JP2009236888A - Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating - Google Patents

Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating Download PDF

Info

Publication number
JP2009236888A
JP2009236888A JP2008087004A JP2008087004A JP2009236888A JP 2009236888 A JP2009236888 A JP 2009236888A JP 2008087004 A JP2008087004 A JP 2008087004A JP 2008087004 A JP2008087004 A JP 2008087004A JP 2009236888 A JP2009236888 A JP 2009236888A
Authority
JP
Japan
Prior art keywords
heated
temperature distribution
infrared
microwave
microwave heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008087004A
Other languages
Japanese (ja)
Inventor
Hideoki Fukushima
英沖 福島
Junichi Daimon
淳一 大門
Isao Mizuno
功 水野
Isao Makino
功 牧野
Tei Kawagoe
禎 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2008087004A priority Critical patent/JP2009236888A/en
Publication of JP2009236888A publication Critical patent/JP2009236888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device capable of measuring the temperature distribution of an object to be heated under microwave heating. <P>SOLUTION: The temperature distribution measuring device for microwave heating comprises: a microwave heater 10; an observation window 13 that transmits infrared rays radiated from a heated object to be heated and blocks the transmission of microwaves and the leakage of gas in a casing 11; and an infrared measuring instrument 20 capable of measuring the temperature distribution of the object to be heated. By the measuring device, by interposing an observation window between the object to be heated and an infrared detection section, the temperature distribution of the object to be heated under heating by the microwave heater can be measured by the infrared measuring instrument. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクロ波の照射によって加熱された被加熱物の温度分布を測定することができるマイクロ波加熱用温度分布測定装置およびその測定方法に関するものである。   The present invention relates to a microwave heating temperature distribution measuring apparatus capable of measuring a temperature distribution of an object to be heated heated by microwave irradiation, and a measuring method thereof.

物質(被加熱物)を効率的に加熱する方法の一つとして、被加熱物へマイクロ波を照射して加熱するマイクロ波加熱がある。このマイクロ波加熱は、家庭調理等のみならず工業的にも利用され得る。もっとも、マイクロ波加熱はマイクロ波を吸収し易い部分が集中的に加熱される傾向にあるため、均一加熱する場合など、所望した通りに被加熱物を安定的に加熱するには、加熱中の被加熱物の加熱状況(特に温度分布)を的確に把握することが必要となる。   One method for efficiently heating a substance (object to be heated) is microwave heating in which the object to be heated is irradiated with microwaves. This microwave heating can be used industrially as well as home cooking. However, since microwave heating tends to intensively heat a portion that easily absorbs microwaves, in order to stably heat an object to be heated as desired, such as when uniformly heating, It is necessary to accurately grasp the heating condition (particularly the temperature distribution) of the object to be heated.

ピンポイント的な温度測定をする場合は熱電対や放射温度計などが用いられるが、全体的な温度分布を測定する場合には赤外線サーモグラフィを利用して加熱状況を把握することが考えられる。参考までに、それら各種温度測定に関連した記載のある特許文献を下記に挙げておく。
特開2002−349867号公報 特開2007−121238号公報 特開平5−333073号公報 特開2005−214632号公報 特開2006−111351号公報
A thermocouple, a radiation thermometer, or the like is used for pinpoint temperature measurement, but when measuring the overall temperature distribution, it is conceivable to grasp the heating status using an infrared thermography. For reference, patent documents having descriptions related to these various temperature measurements are listed below.
JP 2002-349867 A JP 2007-121238 A JP-A-5-333073 JP 2005-214632 A JP 2006-111351 A

もっとも、被加熱物の温度分布を測定する手段として赤外線サーモグラフィは一般的ではあるものの、マイクロ波加熱中の被加熱物の温度分布を赤外線サーモグラフィで測定することはなされていなかった。この理由は次のように考えられる。   However, although infrared thermography is generally used as a means for measuring the temperature distribution of an object to be heated, the temperature distribution of the object to be heated during microwave heating has not been measured by infrared thermography. The reason is considered as follows.

そもそも赤外線サーモグラフィは、測定対象物が放出する赤外線(赤外線放射エネルギー)を検出し、その検出情報を画像処理等して、対象物全体の温度分布を表示するものである。このため、正確な温度分布を測定する前提として、測定対象物の放出する赤外線を良好に検出することが必要となる。ところが、マイクロ波加熱は、通常、赤外線を透過しない金属製の筐体内に被加熱物を収容して行われる。その筐体の一部に電磁波シールド材付きの覗き窓が設けられる場合でも、その覗き窓にはガラス製またはアクリル樹脂製の板材が取付けらるのが通常である。これらガラスまたはアクリル樹脂は、波長10μm付近に多数の赤外線吸収ピークをもち、赤外線をよく吸収する。しかもその波長域は多用される赤外線サーモグラフィの検出波長域と重なるためため、筐体外にある赤外線サーモグラフィがその覗き窓越しに被加熱物の放出する赤外線を検出することはできなかった。このような理由により、一般的な赤外線サーモグラフィでマイクロ波加熱中の被加熱物の温度分布を測定することは、従来全く行われてこなかったと思われる。   In the first place, infrared thermography detects infrared rays (infrared radiant energy) emitted from a measurement object, displays the temperature distribution of the entire object by performing image processing or the like on the detected information. For this reason, as a premise for measuring an accurate temperature distribution, it is necessary to satisfactorily detect the infrared rays emitted from the measurement object. However, microwave heating is usually performed by housing an object to be heated in a metal casing that does not transmit infrared rays. Even when a viewing window with an electromagnetic wave shielding material is provided in a part of the casing, a plate made of glass or acrylic resin is usually attached to the viewing window. These glass or acrylic resins have many infrared absorption peaks in the vicinity of a wavelength of 10 μm, and absorb infrared rays well. In addition, since the wavelength region overlaps the detection wavelength region of the frequently used infrared thermography, the infrared thermography outside the casing cannot detect the infrared rays emitted from the heated object through the viewing window. For these reasons, it is considered that measurement of the temperature distribution of the object to be heated during microwave heating with a general infrared thermography has never been performed.

いずれにしろ、従来、マイクロ波加熱しながら被加熱物の温度分布を測定すること(In−Situ測定)はなされておらず、せいぜい、上記の特許文献5にもあるように、マイクロ波加熱直後にマイクロ波加熱器の扉を開いて被加熱物の温度分布を赤外線サーモグラフィで測定する程度に過ぎなかった。   In any case, measuring the temperature distribution of the object to be heated while performing microwave heating (In-Situ measurement) has not been done, and at the very least, as described in Patent Document 5 above, immediately after microwave heating. In addition, the microwave heater was opened and the temperature distribution of the object to be heated was measured by infrared thermography.

本発明は、このような事情に鑑みて為されたものであり、マイクロ波加熱を行いながらも、被加熱物の温度分布を測定できるマイクロ波加熱用温度分布測定装置およびその測定方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a temperature distribution measuring device for microwave heating and a measuring method thereof that can measure the temperature distribution of an object to be heated while performing microwave heating. For the purpose.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、マイクロ波加熱中の被加熱物の温度分布を観察窓越しに赤外線サーモグラフィで測定できる温度分布測定装置を新たに開発し、実際にこれを用いて被加熱物の温度分布を精度良く測定することに成功した。そしてこの成果を発展させることで、本発明者は以降に述べる種々の発明を完成させるに至った。   As a result of extensive research and trial and error, the present inventor has developed a new temperature distribution measuring device that can measure the temperature distribution of the object to be heated during microwave heating with infrared thermography through the observation window. In fact, the temperature distribution of the object to be heated was successfully measured using this. And by developing this result, the present inventor has completed various inventions described below.

〈マイクロ波加熱用温度分布測定装置〉
(1)本発明のマイクロ波加熱用温度分布測定装置は、筐体内に収容した被加熱物に波長(λm)が10〜1000mmの電磁波であるマイクロ波を照射して該被加熱物を加熱するマイクロ波加熱器と、該加熱された被加熱物から放射される赤外線を透過しつつ該マイクロ波の透過と該筐体内のガスの漏出とを遮蔽する観察窓と、該被加熱物から放射された赤外線を検出する赤外線検出部を有し該赤外線検出部の検出情報に基づいて該被加熱物の温度分布を測定し得る赤外線測定器とからなり、
前記マイクロ波加熱器で加熱中の被加熱物の温度分布を、該被加熱物と前記赤外線検出部との間に介在させた前記観察窓を通じて、該赤外線測定器で測定可能としたことを特徴とする。
<Temperature distribution measuring device for microwave heating>
(1) The microwave heating temperature distribution measuring apparatus according to the present invention heats an object to be heated by irradiating the object to be heated contained in the casing with microwaves having an electromagnetic wave having a wavelength (λm) of 10 to 1000 mm. A microwave heater, an observation window that transmits infrared rays emitted from the heated object to be heated and shields transmission of the microwave and leakage of gas in the housing, and radiation from the object to be heated Comprising an infrared detector capable of measuring the temperature distribution of the object to be heated based on the detection information of the infrared detector having an infrared detector for detecting infrared rays,
The temperature distribution of an object to be heated while being heated by the microwave heater can be measured by the infrared measuring instrument through the observation window interposed between the object to be heated and the infrared detection unit. And

(2)本発明のマイクロ波加熱用温度分布測定装置(以下、適宜、単に「温度分布測定装置」という。)によれば、直接、観察窓越しにマイクロ波加熱中の被加熱物の温度分布を測定できる。これにより、マイクロ波加熱中の試料温度分布のIn−Situ観測が可能となった。しかも、この温度分布測定装置の観察窓は、照射したマイクロ波の透過を遮蔽しつつ被加熱物から放出される赤外線を透過するのみならず、筐体内のガスの漏出も遮蔽する。このため、温度分布測定時の操作環境が優れることは勿論、筐体内が所望の雰囲気に維持された状態における被加熱物の温度分布の観察や測定が可能となる。具体的にいえば、筐体内で被加熱物を真空雰囲気または特定ガスを充満させたガス雰囲気で加熱する加熱工程(例えば、焼結工程、焼成工程など)を行いつつ、そのときの被加熱物の温度分布を直接的に観察、測定することが可能となる。これにより、加熱された被加熱物の温度分布を単に測定するのみならず、各種の製造工程で行われる加熱工程に関して好適な加熱条件の検出、特定、設定さらには加熱制御等を行うことも、本発明の温度分布測定装置を用いて行うことが可能となる。より具体的には、不均一な加熱状態(加熱ムラ)の原因調査やマイクロ波による均一加熱制御などが可能となる。その結果、製造過程でマイクロ波加熱を用いる場合でも、製品の品質確保が容易となる。 (2) According to the temperature distribution measuring apparatus for microwave heating of the present invention (hereinafter simply referred to as “temperature distribution measuring apparatus”), the temperature distribution of the object to be heated during microwave heating directly through the observation window. Can be measured. This enabled In-Situ observation of the sample temperature distribution during microwave heating. Moreover, the observation window of this temperature distribution measuring apparatus not only transmits infrared rays emitted from the object to be heated while blocking the transmission of the irradiated microwave, but also blocks the leakage of gas in the housing. For this reason, not only the operation environment at the time of temperature distribution measurement is excellent, but also the temperature distribution of the object to be heated can be observed and measured in a state where the inside of the housing is maintained in a desired atmosphere. Specifically, the object to be heated is performed while performing a heating process (for example, a sintering process, a firing process, etc.) for heating the object to be heated in a vacuum atmosphere or a gas atmosphere filled with a specific gas in the housing. It is possible to directly observe and measure the temperature distribution. Thereby, not only simply measuring the temperature distribution of the heated object to be heated, but also detecting, specifying, setting and heating control suitable for the heating process performed in various manufacturing processes, This can be performed using the temperature distribution measuring apparatus of the present invention. More specifically, it becomes possible to investigate the cause of a non-uniform heating state (heating unevenness) or to perform uniform heating control using microwaves. As a result, it is easy to ensure product quality even when microwave heating is used in the manufacturing process.

このように本発明の温度分布測定装置は、試料(被加熱物)の温度分布をリアルタイムで観察でき、さらには、加熱時の雰囲気制御等を行いつつ、試料温度分布のIn−Situ観測できるという点が従来になく画期的であり、幅広い利用が期待される。しかも、高精度な温度分布測定が可能となるにも拘らず、市販の赤外線測定器を使用できるため、比較的簡易で安価である。   As described above, the temperature distribution measuring apparatus according to the present invention can observe the temperature distribution of the sample (object to be heated) in real time, and further can perform in-situ observation of the sample temperature distribution while controlling the atmosphere during heating. The point is innovative and unprecedented, and is expected to be widely used. In addition, although a highly accurate temperature distribution measurement is possible, a commercially available infrared measuring instrument can be used, so that it is relatively simple and inexpensive.

〈マイクロ波加熱用温度分布測定方法〉
本発明は、上記の温度分布測定装置としてのみならず、次のような温度分布測定方法としても把握される。この測定方法は、上記の測定装置を用いる場合には限らない。もっとも、上記の測定装置を使用すれば、本発明の測定方法を実質的に使用することになる。
<Temperature distribution measurement method for microwave heating>
The present invention is grasped not only as the above temperature distribution measuring apparatus but also as the following temperature distribution measuring method. This measurement method is not limited to the case where the above-described measurement apparatus is used. However, if the above measuring apparatus is used, the measuring method of the present invention is substantially used.

本発明のマイクロ波加熱用温度分布測定方法は、筐体内に収容した被加熱物に波長(λm)が10〜1000mmの電磁波であるマイクロ波を照射して該被加熱物を加熱する加熱工程と、
該加熱された被加熱物から放射される赤外線を透過しつつ該マイクロ波の透過と該筐体内のガスの漏出とを遮蔽する観察窓を、該被加熱物と該被加熱物から放射された赤外線を検出する赤外線検出部との間に介在させて、該赤外線検出部の検出情報に基づき前記マイクロ波が照射された加熱中の被加熱物の温度分布を測定する測定工程と、からなることを特徴とする。
The method for measuring the temperature distribution for microwave heating according to the present invention includes a heating step of heating the object to be heated by irradiating the object to be heated contained in the casing with microwaves having an electromagnetic wave having a wavelength (λm) of 10 to 1000 mm. ,
An observation window that transmits the infrared rays radiated from the heated object to be heated and shields the transmission of the microwave and the leakage of gas in the housing is emitted from the object to be heated and the object to be heated. A measurement step of measuring the temperature distribution of the object to be heated that is irradiated with the microwave, based on the detection information of the infrared detection unit, interposed between the infrared detection unit and the infrared detection unit that detects infrared rays. It is characterized by.

〈付加的構成〉
本発明のマイクロ波加熱用温度分布測定装置およびその測定方法は、上述した構成に加えて、次に列挙する構成中から任意に選択した一つまたは二つ以上がさらに付加されるものであると好適である。なお、下記から選択された構成は、複数の発明に重畳的かつ任意的に付加可能であることを断っておく。
<Additional configuration>
In addition to the above-described configuration, the microwave heating temperature distribution measuring device and the measuring method thereof according to the present invention further includes one or two or more arbitrarily selected from the configurations listed below. Is preferred. It should be noted that a configuration selected from the following can be added to a plurality of inventions in a superimposed manner and arbitrarily.

また、下記に示したいずれの構成も、カテゴリーを越えて相互に適宜組合わせ可能である。例えば、一見、測定装置または測定方法の一方にのみに関連するようにみえる構成であっても、他方にも関連し得る。
(i)前記観察窓は、前記マイクロ波の透過を遮蔽しつつ前記加熱された被加熱物から放射される赤外線を透過する透過孔を複数有する多孔遮蔽体と、該多孔遮蔽体に近接して設けられ該被加熱物から放射される赤外線を透過しつつ前記筐体内のガスの流出を封じる封気体とからなる。
(ii)前記封気体は、2〜14μmの波長域における透過率が60%以上である赤外線透過材からなる。
(iii)前記赤外線透過材は、一例として、フッ化カルシウム、サファイアまたはセレン化亜鉛の一種または複数種からなる。
(iv)前記多孔遮蔽体は、前記透過孔となる細孔が多数形成された金属多孔板または金網である。
(v)前記多孔遮蔽体は、特定範囲内の総表面積(St)に対する該特定範囲内にある前記透過孔の総面積(Sd)の割合である開口率(Sd/St x 100%)が40〜80%である。
(vi)前記赤外線測定器は、赤外線サーモグラフィである請求項1または6に記載のマイクロ波加熱用温度分布測定装置。
(vii)前記赤外線サーモグラフィの検出波長は2〜14μmである。
(viii)前記赤外線検出部は、サーモパイル、ボロメータ、InSbまたはPtSiである。
In addition, any of the configurations shown below can be appropriately combined with each other across categories. For example, a configuration that appears to be relevant only to one of the measuring device or the measuring method may also be relevant to the other.
(i) The observation window includes a porous shield having a plurality of transmission holes that transmit infrared rays emitted from the heated object to be heated while shielding transmission of the microwave, and a proximity to the porous shield. And a sealed gas that seals outflow of gas in the casing while transmitting infrared rays emitted from the object to be heated.
(ii) The sealed gas is made of an infrared transmitting material having a transmittance of 60% or more in a wavelength region of 2 to 14 μm.
(iii) The infrared transmitting material includes, as an example, one or more of calcium fluoride, sapphire, or zinc selenide.
(iv) The porous shield is a metal perforated plate or a metal mesh in which a large number of pores serving as the transmission holes are formed.
(V) The porous shield has an aperture ratio (Sd / St x 100%) which is a ratio of the total area (Sd) of the transmission holes in the specific range to the total surface area (St) in the specific range. ~ 80%.
(Vi) The temperature distribution measuring apparatus for microwave heating according to claim 1 or 6, wherein the infrared measuring instrument is an infrared thermography.
(Vii) The detection wavelength of the infrared thermography is 2 to 14 μm.
(Viii) The infrared detector is a thermopile, a bolometer, InSb or PtSi.

〈その他〉
特に断らない限り、本明細書でいう「x〜y」は、下限xおよび上限yを含む。また、本明細書に記載した下限および上限は任意に組合わせて、「a〜b」のような範囲を構成し得ることを断っておく。
また、本発明の測定装置または測定方法により測定される被加熱物は無機物、有機物、金属または金属化合物、無水物、含水物等を問わない。
<Others>
Unless otherwise specified, “x to y” in the present specification includes the lower limit x and the upper limit y. In addition, it should be noted that the lower limit and the upper limit described in the present specification can be arbitrarily combined to constitute a range such as “ab”.
Moreover, the to-be-heated material measured by the measuring apparatus or measuring method of this invention does not ask | require an inorganic substance, an organic substance, a metal or a metal compound, an anhydride, a hydrated substance, etc.

発明の実施形態を挙げて本発明をより詳しく説明する。
なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係るマイクロ波加熱用温度分布測定装置のみならずその測定方法にも、適宜適用できるものであることを断っておく。また、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なることを断っておく。
The present invention will be described in more detail with reference to embodiments of the invention.
It should be noted that the contents described in this specification, including the following embodiments, are applicable not only to the microwave heating temperature distribution measuring apparatus according to the present invention but also to the measuring method as appropriate. . Also, it should be noted that which embodiment is the best depends on the target, required performance, and the like.

(1)マイクロ波加熱器
本明細書でいうマイクロ波は、マイクロ波加熱が可能であれば特に限定されないが、一般的に波長(λm)が10〜1000mmのものである。周波数でいえば、0.3〜30GHzである。
(1) Microwave heater The microwave referred to in this specification is not particularly limited as long as microwave heating is possible, but generally has a wavelength (λm) of 10 to 1000 mm. In terms of frequency, it is 0.3 to 30 GHz.

マイクロ波の発振には、固体発振器、マグネトロン、クライストロン、ジャイロトロンなどが用いられるが、これもマイクロ波加熱に有効なものならばいずれでもよい。もっとも、一般的にはマグネトロンが用いられる。このようなマイクロ波を用いた加熱装置(マイクロ波加熱器)として、いわゆる電子レンジが代表的ではあるが、家庭用に限らず工業的に大規模のものでもよい。   For the oscillation of the microwave, a solid oscillator, magnetron, klystron, gyrotron or the like is used, and any of those that are effective for microwave heating may be used. However, generally a magnetron is used. As such a heating device (microwave heater) using microwaves, a so-called microwave oven is typical, but it is not limited to household use and may be industrially large-scale.

マイクロ波加熱器は、通常マイクロ波を遮蔽する金属製の筐体を備え、その筐体内へ被加熱物を出し入れするための扉を備える。本発明でいう筐体は、必ずしも被加熱物を完全に囲繞または密閉する必要はなく、効率的なマイクロ波加熱が行える限度で、部分的に開放部分があってもよい。もっとも、観察窓が筐体内のガスの漏出を遮蔽できるものであるから、観察窓と筐体とによって密封空間が形成されるものであると好ましいことはいうまでもない。そして、本発明に係る観察窓は、その筐体の一部を加工して形成されてもよいし、その筐体や扉の一部を改良して後付的に形成されてもよい。   A microwave heater generally includes a metal casing that shields microwaves, and includes a door that allows a heated object to be taken in and out of the casing. In the case of the present invention, the object to be heated does not necessarily need to be completely enclosed or sealed, and may have an open part as long as efficient microwave heating can be performed. However, since the observation window can shield the leakage of gas in the housing, it is needless to say that a sealed space is formed by the observation window and the housing. The observation window according to the present invention may be formed by processing a part of the casing, or may be formed retrospectively by improving a part of the casing or the door.

(2)赤外線測定器
赤外線測定器は、被加熱物が放出する赤外線を検出する赤外線検出部からの検出情報に基づいて被加熱物の温度分布を測定し得るものである。より具体的には、例えば、その赤外線検出部と、その検出情報を画像処理する処理部と、処理部の処理結果を画像表示する表示部とから赤外線測定器はなる。
(2) Infrared measuring device An infrared measuring device can measure the temperature distribution of a to-be-heated object based on the detection information from the infrared detection part which detects the infrared rays which a to-be-heated object discharge | releases. More specifically, for example, the infrared measuring device includes an infrared detection unit, a processing unit that performs image processing on the detection information, and a display unit that displays the processing result of the processing unit.

この赤外線測定器はその種類を問わないが、一般的には赤外線サーモグラフィ(適宜「サーモグラフィ」という。)が代表的である。一般的なサーモグラフィは市販されており、比較的安価に入手できる。   The type of the infrared measuring device is not limited, but in general, infrared thermography (referred to as “thermography” as appropriate) is typical. General thermography is commercially available and can be obtained relatively inexpensively.

被加熱物の放出する赤外線の波長は通常0.4〜30μmである。そこでサーモグラフィの検出波長もそれに応じて2〜14μmであればよい。具体的には、例えば、前記赤外線検出部の検出波長(λe)は、2〜5μm(InSb等)、8〜14μm(ボロメータ等)であると好ましい。なお、赤外線検出部は、具体的には、レンズなどを介してInSbまたはボロメータなどにより構成される。   The wavelength of infrared rays emitted from the object to be heated is usually 0.4 to 30 μm. Therefore, the detection wavelength of the thermography may be 2 to 14 μm accordingly. Specifically, for example, the detection wavelength (λe) of the infrared detection unit is preferably 2 to 5 μm (InSb or the like) or 8 to 14 μm (bolometer or the like). Note that the infrared detection unit is specifically composed of InSb or a bolometer through a lens or the like.

(3)観察窓
観察窓は、加熱された被加熱物から放射される赤外線を透過しつつマイクロ波の透過と筐体内のガスの漏出とを遮蔽するものである。この具体例として、前述した多孔遮蔽体と封気体とを組み合わせた観察窓がある。この観察窓は、マイクロ波加熱器の筐体(扉を含む)を枠体とすると、測定装置が簡素になり好ましい。観察窓の外形状、大きさや厚さなど問わない。例えば、観察窓は円形でも方形でもよい。要するに、マイクロ波の透過および筐体内のガスの漏出を抑止しつつ、被加熱物の温度分布を測定できればよい。
この観察窓は、筐体の窓枠との間でパッキン等を介して気密性が保持されていると好ましい。観察窓が多孔遮蔽体と封気体とからなる場合、金属製の多孔遮蔽体は少なくともその外周部などで金属製の筐体と接触し導通していると、マイクロ波の遮蔽が確実にあり好適である。
(3) Observation Window The observation window shields the transmission of microwaves and the leakage of gas in the housing while transmitting infrared rays radiated from the heated object to be heated. As a specific example, there is an observation window in which the above-described porous shield and sealed gas are combined. This observation window is preferably provided with a microwave heater casing (including a door) as a frame, which simplifies the measurement apparatus. There are no restrictions on the outer shape, size, or thickness of the observation window. For example, the observation window may be circular or rectangular. In short, it is only necessary to measure the temperature distribution of the object to be heated while suppressing the transmission of microwaves and the leakage of gas in the housing.
It is preferable that the observation window is kept airtight with a window frame of the casing through packing or the like. When the observation window is composed of a porous shield and a sealed gas, it is preferable that the metal porous shield is in contact with the metal housing at least at the outer periphery thereof, etc., so that the microwave is reliably shielded. It is.

(i)多孔遮蔽体
多孔遮蔽体の典型は、金網や金属板に多数の開孔を設けた金属多孔板からなる電磁波シールド部材である。マイクロ波を遮蔽する限り、多孔遮蔽体の材質は問わないが、金属特に鉄系材料が安価で好ましい。その他、多孔遮蔽体は銅(または銅合金)製、アルミニウム(アルミニウム合金)製、ニッケル(ニッケル合金)製さらには黄銅製でもよい。
(i) Porous shield A typical example of the porous shield is an electromagnetic wave shielding member made of a metal porous plate in which a large number of openings are provided in a metal net or a metal plate. As long as the microwave is shielded, the material of the porous shield is not limited, but a metal, particularly an iron-based material, is preferable because it is inexpensive. In addition, the porous shield may be made of copper (or copper alloy), aluminum (aluminum alloy), nickel (nickel alloy) or brass.

このような電磁波シールド部材として、厚さ数mmの金属板に直径数mmの細孔を穿孔したパンチングメタル、展開すると網目状の開孔ができる金網(エキスパンドメタル等)がある。このような電磁波シールド材は多種多様なものが市販されており、安価に入手できる。   As such an electromagnetic wave shielding member, there are a punching metal obtained by drilling pores having a diameter of several millimeters on a metal plate having a thickness of several millimeters, and a metal mesh (expanded metal or the like) that can form a mesh-like opening when deployed. A wide variety of such electromagnetic shielding materials are commercially available and can be obtained at low cost.

多孔遮蔽体の厚さの下限は0.1mm、0.3mm、0.5mm、0.7mmさらには1mmが好ましい。その上限は3mm、2mm、1.5mmさらには1.2mmが好ましい。これら上限および下限は任意に組合せ可能であり、例えば、その厚さが0.5〜2mmであると好ましい。
多孔遮蔽体の厚さが過小では、マイクロ波の漏洩が過大となり好ましくない。その厚さが過大では、被加熱物から放出された赤外線がサーモグラフィ等の赤外線検出部に正確に到達し辛くなり、測定温度に誤差が生じ易くなる。なお、多孔遮蔽体は、薄くなりその強度や剛性が低下しても、封気体で補強されるのであまり問題はない。
The lower limit of the thickness of the porous shield is preferably 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm or even 1 mm. The upper limit is preferably 3 mm, 2 mm, 1.5 mm or even 1.2 mm. These upper and lower limits can be arbitrarily combined. For example, the thickness is preferably 0.5 to 2 mm.
If the thickness of the porous shield is too small, microwave leakage becomes excessive, which is not preferable. If the thickness is excessive, the infrared rays emitted from the object to be heated are difficult to reach the infrared detection unit such as a thermography accurately, and an error is likely to occur in the measurement temperature. In addition, even if the porous shield is thin and its strength and rigidity are reduced, there is not much problem because it is reinforced with a sealed gas.

例えば、マイクロ波の周波数:2.45GHz(波長:122mm)の場合であれば、透過孔の孔径の下限は0.5mm、0.7mm、1mm、1.2mmさらには1.5mmが好ましい。孔径の上限は3.5mm、3mm、2.5mmさらには2.0mmが好ましい。これら上限および下限は任意に組合せ可能であり、例えば、孔径が1〜2.5mmであると好ましい。
孔径が過小の場合、赤外線が透過し難くなる。孔径が過大の場合、マイクロ波の波長にも依るが、マイクロ波の漏洩が過大となり好ましくない。
For example, if the microwave frequency is 2.45 GHz (wavelength: 122 mm), the lower limit of the diameter of the transmission hole is preferably 0.5 mm, 0.7 mm, 1 mm, 1.2 mm, or 1.5 mm. The upper limit of the hole diameter is preferably 3.5 mm, 3 mm, 2.5 mm or even 2.0 mm. These upper and lower limits can be arbitrarily combined. For example, the pore diameter is preferably 1 to 2.5 mm.
When the hole diameter is too small, infrared rays are hardly transmitted. When the pore diameter is excessive, although it depends on the wavelength of the microwave, the leakage of the microwave is excessive, which is not preferable.

多孔遮蔽体の特定範囲内の総表面積(St)に対する、その特定範囲内にある透過孔の総面積(Sd)の割合である開口率(Sd/St x 100%)は、下限が35%、40%、50%、60%さらには65%であると好ましい。また、その上限が85%、80%以下、75%さらには70%であると好ましい。これら上限および下限は任意に組合せ可能であり、例えば、開口率が40〜80%であると好ましい。   The opening ratio (Sd / St x 100%), which is the ratio of the total area (Sd) of the permeation holes in the specific range to the total surface area (St) in the specific range of the porous shield, has a lower limit of 35%, It is preferable to be 40%, 50%, 60% or even 65%. Further, the upper limit is preferably 85%, 80% or less, 75% or even 70%. These upper and lower limits can be arbitrarily combined. For example, the opening ratio is preferably 40 to 80%.

多孔遮蔽体の開口率が過小では被加熱物の放出する赤外線の相対強度が低下し、赤外線検出部が十分に検出できず、温度誤差が大きくなり得る。一方、開口率が過大になると、多孔遮蔽体の剛性や強度などが不足する他、また、マイクロ波の漏洩も大きくなり好ましくない。   If the aperture ratio of the porous shield is too small, the relative intensity of the infrared rays emitted from the object to be heated is lowered, and the infrared detector cannot be detected sufficiently, and the temperature error can be increased. On the other hand, an excessively high aperture ratio is not preferable because rigidity and strength of the porous shield are insufficient and microwave leakage also increases.

本発明者がマイクロ波の波長と多孔遮蔽体の透過孔の大きさ(孔径)との関係を調査したところ、マイクロ波の波長(λm:mm)に対する多孔遮蔽体の透過孔の平均径(d:mm)の割合である開口径比(d/λm)は、下限が1/300さらには1/120であると好ましい。その上限は1/40さらには1/50であると好ましい。これら上限および下限は任意に組合せ可能であり、例えば、開口径比が1/120〜1/50であると好ましい。この場合も、開口径比が過小では透過する赤外線の強度が低下し、開口径比が過大ではマイクロ波の漏洩が大きくなり好ましくない。   When the present inventor investigated the relationship between the wavelength of the microwave and the size (pore diameter) of the transmission hole of the porous shield, the average diameter (d of the transmission hole of the porous shield with respect to the wavelength of the microwave (λm: mm) (d The lower limit of the aperture diameter ratio (d / λm) which is a ratio of: mm) is preferably 1/300, more preferably 1/120. The upper limit is preferably 1/40 or even 1/50. These upper limits and lower limits can be arbitrarily combined. For example, the opening diameter ratio is preferably 1/120 to 1/50. Also in this case, if the aperture diameter ratio is too small, the intensity of transmitted infrared light is reduced, and if the aperture diameter ratio is excessively large, microwave leakage increases.

なお、透過孔の孔形状は円形である必要はなく、正方形、長方形、星形、台形など多様な形状が考えられる。これはエキスパンドメタル等でも同じである。なお、孔形状が円形でない場合、開孔面積から換算した孔径(換算孔径)に対して、上記孔径の上下限が適用される。   The hole shape of the transmission hole does not need to be circular, and various shapes such as a square, a rectangle, a star, and a trapezoid are conceivable. The same applies to expanded metal. In addition, when a hole shape is not circular, the upper and lower limit of the said hole diameter is applied with respect to the hole diameter converted from the opening area (converted hole diameter).

(ii)封気体
封気体は、多孔遮蔽体に近接して設けられ被加熱物から放射される赤外線を透過すると共にガスの流出を封じるものである。この封気体は、多孔遮蔽体からのガスの漏洩を阻止できれば足る。つまり、少なくとも本発明では、封気体が設けられる範囲で気流が阻害されれば足る。もっとも、前述したように筐体内の雰囲気を制御しつつマイクロ波加熱器等を行う上で、封気体は筐体の全体構造と協調して、筐体内が気密に保持され得るものであると好ましい。
封気体は、そのようなものである限り、形態(外形、大きさ、厚さ、透明性、色彩等)は問わない。多孔遮蔽体と封気体との配置も自由である。例えば、多孔遮蔽体が筐体内側で封気体が筐体外側の場合でも、その逆でもよい。さらには、多孔遮蔽体の両面側に封気体が設けられてもよい。いずれにしても、多孔遮蔽体と封気体は基本的には別部材であるから、観察窓はそれらを接合、結合、貼合せ等したものとなる。
(ii) Sealing gas The sealing gas is provided in the vicinity of the porous shield and transmits infrared rays emitted from the object to be heated and seals outflow of gas. This sealed gas is sufficient if it can prevent leakage of gas from the porous shield. That is, at least in the present invention, it is sufficient that the airflow is inhibited within a range in which the sealed gas is provided. However, as described above, when performing a microwave heater or the like while controlling the atmosphere in the housing, the sealed gas is preferably one that can be kept airtight in cooperation with the overall structure of the housing. .
As long as the sealed gas is such, the form (outer shape, size, thickness, transparency, color, etc.) does not matter. Arrangement of the porous shield and the sealed gas is also free. For example, even when the porous shield is inside the casing and the sealed gas is outside the casing, the opposite is also possible. Furthermore, a sealed gas may be provided on both sides of the porous shield. In any case, since the porous shield and the sealed gas are basically separate members, the observation window is obtained by joining, bonding, bonding, and the like.

勿論、製造上は両者を一体的に複合化したものでも良い。例えば、封気体が多孔遮蔽体の全面を覆っている場合の他、封気体を構成する赤外線透過材が多孔遮蔽体の個々の透過孔に一体的または個別的に充填または埋設されたものでも良い。いずれにしても、封気体と多孔遮蔽体とが協調して、マイクロ波の遮蔽と、赤外線の透過および気流の阻止を行うものであれば、観察窓として足る。   Of course, it may be a composite of both in production. For example, in addition to the case where the sealed gas covers the entire surface of the porous shield, an infrared transmitting material constituting the sealed gas may be integrally or individually filled or embedded in each transmission hole of the porous shield. . In any case, an observation window is sufficient if the sealed gas and the porous shield cooperate to shield microwaves, transmit infrared rays, and prevent airflow.

封気体を構成する赤外線透過材としては、例えば、サファイア(Al2O3)、フッ化カルシウム(CaF2)、フッ化マグネシウム(MgF2)、フッ化リチウム(LiF)がある。これらの赤外線透過材の透過波長域は、主に2〜5μmである。この他の赤外線透過材としては、例えば、セレン化亜鉛(ZnSe)、イオウ化亜鉛(ZnS)、フッ化バリウム(BaF2)などがある。これらの赤外線透過材の透過波長域は、主に8〜14μmまたは2〜5μmである。いずれの赤外線透過材を使用するかは、前述した赤外線サーモグラフィの赤外線の検出波長(λe)、例えば、2〜5μm(InSb等)または8〜14μm(ボロメータ等)に応じて選択すればよい。勿論、逆に、赤外線透過材の透過波長に合わせて、それに応じた検出波長をもつ赤外線サーモグラフィを使用するようにしてもよい。さらに例示した上記の赤外線透過材以外にも、表面に反射防止膜(AR)をコートGeまたはSiからなる板材を利用可能である。Ge板の両側にARコートした場合、透過波長域:8〜14μmで透過率が80〜95%となる。Si板の両側にARコートした場合、透過波長域:8〜14μmで透過率が65〜90%となる。いずれの場合にも、ARコートすることで赤外線透過率が向上し得る。   Examples of the infrared transmitting material forming the sealed gas include sapphire (Al2O3), calcium fluoride (CaF2), magnesium fluoride (MgF2), and lithium fluoride (LiF). The transmission wavelength range of these infrared transmitting materials is mainly 2 to 5 μm. Examples of other infrared transmitting materials include zinc selenide (ZnSe), zinc sulphide (ZnS), and barium fluoride (BaF2). The transmission wavelength range of these infrared transmitting materials is mainly 8 to 14 μm or 2 to 5 μm. Which infrared transmitting material is used may be selected according to the infrared detection wavelength (λe) of the above-described infrared thermography, for example, 2 to 5 μm (InSb or the like) or 8 to 14 μm (bolometer or the like). Of course, conversely, an infrared thermography having a detection wavelength corresponding to the transmission wavelength of the infrared transmission material may be used. Further, in addition to the above infrared transmitting material exemplified, a plate material made of Ge or Si coated with an antireflection film (AR) on the surface can be used. When AR coating is applied to both sides of the Ge plate, the transmittance is 80 to 95% in the transmission wavelength region: 8 to 14 μm. When AR coating is performed on both sides of the Si plate, the transmittance is 65 to 90% in the transmission wavelength region: 8 to 14 μm. In either case, infrared transmission can be improved by AR coating.

また、赤外線測定器で検出可能な波長の赤外線を透過する限り、赤外線透過材は単種でもそれらを組み合わせた複数種でも良い。
いずれの赤外線透過材を使用するにしても、一般的に用いられる赤外線サーモグラフィの検出波長の範囲(2〜14μm、特に、2〜5μmまたは8〜14μm)内で、赤外線の透過率の高いものを選択するとよい。具体的には、赤外線の透過率が60%以上、70%以上、72%以上、80%以上さらには85%以上となるものを選択するとよい。透過率が過小であると、補正量が多くなり試料の温度分布を高精度で測定することが困難となる。勿論、透過率が高いほど好ましいが、そのような赤外線透過材の探索やコスト、測定精度などを考慮すると、過大な透過率は必ずしも必要ではない。
Moreover, as long as the infrared ray of the wavelength which can be detected with an infrared measuring device is permeate | transmitted, the infrared rays transparent material may be single type, or multiple types combining them.
Whichever infrared ray transmitting material is used, a material having a high infrared transmittance within a detection wavelength range (2 to 14 μm, particularly 2 to 5 μm or 8 to 14 μm) of generally used infrared thermography. It is good to choose. Specifically, it is preferable to select one having an infrared transmittance of 60% or more, 70% or more, 72% or more, 80% or more, or 85% or more. If the transmittance is too small, the amount of correction increases, making it difficult to measure the temperature distribution of the sample with high accuracy. Of course, the higher the transmittance, the better. However, in consideration of the search, cost, measurement accuracy, and the like of such an infrared transmitting material, an excessive transmittance is not necessarily required.

実施例を挙げて本発明をより具体的に説明する。
〈マイクロ波加熱用温度分布測定装置〉
(1)本発明の一実施例であるマイクロ波加熱用温度分布測定装置(以下単に「測定装置」という。)を図1に示す。この測定装置1は、電磁波であるマイクロ波を発生させるマグネトロンを備えたマイクロ波加熱器10と、このマイクロ波加熱器10により加熱される試料Sの温度分布を測定する非冷却型の赤外線サーモグラフィ20(赤外線測定器)とからなる。
The present invention will be described more specifically with reference to examples.
<Temperature distribution measuring device for microwave heating>
(1) A microwave heating temperature distribution measuring apparatus (hereinafter simply referred to as “measuring apparatus”) according to an embodiment of the present invention is shown in FIG. The measuring apparatus 1 includes a microwave heater 10 including a magnetron that generates microwaves as electromagnetic waves, and an uncooled infrared thermography 20 that measures the temperature distribution of a sample S heated by the microwave heater 10. (Infrared measuring device).

マイクロ波加熱器10は、軟鉄製鋼板からなる直方体状の筐体11と、その筐体11の一面側に取り付けられた開閉式の扉12と、扉12に対向して設けられた観察窓13とからなる。扉12も軟鉄製鋼板からなる。なお、この扉12は、後述する図4に示す従来のマイクロ波加熱器110の扉112と同様に、覗き窓113を兼ね備えるものでも良い。
本実施例の観察窓13は、図2に示すように、筐体11の一部に嵌め込まれる、パンチングメタルからなる電磁シールド板30(多孔遮蔽体)と、その片面側(筐体11の外面側)に設けられた赤外線透過材からなる赤外線透過板40(封気体)とからなる。電磁シールド板30と赤外線透過板40とは、機械的に接触させつつ、赤外線透過板40の外周囲に気密性保持用のシール材を介在させて、筐体11にネジでとも締めされる。
電磁シールド板30は、図3に示すように、軟鉄製鋼板からなる金属板31に多数の開孔32(透過孔)をパンチングして穿孔したものである。その諸元は、130x250mmの略長方形状で厚さ0.5mm、金属板31に穿孔した開孔32の開孔径はφ1.5mm、開口率は60%とした。
赤外線透過板40は、フッ化カルシウムからなる板厚2mmの透明板であって、その透過率は92%である。
The microwave heater 10 includes a rectangular parallelepiped casing 11 made of a soft iron steel plate, an openable / closable door 12 attached to one side of the casing 11, and an observation window 13 provided facing the door 12. It consists of. The door 12 is also made of a soft iron steel plate. In addition, this door 12 may also have the observation window 113 like the door 112 of the conventional microwave heater 110 shown in FIG. 4 mentioned later.
As shown in FIG. 2, the observation window 13 of the present embodiment includes an electromagnetic shield plate 30 (porous shield) made of punching metal and fitted on a part of the housing 11, and one side thereof (the outer surface of the housing 11). And an infrared transmitting plate 40 (sealed gas) made of an infrared transmitting material provided on the side. The electromagnetic shield plate 30 and the infrared transmission plate 40 are mechanically contacted with each other, and a sealing material for maintaining airtightness is interposed around the outer periphery of the infrared transmission plate 40, and is fastened to the housing 11 with screws.
As shown in FIG. 3, the electromagnetic shield plate 30 is obtained by punching a large number of openings 32 (transmission holes) in a metal plate 31 made of a soft iron steel plate. The specifications are a substantially rectangular shape of 130 × 250 mm, a thickness of 0.5 mm, an opening diameter of the opening 32 formed in the metal plate 31 is φ1.5 mm, and an opening ratio is 60%.
The infrared transmitting plate 40 is a transparent plate made of calcium fluoride and having a thickness of 2 mm, and its transmittance is 92%.

本実施例で用いたマイクロ波加熱器10の仕様は、照射されるマイクロ波の周波数:2.45GHz(波長:λm=122mm)、出力:200〜750Wとした。   The specifications of the microwave heater 10 used in this example were as follows: frequency of irradiated microwave: 2.45 GHz (wavelength: λm = 122 mm), output: 200 to 750 W.

赤外線サーモグラフィ20(以下単に「サーモグラフィ20」という。)は、赤外線をレンズを介して検出する赤外線検出部21と、その赤外線検出部21から検出された検出情報に基づき画像処理をして被加熱物の温度分布を画像表示する表示部22とからなる。本実施例のサーモグラフィ20には、市販されている赤外線サーモグラフィ(日本アビオニクス社製)を用いた。このサーモグラフィ20の赤外線の検出波長(λe)は2〜5μmである。   An infrared thermography 20 (hereinafter simply referred to as “thermography 20”) includes an infrared detection unit 21 that detects infrared rays through a lens, and performs image processing based on detection information detected from the infrared detection unit 21 to be heated. And a display unit 22 for displaying an image of the temperature distribution. For the thermography 20 of this example, a commercially available infrared thermography (manufactured by Nippon Avionics Co., Ltd.) was used. The infrared detection wavelength (λe) of the thermography 20 is 2 to 5 μm.

(2)上記実施例に対する比較例となる従来のマイクロ波加熱用温度分布測定装置を図4に示す。この測定装置100も、マイクロ波加熱器110とサーモグラフィ20とからなる点は上記実施例の測定装置1と同様である。しかし、マイクロ波加熱器110の筐体111および扉112の構造が異なる。マイクロ波加熱器100では、市販の電子レンジなどと同様に扉112に覗き窓113が設けられている。 (2) FIG. 4 shows a conventional microwave heating temperature distribution measuring apparatus as a comparative example to the above-described embodiment. This measuring apparatus 100 is also similar to the measuring apparatus 1 of the above embodiment in that it includes a microwave heater 110 and a thermography 20. However, the structures of the casing 111 and the door 112 of the microwave heater 110 are different. In the microwave heater 100, a viewing window 113 is provided on the door 112 as in a commercially available microwave oven.

この覗き窓113は電磁シールド板130の両側が透明な耐熱ガラス140によって挟持され補強された構造となっている。この電磁シールド板130には、上記の電磁シールド板30と同じものを用いた。耐熱ガラス140には、板厚1.5mmのホウケイ酸ガラスを用いた。なお、耐熱ガラス140は、通常のガラスや樹脂と同様に、波長10μm付近に多数の赤外吸収ピークを有する。   The viewing window 113 has a structure in which both sides of the electromagnetic shield plate 130 are sandwiched and reinforced by a transparent heat-resistant glass 140. The electromagnetic shield plate 130 was the same as the electromagnetic shield plate 30 described above. As the heat-resistant glass 140, borosilicate glass having a thickness of 1.5 mm was used. The heat-resistant glass 140 has a number of infrared absorption peaks in the vicinity of a wavelength of 10 μm, like ordinary glass and resin.

〈マイクロ波加熱用温度分布測定方法〉
マイクロ波加熱器の筐体(11または111)の中央に試料Sを置き、セラミックス(酸化亜鉛焼成体(純度100%)からなる8個の試料(8x16mm)を等間隔に置き、筐体外からサーモグラフィ20を用いて各試料の温度分布を測定した。各試料からサーモグラフィ20までの測定距離は約30cmとした。
これらの試料Sへ出力500Wのマイクロ波を30秒間照射してマイクロ波加熱を行った。
<Temperature distribution measurement method for microwave heating>
Place the sample S in the center of the case (11 or 111) of the microwave heater, place eight samples (8 x 16 mm) made of ceramics (zinc oxide fired body (purity 100%)) at regular intervals, and make thermography from outside the case. The temperature distribution of each sample was measured using 20. The measurement distance from each sample to the thermography 20 was about 30 cm.
Microwave heating was performed by irradiating these samples S with microwaves having an output of 500 W for 30 seconds.

〈評価1〉
(1)先ず、比較例の測定装置100を用いて、覗き窓113越しに加熱された試料Sの温度分布をサーモグラフィ20で測定したところ、赤外線が全く検出されず、サーモグラフィ20による試料Sの温度分布測定はできなかった。
<Evaluation 1>
(1) First, when the temperature distribution of the sample S heated through the viewing window 113 was measured with the thermography 20 using the measurement apparatus 100 of the comparative example, no infrared rays were detected, and the temperature of the sample S by the thermography 20 was detected. Distribution measurement was not possible.

次に、比較例のマイクロ波加熱器110を用いて加熱した直後(加熱終了後1秒以内)に、マイクロ波加熱器110の扉112を開放して、試料Sの温度分布を直接的にサーモグラフィ20で測定した。このときも、試料Sとサーモグラフィ20の赤外線検出部21との距離は30cmとした。これにより得られた温度分布の測定画像を図5に示す。図5から明らかなように、左右の試料が高温で中央右部分が低温の温度分布を示すことが確認された。   Next, immediately after heating using the microwave heater 110 of the comparative example (within 1 second after the end of heating), the door 112 of the microwave heater 110 is opened, and the temperature distribution of the sample S is directly measured by thermography. Measured at 20. Also at this time, the distance between the sample S and the infrared detector 21 of the thermography 20 was set to 30 cm. A measurement image of the temperature distribution obtained in this way is shown in FIG. As is clear from FIG. 5, it was confirmed that the left and right samples showed a high temperature distribution and the central right portion showed a low temperature distribution.

(2)実施例である測定装置1を用いて同様に測定した結果を図6に示す。図6から明らかなように、本実施例によれば、観察窓13越しの測定であっても、サーモグラフィ20により、試料Sの温度分布を同様に測定できることが確認された。しかも、この測定結果は、絶対的なピーク値こそ異なるものの、扉112を開いて観察した場合(図5の場合)と同様な温度分布を示した。 (2) FIG. 6 shows the result of the same measurement using the measuring apparatus 1 as an example. As apparent from FIG. 6, according to the present example, it was confirmed that the temperature distribution of the sample S can be similarly measured by the thermography 20 even when measuring through the observation window 13. Moreover, this measurement result showed a temperature distribution similar to that observed when the door 112 was opened (in the case of FIG. 5), although the absolute peak values were different.

〈評価2〉
(1)赤外線透過材を前述したフッ化カルシウムから、サファイア(赤外線透過率83%、サーモグラフィの検出波長2〜5μm)、セレン化亜鉛(赤外線透過率72%、検出波長8〜14μm)またはゲルマニウム(赤外線透過率50%、検出波長8〜14μm)に変えた赤外線透過板40を用いて、上述の測定と同様な測定を行った。さらに、赤外線透過板40を石英ガラス板(検出波長8〜14μm)にも変更して同様な測定を行った。なお、赤外線透過板40の材質変更に応じて、検出波長が2〜5μmのサーモグラフィ以外に、検出波長が8〜14μmのサーモグラフィをも適宜使用した。
こうして得られた温度分布の測定結果を図7にまとめて示した。なお、図7中の「実温度」は、測定装置1でマイクロ波加熱した直後に扉12を開放して、試料Sの温度分布を直接に測定したものである。また、図7中の試料No.1〜8は、図5および図6に写っている各試料を左側から数えた順番にそれぞれ対応する。
<Evaluation 2>
(1) From the above-described calcium fluoride as the infrared transmitting material, sapphire (infrared transmittance 83%, thermographic detection wavelength 2 to 5 μm), zinc selenide (infrared transmittance 72%, detection wavelength 8 to 14 μm) or germanium ( Using the infrared transmission plate 40 changed to an infrared transmittance of 50% and a detection wavelength of 8 to 14 μm, the same measurement as described above was performed. Further, the infrared transmission plate 40 was changed to a quartz glass plate (detection wavelength: 8 to 14 μm), and the same measurement was performed. In addition to the thermography having a detection wavelength of 2 to 5 μm, a thermography having a detection wavelength of 8 to 14 μm was appropriately used in accordance with the material change of the infrared transmission plate 40.
The temperature distribution measurement results obtained in this way are summarized in FIG. Note that “actual temperature” in FIG. 7 is obtained by directly measuring the temperature distribution of the sample S by opening the door 12 immediately after microwave heating by the measuring apparatus 1. In addition, the sample No. in FIG. 1 to 8 correspond to the respective samples shown in FIGS. 5 and 6 in the order counted from the left side.

図7から次のことが分かる。先ず、封気体を石英ガラス(赤外線透過率:0%)とした場合、測定装置100でホウケイ酸ガラスを用いた場合と同様に、筐体内の試料の温度分布を全く測定できなかった。次に、ゲルマニウム(赤外線透過率:50%)を用いた場合は、実温度と似た傾向の温度分布も一部観察されたが、全体的な観測は困難であった。フッ化カルシウム(赤外線透過率:92%)、サファイア(赤外線透過率:83%)およびセレン化亜鉛(赤外線透過率:72%)を用いた場合は、それらの透過率に応じて実温度よりは低くなるものの、実温度の温度分布と全体的な傾向は近似していた。
これらの結果から赤外線透過率60%以上さらに好ましくは72%以上のガラス材料を用いることで、全体的な傾向として、測定された温度分布を実温度の温度分布に近似させることができることがわかる。
The following can be seen from FIG. First, when the sealed gas was quartz glass (infrared transmittance: 0%), the temperature distribution of the sample in the housing could not be measured at all, as in the case where borosilicate glass was used in the measuring apparatus 100. Next, when germanium (infrared transmittance: 50%) was used, a part of the temperature distribution having a tendency similar to the actual temperature was observed, but the overall observation was difficult. When calcium fluoride (infrared transmittance: 92%), sapphire (infrared transmittance: 83%) and zinc selenide (infrared transmittance: 72%) are used, the actual temperature depends on the transmittance. Although lower, the temperature distribution of the actual temperature and the overall trend were close.
From these results, it can be seen that by using a glass material having an infrared transmittance of 60% or more, more preferably 72% or more, the measured temperature distribution can be approximated to the actual temperature distribution as an overall tendency.

〈補足〉
(1)上述したような温度分布の測定結果は、筐体内の雰囲気を窒素ガス等を充填した場合または真空とした場合等であっても同様であった。
(2)上述の測定装置1でマイクロ波加熱したときのマイクロ波の漏洩は、実施例および比較例ともに0.1mW/cm2 以下であった。
(3)測定装置100の覗き窓113の耐熱ガラスを透明な耐熱樹脂材(ポリメチルペンテン、ポリザルフォンなど)に替えて同様な測定を行ったが、やはりその覗き窓113越しには試料Sから放出された赤外線が全く検出されず、温度分布を測定することはできなかった。
<Supplement>
(1) The measurement result of the temperature distribution as described above was the same even when the atmosphere in the casing was filled with nitrogen gas or the like or was evacuated.
(2) Microwave leakage when heated by the above-described measuring apparatus 1 was 0.1 mW / cm 2 in both the example and the comparative example. It was the following.
(3) The same measurement was performed by replacing the heat-resistant glass of the viewing window 113 of the measuring apparatus 100 with a transparent heat-resistant resin material (polymethylpentene, polyzarphone, etc.). The detected infrared ray was not detected at all, and the temperature distribution could not be measured.

(4)なお、上述した測定では、マイクロ波加熱の終了から30秒経過した後の試料Sの温度分布を測定したが、当然、本実施例によれば加熱途中の試料Sの温度分布も測定できることはいうまでもない。すなわち、本発明に係る測定装置を用いれば、これまで困難であった、いわゆるIn−Situ測定をマイクロ波加熱中でも容易に行える。このように本発明を用いれば、単に被加熱物の温度分布をリアルタイムで測定できるにとどまらず、そのリアルタイムな測定情報に基づいて、高精度なマイクロ波の加熱制御等を比較的容易に行い得る。 (4) In the measurement described above, the temperature distribution of the sample S after 30 seconds from the end of the microwave heating was measured. However, according to the present example, the temperature distribution of the sample S during the heating is also measured. Needless to say, it can be done. That is, by using the measuring apparatus according to the present invention, so-called In-Situ measurement, which has been difficult until now, can be easily performed even during microwave heating. As described above, if the present invention is used, the temperature distribution of the object to be heated can be measured not only in real time, but also highly accurate microwave heating control can be performed relatively easily based on the real time measurement information. .

本発明に係るマイクロ波加熱用温度分布測定装置を示す概要図である。It is a schematic diagram which shows the temperature distribution measuring apparatus for microwave heating which concerns on this invention. その測定装置で用いた観察窓の構成図である。It is a block diagram of the observation window used with the measuring device. その測定装置で用いた電磁シールド板の拡大図である。It is an enlarged view of the electromagnetic shielding board used with the measuring device. 従来のマイクロ波加熱用温度分布測定装置を示す概要図である。It is a schematic diagram which shows the conventional temperature distribution measuring apparatus for microwave heating. マイクロ波加熱後に開扉して測定した温度分布を示す赤外線サーモグラフィの画像図である。It is an image figure of the infrared thermography which shows the temperature distribution measured by opening after microwave heating. 本発明に係るマイクロ波加熱用温度分布測定装置を用いて測定した温度分布を示す赤外線サーモグラフィの画像図である。It is an image figure of the infrared thermography which shows the temperature distribution measured using the temperature distribution measuring apparatus for microwave heating which concerns on this invention. 種々の観察窓を介して測定したそれぞれの温度分布を示すグラフである。It is a graph which shows each temperature distribution measured through various observation windows.

符号の説明Explanation of symbols

1 マイクロ波加熱用温度分布測定装置(実施例)
10 マイクロ波加熱器
13 観察窓
20 赤外線サーモグラフィ
30 電磁シールド板(多孔遮蔽体)
32 開孔(透過孔)
40 赤外線透過板 (封気体)
100 マイクロ波加熱用温度分布測定装置(比較例)
1 Temperature distribution measuring device for microwave heating (Example)
10 Microwave Heater 13 Observation Window 20 Infrared Thermography 30 Electromagnetic Shield Plate (Porous Shield)
32 Opening (transmission hole)
40 Infrared transmitting plate (sealed gas)
100 Temperature distribution measuring device for microwave heating (comparative example)

Claims (8)

筐体内に収容した被加熱物に波長(λm)が10〜1000mmの電磁波であるマイクロ波を照射して該被加熱物を加熱するマイクロ波加熱器と、
該加熱された被加熱物から放射される赤外線を透過しつつ該マイクロ波の透過と該筐体内のガスの漏出とを遮蔽する観察窓と、
該被加熱物から放射された赤外線を検出する赤外線検出部を有し該赤外線検出部の検出情報に基づいて該被加熱物の温度分布を測定し得る赤外線測定器とからなり、
前記マイクロ波加熱器で加熱中の被加熱物の温度分布を、該被加熱物と前記赤外線検出部との間に介在させた前記観察窓を通じて、該赤外線測定器で測定可能としたことを特徴とするマイクロ波加熱用温度分布測定装置。
A microwave heater that heats the object to be heated by irradiating the object to be heated contained in the case with a microwave that is an electromagnetic wave having a wavelength (λm) of 10 to 1000 mm;
An observation window that shields transmission of the microwave and leakage of gas in the housing while transmitting infrared rays emitted from the heated object to be heated;
An infrared detector that has an infrared detector that detects infrared rays emitted from the object to be heated, and that can measure the temperature distribution of the object to be heated based on the detection information of the infrared detector;
The temperature distribution of an object to be heated while being heated by the microwave heater can be measured by the infrared measuring instrument through the observation window interposed between the object to be heated and the infrared detection unit. A temperature distribution measuring device for microwave heating.
前記観察窓は、前記マイクロ波の透過を遮蔽しつつ前記加熱された被加熱物から放射される赤外線を透過する透過孔を複数有する多孔遮蔽体と、
該多孔遮蔽体に近接して設けられ該被加熱物から放射される赤外線を透過しつつ前記筐体内のガスの流出を封じる封気体とからなる請求項1に記載のマイクロ波加熱用温度分布測定装置。
The observation window has a porous shield having a plurality of transmission holes that transmit infrared rays radiated from the heated object to be heated while shielding transmission of the microwaves;
2. The temperature distribution measurement for microwave heating according to claim 1, comprising: a sealed gas that is provided in the vicinity of the porous shield and transmits an infrared ray radiated from the object to be heated and seals outflow of gas in the housing. apparatus.
前記封気体は、2〜14μmの波長域における透過率が60%以上である赤外線透過材からなる請求項2に記載のマイクロ波加熱用温度分布測定装置。   The temperature distribution measuring device for microwave heating according to claim 2, wherein the sealed gas is made of an infrared transmitting material having a transmittance of 60% or more in a wavelength range of 2 to 14 µm. 前記赤外線透過材は、フッ化カルシウム、サファイアまたはセレン化亜鉛の一種または複数種からなる請求項2または3に記載のマイクロ波加熱用温度分布測定装置。   The temperature distribution measuring device for microwave heating according to claim 2 or 3, wherein the infrared transmitting material is made of one or more of calcium fluoride, sapphire, or zinc selenide. 前記多孔遮蔽体は、前記透過孔となる細孔が多数形成された金属多孔板または金網である請求項2または4に記載のマイクロ波加熱用温度分布測定装置。   The temperature distribution measuring device for microwave heating according to claim 2 or 4, wherein the porous shield is a metal perforated plate or a wire mesh in which a large number of pores serving as the transmission holes are formed. 前記多孔遮蔽体は、特定範囲内の総表面積(St)に対する該特定範囲内にある前記透過孔の総面積(Sd)の割合である開口率(Sd/St x 100%)が40〜80%である請求項2または5に記載のマイクロ波加熱用温度分布測定装置。   The porous shield has an aperture ratio (Sd / St x 100%) that is a ratio of the total area (Sd) of the transmission holes in the specific range to the total surface area (St) in the specific range of 40 to 80%. The temperature distribution measuring device for microwave heating according to claim 2 or 5. 前記赤外線測定器は、検出波長が2〜14μmの赤外線サーモグラフィである請求項1または6に記載のマイクロ波加熱用温度分布測定装置。   The temperature distribution measuring apparatus for microwave heating according to claim 1 or 6, wherein the infrared measuring instrument is an infrared thermography having a detection wavelength of 2 to 14 µm. 筐体内に収容した被加熱物に波長(λm)が10〜1000mmの電磁波であるマイクロ波を照射して該被加熱物を加熱する加熱工程と、
該加熱された被加熱物から放射される赤外線を透過しつつ該マイクロ波の透過と該筐体内のガスの漏出とを遮蔽する観察窓を、該被加熱物と該被加熱物から放射された赤外線を検出する赤外線検出部との間に介在させて、該赤外線検出部の検出情報に基づき前記マイクロ波が照射された加熱中の被加熱物の温度分布を測定する測定工程と、
からなることを特徴とするマイクロ波加熱用温度分布測定方法。
A heating step of heating the object to be heated by irradiating the object to be heated contained in the case with microwaves having a wavelength (λm) of 10 to 1000 mm;
An observation window that transmits the infrared rays radiated from the heated object to be heated and shields the transmission of the microwave and the leakage of gas in the housing is emitted from the object to be heated and the object to be heated. A measurement step of measuring the temperature distribution of an object to be heated that is irradiated with the microwave based on detection information of the infrared detection unit, interposed between the infrared detection unit and infrared detection unit;
A temperature distribution measuring method for microwave heating, comprising:
JP2008087004A 2008-03-28 2008-03-28 Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating Pending JP2009236888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087004A JP2009236888A (en) 2008-03-28 2008-03-28 Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087004A JP2009236888A (en) 2008-03-28 2008-03-28 Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating

Publications (1)

Publication Number Publication Date
JP2009236888A true JP2009236888A (en) 2009-10-15

Family

ID=41250992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087004A Pending JP2009236888A (en) 2008-03-28 2008-03-28 Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating

Country Status (1)

Country Link
JP (1) JP2009236888A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145515A1 (en) * 2010-05-15 2011-11-24 有限会社 アール・シー・エス Magnetic wave antenna and magnetic wave communication device
CN102589707A (en) * 2012-02-29 2012-07-18 华中光电技术研究所中国船舶重工集团公司第七一七研究所 Real-time compensation method of non-uniformity correction residual errors of infrared focal plane array detector
US20180297873A1 (en) * 2015-09-14 2018-10-18 De Montfort University Rotacting contactor reactor
CN108917980A (en) * 2018-05-09 2018-11-30 海尔优家智能科技(北京)有限公司 A kind of micro-wave temperature detection method, device, medium and computer equipment
WO2020036075A1 (en) * 2018-08-13 2020-02-20 日本電信電話株式会社 Temperature measurement system and temperature measurement method
CN113790805A (en) * 2021-09-10 2021-12-14 浙江工业大学 Device and method for measuring temperature distribution of surface of bed layer of microwave-assisted pyrolysis reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675494U (en) * 1979-11-15 1981-06-19
JPS60154122A (en) * 1984-01-24 1985-08-13 Kureha Chem Ind Co Ltd Infrared sensor
JPS6129187Y2 (en) * 1978-05-24 1986-08-28
JPH11193930A (en) * 1997-12-22 1999-07-21 Samsung Electron Co Ltd Microwave oven
JP2003056852A (en) * 2001-08-09 2003-02-26 Hitachi Hometec Ltd Cooking apparatus
JP2007024829A (en) * 2005-07-21 2007-02-01 Toshiba Corp Temperature detector and high-frequency heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129187Y2 (en) * 1978-05-24 1986-08-28
JPS5675494U (en) * 1979-11-15 1981-06-19
JPS60154122A (en) * 1984-01-24 1985-08-13 Kureha Chem Ind Co Ltd Infrared sensor
JPH11193930A (en) * 1997-12-22 1999-07-21 Samsung Electron Co Ltd Microwave oven
JP2003056852A (en) * 2001-08-09 2003-02-26 Hitachi Hometec Ltd Cooking apparatus
JP2007024829A (en) * 2005-07-21 2007-02-01 Toshiba Corp Temperature detector and high-frequency heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145515A1 (en) * 2010-05-15 2011-11-24 有限会社 アール・シー・エス Magnetic wave antenna and magnetic wave communication device
CN102589707A (en) * 2012-02-29 2012-07-18 华中光电技术研究所中国船舶重工集团公司第七一七研究所 Real-time compensation method of non-uniformity correction residual errors of infrared focal plane array detector
US20180297873A1 (en) * 2015-09-14 2018-10-18 De Montfort University Rotacting contactor reactor
US10689275B2 (en) * 2015-09-14 2020-06-23 De Montfort University Rotating contactor reactor
CN108917980A (en) * 2018-05-09 2018-11-30 海尔优家智能科技(北京)有限公司 A kind of micro-wave temperature detection method, device, medium and computer equipment
WO2020036075A1 (en) * 2018-08-13 2020-02-20 日本電信電話株式会社 Temperature measurement system and temperature measurement method
CN113790805A (en) * 2021-09-10 2021-12-14 浙江工业大学 Device and method for measuring temperature distribution of surface of bed layer of microwave-assisted pyrolysis reactor

Similar Documents

Publication Publication Date Title
JP2009236888A (en) Temperature distribution measuring device for microwave heating and temperature distribution measurement method for microwave heating
AU603745B2 (en) Monitoring the heating of microwave-heated bodies
AU2008295180B2 (en) A wave choke device for a microwave oven door
EP1917100B1 (en) Real-time imaging and spectroscopy during microwave assisted chemistry
TW201447207A (en) Heater provided with nozzle and drying furnace
JP5309567B2 (en) Atomic oscillator
CN105987583B (en) Freeze dryer with window
JP2009168462A (en) Temperature distribution measuring device for microwave heating, and temperature distribution measuring method for microwave heating
JP5448587B2 (en) Sample holder for X-ray diffraction measurement and X-ray diffraction measurement method
Peterson et al. Infrared imaging video bolometer for the large helical device
JP2014534424A (en) Equipment for measuring substrate temperature
IL150611A (en) Shielding of light transmitter/receiver against high-power radio-frequency radiation
JP2001287074A (en) Welding method under vacuum
DE102006017655B4 (en) Method for non-contact temperature measurement
CN104576284B (en) A kind of photocell for measuring ultraviolet light photo negative electrode transmitance
US6420688B1 (en) Device and method of heating components made of microwave absorbing plastic
JP2013076653A (en) Thermal constant measuring apparatus
CN105989907B (en) A kind of big surface of emission black-body resource of millimeter wave high temperature
JP2016167423A (en) Microwave heating device
US20240040677A1 (en) Domestic cooking appliance having a sensor that is longitudinally movable by motor power
US5921680A (en) Sensor for radiation pyrometric temperature measurement at high ambient temperature
SU364268A1 (en)
CN103687120A (en) Induction heating cooker
KR101053391B1 (en) Strip temperature measuring apparatus and measuring method using plasma tube
KR101476987B1 (en) Heat treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120911

Free format text: JAPANESE INTERMEDIATE CODE: A02