JP2009236848A - Nonspecific adsorption constraint material - Google Patents

Nonspecific adsorption constraint material Download PDF

Info

Publication number
JP2009236848A
JP2009236848A JP2008086149A JP2008086149A JP2009236848A JP 2009236848 A JP2009236848 A JP 2009236848A JP 2008086149 A JP2008086149 A JP 2008086149A JP 2008086149 A JP2008086149 A JP 2008086149A JP 2009236848 A JP2009236848 A JP 2009236848A
Authority
JP
Japan
Prior art keywords
molecule
adsorption
nonspecific adsorption
suppressing
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086149A
Other languages
Japanese (ja)
Other versions
JP4911415B2 (en
Inventor
Yasu Sato
縁 佐藤
Kyoko Yoshioka
恭子 吉岡
Mutsuo Tanaka
睦生 田中
Teiichi Murakami
悌一 村上
Ryoji Kurita
僚二 栗田
Osamu Niwa
修 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008086149A priority Critical patent/JP4911415B2/en
Publication of JP2009236848A publication Critical patent/JP2009236848A/en
Application granted granted Critical
Publication of JP4911415B2 publication Critical patent/JP4911415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonspecific adsorption constraint material capable of detecting an objective molecular species sensitively while inhibiting the nonspecific adsorption of biomolecule having various molecular weight from high molecular weight to low molecular weight as much as possible. <P>SOLUTION: The nonspecific adsorption constraint material is formed by monomolecular film of compound expressed with general formula (1) on a surface of a substrate. HO(CH<SB>2</SB>CH<SB>2</SB>O)<SB>m</SB>-(CH<SB>2</SB>)<SB>n</SB>-SH...(1) Where, m represents an integer of 1-3, n represents an integer of 2-8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生体内組織成分、細胞、タンパク質、脂質などが、基材上に非特異的に吸着することを完全に抑制し、目的のタンパク質、ペプチド、核酸などの生体分子を効率よく検出するための非特異性吸着抑制材料に関するものである。   The present invention completely suppresses nonspecific adsorption of in vivo tissue components, cells, proteins, lipids, etc. on a substrate, and efficiently detects biomolecules such as target proteins, peptides, nucleic acids, etc. It is related with the nonspecific adsorption | suction suppression material for.

抗体や抗原、酵素等の生体分子を基材表面に固定し、これら生体分子が有する機能や特異的反応を利用した応答検出システムは、免疫診断、特定生体分子検出法等に積極的に利用されてきた。DNAを基材に直接固定し、ターゲットDNAを検出するDNAチップ、プロテインチップなどの開発も盛んに行われてきている。
生体組織、細胞、タンパク質、脂質等、夾雑物が多量に含まれるサンプルから、測定したい生体分子やタンパク質、核酸のみを感度よく検出するためには、計測応答部分の高感度化を図るとともに、夾雑物の非特異性吸着によるノイズ応答をできるだけ下げる工夫が必要である。
Response detection systems that immobilize biomolecules such as antibodies, antigens, and enzymes on the surface of a substrate and use the functions and specific reactions of these biomolecules are actively used for immunodiagnosis and specific biomolecule detection methods. I came. The development of DNA chips, protein chips, etc., that directly fix DNA to a substrate and detect target DNA has also been actively conducted.
In order to detect only biomolecules, proteins, and nucleic acids to be measured with high sensitivity from samples containing a large amount of contaminants such as biological tissues, cells, proteins, lipids, etc. It is necessary to devise ways to reduce the noise response due to non-specific adsorption of objects as much as possible.

生体分子の基材や流路内への非特異的な吸着を防ぐ方法として、カルボキシル基を導入したシクロデキストラン層を利用する方法あり(例えば非特許文献1参照)、実際に利用されている(CM5チップ他、ビアコアシステム(GEヘルスケアバイオサイエンス社))。
しかし、デキストラン層が厚く(約100nm)、検出物質が層中に入り込むなどして熱力学的・動力学的パラメータに問題を与えたり、あるいは実際に吸着しているかのような挙動も見受けられ、正確な測定には向かない場合がある。
L. Stigh らのグループ,“Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors”, Biosensors & Bioelectronics 10 (1995) 813-822.)
As a method for preventing nonspecific adsorption of biomolecules into a substrate or a flow path, there is a method using a cyclodextran layer into which a carboxyl group is introduced (see, for example, Non-Patent Document 1), which is actually used ( CM5 chip and others, Biacore system (GE Healthcare Biosciences)).
However, the dextran layer is thick (approx. 100 nm), and the detection substance gets into the layer, causing problems with thermodynamic and kinetic parameters, or it can be seen that it is actually adsorbed. It may not be suitable for accurate measurement.
L. Stigh et al., “Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors”, Biosensors & Bioelectronics 10 (1995) 813-822.)

一方で、ポリエチレングリコール(PEG)基を有する材料を基材に塗布するなどの方法がとられてきた。PEG基は親水性が高く、非特異的な吸着を防ぐ効果があることが知られている。PEG含有高分子材料は、親水性部分がタンパク質などの非特異性吸着を防ぐ効果を発揮するので、基材表面に高分子材料を塗布することで非特異性吸着を抑制しようというものである。(特許文献1、非特許文献2参照)
特開平7-316285公報 K. L. Prime and G. M. Whitesides,”Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers, J. Am. Chem. Soc., 115 (1993)10714-10721
On the other hand, methods such as applying a material having a polyethylene glycol (PEG) group to a substrate have been taken. It is known that the PEG group is highly hydrophilic and has an effect of preventing nonspecific adsorption. The PEG-containing polymer material is intended to suppress nonspecific adsorption by applying a polymer material on the surface of the substrate because the hydrophilic portion exhibits an effect of preventing nonspecific adsorption of proteins and the like. (See Patent Document 1 and Non-Patent Document 2)
JP 7-316285 A KL Prime and GM Whitesides, “Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): A model system using self-assembled monolayers, J. Am. Chem. Soc., 115 (1993) 10714-10721

また、PEG基を有する高分子を用いて非特異性吸着の抑制を狙った場合でも、高分子がかさ高いために完全に非特異性吸着を押さえられない場合があり、これを解決するために、より分子量の大きい分子種と小さい分子、2種類の高分子PEGを用いることにより問題解決を試みた例も提案されている。(特許文献2)
特開2006-177914公報
In addition, even when aiming at suppression of nonspecific adsorption using a polymer having a PEG group, the nonspecific adsorption may not be completely suppressed because the polymer is bulky. An example has also been proposed in which a problem is solved by using two types of high molecular weight PEG, a molecular species having a higher molecular weight and a smaller molecule. (Patent Document 2)
JP 2006-177914 A

しかしながら、特許文献1に記載の技術は両末端に異なる官能基を有するポリオキシアルキレン誘導体を用いるものであり、このような誘導体を合成することが困難である。一方、特許文献2に記載された技術は、基材表面にはじめに該表面に固定可能な官能基を有するPEGを担持させ、ついでこのPEGの末端に両末端にメルカプト基のような官能基を有するPEGを担持させるものである。したがって、両末端の官能基が共に基材に結合してループ状のPEGが形成されることから、目的とする非特異性吸着が抑制された表面が得られる確率が低いという欠点がある。また、これらの従来技術では、分子量の小さい生体分子の非特異性吸着を抑制することはできなかった。
したがって、高分子PEGでも抑えられなかったような低分子の生体分子の吸着を抑えることができ、しかも2種類の高分子を段階を経て修飾するような手間をさけて簡便な手法で極小領域を修飾できるような分子層の開発が望まれている。
However, the technique described in Patent Document 1 uses polyoxyalkylene derivatives having different functional groups at both ends, and it is difficult to synthesize such derivatives. On the other hand, in the technique described in Patent Document 2, a PEG having a functional group that can be immobilized on the surface is first supported on the surface of the substrate, and then a functional group such as a mercapto group is present at both ends of the PEG. PEG is supported. Therefore, since the functional groups at both ends are bonded to the base material to form a looped PEG, there is a disadvantage that the target surface with suppressed nonspecific adsorption is less likely to be obtained. Further, these conventional techniques cannot suppress nonspecific adsorption of biomolecules having a small molecular weight.
Therefore, adsorption of low-molecular-weight biomolecules, which could not be suppressed even with high molecular weight PEG, can be suppressed, and a minimal region can be created by a simple method without the trouble of modifying two types of polymers through steps. Development of molecular layers that can be modified is desired.

本発明は、このような事情のもとで、高分子から低分子まで種々の分子量を有する生体分子の非特異的な吸着をできるだけ抑え、目的の分子種を感度よく検出することができる非特異性吸着抑制材料を提供することを課題とする。   Under such circumstances, the present invention suppresses nonspecific adsorption of biomolecules having various molecular weights from high to low molecules as much as possible, and can detect the target molecular species with high sensitivity. It is an object of the present invention to provide a adsorptive adsorption suppressing material.

本発明者らは、鋭意研究を行った結果、分子内に特定の炭素数のアルキレン基とエチレングリコール繰り返し単位を有するPEG誘導体からなる単分子膜を、基材表面に形成することによって上記課題が解決されることを発見し、本発明を完成させたものである。
すなわち、本発明では次の1〜6の構成を採用する。
1.基材表面に、一般式(1)で表される化合物の単分子膜を形成してなる非特異性吸着抑制材料。
HO(CHCHO)−(CH−SH (1)
式中、mは1〜3の整数、nは2〜8の整数を表す。
2.前記基材が、導電性金属及び金属酸化物から選ばれた材料により構成されたものであることを特徴とする1に記載の非特異性吸着抑制材料。
3.前記単分子膜が、一般式(1)で表される化合物と、標的分子を認識しこれに結合する分子との混合単分子膜であることを特徴とする1又は2に記載の非特異性吸着抑制材料。
4.前記標的分子を認識しこれに結合する分子が、分子の末端にチオール基(−SH)を有する分子であることを特徴とする3に記載の非特異性吸着抑制材料。
5.前記標的分子を認識しこれに結合する分子が、糖、アプタマー、核酸から選択されたものであることを特徴とする3又は4に記載の非特異性吸着抑制材料。
6.前記混合単分子膜中の前記標的を認識しこれに結合する分子の割合が0.1〜60%であることを特徴とする3〜5のいずれかに記載の非特異性吸着抑制材料。
As a result of diligent research, the present inventors have found that the above-mentioned problem is caused by forming a monomolecular film comprising a PEG derivative having an alkylene group having a specific carbon number in the molecule and an ethylene glycol repeating unit on the surface of the substrate. The present invention has been found out to be solved, and the present invention has been completed.
That is, in the present invention, the following configurations 1 to 6 are adopted.
1. A non-specific adsorption suppressing material formed by forming a monomolecular film of a compound represented by the general formula (1) on the surface of a substrate.
HO (CH 2 CH 2 O) m - (CH 2) n -SH (1)
In the formula, m represents an integer of 1 to 3, and n represents an integer of 2 to 8.
2. 2. The nonspecific adsorption-suppressing material according to 1, wherein the substrate is composed of a material selected from conductive metals and metal oxides.
3. The non-specificity according to 1 or 2, wherein the monomolecular film is a mixed monomolecular film of a compound represented by the general formula (1) and a molecule that recognizes and binds to a target molecule. Adsorption suppression material.
4). 4. The nonspecific adsorption-suppressing material according to 3, wherein the molecule that recognizes and binds to the target molecule is a molecule having a thiol group (—SH) at the end of the molecule.
5. The nonspecific adsorption-suppressing material according to 3 or 4, wherein the molecule that recognizes and binds to the target molecule is selected from sugars, aptamers, and nucleic acids.
6). 6. The nonspecific adsorption suppressing material according to any one of 3 to 5, wherein the ratio of molecules that recognize and bind to the target in the mixed monolayer is 0.1 to 60%.

本発明は、一分子内に柔軟性が高くかつ親水性であるエチレングリコール繰り返し単位と、分子の密生度をあげるための疎水的な特定の長さのアルキル鎖部分を具備する非特異性吸着抑制分子による単分子修飾層を構築することができるので、密生度の高い分子層を簡単に作製することができる。その結果、これまで高分子 PEGによる修飾では抑えきれなかった低分子の生体分子の非特異性吸着も簡単に抑えることが可能となる。また、従来の高分子PEG誘導体では形成することが困難であった極微小の基材表面に、生体分子の非特異性吸着を抑制する修飾層を形成することが可能となる。
さらに、一般式(1)で表される化合物と、標的分子を認識しこれに結合する分子との混合単分子膜を形成することにより、目的タンパク質や核酸、ペプチドなどを検出する際に問題となっていた非特異性吸着によるノイズレベルを下げて目的分子・物質のみを高感度に検出することが可能となるので、プロティンチップやDNAチップなどの各種チップ化にも重要な技術となるものである。
The present invention provides non-specific adsorption inhibition comprising a highly flexible and hydrophilic ethylene glycol repeating unit in one molecule and a hydrophobic alkyl chain portion having a specific length for increasing the molecular density. Since a molecule-modified monomolecular layer can be constructed, a highly dense molecular layer can be easily produced. As a result, it is possible to easily suppress non-specific adsorption of low-molecular biomolecules that could not be suppressed by modification with high molecular weight PEG. In addition, it is possible to form a modified layer that suppresses nonspecific adsorption of biomolecules on the surface of a very small substrate that was difficult to form with conventional polymer PEG derivatives.
Furthermore, there is a problem in detecting the target protein, nucleic acid, peptide, etc. by forming a mixed monolayer of the compound represented by the general formula (1) and a molecule that recognizes and binds to the target molecule. Since it becomes possible to detect only target molecules and substances with high sensitivity by lowering the noise level due to non-specific adsorption, it will be an important technology for making various chips such as protein chips and DNA chips. is there.

本発明の非特異性吸着抑制材料を構成する基材としては、金、白金、銀、銅のほかの金属電極、シリコン等の半導体電極基材、酸化インジウムスズ(ITO) 等の透明導電性電極が好都合に利用されるが、特に導電性金属及び金属酸化物を用いることが好ましい。
これら金属や半導体等は硫黄を含む有機化合物が自己組織的に金属-Sの結合を作り安定に修飾膜を形成することが知られているものである。基材の形状やサイズは任意であり、各種サイズの板状の基材や粒子状の基材を使用することができる。
As the base material constituting the nonspecific adsorption suppressing material of the present invention, gold, platinum, silver, other metal electrodes other than copper, semiconductor electrode base materials such as silicon, and transparent conductive electrodes such as indium tin oxide (ITO) Are advantageously used, but it is particularly preferred to use conductive metals and metal oxides.
These metals, semiconductors, and the like are known that organic compounds containing sulfur form metal-S bonds in a self-organizing manner and stably form a modified film. The shape and size of the base material are arbitrary, and various sizes of plate-like base materials and particulate base materials can be used.

本発明では、これら基材表面に、次の一般式(1)で表される化合物からなる非特異性吸着抑制分子の単分子膜を形成する。
HO(CHCHO)−(CH−SH (1)
式中、mは1〜3の整数、nは2〜8の整数を表す。
上記一般式(1)で表される化合物としては、該化合物の−SH基が酸化されてジスルフィド基(−SS−)となり、二量体化した化合物を使用してもよい。これらの化合物は、例えば、後記の製造例にしたがって製造することができる。
In the present invention, a monomolecular film of a nonspecific adsorption-suppressing molecule comprising a compound represented by the following general formula (1) is formed on the surface of these base materials.
HO (CH 2 CH 2 O) m - (CH 2) n -SH (1)
In the formula, m represents an integer of 1 to 3, and n represents an integer of 2 to 8.
As the compound represented by the general formula (1), a dimerized compound in which the -SH group of the compound is oxidized to a disulfide group (-SS-) may be used. These compounds can be produced, for example, according to the production examples described later.

固体基材表面に上記機能性分子による修飾単分子層を構築するには、予め非特異性吸着抑制分子を溶液(水溶液、あるいは水-エタノール混合溶液)に分散させ、これにより基材を修飾する。分子層は自発的に自己組織化的に基材表面に配列する。基材に固定した修飾層は、分子量数十万から数百のタンパク質からペプチドまで、各種の生体分子の非特異性吸着をほぼ完全に抑えることが可能である。
この非特異性吸着抑制分子を、(a)標的分子を認識しこれに結合する分子(糖鎖を有するアルカンチオールやアプタマー、一本鎖核酸など)と一緒に混合溶液としたものを用いて基材表面を修飾する、または、(b)標的認識分子をあらかじめ吸着させた後に、非特異性吸着抑制分子溶液と反応させる2段階の方法を用いる、ことにより基板表面に混合単分子膜を構築することができる。この混合単分子膜を用いた場合には、標的分子以外の生体分子の非特異性吸着によるノイズレベル応答を低くおさえ、標的分子(例えば、糖においてはレクチン、アプタマーに対してはタンパク質、一本鎖核酸においては相補塩基対配列を有する核酸)の応答を高感度に検出することができる。
In order to construct a modified monolayer with the above functional molecules on the surface of a solid substrate, nonspecific adsorption-suppressing molecules are dispersed in a solution (aqueous solution or water-ethanol mixed solution) in advance and the substrate is modified thereby. . The molecular layer is spontaneously self-assembled and arranged on the substrate surface. The modified layer immobilized on the substrate can almost completely suppress non-specific adsorption of various biomolecules ranging from several hundred thousand to several hundreds of proteins to peptides.
This non-specific adsorption-suppressing molecule is based on (a) a mixture solution together with a molecule that recognizes and binds to a target molecule (alkanethiol, aptamer, single-stranded nucleic acid, etc. having a sugar chain). A mixed monomolecular film is constructed on the substrate surface by modifying the surface of the material, or (b) using a two-stage method in which the target recognition molecule is adsorbed in advance and then reacted with a non-specific adsorption inhibiting molecule solution. be able to. When this mixed monolayer is used, the noise level response due to nonspecific adsorption of biomolecules other than the target molecule is suppressed, and the target molecule (for example, lectin for sugar, protein for aptamer, single protein) In the case of a strand nucleic acid, the response of a nucleic acid having a complementary base pair sequence can be detected with high sensitivity.

この混合単分子膜を構成する標的認識分子としては、分子の少なくとも1つの末端に、チオール基(−SH)を有する分子、又は該チオール基が酸化されてジスルフィド基(−SS−)となり、二量体化した分子を使用することが好ましい。
このような標的認識分子としては、例えば12-メルカプトドデシル-β-マルトシド(マルトシド基はCon Aを特異的に認識する)のような、末端にメルカプト基又はジスルフィド基を有する糖、各種のタンパク質を認識する末端に上記官能基を有するアプタマー、一本鎖核酸を認識するこれと相補塩基対配列を有する末端に上記官能基を有する核酸等が挙げられる。
混合単分子膜を構成する非特異性吸着抑制分子としては、上記の一般式(1)において−(CH−のnが2〜8の整数である化合物だけではなく、nが2〜11の整数である化合物も使用することができる。
As a target recognition molecule constituting this mixed monomolecular film, a molecule having a thiol group (-SH) at at least one end of the molecule, or a disulfide group (-SS-) is formed by oxidizing the thiol group. It is preferred to use a molecule that is quantified.
Examples of such target recognition molecules include 12-mercaptododecyl-β-maltoside (a maltoside group specifically recognizes Con A), a sugar having a mercapto group or a disulfide group at its terminal, and various proteins. Examples include aptamers having the above functional group at the terminal to be recognized, and nucleic acids having the above functional group at the terminal having a complementary base pair sequence to those that recognize a single-stranded nucleic acid.
The non-specific adsorption-suppressing molecule constituting the mixed monolayer is not only a compound in which n in — (CH 2 ) n — is an integer of 2 to 8 in the above general formula (1), A compound that is an integer of 11 can also be used.

混合単分子膜では、分子認識可能な分子種を、膜を構成する分子種のうちの0.1〜60%程度とすることが好ましい。例えば、糖鎖-レクチンを標的分子とする場合には0.1〜60%、アプタマーの場合には0.1〜57%、一本鎖核酸の場合には0.1〜50%程度とすることにより、ノイズ応答を下げた効率のよい応答検出ができるようになる。応答検出は、例えば相互作用による結合(吸着)反応が起きた場合、表面プラズモン共鳴センサー(SPRセンサー)にて表面の屈折率の変化を追跡することにより行うことができる。認識部位を含まない膜(非特異性吸着抑制分子のみの膜)では非特異的な吸着が起こらないので、SPR応答がほとんど検出されないことになる。   In the mixed monomolecular film, the molecular species capable of molecular recognition is preferably about 0.1 to 60% of the molecular species constituting the film. For example, when a sugar chain-lectin is used as a target molecule, 0.1 to 60%, aptamer is set to 0.1 to 57%, and single-stranded nucleic acid is set to about 0.1 to 50%. It becomes possible to detect the response with reduced efficiency. For example, when a binding (adsorption) reaction due to interaction occurs, the response detection can be performed by tracking a change in the refractive index of the surface with a surface plasmon resonance sensor (SPR sensor). Since non-specific adsorption does not occur in a membrane that does not include a recognition site (a membrane containing only non-specific adsorption-suppressing molecules), almost no SPR response is detected.

次に、実施例により本発明をさらに詳細に説明するが、以下の具体例は本発明を限定するものではない。
以下の例では、式(HO(CH2CH2O)3-(CH2) 2-SH)で表される化合物をPEGC2SH、(HO(CH2CH2O)3-(CH2)-SH)で表される化合物をPEGC4SHのように、式(HO(CH2CH2O)3-(CH2)-SH)で表される化合物を−(CH−の炭素数nによりPEGCnSHと略記する。
また、基材表面に形成した単分子膜の性状は、表面プラズモン共鳴センサー(ビアコアT100システム又はビアコア2000システム)にて表面の屈折率の変化を測定することによって評価した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, the following specific examples do not limit this invention.
In the following example, a compound represented by the formula (HO (CH 2 CH 2 O) 3 — (CH 2 ) 2 —SH) is converted to PEGC2SH, (HO (CH 2 CH 2 O) 3 — (CH 2 ) 4 — The compound represented by the formula (HO (CH 2 CH 2 O) 3 — (CH 2 ) n —SH) is represented by the number of carbon atoms of — (CH 2 ) n — as in PEGC4SH. Is abbreviated as PEGCnSH.
The properties of the monomolecular film formed on the substrate surface were evaluated by measuring changes in the refractive index of the surface with a surface plasmon resonance sensor (Biacore T100 system or Biacore 2000 system).

〔製造例1〕
(非特異性吸着抑制分子トリエチレングリコールアルキルチオールPEGCnSHの合成)
(1)テトラエチレングリコールモノチオール[トリエチレングリコールC2チオール(HO(CH2CH2O)3-(CH2) 2-SH, PEGC2SH)]の合成
(1−1)テトラエチレングリコールモノトシラートの合成
(Production Example 1)
(Synthesis of non-specific adsorption inhibiting molecule triethylene glycol alkyl thiol PEGCnSH)
(1) tetraethylene glycol monomethyl thiol [triethylene glycol C2 thiol (HO (CH 2 CH 2 O ) 3 - (CH 2) 2 -SH, PEGC2SH)] Synthesis (1-1) of tetraethylene glycol mono tosylate Composition

三口フラスコ(300mL)にテトラエチレングリコール9.70g(50mmol)、トリエチルアミン2.02g(20mmol)、テトラヒドロフラン(THF)150mLを入れ、0℃で撹拌した。p−トルエンスルホニルクロライド(TsCl)1.91g(10mmol)のTHF溶液20mLを滴下し、さらに室温で4日間撹拌した。反応液に5wt%塩酸300mLを注ぎ、クロロホルム200mLで抽出した。クロロホルム、THFを留去し、ゲル浸透クロマトグラフィー(GPC)にて目的物を精製した。無色液体(C15247S、分子量M=348.37)が収率82%で得られた。 Tetraethylene glycol 9.70 g (50 mmol), triethylamine 2.02 g (20 mmol), and tetrahydrofuran (THF) 150 mL were placed in a three-necked flask (300 mL), and the mixture was stirred at 0 ° C. 20 mL of a THF solution of 1.91 g (10 mmol) of p-toluenesulfonyl chloride (TsCl) was added dropwise, and the mixture was further stirred at room temperature for 4 days. To the reaction solution, 300 mL of 5 wt% hydrochloric acid was poured and extracted with 200 mL of chloroform. Chloroform and THF were distilled off, and the target product was purified by gel permeation chromatography (GPC). A colorless liquid (C 15 H 24 O 7 S, molecular weight M = 348.37) was obtained with a yield of 82%.

(1−2)モノチオアセチルテトラエチレングリコールの合成
(1-2) Synthesis of monothioacetyltetraethylene glycol

三口フラスコ(300mL)に窒素雰囲気下、上記(1−1)で得られたテトラエチレングリコールモノトシラート3.48g(10mmol)とDMF100mLを入れ、室温で撹拌した。チオ酢酸カリウム3.43g(30mmol)を加え、さらに室温で12時間撹拌した。反応液に5wt%塩酸200mLを注ぎ、クロロホルム100mLで抽出した。クロロホルム、ジメチルホルムアミド(DMF)を留去し、減圧乾燥してそのまま次の反応に用いた。無色液体(C10205S、M=252.33)が粗収率98%で得られた。 In a three-necked flask (300 mL), 3.48 g (10 mmol) of tetraethylene glycol monotosylate obtained in (1-1) above and 100 mL of DMF were placed in a nitrogen atmosphere and stirred at room temperature. 3.43 g (30 mmol) of potassium thioacetate was added, and the mixture was further stirred at room temperature for 12 hours. To the reaction solution, 200 mL of 5 wt% hydrochloric acid was poured and extracted with 100 mL of chloroform. Chloroform and dimethylformamide (DMF) were distilled off, dried under reduced pressure, and used directly in the next reaction. Colorless liquid (C 10 H 20 O 5 S , M = 252.33) was obtained in 98% crude yield.

(1−3)トリエチレングリコールC2チオール(HO(CH2CH2O)3-(CH2) 2-SH, PEGC2SH)の合成 (1-3) triethylene glycol C2 thiol (HO (CH 2 CH 2 O ) 3 - (CH 2) 2 -SH, PEGC2SH) Synthesis of

三口フラスコ(300mL)に窒素雰囲気下、上記(1−2)で得られたモノチオアセチルテトラエチレングリコール2.52g(10mmol)とエタノール200mLを入れ、室温で撹拌した。t−ブチルカリウム1.12g(10mmol)を加え、さらに室温で3時間撹拌した。反応液に5wt%塩酸400mLを注ぎ、クロロホルム200mLで二回抽出した。クロロホルム、エタノールを留去し、シリカゲルカラム(展開溶媒、クロロホルム:メタノール=100:1)にて目的物を精製した。無色液体(C8184S、M=210.29)が収率59%で得られた。 In a three-necked flask (300 mL), 2.52 g (10 mmol) of monothioacetyltetraethylene glycol obtained in (1-2) above and 200 mL of ethanol were placed in a nitrogen atmosphere and stirred at room temperature. 1.12 g (10 mmol) of t-butyl potassium was added, and the mixture was further stirred at room temperature for 3 hours. 400 mL of 5 wt% hydrochloric acid was poured into the reaction solution, and extracted twice with 200 mL of chloroform. Chloroform and ethanol were distilled off, and the target product was purified with a silica gel column (developing solvent, chloroform: methanol = 100: 1). A colorless liquid (C 8 H 18 O 4 S, M = 210.29) was obtained with a yield of 59%.

〔製造例2〕
(2)トリエチレングリコールC4チオール(HO(CH2CH2O)3-(CH2) 4-SH, PEGC4SH)の合成
(2−1)4−ブロモブチルトリエチレングリコールの合成
[Production Example 2]
(2) triethylene glycol C4 thiol (HO (CH 2 CH 2 O ) 3 - (CH 2) 4 -SH, PEGC4SH) Synthesis of (2-1) 4-bromobutyl triethylene glycol

三口フラスコ(300mL)に1,4−ジブロモブタン2.16g(10mmol)、トリエチレングリコール15.0g(100mmol)、THF200mLを入れ、室温で撹拌した。t−ブチルカリウム1.12g(10mol)を加え、6時間加熱還流した。放冷後THFを留去し、5wt%塩酸200mLを注ぎ、クロロホルム100mLで抽出した。クロロホルム層を水200mLで洗浄した。クロロホルムを留去し、シリカゲルカラム(展開溶媒、クロロホルム:メタノール=100:1)にて精製した。無色液体(C10214Br、M=285.18)が収率28%で得られた。 In a three-necked flask (300 mL), 2.16 g (10 mmol) of 1,4-dibromobutane, 15.0 g (100 mmol) of triethylene glycol and 200 mL of THF were added and stirred at room temperature. 1.12 g (10 mol) of t-butyl potassium was added, and the mixture was heated to reflux for 6 hours. After standing to cool, THF was distilled off, 200 mL of 5 wt% hydrochloric acid was poured, and the mixture was extracted with 100 mL of chloroform. The chloroform layer was washed with 200 mL of water. Chloroform was distilled off and purified by a silica gel column (developing solvent, chloroform: methanol = 100: 1). Colorless liquid (C 10 H 21 O 4 Br , M = 285.18) was obtained in 28% yield.

(2−2)4−ブロモブチルトリエチレングリコールベンゾイルエステルの合成 (2-2) Synthesis of 4-bromobutyltriethylene glycol benzoyl ester

三口フラスコ(300mL)に、上記(2−1)で得られた4−ブロモブチルトリエチレングリコール2.85g(10mmol)、トリエチルアミン2.52g(25mmol)、THF100mLを入れ、0℃で撹拌した。塩化ベンゾイル2.81g(20mmol)のTHF溶液20mLを滴下し、さらに室温で24時間撹拌した。反応液に5wt%塩酸200mLを注ぎ、クロロホルム100mLで抽出した。クロロホルム、THFを留去し、GPCにて目的物を精製した。無色液体(C17255Br、M=389.29)が収率87%で得られた。 In a three-necked flask (300 mL), 2.85 g (10 mmol) of 4-bromobutyltriethylene glycol obtained in (2-1) above, 2.52 g (25 mmol) of triethylamine, and 100 mL of THF were added, and the mixture was stirred at 0 ° C. 20 mL of a THF solution of 2.81 g (20 mmol) of benzoyl chloride was added dropwise, and the mixture was further stirred at room temperature for 24 hours. To the reaction solution, 200 mL of 5 wt% hydrochloric acid was poured and extracted with 100 mL of chloroform. Chloroform and THF were distilled off, and the target product was purified by GPC. Colorless liquid (C 17 H 25 O 5 Br , M = 389.29) was obtained in 87% yield.

(2−3)4−チオアセチルブチルトリエチレングリコールベンゾイルエステルの合成 (2-3) Synthesis of 4-thioacetylbutyl triethylene glycol benzoyl ester

三口フラスコ(100mL)に窒素雰囲気下、上記(2−2)で得られた4−ブロモブチルトリエチレングリコールベンゾイルエステル779mg(2mmol)とDMF50mLを入れ、室温で撹拌した。チオ酢酸カリウム684mg(6mmol)を加え、さらに室温で4時間撹拌した。反応液に5wt%塩酸100mLを注ぎ、クロロホルム50mLで抽出した。クロロホルム、DMFを留去し、GPCにて目的物を精製した。無色液体(C19286S、M=384.49)が収率72%で得られた。 In a three-necked flask (100 mL), 779 mg (2 mmol) of 4-bromobutyltriethylene glycol benzoyl ester obtained in (2-2) above and 50 mL of DMF were added under a nitrogen atmosphere, and the mixture was stirred at room temperature. 684 mg (6 mmol) of potassium thioacetate was added, and the mixture was further stirred at room temperature for 4 hours. To the reaction solution, 100 mL of 5 wt% hydrochloric acid was poured and extracted with 50 mL of chloroform. Chloroform and DMF were distilled off, and the target product was purified by GPC. A colorless liquid (C 19 H 28 O 6 S, M = 384.49) was obtained with a yield of 72%.

(2−4)トリエチレングリコールC4チオール(HO(CH2CH2O)3-(CH2) 4-SH, PEGC4SH)の合成 (2-4) triethylene glycol C4 thiol (HO (CH 2 CH 2 O ) 3 - (CH 2) 4 -SH, PEGC4SH) Synthesis of

三口フラスコ(100mL)に窒素雰囲気下、上記(2−3)で得られた4−チオアセチルブチルトリエチレングリコール769mg(2mmol)とエタノール80mLを入れ、室温で撹拌した。t−ブチルカリウム224mg(2mmol)を加え、さらに室温で3時間撹拌した。反応液に5wt%塩酸200mLを注ぎ、クロロホルム100mLで抽出した。クロロホルム、エタノールを留去し、シリカゲルカラム(展開溶媒、クロロホルム:メタノール=100:0〜1)にて目的物を精製した。無色液体(C10224S、M=238.34)が収率72%で得られた。 In a three-necked flask (100 mL), under a nitrogen atmosphere, 769 mg (2 mmol) of 4-thioacetylbutyltriethylene glycol obtained in (2-3) above and 80 mL of ethanol were added and stirred at room temperature. 224 mg (2 mmol) of t-butyl potassium was added, and the mixture was further stirred at room temperature for 3 hours. To the reaction solution, 200 mL of 5 wt% hydrochloric acid was poured and extracted with 100 mL of chloroform. Chloroform and ethanol were distilled off, and the target product was purified with a silica gel column (developing solvent, chloroform: methanol = 100: 0 to 1). Colorless liquid (C 10 H 22 O 4 S , M = 238.34) was obtained in 72% yield.

〔製造例3〜5〕
(3)トリエチレングリコールC6〜C11チオール(HO(CH2CH2O)3-(CH2)-SH, PEGC8SH:n=6〜11)の合成
上記(2−1)〜(2−4)に記載した手順と同様にして、トリエチレングリコールC6チオール(HO(CH2CH2O)3-(CH2) 6-SH, PEGC6SH)、トリエチレングリコールC8チオール(HO(CH2CH2O)3-(CH2) 8-SH, PEGC8SH)及びトリエチレングリコールC11チオール(HO(CH2CH2O)3-(CH2) 11-SH, PEGC11SH)を合成した。
[Production Examples 3 to 5]
(3) Triethylene glycol C6~C11 thiol (HO (CH 2 CH 2 O ) 3 - (CH 2) n -SH, PEGC8SH: n = 6~11) of Synthesis of (2-1) to (2-4 ), Triethylene glycol C6 thiol (HO (CH 2 CH 2 O) 3- (CH 2 ) 6 -SH, PEGC6SH), triethylene glycol C8 thiol (HO (CH 2 CH 2 O ) 3- (CH 2 ) 8 -SH, PEGC8SH) and triethylene glycol C11 thiol (HO (CH 2 CH 2 O) 3- (CH 2 ) 11 -SH, PEGC11SH) were synthesized.

〔実施例1〕
(抑制分子内アルキル鎖の長さとタンパク質の吸着抑制能の関係)
上記各製造例で得られたアルキル鎖長の異なる非特異性吸着抑制分子(PEGCnSH: HO(CH2CH2O)3-(CH2)-SH, n=2, 4, 6, 8, 11)の1μM 水溶液または水-エタノール混合液(エタノール20%)を調製し、10μL/分の流速で2500秒流し、金基材上に固定化して単分子膜を形成した。非特異性吸着抑制分子に導入してあるチオール基が、金基材と接すると同時に金−SHの結合を作り、金基材表面に吸着する。非特異性吸着抑制分子の吸着量はビアコアT-100で測定した結果、613RU (n=2), 622RU (n=4), 866RU (n=6), 1392RU (n=8), 905RU (n=11) (RU:レゾナンスユニット、1000RU=1ng/mm2)となった。
[Example 1]
(Relationship between inhibitory intramolecular alkyl chain length and protein adsorption inhibition ability)
Different non-specific adsorption inhibition molecular alkyl chain length obtained in each Production Example (PEGCnSH: HO (CH 2 CH 2 O) 3 - (CH 2) n -SH, n = 2, 4, 6, 8, 11) 1 μM aqueous solution or water-ethanol mixture (ethanol 20%) was prepared, and flowed for 2500 seconds at a flow rate of 10 μL / min, and immobilized on a gold substrate to form a monomolecular film. The thiol group introduced into the non-specific adsorption-suppressing molecule contacts the gold substrate and simultaneously forms a gold-SH bond and is adsorbed on the gold substrate surface. The amount of nonspecific adsorption-suppressing molecules measured by Biacore T-100 was 613RU (n = 2), 622RU (n = 4), 866RU (n = 6), 1392RU (n = 8), 905RU (n = 11) (RU: Resonance unit, 1000RU = 1 ng / mm 2 ).

各非特異性吸着抑制分子吸着後の表面に対し、レクチンであるコンカナバリンA(Con A)の溶液(1μM、HEPES緩衝液(pH 7.4))を10μL/分の流速で2000秒流し、Con Aの含まれない緩衝液に切り替え吸着量を測定し、その結果を図1に示した。また、比較のために、通常標準的に用いられるカルボキシメチルデキストランコーティング層のチップ(CM5)について測定した結果を、併せて図1に示した。
図1にみられるように、n=2の場合に29.1RUの変化(吸着)が確認され、カルボキシメチルデキストランコーティング層のチップ(CM5)の場合にみられる吸着(125.8RU)に比較すると、4分の1以下の吸着に抑えられていることがわかる。Con Aの非特異性吸着を抑える効果はアルキル鎖長が長いほど顕著になり、n=11の場合の非特異性吸着抑制分子層表面では、Con Aの吸着は1.7RUとなり、完全に吸着が抑えられていることが確認された。
Concanavalin A (Con A), a lectin solution (1 μM, HEPES buffer (pH 7.4)) was allowed to flow for 2000 seconds at a flow rate of 10 μL / min on the surface after each nonspecific adsorption-suppressing molecule was adsorbed. The adsorption amount was measured by switching to a buffer solution not contained, and the results are shown in FIG. For comparison, FIG. 1 also shows the results of measurement of a carboxymethyl dextran coating layer chip (CM5) that is usually used as a standard.
As can be seen in FIG. 1, a change (adsorption) of 29.1 RU was confirmed when n = 2, compared with the adsorption (125.8 RU) observed for the chip (CM5) with a carboxymethyl dextran coating layer. It can be seen that the adsorption is suppressed to 1 / min or less. The effect of suppressing non-specific adsorption of Con A becomes more prominent as the alkyl chain length is longer, and on the surface of the non-specific adsorption-suppressing molecular layer when n = 11, the adsorption of Con A is 1.7 RU, which is completely adsorbed. It was confirmed that it was suppressed.

〔実施例2〕
(各非特異性吸着抑制分子の密生度の電気化学的評価)
アルキル鎖長が長くなると、非特異性吸着抑制分子膜中の分子の密生度があがり、タンパク質の非特異性吸着の抑制効果が一段と高くなると考えられる。
そこで、各非特異性吸着抑制分子による分子層の密生度を、次のようにして電気化学的に評価した。
PEGCnSH (n=2, 4, 6, 8, 11)の各分子の溶液(1mM 水-エタノール混合溶液)に、市販の金単結晶電極を1時間浸漬し、電極表面に非特異性吸着抑制分子の単分子膜を作製した。この修飾層を、0.5 M 水酸化カリウム水溶液内で、電位を-0.5 Vから-1.2 V まで掃引し、金表面から還元的に分子を脱離させ、そのときの電気量より元の吸着分子数を求め、その結果を図2に示した。
[Example 2]
(Electrochemical evaluation of the density of each nonspecific adsorption inhibiting molecule)
As the alkyl chain length becomes longer, the density of molecules in the nonspecific adsorption-suppressing molecular film increases, and it is considered that the effect of suppressing nonspecific adsorption of proteins is further enhanced.
Therefore, the density of the molecular layer by each non-specific adsorption inhibiting molecule was electrochemically evaluated as follows.
A commercially available gold single crystal electrode is immersed in a solution of each molecule of PEGCnSH (n = 2, 4, 6, 8, 11) (1mM water-ethanol mixed solution) for 1 hour, and non-specific adsorption-suppressing molecules on the electrode surface A monomolecular film was prepared. This modified layer is swept in 0.5 M potassium hydroxide aqueous solution from -0.5 V to -1.2 V to reductively desorb molecules from the gold surface. The results are shown in FIG.

この反応は次の式で表され、一分子の還元脱離に一電子が関与する。(参考文献:Y.Sato et.al, Electroanalysis,17, 965(2005); M.M. Walczak, et. al.,Langmuir, 7, 2687 (1991) 他)
RS-Au + e- → RS- + Au
図2にみられるように、アルキル鎖長が長くなるにつれて電気量が増大していくことがわかる。つまり、アルキル鎖長が長くなるにつれて、単位面積あたりの分子の密生度が高くなっており、この効果でタンパク質の抑制効果が一層高まったものといえる。
This reaction is represented by the following formula, and one electron is involved in the reductive elimination of one molecule. (Reference: Y. Sato et.al, Electroanalysis, 17, 965 (2005); MM Walczak, et. Al., Langmuir, 7, 2687 (1991), etc.)
RS-Au + e - → RS - + Au
As can be seen from FIG. 2, the amount of electricity increases as the alkyl chain length increases. That is, as the alkyl chain length increases, the molecular density per unit area increases, and it can be said that this effect further enhances the protein suppression effect.

〔実施例3〕
(非特異性吸着抑制分子およびマルトシド基含有分子混合吸着層によるCon Aの認識、シグナルーノイズレベルの向上)
12-メルカプトドデシル-β-マルトシド(マルトシド基はCon Aを特異的に認識する)と各種アルキル鎖長の非特異性吸着抑制分子[PEGCnSH(n=2, 4, 6, 8, 11)]の混合溶液[12-メルカプトドデシル-β-マルトシド:PEGCnSH (n=2, 4, 6, 8, 11)=1:9(モル比),0.1 mM水-エタノール混合液(エタノール20%)]を用いて、実施例1と同様の手順で、金基材上に12-メルカプトドデシル-β- マルトシドと各種アルキル鎖長の非特異性吸着抑制分子を共吸着した単分子膜を形成した。この単分子膜における、Con Aの認識効果(吸着量)をビアコア2000システムにより測定した結果を図3に示す。
図3(a)はこの膜上におけるCon Aの認識効果(Con A吸着量)を調べた結果であり、各非特異性吸着抑制分子の左側の淡色のグラフはPEGCnSH分子のみの修飾膜(PEGCnSH(n=2, 4, 6, 8, 11)0.1 mM水-エタノール混合液(エタノール20%)にて修飾)でのCon Aの非特異性吸着量を示し、右側の濃色のグラフは混合単分子膜におけるCon Aの吸着量を表す。この図によれば、n=2から6まではほぼ吸着量が等しく、n=8でもCon Aはよく認識されていることがわかる。
Example 3
(Con A recognition by non-specific adsorption-inhibiting molecules and mixed adsorption layer containing maltoside group, improvement of signal-noise level)
12-mercaptododecyl-β-maltoside (the maltoside group specifically recognizes Con A) and non-specific adsorption-inhibiting molecules of various alkyl chain lengths [PEGCnSH (n = 2, 4, 6, 8, 11)] Using a mixed solution [12-mercaptododecyl-β-maltoside: PEGCnSH (n = 2, 4, 6, 8, 11) = 1: 9 (molar ratio), 0.1 mM water-ethanol mixture (ethanol 20%)] Then, a monomolecular film in which 12-mercaptododecyl-β-maltoside and nonspecific adsorption-inhibiting molecules of various alkyl chain lengths were co-adsorbed on a gold substrate was formed in the same procedure as in Example 1. FIG. 3 shows the results of measuring the recognition effect (adsorption amount) of Con A in this monomolecular film using the Biacore 2000 system.
Fig. 3 (a) shows the results of examining the recognition effect of Con A on this membrane (Con A adsorption amount). The light-colored graph on the left side of each nonspecific adsorption-suppressing molecule is a modified membrane containing only PEGCnSH molecules (PEGCnSH). (N = 2, 4, 6, 8, 11) Shows non-specific adsorption amount of Con A in 0.1 mM water-ethanol mixture (ethanol 20%). Represents the amount of Con A adsorbed on a monomolecular film. According to this figure, it can be seen that the amount of adsorption is almost equal from n = 2 to 6, and Con A is well recognized even when n = 8.

図3(b)は、図3(a)の各非特異性吸着抑制分子の混合単分子膜におけるシグナル−ノイズ比(S/N比)を表す。
この図3(b)にみられるように、マルトシド分子と共吸着させる機能分子のアルキル鎖長が長くなるにつれて、非特異的な吸着が抑えられ、結果としてシグナルーノイズ比の著しい向上が実現できる。n=11の場合に関しては、非特異性吸着抑制分子の長さが分子認識部位であるマルトシド基の高さを大きく超えてしまうため[図4(C)参照]、ノイズ応答は下がってもシグナル応答の方も大きく減少することから、シグナルーノイズ比は小さくなる(図3(a)参照)。これに対して、本発明のn=2〜8の非特異性吸着抑制分子を用いた場合には、シグナル-ノイズ比も大きく、高感度で標的分子を検出することができる。
このときの混合単分子膜の模式図を図4に示した。図4(A)はPEGC2SHと12-メルカプトドデシル-β- マルトシドを用いた混合単分子膜、図4(B)はPEGC6SHと12-メルカプトドデシル-β- マルトシドを用いた混合単分子膜、そして図4(C)はPEGC11SHと12-メルカプトドデシル-β- マルトシドを用いた混合単分子膜の模式図である。図4(C)にみられるように、PFGC11SHを用いた混合単分子膜では、非特異性吸着抑制分子の長さが分子認識部位であるマルトシド基の高さを大きく超えてしまうため、ノイズ応答は下がってもシグナル応答の方も大きく減少することから、シグナルーノイズ比は小さくなる。
FIG.3 (b) represents the signal-noise ratio (S / N ratio) in the mixed monomolecular film of each nonspecific adsorption | suction suppression molecule | numerator of Fig.3 (a).
As can be seen in FIG. 3B, nonspecific adsorption is suppressed as the alkyl chain length of the functional molecule co-adsorbed with the maltoside molecule increases, and as a result, a significant improvement in the signal-to-noise ratio can be realized. . In the case of n = 11, the length of the non-specific adsorption-suppressing molecule greatly exceeds the height of the maltoside group that is the molecular recognition site [see FIG. 4 (C)]. Since the response is also greatly reduced, the signal-to-noise ratio is reduced (see FIG. 3 (a)). On the other hand, when the nonspecific adsorption-suppressing molecule of n = 2 to 8 of the present invention is used, the signal-noise ratio is large and the target molecule can be detected with high sensitivity.
A schematic diagram of the mixed monomolecular film at this time is shown in FIG. 4A shows a mixed monomolecular film using PEGC2SH and 12-mercaptododecyl-β-maltoside, FIG. 4B shows a mixed monomolecular film using PEGC6SH and 12-mercaptododecyl-β-maltoside, and FIG. 4 (C) is a schematic diagram of a mixed monolayer using PEGC11SH and 12-mercaptododecyl-β-maltoside. As shown in FIG. 4C, in the mixed monomolecular film using PFGC11SH, the length of the nonspecific adsorption-suppressing molecule greatly exceeds the height of the maltoside group that is the molecular recognition site. The signal-to-noise ratio is small because the signal response is greatly reduced even if the value is lowered.

〔実施例4〕
(様々な分子量の生体分子吸着抑制効果)
実施例1で得られた、本発明の非特異性吸着抑制材料(n=2,4,6,8,11)を用いて、各抑制材料における様々な分子量の生体分子の非特異的な吸着量をビアコアT−100システムを用いて測定し、その結果を表1に示した。
また、比較のために、市販の高分子ポリエチレングリコール(分子量2000)や市販品A(金属表面用ブロッキング剤 株式会社ナノビオテック)で修飾した金基材表面、及びカルボキシメチルデキストランコーティングのチップ(CM5)、並びに未修飾金表面について測定した結果を併せて記載した。
Example 4
(Adsorption suppression effect of biomolecules with various molecular weights)
Using the non-specific adsorption suppressing material (n = 2, 4, 6, 8, 11) of the present invention obtained in Example 1, non-specific adsorption of biomolecules of various molecular weights in each suppressing material The amount was measured using a Biacore T-100 system and the results are shown in Table 1.
For comparison, the surface of a gold substrate modified with a commercially available high molecular weight polyethylene glycol (molecular weight 2000) or a commercially available product A (Nanobiotec Co., Ltd., a metal surface blocking agent), a chip (CM5) coated with carboxymethyldextran, and The results measured on the modified gold surface are also listed.

表1にみられるように、分子量104,000のCon A、分子量66,300のウシ血清アルブミン(BSA)、17mer〔塩基配列:ATT TCT TGC TTA AAG TC(配列番号1),分子量5150.43〕〕,36mer〔塩基配列:TGC CCT GGA CCT GCG AAA TCC AGA ACA AAG CAC(配列番号2), 分子量11032.29〕の核酸などの生体分子の非特異的な吸着が、大変低い数値に抑えられていることが確認できた。また、各種ペプチド類としてアンジオテンシン(分子量 1296.5)、ブラジキニン(分子量1060.2)、更なる低分子である、細胞接着性オリゴペプチド:アルギニン-グリシン-アスパラギン酸-セリン(RGDS)(分子量433.42)、Ac-Asp-Glu(分子量304.25)までもこのようにほぼ完全に非特異的な吸着が抑えられることが確認でき、本非特異性吸着抑制材料の有効性が実証できた。
本効果は、市販の高分子ポリエチレングリコール(分子量2000)や市販品A(金属表面用ブロッキング剤 株式会社ナノビオテック)で修飾した表面と比較しても、高分子量のものから低分子量、特に分子量数百の低分子の生体分子の非特異的な吸着を抑えるのに有効であることが確認できた。
As shown in Table 1, Con A with a molecular weight of 104,000, bovine serum albumin (BSA) with a molecular weight of 66,300, 17mer [base sequence: ATT TCT TGC TTA AAG TC (SEQ ID NO: 1), molecular weight 5100.43]], 36mer [base sequence] : TGC CCT GGA CCT GCG AAA TCC AGA ACA AAG CAC (SEQ ID NO: 2), molecular weight 11032.29] It was confirmed that nonspecific adsorption of biomolecules such as nucleic acids was suppressed to a very low value. In addition, various peptides such as angiotensin (molecular weight 1296.5), bradykinin (molecular weight 1060.2), and further low molecular weight cell adhesion oligopeptides: arginine-glycine-aspartic acid-serine (RGDS) (molecular weight 433.42), Ac-Asp It was confirmed that non-specific adsorption was suppressed almost completely up to -Glu (molecular weight 304.25), and the effectiveness of the non-specific adsorption-suppressing material was verified.
Compared with a surface modified with a commercially available high molecular weight polyethylene glycol (molecular weight 2000) or a commercially available product A (metal surface blocking agent Nanobiotech Co., Ltd.), this effect is from a high molecular weight to a low molecular weight, particularly several hundreds of molecular weights. It was confirmed that it was effective in suppressing non-specific adsorption of low molecular weight biomolecules.

〔実施例6〕
(非特異性吸着抑制分子およびトロンビン認識核酸アプタマー分子混合吸着層によるトロンビンの認識、シグナル−ノイズレベルの向上)
トロンビンを認識する核酸アプタマー〔HS-C6-TTT TTT TTT TTT GGT TGG TGT GGT TGG(配列番号3),分子量8814.49〕と、実施例1と同様の非特異性吸着抑制分子(n=2〜11)を用いて、ビアコア社の金チップの表面に下記の手順でアプタマー混合単分子膜を形成した。核酸アプタマーのC6は、(CHを意味する。得られた共吸着層に対して、トロンビンの吸着量をビアコアシステムT-100により測定した結果を図5に示す。また、シグナルノイズレベルを比較した結果を図6に示す。
溶媒としてHBS-EP緩衝液(10mM HEPES、150mM NaCl、3.4mM EDTA、0.005% Tween 20)/50mM KCL溶液(pH7.4)を使用し、核酸アプタマーは250nMに調整したものを吸着量に応じて5分間ずつ流し、最初のアプタマー吸着量を制御した。この後、各PEGCnSH分子の0.1mM 溶液を流速5μl / 分で1時間流し、アプタマー混合単分子膜を構築した。比較のため、一般的に実験によく使用される水酸基末端チオールであるメルカプトエタノール(ME)を非特異性吸着抑制分子として用いた場合の例を同時に示す。
Example 6
(Recognition of thrombin by mixed adsorption layer of non-specific adsorption suppression molecule and thrombin recognition nucleic acid aptamer molecule, improvement of signal-noise level)
Nucleic acid aptamer that recognizes thrombin [HS-C6-TTT TTT TTT TTT GGT TGG TGT GGT TGG (SEQ ID NO: 3), molecular weight 8814.49] and nonspecific adsorption-suppressing molecule similar to Example 1 (n = 2 to 11) Was used to form an aptamer mixed monomolecular film on the surface of a Biacore gold chip by the following procedure. C6 of the nucleic acid aptamer means (CH 2 ) 6 . FIG. 5 shows the results of measuring the amount of thrombin adsorbed on the obtained co-adsorbed layer using the Biacore system T-100. Further, FIG. 6 shows the result of comparing the signal noise level.
Use HBS-EP buffer (10 mM HEPES, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20) / 50 mM KCL solution (pH 7.4) as the solvent, and adjust the nucleic acid aptamer to 250 nM according to the amount of adsorption. Flowed for 5 minutes each time, the initial amount of aptamer adsorption was controlled. Thereafter, a 0.1 mM solution of each PEGCnSH molecule was flowed at a flow rate of 5 μl / min for 1 hour to construct an aptamer mixed monolayer. For comparison, an example in which mercaptoethanol (ME), which is a hydroxyl-terminated thiol commonly used in experiments, is used as a nonspecific adsorption-suppressing molecule is also shown.

各修飾単分子膜においては、アプタマーの固定化量を2.1-2.7×1012分子/cm2 とほぼ一定となるようにし、非特異性吸着分子を1.0-1.5×1014分子/cm2 となるように混合単分子層を作製した。図5の左側には、各非特異性吸着分子のみの表面で起こる非特異性吸着量(ノイズ)を示した。
MEを用いた場合も、図中に示すようにトロンビンの非特異性吸着は比較的低く抑えられるが、本発明の非特異性吸着抑制分子(n=2-8)においては、非特異性吸着の抑制効果がさらに抑えられていることが確認できた。PEGC2SHを非特異性吸着分子として用いた場合、トロンビンの吸着が格段によいことが確認できた。水酸基末端(ME)の場合はSN比が5程度であるのに対し、各PEGCnSHを用いた場合は50倍以上、となり、PEGC6SHを用いた場合は147となった。水酸基末端のアルカンチオール分子に対して、PEGC6SHでは26倍向上していることがわかる。(図6参照)
In each modified monolayer, the amount of aptamer immobilized should be approximately constant at 2.1-2.7 × 10 12 molecules / cm 2, and nonspecifically adsorbed molecules at 1.0-1.5 × 10 14 molecules / cm 2 A mixed monolayer was prepared as described above. The left side of FIG. 5 shows the amount of nonspecific adsorption (noise) occurring on the surface of each nonspecifically adsorbed molecule alone.
Even when ME is used, the nonspecific adsorption of thrombin is suppressed to a relatively low level as shown in the figure, but the nonspecific adsorption suppression molecule (n = 2-8) of the present invention has a nonspecific adsorption. It has been confirmed that the inhibitory effect is further suppressed. When PEGC2SH was used as a non-specific adsorption molecule, it was confirmed that thrombin adsorption was much better. In the case of hydroxyl terminal (ME), the SN ratio was about 5, whereas when each PEGCnSH was used, it was 50 times or more, and when PEGC6SH was used, it was 147. It can be seen that PEGC6SH is 26 times better than the hydroxyl-terminated alkanethiol molecule. (See Figure 6)

非特異性吸着抑制分子PEGCnSH (n=2, 4, 6, 8, 11)修飾層および市販のCM5チップ(ビアコアシステム、GEヘルスケアサイエンス社)へのコンカナバリンAの吸着量を示す図である。縦軸は吸着量を示す、RU値(RU:レゾナンスユニット、1000RU=1ng/mm2)である。ビアコアT-100システムにて測定。It is a figure which shows the adsorption amount of concanavalin A to a non-specific adsorption | suction suppression molecule | numerator PEGCnSH (n = 2, 4, 6, 8, 11) modification layer and a commercially available CM5 chip | tip (Biacore system, GE Healthcare Science company). The vertical axis represents the RU value (RU: resonance unit, 1000 RU = 1 ng / mm 2 ) indicating the amount of adsorption. Measured with Biacore T-100 system. 非特異性吸着抑制分子PEGCnSH (n=2, 4, 6, 8, 11)修飾層の金表面からの還元的脱離にともなう電気量データから求めた、各分子の吸着量と、当該分子のアルキル鎖長(n)の関係を示す図である。Nonspecific adsorption-inhibiting molecule PEGCnSH (n = 2, 4, 6, 8, 11) The amount of adsorption of each molecule determined from the electric quantity data accompanying reductive desorption from the gold surface of the modified layer, It is a figure which shows the relationship of alkyl chain length (n). (a)12-メルカプトドデシル-β-マルトシド(マルトシド基はCon Aを特異的に認識する)と各種アルキル鎖長のPEGCnSH分子を共吸着した分子膜におけるCon Aの吸着量を示す図である。ビアコア2000システムにて測定。白抜きのグラフは、PEGCnSH機能性分子のみの修飾膜でのCon Aの非特異性吸着結果を示す。 (b)マルトシド共存分子認識膜上でのCon Aの吸着応答(シグナル)と各PEGCn分子層での非特異的な吸着応答(ノイズ)の比を示す図である。(A) It is a figure which shows the adsorption amount of Con A in the molecular film which co-adsorbed 12-mercaptododecyl-β-maltoside (the maltoside group specifically recognizes Con A) and PEGCnSH molecules of various alkyl chain lengths. Measured with Biacore 2000 system. The open graph shows the non-specific adsorption result of Con A on the modified membrane of only the PEGCnSH functional molecule. (B) It is a figure which shows the ratio of the adsorption response (signal) of Con A on a maltoside coexistence molecule recognition film | membrane, and the nonspecific adsorption response (noise) in each PEGCn molecular layer. 12-メルカプトドデシルβ- マルトシドと各種アルキル鎖長のPEGCnSH機能性分子を共吸着した分子膜の模式図である。(A)は12-メルカプトドデシル β- マルトシドとPEGC2SHの混合単分子層、(B)は12-メルカプトドデシル β- マルトシドとPEGC6SHの混合単分子層、(C)は12-メルカプトドデシルβ- マルトシドとPEGC11SHの混合単分子層の模式図を示す。It is a schematic diagram of a molecular film in which 12-mercaptododecyl β-maltoside and PEGCnSH functional molecules having various alkyl chain lengths are co-adsorbed. (A) 12-mercaptododecyl β-maltoside and PEGC 2 SH mixed monolayer, (B) 12-mercaptododecyl β-maltoside and PEGC 6 SH mixed monolayer, (C) 12-mercaptododecyl A schematic diagram of a mixed monolayer of β-maltoside and PEGC 11 SH is shown. トロンビンを認識する核酸アプタマーと当該非特異性吸着抑制分子(PEGCnSH)とで修飾した共吸着層および、メルカプトエタノール(ME)と核酸アプタマーとの共吸着層へのトロンビンの吸着量を示した図である。測定はビアコアT-100システム。縦軸はトロンビンの吸着量(RU値)を示す。グラフ中左(黒)データは非特異性吸着抑制分子のみの表面でのトロンビンの吸着量。右(灰)はアプタマーと各非特異性吸着抑制分子混合単分子層でのトロンビンの吸着応答を示す。The figure shows the amount of thrombin adsorbed on a coadsorption layer modified with a nucleic acid aptamer that recognizes thrombin and the nonspecific adsorption inhibitor molecule (PEGCnSH) and a coadsorption layer of mercaptoethanol (ME) and a nucleic acid aptamer. is there. Measurement is Biacore T-100 system. The vertical axis indicates the amount of thrombin adsorption (RU value). The left (black) data in the graph is the amount of thrombin adsorbed on the surface of nonspecific adsorption-suppressing molecules only. The right (gray) shows the adsorption response of thrombin in aptamer and each non-specific adsorption-inhibiting molecule mixed monolayer. 図5で示したアプタマー膜での、トロンビンの吸着量(シグナル)とアプタマーを含まない膜(PEGCnSH、ME)でのトロンビンの非特異的な吸着応答(ノイズ)の比を示す図である。It is a figure which shows the ratio of the adsorption amount (signal) of the thrombin in the aptamer film | membrane shown in FIG. 5, and the nonspecific adsorption response (noise) of the thrombin in the film | membrane (PEGCnSH, ME) which does not contain an aptamer.

Claims (6)

基材表面に、一般式(1)で表される化合物の単分子膜を形成してなる非特異性吸着抑制材料。
HO(CHCHO)−(CH−SH (1)
式中、mは1〜3の整数、nは2〜8の整数を表す。
A non-specific adsorption suppressing material formed by forming a monomolecular film of a compound represented by the general formula (1) on the surface of a substrate.
HO (CH 2 CH 2 O) m - (CH 2) n -SH (1)
In the formula, m represents an integer of 1 to 3, and n represents an integer of 2 to 8.
前記基材が、導電性金属及び金属酸化物から選ばれた材料により構成されたものであることを特徴とする請求項1に記載の非特異性吸着抑制材料。   The non-specific adsorption suppressing material according to claim 1, wherein the base material is composed of a material selected from conductive metals and metal oxides. 前記単分子膜が、一般式(1)で表される化合物と、標的分子を認識しこれに結合する分子との混合単分子膜であることを特徴とする請求項1又は2に記載の非特異性吸着抑制材料。   The non-molecular film according to claim 1 or 2, wherein the monomolecular film is a mixed monomolecular film of a compound represented by the general formula (1) and a molecule that recognizes and binds to a target molecule. Specific adsorption suppression material. 前記標的分子を認識しこれに結合する分子が、分子の末端にチオール基(−SH)を有する分子であることを特徴とする請求項3に記載の非特異性吸着抑制材料。   The nonspecific adsorption-suppressing material according to claim 3, wherein the molecule that recognizes and binds to the target molecule is a molecule having a thiol group (-SH) at the end of the molecule. 前記標的分子を認識しこれに結合する分子が、糖、アプタマー、核酸から選択されたものであることを特徴とする請求項3又は4に記載の非特異性吸着抑制材料。   The nonspecific adsorption-suppressing material according to claim 3 or 4, wherein the molecule that recognizes and binds to the target molecule is selected from sugars, aptamers, and nucleic acids. 前記混合単分子膜中の前記標的を認識しこれに結合する分子の割合が0.1〜60%であることを特徴とする請求項3〜5のいずれかに記載の非特異性吸着抑制材料。   6. The nonspecific adsorption-suppressing material according to claim 3, wherein a ratio of molecules that recognize and bind to the target in the mixed monolayer is 0.1 to 60%. .
JP2008086149A 2008-03-28 2008-03-28 Non-specific adsorption suppression material Expired - Fee Related JP4911415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086149A JP4911415B2 (en) 2008-03-28 2008-03-28 Non-specific adsorption suppression material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086149A JP4911415B2 (en) 2008-03-28 2008-03-28 Non-specific adsorption suppression material

Publications (2)

Publication Number Publication Date
JP2009236848A true JP2009236848A (en) 2009-10-15
JP4911415B2 JP4911415B2 (en) 2012-04-04

Family

ID=41250961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086149A Expired - Fee Related JP4911415B2 (en) 2008-03-28 2008-03-28 Non-specific adsorption suppression material

Country Status (1)

Country Link
JP (1) JP4911415B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232904A (en) * 2011-04-28 2012-11-29 National Institute Of Advanced Industrial Science & Technology Methoxy oligoethyleneglycol-silane compound surface modification material
JP2013215109A (en) * 2012-04-05 2013-10-24 Seiko Epson Corp Separator
JP2022501590A (en) * 2018-09-20 2022-01-06 住友化学株式会社 Luminous marker particles
JP7515855B2 (en) 2020-04-13 2024-07-16 国立研究開発法人産業技術総合研究所 Sugar chain ligand with high effect of suppressing non-specific adsorption, and toxin detection chip having said sugar chain ligand immobilized thereon

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523518A (en) * 2000-02-16 2003-08-05 ウイスコンシン アラムニ リサーチ ファンデーション Microscopic pathogen detection method and device
JP2006078418A (en) * 2004-09-13 2006-03-23 Tokyo Institute Of Technology Sugar chain array and its manufacturing method
WO2006043461A1 (en) * 2004-10-20 2006-04-27 Riken Method of interaction observation
JP2006226828A (en) * 2005-02-17 2006-08-31 Toyobo Co Ltd Peptide array
JP2006521567A (en) * 2003-03-26 2006-09-21 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Measurement of proteins and / or other molecules using mass spectrometry
JP2006308292A (en) * 2005-04-26 2006-11-09 Seiko Epson Corp Detection method of target molecule, detection method of gene polymorphism, and substrate and kit used in detection methods
JP2007068510A (en) * 2005-09-09 2007-03-22 Toyobo Co Ltd Method for detecting phosphorylation inhibition activity by using surface plasmon resonance
JP2007256269A (en) * 2006-02-23 2007-10-04 Fujifilm Corp Biosensor and physiologically active substance immobilization method
JP2007256268A (en) * 2006-02-22 2007-10-04 Fujifilm Corp Biosensor
JP2007279027A (en) * 2006-03-14 2007-10-25 Fujifilm Corp Method of inspecting biosensor surface

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523518A (en) * 2000-02-16 2003-08-05 ウイスコンシン アラムニ リサーチ ファンデーション Microscopic pathogen detection method and device
JP2006521567A (en) * 2003-03-26 2006-09-21 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Measurement of proteins and / or other molecules using mass spectrometry
JP2006078418A (en) * 2004-09-13 2006-03-23 Tokyo Institute Of Technology Sugar chain array and its manufacturing method
WO2006043461A1 (en) * 2004-10-20 2006-04-27 Riken Method of interaction observation
JP2006118920A (en) * 2004-10-20 2006-05-11 Institute Of Physical & Chemical Research Method of observing interaction
JP2006226828A (en) * 2005-02-17 2006-08-31 Toyobo Co Ltd Peptide array
JP2006308292A (en) * 2005-04-26 2006-11-09 Seiko Epson Corp Detection method of target molecule, detection method of gene polymorphism, and substrate and kit used in detection methods
JP2007068510A (en) * 2005-09-09 2007-03-22 Toyobo Co Ltd Method for detecting phosphorylation inhibition activity by using surface plasmon resonance
JP2007256268A (en) * 2006-02-22 2007-10-04 Fujifilm Corp Biosensor
JP2007256269A (en) * 2006-02-23 2007-10-04 Fujifilm Corp Biosensor and physiologically active substance immobilization method
JP2007279027A (en) * 2006-03-14 2007-10-25 Fujifilm Corp Method of inspecting biosensor surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232904A (en) * 2011-04-28 2012-11-29 National Institute Of Advanced Industrial Science & Technology Methoxy oligoethyleneglycol-silane compound surface modification material
JP2013215109A (en) * 2012-04-05 2013-10-24 Seiko Epson Corp Separator
JP2022501590A (en) * 2018-09-20 2022-01-06 住友化学株式会社 Luminous marker particles
JP7515855B2 (en) 2020-04-13 2024-07-16 国立研究開発法人産業技術総合研究所 Sugar chain ligand with high effect of suppressing non-specific adsorption, and toxin detection chip having said sugar chain ligand immobilized thereon

Also Published As

Publication number Publication date
JP4911415B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
Vanova et al. Peptide-based electrochemical biosensors utilized for protein detection
Frederix et al. Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold
Brault et al. Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media
Li et al. Group III nitride nanomaterials for biosensing
US7759114B2 (en) Sensor chips
EP1650565B1 (en) Surface of base material being inhibited in non-specific adsorption
Puiu et al. A modular electrochemical peptide-based sensor for antibody detection
US20160291001A1 (en) Conductive hydrogels for affinity sensing
Li et al. Carboxymethylated dextran-modified n-heterocyclic carbene self-assembled monolayers on gold for use in surface plasmon resonance biosensing
Cui et al. Antifouling sensors based on peptides for biomarker detection
Wojtyk et al. Modification of porous silicon surfaces with activated ester monolayers
KR20100130999A (en) Method for assembling two surfaces, or one surface, with a molecule of interest
Adak et al. Fabrication of antibody microarrays by light-induced covalent and oriented immobilization
US8101405B2 (en) Nanoparticulate affinity capture for label independent detection system
Rastogi et al. Preventing nonspecific adsorption on polymer brush covered gold electrodes using a modified ATRP initiator
JP2009092651A (en) Carrier and its manufacturing method
Wang et al. Preparation of a novel immunosensor for tumor biomarker detection based on ATRP technique
US8142720B2 (en) Molecules suitable for binding to a metal layer for covalently immobilizing biomolecules
JP4911415B2 (en) Non-specific adsorption suppression material
CN117295938A (en) Surface plasmon resonance signal amplification
WO2011078800A1 (en) Method for the detection of an analyte
JP2006177914A (en) Surface having thick polymer layer, and preparation method therefor
Tan et al. Antifouling self-assembled monolayers for designing of electrochemical biosensors
Bi et al. Complexation of copper ions with histidine-containing tripeptides immobilized on solid surfaces
Brightbill et al. Preblocking procedure to mitigate nonselective protein adsorption for Carboxyl-SAMs used in biosensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4911415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees