外には突出していない。本第3実施形態にあっては最も内側の環状電極線32bが電流引出部分として利用される。   Each radial electrode line 32a exists between the innermost annular electrode line 32b and the outermost annular electrode line 32b, and preferably does not protrude inward or outward from these annular electrode lines 32b. In the third embodiment, the innermost annular electrode wire 32b is used as a current extraction portion.

また、隣接する2本の放射状電極線32aの2線分と隣接する2本の環状電極線32bの2線分によって囲まれる複数(図中は60個)の領域ERそれぞれの面積はほぼ一致している。各領域ERそれぞれの面積をほぼ一致させることを容易に行うために、各環状電極線32bの隣接間隔はセル中心から外側に向かうに従って減少している。また、発電部の上面輪郭形状が正三角形であることから、各領域ERの面積調整が容易に行えるように各放射状電極線32aは各環状電極線32bの3辺を4等分する位置に配されている。   The areas of the plurality of (60 in the figure) regions ER surrounded by two line segments of two adjacent radial electrode lines 32a and two line segments of two adjacent annular electrode lines 32b substantially coincide with each other. ing. In order to easily make the areas of the respective regions ER substantially coincide with each other, the adjacent interval between the annular electrode lines 32b decreases from the cell center toward the outside. Moreover, since the upper surface contour shape of the power generation unit is a regular triangle, each radial electrode line 32a is arranged at a position that divides the three sides of each annular electrode line 32b into four equal parts so that the area of each region ER can be easily adjusted. Has been.

他の基本構成は第2実施形態のセル構造と同じであるためその説明を省略する。   Since the other basic configuration is the same as the cell structure of the second embodiment, the description thereof is omitted.

前述の色素増感型太陽電池30にあっては、集電電極32が平面電極よりも比抵抗の低い材料から成ることから、該集電電極32は平面電極の集電作用(電子移動作用も含む)を補って光電変換効率を高める役目を果たしている。   In the dye-sensitized solar cell 30 described above, the current collecting electrode 32 is made of a material having a specific resistance lower than that of the planar electrode. (Including)) to increase the photoelectric conversion efficiency.

先に述べたように、集電電極32は、セル中心から外側に向けて放射状に延びる複数の放射状電極線32aと、各放射状電極線32aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状(正三角形)と相似の形状(正三角形)を有する複数の環状電極線32bとから構成されているので、発電部の上面輪郭形状が正三角形であっても該発電部の上面輪郭形状(正三角形)のほぼ全域に対応するように集電電極32の各放射状電極線32a及び各環状電極線32bを及ばせて該各放射状電極線32a及び各環状電極線32bを通じて所期の集電を高効率で行うことができる。   As described above, the collector electrode 32 is electrically connected to the plurality of radial electrode lines 32a extending radially outward from the cell center, and to each radial electrode line 32a, and outward from the cell center. The upper surface contour shape of the power generation unit is an equilateral triangle because the upper surface contour shape (regular triangle) of the power generation unit and the plurality of annular electrode wires 32b having a similar shape (regular triangle) are arranged concentrically. Even so, the radial electrode lines 32a and the annular electrode lines 32b of the current collecting electrode 32 are extended so as to correspond to almost the entire area of the upper surface contour shape (regular triangle) of the power generation unit, and the radial electrode lines 32a and 32a The desired current collection can be performed with high efficiency through each annular electrode line 32b.

また、集電電極32の隣接する2本の放射状電極線32aの2線分と隣接する2本の環状電極線32bの2線分によって囲まれる複数の領域ERそれぞれの面積をほぼ一致させてあるので、発電部の各領域ERに対応する部分それぞれで発生した電流をほぼ同じ抵抗値下で該領域ERを画成する4線分で集電することができ、これにより各領域ER毎の集電効率に差異が生じることを防止して前記集電効率をより高めることができる。   The areas of the plurality of regions ER surrounded by two line segments of the two adjacent radial electrode lines 32a of the collecting electrode 32 and two line segments of the two annular electrode lines 32b adjacent to each other are substantially matched. Therefore, the current generated in each of the portions corresponding to each region ER of the power generation unit can be collected by four line segments that define the region ER under substantially the same resistance value, thereby collecting the current for each region ER. The current collection efficiency can be further increased by preventing a difference in power efficiency.

さらに、集電電極32の各環状電極線22bの隣接間隔をセル中心から外側に向かうに従って減少させてあるので、各領域ERそれぞれの面積をほぼ一致させることを容易に行うことができる。   Further, since the interval between the annular electrode lines 22b of the current collecting electrode 32 is decreased from the center of the cell toward the outside, the areas of the respective regions ER can be easily matched.

尚、本第3実施形態のセル構造には、第2実施形態の説明の最後の尚書きに記載した変形例全てが採用できる。   Note that all the modifications described in the last note of the description of the second embodiment can be adopted for the cell structure of the third embodiment.

[第4実施形態]
図6は本発明の第4実施形態を示す、色素増感型太陽電池のセルの上面図である。
[Fourth Embodiment]
FIG. 6 is a top view of a cell of a dye-sensitized solar cell according to the fourth embodiment of the present invention.

図6に示した色素増感型太陽電池40は、第2実施形態のセル構造と同様に、透明基板41と、集電電極42と、平面電極(図示省略)と、発電部(図示省略)と、対向基板(図示省略)と、平面電極(図示省略)と、2つの封止部(図示省略)と、電荷輸送材(図示省略)と、センターホールSHを備えたセル構造を有している。   Similar to the cell structure of the second embodiment, the dye-sensitized solar cell 40 shown in FIG. 6 includes a transparent substrate 41, a collecting electrode 42, a planar electrode (not shown), and a power generation unit (not shown). A cell structure including a counter substrate (not shown), a planar electrode (not shown), two sealing portions (not shown), a charge transport material (not shown), and a center hole SH. Yes.

本第4実施形態のセル構造が第2実施形態のセル構造と異なるところは、透明基板41と平面電極と発電部と対向基板と平面電極のそれぞれの上面輪郭形状を正六角形とした点と、発電部の上面輪郭形状に合わせて集電電極42の形態を変更した点にある。   The difference between the cell structure of the fourth embodiment and the cell structure of the second embodiment is that the transparent substrate 41, the planar electrode, the power generation unit, the counter substrate, and the planar electrode have a regular hexagonal shape on the upper surface, It is in the point which changed the form of the current collection electrode 42 according to the upper surface outline shape of the electric power generation part.

集電電極42は、図6に破線で示すように、セル中心から外側に向けて放射状に延びる複数(図中は12本)の放射状電極線42aと、各放射状電極線42aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状(正六角形)と相似の形状(正六角形)を有する複数(図中は6本)の環状電極線42bとから構成されている。   As shown by broken lines in FIG. 6, the current collecting electrode 42 is electrically connected to a plurality of (12 in the figure) radial electrode lines 42a extending radially outward from the cell center and to each radial electrode line 42a. And a plurality (six in the figure) of annular electrode wires 42b that are concentrically arranged outward from the cell center and have a shape (regular hexagon) similar to the upper surface contour shape (regular hexagon) of the power generation unit; It is composed of

各放射状電極線42aは最も内側の環状電極線42bと最も外側の環状電極線42bとの間に存在し、好ましくはこれら環状電極線42bから内外には突出していない。本第4実施形態にあっては最も内側の環状電極線32bが電流引出部分として利用される。   Each radial electrode line 42a exists between the innermost annular electrode line 42b and the outermost annular electrode line 42b, and preferably does not protrude inward or outward from these annular electrode lines 42b. In the fourth embodiment, the innermost annular electrode wire 32b is used as a current extraction portion.

また、隣接する2本の放射状電極線42aの2線分と隣接する2本の環状電極線42bの2線分によって囲まれる複数(図中は60個)の領域ERそれぞれの面積はほぼ一致している。各領域ERそれぞれの面積をほぼ一致させることを容易に行うために、各環状電極線42bの隣接間隔はセル中心から外側に向かうに従って減少している。また、発電部の上面輪郭形状が正六角形であることから、各領域ERの面積調整が容易に行えるように各放射状電極線42aの隣接角度を全て等しくしてある(図中は30度)。   The areas of the plurality of (60 in the drawing) regions ER surrounded by two line segments of two adjacent radial electrode lines 42a and two line segments of two adjacent annular electrode lines 42b substantially coincide with each other. ing. In order to easily make the areas of the respective regions ER substantially coincide with each other, the adjacent interval between the annular electrode lines 42b decreases from the cell center toward the outside. Further, since the upper surface contour shape of the power generation unit is a regular hexagon, the adjacent angles of the radial electrode wires 42a are all equal (30 degrees in the figure) so that the area of each region ER can be easily adjusted.

他の基本構成は第2実施形態のセル構造と同じであるためその説明を省略する。   Since the other basic configuration is the same as the cell structure of the second embodiment, the description thereof is omitted.

前述の色素増感型太陽電池40にあっては、集電電極42が平面電極よりも比抵抗の低い材料から成ることから、該集電電極42は平面電極の集電作用(電子移動作用も含む)を補って光電変換効率を高める役目を果たしている。   In the dye-sensitized solar cell 40 described above, the current collecting electrode 42 is made of a material having a specific resistance lower than that of the flat electrode. (Including)) to increase the photoelectric conversion efficiency.

先に述べたように、集電電極42は、セル中心から外側に向けて放射状に延びる複数の放射状電極線42aと、各放射状電極線42aと電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状(正六角形)と相似の形状(正六角形)を有する複数の環状電極線42bとから構成されているので、発電部の上面輪郭形状が正六角形であっても該発電部の上面輪郭形状(正六角形)のほぼ全域に対応するように集電電極42の各放射状電極線42a及び各環状電極線42bを及ばせて該各放射状電極線42a及び各環状電極線42bを通じて所期の集電を高効率で行うことができる。   As described above, the collecting electrode 42 has a plurality of radial electrode lines 42a extending radially outward from the cell center, and is electrically connected to each radial electrode line 42a and outward from the cell center. The upper surface contour shape of the power generation section is a regular hexagon because the power generation section has a plurality of annular electrode wires 42b that are concentrically arranged and have a similar shape (regular hexagon) to the upper surface contour shape (regular hexagon) of the power generation section. Even so, the radial electrode wires 42a and the annular electrode wires 42b of the current collecting electrode 42 are extended so as to correspond to almost the entire area of the upper surface contour shape (regular hexagon) of the power generation unit, and the radial electrode wires 42a and 42a The desired current collection can be performed with high efficiency through each annular electrode wire 42b.

また、集電電極42の隣接する2本の放射状電極線42aの2線分と隣接する2本の環状電極線42bの2線分によって囲まれる複数の領域ERそれぞれの面積をほぼ一致させてあるので、発電部の各領域ERに対応する部分それぞれで発生した電流をほぼ同じ抵抗値下で該領域ERを画成する4線分で集電することができ、これにより各領域ER毎の集電効率に差異が生じることを防止して前記集電効率をより高めることができる。   The areas of the plurality of regions ER surrounded by two line segments of the two adjacent radial electrode lines 42a of the collecting electrode 42 and two line segments of the two annular electrode lines 42b adjacent to each other are substantially matched. Therefore, the current generated in each of the portions corresponding to each region ER of the power generation unit can be collected by four line segments that define the region ER under substantially the same resistance value, thereby collecting the current for each region ER. The current collection efficiency can be further increased by preventing a difference in power efficiency.

さらに、集電電極42の各環状電極線42bの隣接間隔をセル中心から外側に向かうに従って減少させてあるので、各領域ERそれぞれの面積をほぼ一致させることを容易に行うことができる。   Further, since the interval between the annular electrode lines 42b of the current collecting electrode 42 is decreased from the center of the cell toward the outside, the areas of the respective regions ER can be easily matched.

尚、本第4実施形態のセル構造には、第2実施形態の説明の最後の尚書きに記載した変形例全てが採用できる。   Note that all the modifications described in the last note of the description of the second embodiment can be adopted for the cell structure of the fourth embodiment.

[他の実施形態]
前記第1〜第4実施形態では、上面輪郭形状が円形と正三角形と正六角形の発電部を備えたセル構造に本発明の特徴たる集電電極を適用したものを例示したが、上面輪郭形状が四角形の発電部を備えたセル構造は勿論のこと、これら以外の上面輪郭形状を有する発電部を備えたセル構造であっても該上面輪郭形状に対応する形状及び構成の集電電極を採用することによって前記同様の作用効果を得ることができる。
[Other Embodiments]
In the first to fourth embodiments, the upper surface contour shape is an example in which the collecting electrode, which is the feature of the present invention, is applied to a cell structure including a power generation unit having a circular shape, a regular triangle shape, and a regular hexagonal shape. In addition to the cell structure with a quadrangular power generation part, the collector electrode of a shape and configuration corresponding to the top surface contour shape is adopted even for a cell structure with a power generation part having a top surface contour shape other than these By doing so, the same effect as described above can be obtained.

前記第3,第4実施形態では、第2実施形態のセル構造を利用して上面輪郭形状が正三角形と正六角形の発電部を備えたセル構造を説明したが、該セル構造を第1実施形態のセル構造と同じようにしても前記同様の作用効果が得られることは言うまでもない。   In the third and fourth embodiments, the cell structure including the power generation unit having the regular outline and the regular hexagonal shape of the top surface is described using the cell structure of the second embodiment. Needless to say, the same effect as described above can be obtained even if the cell structure is the same as that of the embodiment.

本発明の第1実施形態を示す、色素増感型太陽電池のセルの上面図である。It is a top view of the cell of the dye-sensitized solar cell which shows 1st Embodiment of this invention. 図1のa−a線縦断面図である。It is the aa line longitudinal cross-sectional view of FIG. 本発明の第2実施形態を示す、色素増感型太陽電池のセルの上面図である。It is a top view of the cell of the dye-sensitized solar cell which shows 2nd Embodiment of this invention. 図3のb−b線縦断面図である。It is the bb line longitudinal cross-sectional view of FIG. 本発明の第3実施形態を示す、色素増感型太陽電池のセルの上面図である。It is a top view of the cell of the dye-sensitized solar cell which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す、色素増感型太陽電池のセルの上面図である。It is a top view of the cell of the dye-sensitized solar cell which shows 4th Embodiment of this invention.

符号の説明Explanation of symbols

10,20,30,40…色素増感型太陽電池、11,21,31,41…透明基板、12,22,32,42…集電電極、12a,22a,32a,42a…放射状電極線、12b,22b,32b,42b…環状電極線、ER…領域、13,23…平面電極、14,24…発電部、15,25…対向基板、16,26…平面電極、17,27-2,27-2…封止部、18,28…電荷輸送材。   10, 20, 30, 40 ... dye-sensitized solar cell, 11, 21, 31, 41 ... transparent substrate, 12, 22, 32, 42 ... current collecting electrode, 12a, 22a, 32a, 42a ... radial electrode wire, 12b, 22b, 32b, 42b ... annular electrode wire, ER ... area, 13, 23 ... plane electrode, 14, 24 ... power generation unit, 15, 25 ... counter substrate, 16, 26 ... plane electrode, 17, 27-2, 27-2: Sealing part, 18, 28: Charge transport material.

Claims (4)

発電部,負極側電極及び正極側電極を備えたセル構造を有する色素増感型太陽電池であって、
正極側電極と負極側電極の少なくとも一方は、セル中心から外側に向けて放射状に延びる複数の放射状電極線と、各放射状電極線と電気的に接続し、且つ、セル中心から外側に向けて同心状に配置され発電部の上面輪郭形状と相似の形状を有する複数の環状電極線とから構成された集電電極を備えている、
ことを特徴とする色素増感型太陽電池。
A dye-sensitized solar cell having a cell structure including a power generation unit, a negative electrode, and a positive electrode,
At least one of the positive electrode side electrode and the negative electrode side electrode has a plurality of radial electrode lines extending radially outward from the cell center, electrically connected to each radial electrode line, and concentric from the cell center toward the outer side. A collector electrode composed of a plurality of annular electrode wires arranged in a shape and having a shape similar to the upper surface contour shape of the power generation unit,
A dye-sensitized solar cell characterized by the above.
集電電極の隣接する2本の放射状電極線の2線分と隣接する2本の環状電極線の2線分によって囲まれる複数の領域それぞれの面積はほぼ一致している、
ことを特徴とする請求項1に記載の色素増感型太陽電池。
The area of each of the plurality of regions surrounded by the two line segments of the two adjacent radial electrode lines of the collecting electrode and the two line segments of the two annular electrode lines adjacent to each other is substantially the same.
The dye-sensitized solar cell according to claim 1.
集電電極の各環状電極線の隣接間隔はセル中心から外側に向かうに従って減少している、
ことを特徴とする請求項2に記載の色素増感型太陽電池。
The distance between adjacent annular electrode lines of the collecting electrode decreases from the center of the cell toward the outside.
The dye-sensitized solar cell according to claim 2.
正極側電極と負極側電極の少なくとも一方は、集電電極の他に該集電電極の各放射状電極線及各環状電極線に電気的に接続された平面電極を備えている、
ことを特徴とする請求項1〜3の何れか1項に記載の色素増感型太陽電池。
At least one of the positive electrode side electrode and the negative electrode side electrode is provided with a planar electrode electrically connected to each radial electrode line and each annular electrode line of the current collecting electrode in addition to the current collecting electrode.
The dye-sensitized solar cell according to any one of claims 1 to 3, wherein:
JP2008083215A 2008-03-27 2008-03-27 Dye-sensitized solar cell Pending JP2009238583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083215A JP2009238583A (en) 2008-03-27 2008-03-27 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083215A JP2009238583A (en) 2008-03-27 2008-03-27 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2009238583A true JP2009238583A (en) 2009-10-15

Family

ID=41252276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083215A Pending JP2009238583A (en) 2008-03-27 2008-03-27 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2009238583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312391A1 (en) 2009-10-15 2011-04-20 Sanyo Electric Co., Ltd. Projection display device and electronic device comprising a standby circuit.
JP2012133889A (en) * 2010-12-17 2012-07-12 Fujikura Ltd Dye-sensitized solar battery
KR101221260B1 (en) 2011-04-22 2013-01-11 주식회사 세아 이앤티 Dye-Sensitized Solar Cell with adjacent anode and cathode electrode
JP2014072141A (en) * 2012-10-01 2014-04-21 Taiyo Yuden Co Ltd Dye-sensitized solar cell
CN107507875A (en) * 2017-08-14 2017-12-22 江苏科来材料科技有限公司 A kind of back contact solar cell plate electrode is around cross structure and preparation method
CN113690372A (en) * 2021-09-10 2021-11-23 华能新能源股份有限公司 Perovskite solar cell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021600A (en) * 2006-07-14 2008-01-31 Meidensha Corp Die-sensitized solar cell and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021600A (en) * 2006-07-14 2008-01-31 Meidensha Corp Die-sensitized solar cell and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312391A1 (en) 2009-10-15 2011-04-20 Sanyo Electric Co., Ltd. Projection display device and electronic device comprising a standby circuit.
JP2012133889A (en) * 2010-12-17 2012-07-12 Fujikura Ltd Dye-sensitized solar battery
KR101221260B1 (en) 2011-04-22 2013-01-11 주식회사 세아 이앤티 Dye-Sensitized Solar Cell with adjacent anode and cathode electrode
JP2014072141A (en) * 2012-10-01 2014-04-21 Taiyo Yuden Co Ltd Dye-sensitized solar cell
US9190220B2 (en) 2012-10-01 2015-11-17 Taiyo Yuden Co., Ltd. Dye-sensitized solar cell
CN107507875A (en) * 2017-08-14 2017-12-22 江苏科来材料科技有限公司 A kind of back contact solar cell plate electrode is around cross structure and preparation method
CN107507875B (en) * 2017-08-14 2024-01-26 江苏科来材料科技有限公司 Electrode encircling staggered structure of back contact solar cell and preparation method
CN113690372A (en) * 2021-09-10 2021-11-23 华能新能源股份有限公司 Perovskite solar cell and preparation method thereof

Similar Documents

Publication Publication Date Title
US20110240116A1 (en) Photoelectric conversion device and process for production thereof
JP5458271B2 (en) Dye-sensitized solar cell and method for producing the same
JP2009238583A (en) Dye-sensitized solar cell
JP2009245750A (en) Dye-sensitized solar battery and method of manufacturing the same
JP4071428B2 (en) Dye-sensitized solar cell and method for producing the same
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
JP4798318B1 (en) Dye-sensitized solar cell
RU2552597C1 (en) Flexible solar element
JP5680996B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2010277999A (en) Dye-sensitized solar cell and its manufacturing method
JP2010198821A (en) Photoelectric conversion element
JP2014013716A (en) Dye-sensitized solar cell and method for manufacturing the same
JP5969844B2 (en) Dye-sensitized solar cell and method for producing the same
JP5687873B2 (en) Working electrode and dye-sensitized solar cell having the same
TW201639208A (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP6048047B2 (en) Dye-sensitized solar cell and photoelectrode for dye-sensitized solar cell
JP2008108508A (en) Dye-sensitized solar cell
JP2013051143A (en) Electrode for photoelectric conversion element and photoelectric conversion element
KR101221260B1 (en) Dye-Sensitized Solar Cell with adjacent anode and cathode electrode
KR20110130040A (en) Dye sensitized solar cell
JP2012182039A (en) Dye-sensitized solar cell module
JP6000808B2 (en) Dye-sensitized solar cell module
TW201442265A (en) Dye-sensitized solar cell
KR20120040310A (en) Dye-sensitized solar cell with conductive clip, and sealing method thereof
JP5367670B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130619