JP2009236543A - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
JP2009236543A
JP2009236543A JP2008080090A JP2008080090A JP2009236543A JP 2009236543 A JP2009236543 A JP 2009236543A JP 2008080090 A JP2008080090 A JP 2008080090A JP 2008080090 A JP2008080090 A JP 2008080090A JP 2009236543 A JP2009236543 A JP 2009236543A
Authority
JP
Japan
Prior art keywords
target
azimuth
estimated
antenna
true
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080090A
Other languages
Japanese (ja)
Inventor
Takayuki Ishibe
隆行 石部
Osamu Miyatake
督 宮武
Akishi Hamaoka
晃史 浜岡
Masayoshi Nishimoto
誠良 西本
Yoshio Shimamoto
喜郎 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008080090A priority Critical patent/JP2009236543A/en
Publication of JP2009236543A publication Critical patent/JP2009236543A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the bearing accuracy without rotating a phased array antenna in relation to a coning error. <P>SOLUTION: A bearing difference between true bearing and estimated bearing caused by the coning error of the phased array antenna that is measured beforehand for each wave angle is stored in a database for calculation of the true bearing. The frequency, pulse width, pulse repetition frequency, pulse arrival time and estimated bearing of a target are detected from an arriving radio wave received separately by the phased array antenna being so set that the antenna array plane thereof is directed in the reference direction and by a multiantenna. Then, a correlation processing is conducted about the frequency, pulse width, pulse repetition frequency and pulse arrival time of the target detected by the two antennas and an estimated wave angle of the correlated target is verified with the wave angle of the database for calculation of the true bearing so as to extract a corresponding bearing difference. Based on the extracted bearing difference, the estimated bearing of the target is corrected and thus the true bearing is calculated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、フェイズドアレイアンテナを用いて大気中を伝搬する電波の到来する方位を測定する電波探知装置に関するものである。   The present invention relates to a radio wave detection apparatus that measures the direction of arrival of radio waves propagating in the atmosphere using a phased array antenna.

周知のように、フェイズドアレイアンテナを用いた場合、到来方位は、配列された素子アンテナで受信した到来電波間の位相差(到来時間差)から算出する。しかし、電波放射源がアンテナアレイ面(水平面)に対し仰角を持つ場合、到来方位がアレイ面に対し側面方向に近づくにつれてコーニングエラーと呼ばれる方位変動が発生する。これはアンテナアレイ面に対する等位相面がアレイを中心としたコーン状となるために発生するものである。したがって、フェイズドアレイアンテナ用いた方位測定は、アンテナアレイ面に対して仰角を持つ電波が側面方向に到来した場合、算出した推定方位に誤差が生じ、方位精度が低下する。そのため、上記コーニングエラーが発生する場合に推定方位を補正して真の方位を算出する技術が提案されている(例えば特許文献1参照)。   As is well known, when a phased array antenna is used, the arrival direction is calculated from the phase difference (arrival time difference) between the incoming radio waves received by the arrayed element antennas. However, when the radio wave radiation source has an elevation angle with respect to the antenna array surface (horizontal plane), an azimuth variation called a coning error occurs as the arrival direction approaches the side surface direction with respect to the array surface. This occurs because the equiphase surface with respect to the antenna array surface has a cone shape centered on the array. Therefore, in the azimuth measurement using the phased array antenna, when a radio wave having an elevation angle with respect to the antenna array surface arrives in the side surface direction, an error occurs in the calculated estimated azimuth, and the azimuth accuracy decreases. For this reason, a technique has been proposed in which the true bearing is calculated by correcting the estimated bearing when the coning error occurs (see, for example, Patent Document 1).

特許文献1に記載された電波探知装置においては、コーニングエラーがアンテナアレイ正面方向では発生せず側面方向になるにつれて大きくなる特性を考慮して、方位方向を変えるようにアンテナアレイ面を機械的に水平に回転させて、到来電波をアンテナの正面方向から受信できるように構成しておく。また、アンテナ正面方向からの電波受信データを基準として、電波の仰角ごとに、基準からのアンテナ回転角、コーニングエラーに因る真の方位と推定方位の方位差を予め求めてデータベースにして格納しておく。そして、実際の測定時には、電波の到来方向にフェイズドアレイアンテナを回転させた受信位置での推定方位を算出し、データベースから、このときのアンテナ回転角に対応する方位差を取得して、真の方位を算出する。また、対応する仰角も取得する。   In the radio wave detection device described in Patent Document 1, the antenna array surface is mechanically changed so as to change the azimuth direction in consideration of the characteristic that a coning error does not occur in the front direction of the antenna array but increases in the lateral direction. It is configured to rotate horizontally and receive incoming radio waves from the front of the antenna. Also, based on the radio reception data from the front direction of the antenna, for each elevation angle of the radio wave, the antenna rotation angle from the reference, the true azimuth difference due to the coning error, and the azimuth difference between the estimated azimuth are obtained in advance and stored in a database. Keep it. At the time of actual measurement, the estimated azimuth at the reception position where the phased array antenna is rotated in the direction of arrival of the radio wave is calculated, the azimuth difference corresponding to the antenna rotation angle at this time is obtained from the database, and the true Calculate the bearing. The corresponding elevation angle is also acquired.

特開2005−181203号公報Japanese Patent Laid-Open No. 2005-181203

フェイズドアレイアンテナを用いた従来の電波探知装置は、以上のように構成されているが、アンテナアレイ面を回転しなければならないため、その回転駆動機構が必要となり、実測時に回転角度を割り出す制御を行わなければならない。また、真の方位を算出するのにアンテナ回転角を用いなければならないため、その分処理時間を要する。さらに、回転駆動機構を設けた場合は点検、保守などの制約も生じるなどの問題がある。   A conventional radio wave detection device using a phased array antenna is configured as described above. However, since the antenna array surface must be rotated, a rotation drive mechanism is required, and control for determining the rotation angle during measurement is performed. It must be made. Further, since the antenna rotation angle must be used to calculate the true orientation, processing time is required accordingly. Furthermore, when a rotational drive mechanism is provided, there are problems such as restrictions on inspection and maintenance.

この発明は、上記問題点を解決するためになされたもので、コーニングエラーに対して、フェイズドアレイアンテナを回転せずに方位精度を高めることを可能にする電波探知装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a radio wave detection device that can improve azimuth accuracy without rotating a phased array antenna against a coning error. .

この発明に係る電波探知装置は、アンテナアレイ面を基準方向に向けて設置したフェイズドアレイアンテナで受信した到来電波の受信信号を目標ごとに分離して、各目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位を検出する第1の目標諸元検出部と、マルチアンテナで受信した到来電波の受信信号を目標ごとに分離して、各目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角を検出する第2の目標諸元検出部と、第1、第2の目標諸元検出部で検出された目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻について相関処理を行う相関処理部と、予め仰角ごとに測定したフェイズドアレイアンテナのコーニングエラーに因る真の方位と推定方位間の方位差を格納する真方位算出用データベースと、相関処理部で相関が取れた目標の推定仰角に基づいて真方位算出用データベースの仰角と照合することにより、対応する方位差を抽出し、抽出した方位差に基づいて相関が取れた目標の推定方位を補正して該当目標の真の方位を算出する真方位算出処理部を備えたものである。   The radio wave detector according to the present invention separates the received signal of the incoming radio wave received by the phased array antenna installed with the antenna array surface facing the reference direction for each target, and each target frequency, pulse width, pulse repetition frequency , A first target specification detection unit for detecting a pulse arrival time and an estimated direction, and a received signal of an incoming radio wave received by a multi-antenna is separated for each target, and each target frequency, pulse width, pulse repetition frequency, The second target specification detection unit for detecting the pulse arrival time and the estimated elevation angle is correlated with the target frequency, pulse width, pulse repetition frequency, and pulse arrival time detected by the first and second target specification detection units. A correlation processing unit that performs processing, and a true storage that stores the azimuth difference between the true azimuth and the estimated azimuth caused by the coning error of the phased array antenna measured in advance for each elevation angle. The corresponding azimuth difference is extracted by collating it with the elevation angle of the true azimuth calculation database based on the position calculation database and the estimated elevation angle of the target correlated with the correlation processing unit, and the correlation is performed based on the extracted azimuth difference. A true azimuth calculation processing unit that corrects the estimated azimuth of the target that has been corrected and calculates the true azimuth of the target is provided.

この発明によれば、実測時における電波探知装置は、真方位算出用データベースから、マルチアンテナにより取得した仰角を用いて方位差を取り出すので、フェイズドアレイアンテナに回転駆動機構を持たせる必要がなくなり、電気的な処理のみにより方位精度を高めることができる。そのため、従来のような回転駆動機構によって生じる問題は無くなる。   According to this invention, the radio wave detection device at the time of actual measurement takes out the azimuth difference using the elevation angle acquired by the multi-antenna from the true azimuth calculation database, so it is not necessary to provide the phased array antenna with a rotation drive mechanism. Orientation accuracy can be increased only by electrical processing. Therefore, the problem caused by the conventional rotational drive mechanism is eliminated.

実施の形態1.
図1は、この発明の各実施の形態による電波探知装置を示す機能構成を示すブロック図である。
図1において、電波探知装置は、フェイズドアレイアンテナ1、マルチアンテナ2、受信部3,4、目標諸元検出部5,6、相関処理部7、真方位算出用データベース8、真方位算出処理部9、目標管理部10を備えている。
フェイズドアレイアンテナ1は、到来電波を受信する方位用のアンテナであり、マルチアンテナ2は、到来電波を受信する仰角用のアンテナである。受信部3は、フェイズドアレイアンテナ1による受信信号から目標の信号を検波する手段であり、受信部4は、マルチアンテナ2による受信信号から目標の信号を検波する手段である。目標諸元検出部(第1の目標諸元検出部)5は、検波された目標データを目標毎に分離し、周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位等の目標諸元を検出する手段である。目標諸元検出部(第2の目標諸元検出部)6は、検波された目標データを目標毎に分離し、周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角等の目標諸元を検出する手段である。相関処理部7は、両目標諸元検出部5,6で検出した周波数データを相関処理するCPU処理による手段である。真方位算出用データベース8は、予め仰角ごとに測定したコーニングエラーデータを格納する手段である。真方位算出処理部9は、相関が取れた目標の推定仰角に基づいて真方位算出用データベース8と照合することにより、対応するコーニングエラーと目標の推定方位とから到来電波の真の方位を算出するCPU処理による手段である。目標管理部10は、検出した目標の各諸元、状態を一元管理するCPU処理による手段である。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a functional configuration of a radio wave detection device according to each embodiment of the present invention.
In FIG. 1, the radio wave detection device includes a phased array antenna 1, a multi-antenna 2, receiving units 3 and 4, target specification detecting units 5 and 6, a correlation processing unit 7, a true direction calculation database 8, and a true direction calculation processing unit. 9. A target management unit 10 is provided.
The phased array antenna 1 is an directional antenna that receives incoming radio waves, and the multi-antenna 2 is an elevation angle antenna that receives incoming radio waves. The receiving unit 3 is a unit that detects a target signal from a signal received by the phased array antenna 1, and the receiving unit 4 is a unit that detects a target signal from the received signal by the multi-antenna 2. The target specification detection unit (first target specification detection unit) 5 separates the detected target data for each target, and sets the target specifications such as frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated direction. It is a means to detect. The target specification detection unit (second target specification detection unit) 6 separates the detected target data for each target and sets the target specifications such as frequency, pulse width, pulse repetition frequency, pulse arrival time, estimated elevation angle, and the like. It is a means to detect. The correlation processing unit 7 is a means by CPU processing for performing correlation processing on the frequency data detected by the both target specification detection units 5 and 6. The true azimuth calculation database 8 is means for storing coning error data measured in advance for each elevation angle. The true azimuth calculation processing section 9 calculates the true azimuth of the incoming radio wave from the corresponding corning error and the estimated target azimuth by matching with the true azimuth calculation database 8 based on the estimated estimated elevation angle of the target. Means by CPU processing. The target management unit 10 is a means based on CPU processing for centrally managing each item and state of the detected target.

次に、図2の処理フローに従って動作を説明する。
フェイズドアレイアンテナ1およびマルチアンテナ2によりそれぞれ到来電波を受信すると、受信部3,4により、それぞれの受信信号から目標の信号を検波する(ステップST1)。受信部3,4で得られた目標データは、それぞれの対応する目標諸元検出部5,6に与えられる。目標諸元検出部5では、検波信号から周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位等の目標諸元を検出する。また、目標諸元検出部6では、検波信号から周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角等の目標諸元が検出される。(ステップST2)。目標諸元検出部5,6で検出された目標諸元データは、相関処理部7に送られる。相関処理部7では、両検波信号の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻について相関処理を行い、同一目標が存在するか否かを調べる(ステップST3)。同一目標が存在した場合、その目標の推定方位と推定仰角のデータを真方位算出処理部9へ送る。一方、同一目標が存在しなかった場合は、個々の目標諸元データを目標管理部10へ送る。次に、真方位算出部9では、相関処理部7からの目標の推定仰角に基づいて、真方位算出用エラーデータベース8で予め保有している仰角ごとの真の方位と推定方位の方位差から、推定仰角に対応する方位差を抽出し、方位差と相関処理部7からの推定方位とに基づいて真の方位を算出する(ステップST4)。算出された真の方位は目標管理部10に与えられ、前に測定した目標諸元を更新する。
Next, the operation will be described according to the processing flow of FIG.
When the incoming radio waves are received by the phased array antenna 1 and the multi-antenna 2, the receiving units 3 and 4 detect target signals from the respective received signals (step ST1). The target data obtained by the receiving units 3 and 4 are given to the corresponding target specification detecting units 5 and 6, respectively. The target specification detection unit 5 detects target specifications such as frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated azimuth from the detection signal. The target specification detection unit 6 detects target specifications such as a frequency, a pulse width, a pulse repetition frequency, a pulse arrival time, and an estimated elevation angle from the detection signal. (Step ST2). The target specification data detected by the target specification detection units 5 and 6 is sent to the correlation processing unit 7. The correlation processing unit 7 performs correlation processing on the frequency, pulse width, pulse repetition frequency, and pulse arrival time of both detection signals to check whether the same target exists (step ST3). When the same target exists, the estimated azimuth and estimated elevation data of the target are sent to the true azimuth calculation processing unit 9. On the other hand, if the same target does not exist, individual target specification data is sent to the target management unit 10. Next, in the true azimuth calculation unit 9, based on the target estimated elevation angle from the correlation processing unit 7, the true azimuth for each elevation angle stored in advance in the true azimuth calculation error database 8 and the azimuth difference between the estimated azimuths are calculated. Then, an azimuth difference corresponding to the estimated elevation angle is extracted, and a true azimuth is calculated based on the azimuth difference and the estimated azimuth from the correlation processing unit 7 (step ST4). The calculated true azimuth is given to the target management unit 10 and the previously measured target specifications are updated.

ここで、フェイズドアレイアンテナが持つコーニングエラー特性を利用し、到来電波の高精度な到来方位を推定する原理について説明する。
図3は、フェイズドアレイアンテナの位相差比較方法を説明する図で、X−Y平面に配置された複数の素子アンテナを上面から見た上体を示している。図に示すように、フェイズドアレイアンテナは、複数の素子アンテナをアレイ状に並べたもので、到来方位(推定方位)は各素子アンテナで受信した到来電波間の位相差から周知の方法で算出する。その際、等位相線の分布は、図4に示すように、アンテナアレイ面を軸としたコーン状となる。なお、ELは到来仰角を、AZは到来方位を表している。到来電波が仰角ELを持つ場合は、アンテナアレイ面に対する相対方位により、電波の到来方位(真の方位)と推定方位間には到来電波の仰角により差が生じ、等位相線上で仰角が0となる方位が推定方位として計測される。
Here, the principle of estimating the arrival direction of the incoming radio wave with high accuracy using the coning error characteristic of the phased array antenna will be described.
FIG. 3 is a diagram for explaining a phase difference comparison method of a phased array antenna, and shows a top view of a plurality of element antennas arranged on the XY plane as viewed from above. As shown in the figure, a phased array antenna has a plurality of element antennas arranged in an array, and the arrival azimuth (estimated azimuth) is calculated by a known method from the phase difference between the incoming radio waves received by each element antenna. . At that time, the distribution of equiphase lines has a cone shape with the antenna array surface as an axis, as shown in FIG. Here, EL represents the arrival elevation angle, and AZ represents the arrival direction. When the incoming radio wave has an elevation angle EL, a difference occurs between the arrival direction (true orientation) of the radio wave and the estimated direction due to the relative direction with respect to the antenna array surface, and the elevation angle is 0 on the equiphase line. Is measured as the estimated direction.

フェイズドアレイアンテナにおいて発生するコーニングエラーの特性について図5に示す。到来方位が、Aのようにアンテナアレイ面に対し正面方向である場合は、仰角に関係なく推定方位も真の方位と同一の値となる。しかし、到来方位が、Bのように側面方向に近くなる場合は、仰角bにおける実際の到来方位(真の方位)aと推定方位cとの間に方位差が生じてしまう。   FIG. 5 shows the characteristics of a coning error that occurs in a phased array antenna. When the arrival azimuth is the front direction with respect to the antenna array surface as in A, the estimated azimuth has the same value as the true azimuth regardless of the elevation angle. However, when the arrival direction is close to the side surface direction as in B, a difference in direction occurs between the actual arrival direction (true direction) a at the elevation angle b and the estimated direction c.

図6は、フェイズドアレイアンテナのコーニングエラーによる仰角、方位差、真の方位との関係を座標系で表す模式図である。図6において、直交座標の原点にあり、かつx軸方向に正面を向けたフェイズドアレイアンテナに対して、目標Tから電波が到来したとすると、コーニングエラーは以下の算出式で表すことができる。
アンテナの位置を原点として、目標Tの位置を、距離、方位角、天頂角で表す3次元極座標で表すと(1)式のようになる。
(rT0,φT0,θT0) (1)
この場合、仰角は90°−θT0である。目標Tの位置を直交座標(xT0,yT0,zT0)との関係は、
T0=rT0・sinθT0・cosφT0
T0=rT0・sinθT0・sinφT0
T0=rT0・cosθT0
となる。
ここで、基準として目標Tがアンテナ正面方向にあった場合についてみると、電波の到来方位φa0は(2)式となる。
φa0=0 (2)
また、この場合の位相比較による推定方位φb0は、正面方向からの電波到来であるのでコーニングエラーが無いため、(3)式となる。
φb0=0 (3)
FIG. 6 is a schematic diagram showing the relationship between the elevation angle, the azimuth difference, and the true azimuth due to the coning error of the phased array antenna in the coordinate system. In FIG. 6, if a radio wave has arrived from the target T with respect to a phased array antenna that is at the origin of orthogonal coordinates and faces the front in the x-axis direction, the Corning error can be expressed by the following calculation formula.
When the position of the target T is represented by the three-dimensional polar coordinates represented by the distance, the azimuth angle, and the zenith angle with the position of the antenna as the origin, equation (1) is obtained.
(R T0 , φ T0 , θ T0 ) (1)
In this case, the elevation angle is 90 ° −θ T0 . The relationship between the position of the target T and the Cartesian coordinates (x T0 , y T0 , z T0 ) is
x T0 = r T0 · sin θ T0 · cosφ T0
y T0 = r T0 · sinθ T0 · sinφ T0
z T0 = r T0 · cos θ T0
It becomes.
Here, when the target T is in the antenna front direction as a reference, the arrival direction φ a0 of the radio wave is expressed by equation (2).
φ a0 = 0 (2)
Further, in this case, the estimated azimuth φ b0 based on the phase comparison is Equation (3) because there is no coning error because radio waves arrive from the front direction.
φ b0 = 0 (3)

次に、目標Tが角度φの方向にある場合における電波の到来についてみると、仮想的にはアンテナが基準方向から−φ度回転した場合と同一となるため、真の方位φa1は(4)式で表される。
φa1=φ (4)
この目標Tの電波がφ度の方向から到来した場合における位相比較による推定方位φb1は、仮想的にはアンテナが基準方向から−φ度回転した場合における位相比較による推定方位と同一となるため、(5)式で表される。
φb1=sin-1{(sinθ・sinφ)/sin90°} (5)
よって、(4)、(5)式から、推定方位と真の方位の方位差Δφは(6)式で表される。
Δφ=φb1−φa1
=sin-1{(sinθ・sinφ)/sin90°}−φ (6)
上記(6)式によるコーニングエラーによって発生する方位差とアンテナの回転角の関係を仰角ごとに表すと、図7に示すような曲線になる。
Next, regarding the arrival of radio waves when the target T is in the direction of the angle φ, since the antenna is virtually the same as when the antenna is rotated −φ degrees from the reference direction, the true direction φ a1 is (4 ) Expression.
φ a1 = φ (4)
The estimated direction φ b1 by phase comparison when the radio wave of the target T arrives from the direction of φ degrees is virtually the same as the estimated direction by phase comparison when the antenna rotates −φ degrees from the reference direction. , (5).
φ b1 = sin −1 {(sin θ · sin φ) / sin 90 °} (5)
Therefore, from the equations (4) and (5), the azimuth difference Δφ between the estimated azimuth and the true azimuth is expressed by the equation (6).
Δφ = φ b1 −φ a1
= Sin −1 {(sin θ · sin φ) / sin 90 °} −φ (6)
When the relationship between the azimuth difference caused by the coning error according to the equation (6) and the rotation angle of the antenna is expressed for each elevation angle, a curve as shown in FIG. 7 is obtained.

事前に駆動機構を設けたフェイズドアレイアンテナを用い、アンテナアレイ面を基準方向から回転させながらマルチアンテナで仰角を逐次測定し、基準方向からの回転角(−φ)と仰角(90°−θ)を用いて(6)式から方位差Δφを求め、仰角(90°−θ)と方位差Δφを対応付けて真方位算出用データベース8に格納しておく。実測時には、真方位算出処理部9において、基準方向に固定したフェイズドアレイアンテナ1で測定した推定方位φb1に対応するマルチアンテナ2による推定仰角(90°−θ)を用いて真方位算出用データベース8を照合し、対応する方位差Δφを抽出し、真の方位φa1(=φb1−Δφ)を算出することになる。
なお、真方位算出用データベース8の仰角データに、実測した推定仰角と一致する値が存在しない場合には、前後の仰角に対応する方位差から、比率により推定仰角に対応する方位差を算出すればよい。この場合は、真の方位の近似値を求めることになるが、コーニングエラーによる影響を改善することはできる。
Using a phased array antenna equipped with a drive mechanism in advance, the antenna array surface is rotated from the reference direction, and the elevation angle is sequentially measured with a multi-antenna. The rotation angle from the reference direction (-φ) and the elevation angle (90 ° -θ) Is used to determine the azimuth difference Δφ from the equation (6), and the elevation angle (90 ° −θ) and the azimuth difference Δφ are associated with each other and stored in the true azimuth calculation database 8. At the time of actual measurement, the true azimuth calculation processing unit 9 uses the estimated elevation angle (90 ° −θ) by the multi-antenna 2 corresponding to the estimated azimuth φ b1 measured by the phased array antenna 1 fixed in the reference direction, and the true azimuth calculation database. 8 is collated, the corresponding azimuth difference Δφ is extracted, and the true azimuth φ a1 (= φ b1 −Δφ) is calculated.
When the elevation angle data in the true azimuth calculation database 8 does not have a value that matches the actually estimated elevation angle, the azimuth difference corresponding to the estimated elevation angle is calculated from the azimuth difference corresponding to the previous and next elevation angles. That's fine. In this case, an approximate value of the true orientation is obtained, but the influence of the coning error can be improved.

以上のように、この実施の形態1によれば、予め仰角ごとに測定したフェイズドアレイアンテナのコーニングエラーに因る真の方位と推定方位間の方位差を、真方位算出用データベースに格納しておき、アンテナアレイ面を基準方向に向けて設置したフェイズドアレイアンテナで受信した到来電波から目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位を検出すると同時に、マルチアンテナで受信した到来電波から目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角を検出し、両アンテナによる目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻について相関処理を行い、相関が取れた目標の推定仰角を真方位算出用データベースの仰角と照合して対応する方位差を抽出し、抽出した方位差に基づいて該当目標の推定方位を補正して該当目標の真の方位を算出するようにしている。したがって、実測時における電波探知装置は、真方位算出用データベースから、マルチアンテナにより取得した仰角を用いて方位差を取り出すので、フェイズドアレイアンテナに回転駆動機構を持たせる必要がなくなり、電気的な処理のみにより方位精度を高めることができる。そのため、従来のような回転駆動機構によって生じる問題は無くなる。   As described above, according to the first embodiment, the azimuth difference between the true azimuth and the estimated azimuth caused by the coning error of the phased array antenna measured in advance for each elevation angle is stored in the true azimuth calculation database. In addition, the target frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated direction are detected from the incoming radio waves received by the phased array antenna installed with the antenna array surface facing the reference direction. The target frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated elevation angle are detected from the radio wave, and correlation processing is performed on the target frequency, pulse width, pulse repetition frequency, and pulse arrival time using both antennas. The estimated elevation angle of the target is compared with the elevation angle of the true azimuth calculation database to extract the corresponding azimuth difference. Corrects the estimated orientation of the corresponding target on the basis of the extracted orientation difference is to calculate the true orientation of the relevant target. Therefore, the radio wave detection device at the time of actual measurement extracts the azimuth difference from the true azimuth calculation database using the elevation angle acquired by the multi-antenna, so that it is not necessary to provide the rotational drive mechanism for the phased array antenna, and electrical processing The azimuth accuracy can be increased by only Therefore, the problem caused by the conventional rotational drive mechanism is eliminated.

実施の形態2.
図8は、実施の形態2の処理手順を示すフローチャートである。図において、図2のステップST4の代わりにステップST41を設けたものである。すなわち、実施の形態2では、演算式を用いて方位差を求める方法について説明する。
実施の形態2の真方位算出処理部9には、(6)式の処理を行う機能、すなわち処理プログラムを設けておく。真方位算出用データベース8には、実施の形態1で説明したように、予めフェイズドアレイアンテナを回転させて、仰角ごとにアンテナの回転角を測定し、得られた対応付けデータを格納しておく。
Embodiment 2. FIG.
FIG. 8 is a flowchart illustrating a processing procedure according to the second embodiment. In the figure, step ST41 is provided instead of step ST4 in FIG. That is, in the second embodiment, a method for obtaining a azimuth difference using an arithmetic expression will be described.
The true azimuth calculation processing unit 9 of the second embodiment is provided with a function for performing the processing of equation (6), that is, a processing program. In the true orientation calculation database 8, as described in the first embodiment, the phased array antenna is rotated in advance, the rotation angle of the antenna is measured for each elevation angle, and the obtained association data is stored. .

実測時において、マルチアンテナ2による推定仰角を用いて真方位算出用データベース8の仰角と照合し、対応するアンテナの回転角を抽出し、(6)式に推定仰角と回転角を代入して方位差を求め、真の方位を算出する(ステップST41)。
なお、真方位算出用データベース8の仰角データに、実測した推定仰角と一致する値が存在しない場合がある。その場合には、前後の仰角に対応するアンテナの回転角を用いて比率により推定仰角に対応するアンテナの回転角を算出し、推定仰角と算出したアンテナの回転角を(6)式に代入すれば、真の方位の近似値を求めることができる。これによっても、コーニングエラーによる影響を改善することはできる。
At the time of actual measurement, the estimated elevation angle by the multi-antenna 2 is used to collate with the elevation angle of the true azimuth calculation database 8 to extract the corresponding antenna rotation angle, and the estimated elevation angle and rotation angle are substituted into the equation (6) The difference is obtained and the true orientation is calculated (step ST41).
In some cases, the elevation angle data in the true azimuth calculation database 8 does not have a value that matches the actually estimated elevation angle. In that case, the rotation angle of the antenna corresponding to the estimated elevation angle is calculated by the ratio using the rotation angle of the antenna corresponding to the front and back elevation angles, and the estimated elevation angle and the calculated rotation angle of the antenna are substituted into equation (6). For example, an approximate value of the true orientation can be obtained. This can also improve the influence of the coning error.

以上のように、この実施の形態2によれば、予めフェイズドアレイアンテナを回転させて、仰角ごとに測定したアンテナの回転角を、真方位算出用データベースに格納しておき、アンテナアレイ面を基準方向に向けて設置したフェイズドアレイアンテナで受信した到来電波から目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位を検出すると同時に、マルチアンテナで受信した到来電波から目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角を検出し、両アンテナによる目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻について相関処理を行い、相関が取れた目標の推定仰角を真方位算出用データベースの仰角と照合して、対応するアンテナの回転角を抽出し、抽出した仰角とアンテナの回転角に基づいてフェイズドアレイアンテナのコーニングエラーに因る真の方位と推定方位間の方位差を算出し、算出した方位差に基づいて該当目標の推定方位を補正して該当目標の真の方位を算出するようにしている。したがって、実測時における電波探知装置は、真方位算出用データベースから、マルチアンテナにより取得した仰角を用いてアンテナの回転角を取り出し、方位差を算出するので、実施の形態1と同様な効果が得られる。   As described above, according to the second embodiment, the phased array antenna is rotated in advance, and the rotation angle of the antenna measured for each elevation angle is stored in the true azimuth calculation database. The target frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated direction are detected from the incoming radio waves received by the phased array antenna installed in the direction. At the same time, the target frequency and pulse are received from the incoming radio waves received by the multi-antenna. The width, pulse repetition frequency, pulse arrival time, and estimated elevation angle are detected, correlation processing is performed for the target frequency, pulse width, pulse repetition frequency, and pulse arrival time by both antennas, and the estimated elevation angle of the correlated target is true The angle of rotation of the corresponding antenna is extracted by comparing with the elevation angle of the database for calculation. Calculate the azimuth difference between the true direction and the estimated azimuth due to the coning error of the phased array antenna based on the angle and the rotation angle of the antenna, and correct the estimated azimuth of the target based on the calculated azimuth difference. The true azimuth of is calculated. Therefore, the radio wave detection device at the time of actual measurement extracts the rotation angle of the antenna from the true azimuth calculation database using the elevation angle acquired by the multi-antenna, and calculates the azimuth difference, so the same effect as in the first embodiment is obtained. It is done.

この発明の実施の形態1による電波探知装置を示す機能構成を示すブロック図である。It is a block diagram which shows the function structure which shows the electromagnetic wave detection apparatus by Embodiment 1 of this invention. この発明の実施の形態1に係る電波探知装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the radio wave detector which concerns on Embodiment 1 of this invention. フェイズドアレイアンテナの位相差比較方法を示す説明図である。It is explanatory drawing which shows the phase difference comparison method of a phased array antenna. フェイズドアレイアンテナが持つ等位相線を示す説明図である。It is explanatory drawing which shows the equiphase line which a phased array antenna has. フェイズドアレイアンテナが持つコーニングエラーを表す説明図である。It is explanatory drawing showing the coning error which a phased array antenna has. コーニングエラーによる仰角、方位差、真の方位との関係を座標系で表す模式図である。It is a schematic diagram which represents the relationship with the elevation angle by a coning error, a azimuth | direction difference, and a true azimuth | direction with a coordinate system. コーニングエラーによって発生する方位差とアンテナの回転角の関係を仰角ごとに表した曲線を示す説明図である。It is explanatory drawing which shows the curve which represented the relationship between the azimuth | direction difference which generate | occur | produces by a coning error, and the rotation angle of an antenna for every elevation angle. この発明の実施の形態2に係る電波探知装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the radio wave detector which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 フェイズドアレイアンテナ、2 マルチアンテナ、3,4 受信部、5,6 目標諸元検出部、7 相関処理部、8 真方位算出用データベース、9 真方位算出処理部、10 目標管理部。   DESCRIPTION OF SYMBOLS 1 Phased array antenna, 2 Multi-antenna, 3, 4 Receiving part, 5, 6 Target specification detection part, 7 Correlation processing part, 8 True direction calculation database, 9 True direction calculation processing part, 10 Target management part.

Claims (2)

アンテナアレイ面を基準方向に向けて設置したフェイズドアレイアンテナで受信した到来電波の受信信号を目標ごとに分離して、各目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位を検出する第1の目標諸元検出部と、
マルチアンテナで受信した到来電波の受信信号を目標ごとに分離して、各目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角を検出する第2の目標諸元検出部と、
前記第1、第2の目標諸元検出部で検出された目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、について相関処理を行う相関処理部と、
予め仰角ごとに測定したフェイズドアレイアンテナのコーニングエラーに因る真の方位と推定方位間の方位差を格納する真方位算出用データベースと、
相関処理部で相関が取れた目標の推定仰角に基づいて前記真方位算出用データベースの仰角と照合することにより、対応する方位差を抽出し、抽出した方位差に基づいて前記相関が取れた目標の推定方位を補正して該当目標の真の方位を算出する真方位算出処理部を備えたことを特徴とする電波探知装置。
The incoming signal received by the phased array antenna with the antenna array surface facing the reference direction is separated for each target, and the frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated direction of each target are detected. A first target specification detecting unit,
A second target specification detection unit that separates received signals of incoming radio waves received by a multi-antenna for each target, and detects a frequency, a pulse width, a pulse repetition frequency, a pulse arrival time, and an estimated elevation angle of each target;
A correlation processing unit that performs correlation processing on the target frequency, pulse width, pulse repetition frequency, and pulse arrival time detected by the first and second target specification detection units;
A true azimuth calculation database for storing a azimuth difference between a true azimuth and an estimated azimuth caused by a coning error of a phased array antenna measured in advance for each elevation angle;
A corresponding azimuth difference is extracted by collating with the elevation angle of the true azimuth calculation database based on the estimated elevation angle of the target obtained by the correlation processing unit, and the correlated target is obtained based on the extracted azimuth difference. A radio wave detection apparatus comprising a true direction calculation processing unit that corrects the estimated direction and calculates a true direction of the target.
アンテナアレイ面を基準方向に向けて設置したフェイズドアレイアンテナで受信した到来電波の受信信号を目標ごとに分離して、各目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定方位を検出する第1の目標諸元検出部と、
マルチアンテナで受信した到来電波の受信信号を目標ごとに分離して、各目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻、推定仰角を検出する第2の目標諸元検出部と、
前記第1、第2の目標諸元検出部で検出された目標の周波数、パルス幅、パルス繰り返し周波数、パルス到達時刻について相関処理を行う相関処理部と、
予めフェイズドアレイアンテナを回転させて、仰角ごとに測定したアンテナの回転角を格納する真方位算出用データベースと、
相関処理部で相関が取れた目標の推定仰角に基づいて前記真方位算出用データベースの仰角と照合することにより、仰角と当該仰角に対応するアンテナの回転角を抽出し、抽出したアンテナの回転角に基づいて、フェイズドアレイアンテナのコーニングエラーに因る真の方位と推定方位間の方位差を算出し、算出した方位差に基づいて前記相関が取れた目標の推定方位を補正して該当目標の真の方位を算出する真方位算出処理部を備えたことを特徴とする電波探知装置。
The incoming signal received by the phased array antenna with the antenna array surface facing the reference direction is separated for each target, and the frequency, pulse width, pulse repetition frequency, pulse arrival time, and estimated direction of each target are detected. A first target specification detecting unit,
A second target specification detection unit that separates received signals of incoming radio waves received by a multi-antenna for each target, and detects a frequency, a pulse width, a pulse repetition frequency, a pulse arrival time, and an estimated elevation angle of each target;
A correlation processing unit that performs correlation processing on the target frequency, pulse width, pulse repetition frequency, and pulse arrival time detected by the first and second target specification detection units;
A database for true azimuth calculation that stores the rotation angle of the antenna measured for each elevation angle by rotating the phased array antenna in advance,
The elevation angle and the antenna rotation angle corresponding to the elevation angle are extracted by collating with the elevation angle of the true azimuth calculation database based on the estimated elevation angle of the target that has been correlated by the correlation processing unit, and the extracted antenna rotation angle Based on the azimuth difference between the true azimuth and the estimated azimuth due to the coning error of the phased array antenna, and correct the estimated azimuth of the correlated target based on the calculated azimuth difference to correct the target A radio wave detection apparatus comprising a true direction calculation processing unit for calculating a true direction.
JP2008080090A 2008-03-26 2008-03-26 Radar system Pending JP2009236543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080090A JP2009236543A (en) 2008-03-26 2008-03-26 Radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080090A JP2009236543A (en) 2008-03-26 2008-03-26 Radar system

Publications (1)

Publication Number Publication Date
JP2009236543A true JP2009236543A (en) 2009-10-15

Family

ID=41250693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080090A Pending JP2009236543A (en) 2008-03-26 2008-03-26 Radar system

Country Status (1)

Country Link
JP (1) JP2009236543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114313A1 (en) * 2014-01-30 2015-08-06 Ucl Business Plc Apparatus and method for determining the location of a mobile device using multiple wireless access points
CN110988834A (en) * 2019-11-22 2020-04-10 航天恒星科技有限公司 Pulse arrival time measuring method based on self-adaptive threshold value double thresholds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114313A1 (en) * 2014-01-30 2015-08-06 Ucl Business Plc Apparatus and method for determining the location of a mobile device using multiple wireless access points
CN110988834A (en) * 2019-11-22 2020-04-10 航天恒星科技有限公司 Pulse arrival time measuring method based on self-adaptive threshold value double thresholds
CN110988834B (en) * 2019-11-22 2021-10-01 航天恒星科技有限公司 Pulse arrival time measuring method based on self-adaptive threshold value double thresholds

Similar Documents

Publication Publication Date Title
EP3001221B1 (en) Radar system and method for virtual antenna signals
JP6192910B2 (en) Radar apparatus and altitude calculation method
AU2014288997B2 (en) Interference nulling of multipath signals in stacked beam pulse radar
EP2362236A1 (en) Method and apparatus for estimating angle of arrival
US20110267216A1 (en) Systems and methods for providing antenna calibration
US10969458B1 (en) System and method for direction finding using a networked antenna array
KR102422396B1 (en) Method of spatial interpolation for linear phased array antenna and appratus thereof
JP6305575B2 (en) Train position detector
CN109507635A (en) Utilize the array amplitude phase error evaluation method of two unknown orientation auxiliary sources
US20210026006A1 (en) Device, system and method for localization of a target in a scene
JP2008249354A (en) Azimuth measuring device
JP2009236543A (en) Radar system
JP2009244243A (en) Signal arrival azimuth measuring apparatus and signal arrival azimuth measuring technique therein
KR101032299B1 (en) Self-calibration for direction finding in multi-baseline interferometer system
JP2004198189A (en) Azimuth detection device
US10571258B2 (en) Position sensor, conveying device comprising the same, and method for position correction by using the same
KR101610051B1 (en) A radio direction finder
JP2006242761A (en) Radio wave incoming azimuth measuring device
KR20180082889A (en) An apparatus for estimating a direction of signal source and a method of the same
JP3946695B2 (en) Radio wave detector
JP2009216645A (en) Signal incoming azimuth measuring system, and measuring method of signal incoming azimuth in signal incoming azimuth measuring system
JP2003194907A (en) Apparatus and method for orienting location of radio source
KR101446445B1 (en) Position estimating device and method for estimating position of radio wave source
KR100785056B1 (en) Method for direction finding using correlation vector
KR101478642B1 (en) System for localizing signal source and method thereof