JP2009236324A - Method for manufacturing heat exchanger, and indoor unit of air conditioner - Google Patents

Method for manufacturing heat exchanger, and indoor unit of air conditioner Download PDF

Info

Publication number
JP2009236324A
JP2009236324A JP2008078917A JP2008078917A JP2009236324A JP 2009236324 A JP2009236324 A JP 2009236324A JP 2008078917 A JP2008078917 A JP 2008078917A JP 2008078917 A JP2008078917 A JP 2008078917A JP 2009236324 A JP2009236324 A JP 2009236324A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heat exchange
fins
exchange pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008078917A
Other languages
Japanese (ja)
Other versions
JP5037400B2 (en
Inventor
Koji Wada
宏二 和田
Tatsuji Kitano
竜児 北野
Akihiro Takeuchi
章洋 竹内
Katsuhiro Shimizu
克浩 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008078917A priority Critical patent/JP5037400B2/en
Publication of JP2009236324A publication Critical patent/JP2009236324A/en
Application granted granted Critical
Publication of JP5037400B2 publication Critical patent/JP5037400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat exchanger for improving performance and being miniaturized by preventing thermal interference to a heating supercooling range without degrading rigidity of fins, and to provide an indoor unit of an air conditioner comprising the heat exchanger obtained by the method and for improving heat exchanging performance. <P>SOLUTION: This method for manufacturing the heat exchanger 8 includes a process for integrally molding the fins F of a front-side heat exchanger section 8A and a rear-side heat exchanger section 8B continuously in the longitudinal direction, a process for forming heat exchange pipe mounting holes (a) of a plurality of lines to the circulating direction of the heat exchanging air, a process for forming a slit K for blocking heat between the heat exchange pipe mounting hole of the most windward-side line and the heat exchange pipe mounting hole of the most leeward-side line while they are overlapped to or communicated with each other at one end, a process for forming a cut section Kb by cutting the fins in the width direction, a process for arranging the plurality of sheets of fins, and inserting heat exchange pipes P into the heat exchange pipe mounting holes to fix the fins, and a process for folding the front-side heat exchanger section and the rear-side heat exchanger section roughly into the inverted V-shape in a side view while the cut section is located at an upper end. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、側面視で略逆V字状に形成される熱交換器の製造方法と、この熱交換器を備えた空気調和機の室内機に関する。   The present invention relates to a method of manufacturing a heat exchanger formed in a substantially inverted V shape in a side view, and an indoor unit of an air conditioner including the heat exchanger.

冷凍サイクルには、フィンに熱交換パイプ(伝熱管)を熱交換空気の流通方向に沿って複数列設けた構造の熱交換器が多用される。この種の熱交換器を、特に暖房運転時に凝縮器として使用すると、冷媒入り口部ではガス冷媒が導かれ、空気もしくは水と熱交換するのにともなって冷媒は凝縮する。   In the refrigeration cycle, a heat exchanger having a structure in which a plurality of rows of heat exchange pipes (heat transfer tubes) are provided in the fins along the flow direction of the heat exchange air is frequently used. When this type of heat exchanger is used as a condenser particularly during heating operation, the gas refrigerant is guided at the refrigerant inlet, and the refrigerant condenses as it exchanges heat with air or water.

すなわち、ガス冷媒に液冷媒が混合する二相域に変る。さらに熱交換が進むと、液冷媒の割合が大になっていき、冷媒出口部手前で液冷媒だけの単相域に相変化する。ガス冷媒と液冷媒の二相域では等温変化をなすが、液冷媒だけの単相域では過冷却により冷媒温度が低下し温度勾配がある。そして、二相域と単相域とで、大きな温度勾配が生じる。   That is, it changes to a two-phase region where liquid refrigerant is mixed with gas refrigerant. As the heat exchange further progresses, the ratio of the liquid refrigerant increases, and the phase changes to a single-phase region of only the liquid refrigerant before the refrigerant outlet. In the two-phase region of the gas refrigerant and the liquid refrigerant, an isothermal change is made. However, in the single-phase region of only the liquid refrigerant, the refrigerant temperature is lowered due to supercooling and there is a temperature gradient. A large temperature gradient is generated between the two-phase region and the single-phase region.

上記二相域と単相域との大きな温度勾配により、フィンを介して熱交換パイプ同士で熱伝導が生じ、空気側への熱伝達の阻害要因となる。そこで、たとえば[特許文献1]および[特許文献2]では、冷媒温度に差のある熱交換空気の流通方向に隣接する熱交換パイプ間に、熱を遮断するためのスリットを設けている。   Due to the large temperature gradient between the two-phase region and the single-phase region, heat conduction occurs between the heat exchange pipes via the fins, which becomes an obstruction factor for heat transfer to the air side. Therefore, for example, in [Patent Document 1] and [Patent Document 2], a slit for blocking heat is provided between heat exchange pipes adjacent to each other in the flow direction of heat exchange air having a difference in refrigerant temperature.

特に[特許文献1]では、凝縮器における冷媒出口方向のパスの数が最も少ない配管部付近を、空気の主流方向に対して風上側に配置する。これら配管に隣接する風下側の配管との間にあるフィンに、熱伝導を遮断するスリットをフィンの長手方向に設け、熱伝導的に分離したことを特徴としている。   In particular, in [Patent Document 1], the vicinity of the pipe portion with the smallest number of paths in the refrigerant outlet direction in the condenser is arranged on the windward side with respect to the main air flow direction. The fins between the pipes on the leeward side adjacent to these pipes are provided with slits for cutting off the heat conduction in the longitudinal direction of the fins and separated thermally.

このようにフィンの一端縁から熱伝導を遮断するためのスリットを切込むと、フィンは3辺が独立した形になる。すなわち、風上側の辺部と、フィンの長手方向の辺部と、スリットが設けられた辺部とのそれぞれが、熱的に開放される。そのため、遮熱効果が大きくなり、冷媒出口部における冷媒の過冷却度が増す、と考えられる。
特開平10−2638号公報 特開2004−85139号公報
Thus, if the slit for interrupting | blocking heat conduction is cut | disconnected from the one end edge of a fin, a fin will become a shape where three sides became independent. That is, each of the side part on the windward side, the side part in the longitudinal direction of the fin, and the side part provided with the slit is thermally opened. Therefore, it is considered that the heat shielding effect is increased, and the degree of supercooling of the refrigerant at the refrigerant outlet is increased.
Japanese Patent Laid-Open No. 10-2638 JP 2004-85139 A

しかしながら、スリットをフィンの一端縁から切込んだ状態にすると、切込まれたフィン端部の剛性が大きく低下してしまう。フィンは、極く薄肉の1枚の大きな板体に対して連続的にプレス加工を行うことで成形されるが、端縁から切込みを設けると、この切込み周辺がまくれ上がるなど、変形し易い。   However, if the slit is cut from one end edge of the fin, the rigidity of the cut fin end is greatly reduced. The fin is formed by continuously pressing one large thin plate body. However, if a cut is provided from the edge, the fin is easily deformed, such as turning up around the cut.

しかも、フィンは互いに狭小の間隙を存して並べられ、これらフィンに熱交換パイプを貫通し、かつ固定することで熱交換器を得る。このとき既に、一部が変形したフィンがあれば、互いに接触して狭小の間隙を保持できない。完成した熱交換器でありながら、フィン相互間に熱交換空気が流通できず、熱交換効率の低下を招く。   Moreover, the fins are arranged with a narrow gap therebetween, and a heat exchanger is obtained by passing through and fixing the heat exchange pipes to these fins. At this time, if there are already partially deformed fins, they cannot contact each other and maintain a narrow gap. Although it is a completed heat exchanger, heat exchange air cannot flow between the fins, resulting in a decrease in heat exchange efficiency.

スリットの長さを可能な限り短縮することで、フィンの部分的な変形を防止することができるが、伝熱の遮断効果が低減してしまう。そこで、[特許文献2]のように、風上側と風下側の熱交換パイプ相互の熱伝達を遮断するためのスリットを、フィンの端縁から間隙を存した位置に設けている。   By shortening the length of the slit as much as possible, partial deformation of the fin can be prevented, but the heat transfer blocking effect is reduced. Therefore, as in [Patent Document 2], a slit for blocking heat transfer between the heat exchange pipes on the windward side and the leeward side is provided at a position where there is a gap from the edge of the fin.

フィンの端縁と、ここに設けられるスリットの端縁との間は切断されない非切断部となる。しかも、過冷却領域の全長に亘って複数のスリットを断続的に設けていて、これらスリット相互間にも非切断部が存在する。合計すると、無視できない程度の非切断部が存在し、熱遮断効果に影響を及ぼす。   A non-cut portion that is not cut is formed between the end edge of the fin and the end edge of the slit provided here. In addition, a plurality of slits are provided intermittently over the entire length of the supercooling region, and there are uncut portions between these slits. In total, there are non-cut portions that cannot be ignored, which affects the heat shielding effect.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、フィンに熱交換パイプを貫通してなり、前側熱交換器部と後側熱交換器部とから側面視で略逆V字状をなす熱交換器であり、風上側列と下流側列の熱交換パイプ取付け用孔との間に熱遮断用スリットを設けるにあたって、フィンの剛性を損なうことなく、暖房運転時に温度勾配をもつ過冷却領域と、温度勾配のない二相域との間での熱干渉を防止し、性能向上を図れるとともに小型化を得る熱交換器の製造方法を提供しようとするものである。
さらに、上述の製造方法で得られた熱交換器を備え、熱交換性能の向上を得られる空気調和機の室内機を提供しようとするものである。
The present invention has been made on the basis of the above circumstances, and its object is to penetrate the heat exchange pipe through the fin, and from the front side heat exchanger part and the rear side heat exchanger part, it is substantially reversed in side view. This is a V-shaped heat exchanger, and when a heat insulation slit is provided between the wind-up row and the heat-exchange pipe mounting holes in the downstream row, the temperature gradient during heating operation is maintained without impairing the rigidity of the fins. It is an object of the present invention to provide a method of manufacturing a heat exchanger that prevents thermal interference between a supercooling region having a temperature difference and a two-phase region having no temperature gradient, thereby improving performance and achieving downsizing.
Furthermore, it is intended to provide an indoor unit of an air conditioner that includes the heat exchanger obtained by the above-described manufacturing method and can obtain an improvement in heat exchange performance.

上記目的を満足するため本発明は、所定間隔を存して並設される複数枚のフィンと、これらフィンに貫通し熱交換空気の流通方向に沿って複数列設けられる熱交換パイプとからなり、前側熱交換器部と後側熱交換器部とから側面視で略逆V字状をなすよう構成される熱交換器を製造する熱交換器の製造方法であり、
長手方向に連続して前側熱交換器部を形成するフィンと後側熱交換器部を形成するフィンとを一体に成形するとともに、前側熱交換器部のフィンと後側熱交換器部のフィンのそれぞれにおいて最も風上側列となる熱交換パイプ取付け用孔と風下側列の熱交換パイプ取付け用孔との間に互いの一端部同士がフィンの幅方向に重なるもしくは互いに連通するようにフィンの長手方向に沿って熱遮断用スリットを設ける工程と、前側熱交換器部と後側熱交換器部のそれぞれに設けられる熱遮断用スリットの一端部同士に形成される重なり部分もしくは連通部分に跨りフィンの幅方向にカットする工程と、カット部を上端として前側熱交換器と後側熱交換器部とを側面視で略逆V字状になるように配置する工程とを具備する。
In order to satisfy the above object, the present invention comprises a plurality of fins arranged side by side at a predetermined interval, and heat exchange pipes that penetrate the fins and are provided in a plurality of rows along the flow direction of the heat exchange air. , A heat exchanger manufacturing method for manufacturing a heat exchanger configured to form a substantially inverted V shape in a side view from a front heat exchanger part and a rear heat exchanger part,
The fins forming the front heat exchanger part and the fins forming the rear heat exchanger part are formed integrally in the longitudinal direction, and the fins of the front heat exchanger part and the fins of the rear heat exchanger part are integrally formed. In each of the fins, the end portions of the fins overlap each other in the width direction of the fins or communicate with each other between the heat exchange pipe mounting holes that are the most leeward row and the heat exchange pipe mounting holes that are the leeward row. A step of providing a heat blocking slit along the longitudinal direction and straddling an overlapping portion or a communicating portion formed at one end of the heat blocking slit provided in each of the front heat exchanger portion and the rear heat exchanger portion A step of cutting in the width direction of the fins, and a step of arranging the front heat exchanger and the rear heat exchanger part in a substantially inverted V shape in a side view with the cut part as an upper end.

上記目的を満足するため本発明における空気調和機の室内機は、吸込み口および吹出し口を備えた室内機本体と、この室内機本体内に配置されるとともに側面視で略逆V字状をなし、室内機本体の前面側に位置する前側熱交換器部および後面側に位置する後側熱交換器部とから構成される熱交換器と、熱交換器の前側熱交換器部と後側熱交換器部間に配置される送風機とを具備し、上記熱交換器は上記記載の熱交換器の製造方法をもって製造される。   In order to satisfy the above object, an indoor unit of an air conditioner according to the present invention has an indoor unit body provided with a suction port and an outlet port, and is disposed in the indoor unit body and has a substantially inverted V shape in a side view. A heat exchanger composed of a front heat exchanger section located on the front side of the indoor unit body and a rear heat exchanger section located on the rear side, and the front heat exchanger section and the rear heat of the heat exchanger And a fan disposed between the exchanger sections, and the heat exchanger is manufactured by the heat exchanger manufacturing method described above.

本発明によれば、風上側列と下流側列の熱交換パイプ取付け用孔との間に熱遮断用スリットを設けるにあたって、フィンの剛性を損なうことはなく、熱干渉を防止して性能向上を図れ、熱交換器の小型化を得るという効果を奏する。
さらに、上述の製造方法で得られた熱交換器を備え、熱交換性能の向上を得られる空気調和機の室内機を提供できる。
According to the present invention, when the heat insulation slit is provided between the wind-up row and the heat exchange pipe mounting hole in the downstream row, the rigidity of the fin is not impaired, and the performance is improved by preventing thermal interference. As a result, the heat exchanger can be reduced in size.
Furthermore, the indoor unit of the air conditioner which is provided with the heat exchanger obtained by the above-mentioned manufacturing method and can obtain the improvement of heat exchange performance can be provided.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、空気調和機の室内機を概略的に断面にした縦断面図である(なお、説明しても符号を付していない部品は図示していない。図示し説明しても符号を付していない部品もある)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view schematically showing a cross section of an indoor unit of an air conditioner (note that components that are not denoted by reference numerals are not illustrated even if they are described. Some parts are not attached.)

室内機本体1は、前側筐体を構成する前面パネル2と、後側筐体を構成する後本体3とからなり、上下方向に対して幅方向に横長状に形成される。室内機本体1の前面側一部に前面吸込み口4が開口され、前面吸込み口4に対向する前面パネル2には開閉駆動機構に支持される開閉パネル2Aが嵌め込まれている。   The indoor unit main body 1 includes a front panel 2 constituting a front casing and a rear main body 3 constituting a rear casing, and is formed in a horizontally long shape in the width direction with respect to the vertical direction. A front suction port 4 is opened at a part of the front side of the indoor unit body 1, and an opening / closing panel 2 </ b> A supported by an opening / closing drive mechanism is fitted into the front panel 2 facing the front suction port 4.

図1に示す運転停止時は、開閉パネル2Aは前面パネル2と同一面となり前面吸込み口4を閉成するが、運転時には手前側に突出変位して周囲に室内と連通する隙間を生じ、前面吸込み口4を室内に開放する。室内機本体1の上部には上面吸込み口5が開口されていて、この上面吸込み口5には複数の空間部に仕切る枠状の桟が嵌め込まれる。   When the operation shown in FIG. 1 is stopped, the opening / closing panel 2A is flush with the front panel 2 and closes the front suction port 4. During operation, the opening / closing panel 2A protrudes and displaces to the front, creating a gap communicating with the room around it. The inlet 4 is opened indoors. An upper surface suction port 5 is opened at the upper part of the indoor unit main body 1, and a frame-like bar partitioning into a plurality of spaces is fitted into the upper surface suction port 5.

上記室内機本体1の前面下部に吹出し口6が開口されていて、この吹出し口6には2枚の吹出しルーバー7a,7bが略並行して設けられる。各吹出しルーバー7a,7bは、それぞれの回動姿勢によって上記吹出し口6を開閉し、かつ運転条件に応じて熱交換空気の吹出し方向を設定できるようになっている。   A blow-out opening 6 is opened at the lower front portion of the indoor unit body 1, and two blow-out louvers 7 a and 7 b are provided substantially in parallel to the blow-out opening 6. The blowout louvers 7a and 7b can open and close the blowout opening 6 according to their respective rotation postures and set the blowout direction of the heat exchange air according to operating conditions.

室内機本体1内には、後述する熱交換器8が配置される。この熱交換器8は、前側熱交換器部8Aと後側熱交換器部8Bとで、側面視で略逆V字状に形成される。前側熱交換器部8Aは、前面吸込み口4全体および上面吸込み口5一部と対向し湾曲状に形成される。後側熱交換器部8Bは、直状で斜めに傾斜し上面吸込み口5一部と対向する。   A heat exchanger 8 to be described later is disposed in the indoor unit body 1. The heat exchanger 8 is formed in a substantially inverted V shape in a side view by a front heat exchanger portion 8A and a rear heat exchanger portion 8B. The front heat exchanger portion 8A is formed in a curved shape so as to face the entire front suction port 4 and a part of the upper suction port 5. The rear heat exchanger portion 8B is straight and obliquely inclined and faces a part of the upper surface suction port 5.

熱交換器8の前後側熱交換器部8A,8B相互間に、送風機10が配置される。送風機10は、室内機本体1の一側端のスペースに配置されたファンモータと、このファンモータの回転軸に連結される横流ファンとから構成される。横流ファンの軸方向長さは熱交換器8の幅方向長さと同一に設定され、互いに正しく対向するように配置される。   A blower 10 is disposed between the front and rear heat exchanger portions 8A and 8B of the heat exchanger 8. The blower 10 includes a fan motor disposed in a space on one side end of the indoor unit body 1 and a cross-flow fan connected to a rotation shaft of the fan motor. The axial direction length of the cross flow fan is set to be the same as the width direction length of the heat exchanger 8 and is arranged so as to face each other correctly.

前側熱交換器部8Aの下端部は前ドレンパン12a上に載り、後側熱交換器部8Bの下端部は後ドレンパン12b上に載る。前、後ドレンパン12a,12bは、それぞれ上記後本体3に一体に成形され、熱交換器部8A,8Bから滴下するドレン水を受けて図示しない排水ホースを介し屋外へ排水できるようになっている。   The lower end portion of the front side heat exchanger portion 8A is placed on the front drain pan 12a, and the lower end portion of the rear side heat exchanger portion 8B is placed on the rear drain pan 12b. The front and rear drain pans 12a and 12b are respectively formed integrally with the rear main body 3 so that drain water dripped from the heat exchanger portions 8A and 8B can be received and drained to the outside via a drain hose (not shown). .

前後ドレンパン12a,12bの一部側壁外面は送風機10に近接して設けられ、これらで送風機10の横流ファンに対するノーズを構成している。上記ノーズとなる前後ドレンパン12a,12bの側壁部分と吹出し口6の各辺部との間は、隔壁部材14によって連結される。   The outer surface of a part of the side walls of the front and rear drain pans 12a and 12b is provided close to the blower 10, and constitutes a nose for the crossflow fan of the blower 10. A partition wall member 14 connects the side wall portions of the front and rear drain pans 12a and 12b serving as the nose and each side portion of the outlet 6.

前記室内送風機10を駆動することにより、隔壁部材14で囲まれる空間が、ノーズと吹出し口9とを連通する吹出し通風路15Aとなる。これに対して、前記前面吸込み口4および上面吸込み口5から熱交換器8に至る間に、吸込み通風路15Bが形成されることになる。   By driving the indoor blower 10, the space surrounded by the partition wall member 14 becomes a blowout ventilation path 15 </ b> A that communicates the nose and the blowout opening 9. On the other hand, a suction ventilation path 15B is formed between the front suction port 4 and the upper suction port 5 and the heat exchanger 8.

前面吸込み口4と熱交換器8の前側熱交換器部8A一部との間に前面エアフィルタ16が取付けられ、上面吸込み口5と前側熱交換器部8A一部および後側熱交換器部8Bとの間に上面エアフィルタ17が取付けられる。前面エアフィルタ16と上面エアフィルタ17は熱交換器8と前面パネル2との間に設けられる上部枠体に移動自在に支持される。   A front air filter 16 is attached between the front suction port 4 and a part of the front heat exchanger part 8A of the heat exchanger 8, and the upper surface suction port 5, a part of the front heat exchanger part 8A and the rear heat exchanger part. An upper air filter 17 is attached between the 8B and 8B. The front air filter 16 and the upper air filter 17 are movably supported by an upper frame provided between the heat exchanger 8 and the front panel 2.

上部枠体には、エアフィルタ清掃ユニットWも取付けられている。このエアフィルタ清掃ユニットWは、前面パネル2の前面上端と上面前端との間のデッドスペースに配置され、かつ前面エアフィルタ16の上端部と、上面エアフィルタ17の前端部との間に介在している。   An air filter cleaning unit W is also attached to the upper frame. The air filter cleaning unit W is disposed in a dead space between the front upper end of the front panel 2 and the upper front end, and is interposed between the upper end of the front air filter 16 and the front end of the upper air filter 17. ing.

制御部からの制御信号にしたがって、前面エアフィルタ16を上面エアフィルタ17の上面側に往動させ、しかる後、復動させる。移動途中で、前面エアフィルタ16はエアフィルタ清掃ユニットWを通過する。エアフィルタ清掃ユニットWは、前面エアフィルタ16が捕捉し付着したまま残っている塵埃を自動で除去する。   In accordance with a control signal from the control unit, the front air filter 16 is moved forward to the upper surface side of the upper air filter 17 and then moved backward. During the movement, the front air filter 16 passes through the air filter cleaning unit W. The air filter cleaning unit W automatically removes the dust that the front air filter 16 captures and remains attached.

引き続いて、上面エアフィルタ17を前面エアフィルタ16の前面側に往復移動させ、移動途中でエアフィルタ清掃ユニットWは付着している塵埃を自動で除去する。除去した塵埃は自動で屋外へ排出する。このように、エアフィルタ清掃ユニットWは、前面エアフィルタ16と上面エアフィルタ17を自動清掃し、メンテナンス手間の軽減を図る。   Subsequently, the upper air filter 17 is reciprocated to the front side of the front air filter 16, and the air filter cleaning unit W automatically removes adhering dust during the movement. The removed dust is automatically discharged outdoors. As described above, the air filter cleaning unit W automatically cleans the front air filter 16 and the upper air filter 17 to reduce maintenance work.

熱交換器8の前側熱交換器部8Aと前面エアフィルタ16との間に、電気集塵機と、その電源部からなる空気清浄ユニットYが取付けられる。上記電気集塵機は、前面エアフィルタ16と上面エアフィルタ17に捕捉されずに通過してくる微細な塵埃に電荷を与えて、捕捉し集塵する機能を備えている。   Between the front heat exchanger portion 8 </ b> A of the heat exchanger 8 and the front air filter 16, an electric dust collector and an air purifying unit Y composed of a power supply portion are attached. The electric dust collector has a function of collecting and collecting fine dust that passes through the front air filter 16 and the upper air filter 17 without being captured.

近時の電気集塵機は、イオンを発生する機能も備えている。たとえば冷房運転時には、熱交換器8に導かれてきた空気を冷気に変えるとともに除湿乾燥をなす。このことで、室内機本体1内の湿度が上昇し、長期の使用に亘ると熱交換器8にカビ類が発生し易い雰囲気になる。そこでイオンを発生してカビ類を殺菌し、異臭の発生を抑える。   Recent electrostatic precipitators also have a function of generating ions. For example, during the cooling operation, the air guided to the heat exchanger 8 is changed to cool air and dehumidification drying is performed. As a result, the humidity in the indoor unit body 1 is increased, and an atmosphere in which molds are likely to be generated in the heat exchanger 8 over a long period of use. Therefore, ions are generated to sterilize molds and suppress the generation of off-flavors.

つぎに、このようにして構成される空気調和機の室内機における作用について説明する。
使用者がリモコン(遠隔操作盤)の運転ボタンを押圧操作すると、送風機10が駆動され、空気清浄ユニットYが作用する。さらに、室内機と冷媒管を介して連通する室外機において圧縮機が駆動され、冷凍サイクル運転が開始される。
Next, the operation of the indoor unit of the air conditioner configured as described above will be described.
When the user presses the operation button on the remote control (remote control panel), the blower 10 is driven and the air cleaning unit Y acts. Further, the compressor is driven in the outdoor unit communicating with the indoor unit through the refrigerant pipe, and the refrigeration cycle operation is started.

室内空気は前面吸込み口4および上面吸込み口5から室内機本体1内に吸込まれ、吸込み通風路15Bに沿って導かれて、前面エアフィルタ16および上面エアフィルタ17を通過する。このとき、室内空気中に含まれる塵埃が前面エアフィルタ16および上面エアフィルタ17に捕捉される。   The room air is sucked into the indoor unit main body 1 from the front suction port 4 and the upper surface suction port 5, guided along the suction ventilation path 15 </ b> B, and passes through the front air filter 16 and the upper surface air filter 17. At this time, dust contained in the room air is captured by the front air filter 16 and the upper air filter 17.

さらに、空気清浄ユニットYは、より微細な塵埃を電気的に集塵し、かつ脱臭する。清浄化した室内空気は熱交換器8を流通し、ここに導かれる冷媒と熱交換作用が行われる。そのあと、熱交換空気は吹出し通風路15Aに沿って導かれ、吹出し口6から吹出しルーバー7a,7bに案内されて室内へ吹出され、効率のよい空調運転を継続する。   Furthermore, the air purification unit Y electrically collects finer dust and deodorizes it. The cleaned indoor air flows through the heat exchanger 8 and performs a heat exchange action with the refrigerant led to the room air. Thereafter, the heat exchange air is guided along the blowout ventilation path 15A, guided to the blowout louvers 7a and 7b from the blowout opening 6, and blown into the room, and the efficient air conditioning operation is continued.

つぎに、上記熱交換器8について詳述する。
この熱交換器8は側面視で略逆V字状に形成される。熱交換器8は、上下方向の略中間部が円弧状で上下部が直状をなす第1の熱交換器部8Aと、全体が直状に形成される第2の熱交換器部8Bとが、互いの端部を境に連結される。
Next, the heat exchanger 8 will be described in detail.
The heat exchanger 8 is formed in a substantially inverted V shape when viewed from the side. The heat exchanger 8 includes a first heat exchanger portion 8A in which a substantially intermediate portion in the vertical direction is arcuate and the upper and lower portions are straight, and a second heat exchanger portion 8B that is formed in a straight shape as a whole. Are connected to each other at the end.

これら第1の熱交換器部8Aと第2の熱交換器部8Bとの連結部は、カット形成されていて、実際の連結部分はわずかでしかない。この連結部から第2の熱交換器部8Bを所定角度に折り曲げることによって、側面視で略逆V字状に形成される。なお、連結部を完全に切断して側面視で略逆V字状(略ハの字状を含む)に配置してもよい。   The connecting portion between the first heat exchanger portion 8A and the second heat exchanger portion 8B is cut and formed, and there are only a few actual connecting portions. By bending the second heat exchanger portion 8B from the connecting portion at a predetermined angle, the second heat exchanger portion 8B is formed in a substantially inverted V shape in a side view. In addition, you may cut | disconnect a connection part completely and may arrange | position in a substantially reverse V shape (a substantially C shape is included) by side view.

このような熱交換器8を室内機本体1内に組み込んだ状態で、第1の熱交換器部8Aが前面側に位置するところから、この部分を「前側熱交換器部」8Aと呼び、これよりも後部に位置する第2の熱交換器部を「後側熱交換器部」8Bと呼ぶ。
熱交換器8は、互いに狭小の間隙を存して並べられる多数枚のフィンFと、これらフィンFを貫通し、かつ拡管手段によって嵌着される熱交換パイプPからなる、いわゆるフィンドチューブタイプである。
In a state in which such a heat exchanger 8 is incorporated in the indoor unit body 1, the first heat exchanger portion 8A is located on the front side, and this portion is referred to as a “front heat exchanger portion” 8A. The second heat exchanger section located at the rear of this is referred to as “rear heat exchanger section” 8B.
The heat exchanger 8 is a so-called finned tube type comprising a large number of fins F arranged with a narrow gap between each other and heat exchange pipes P that pass through the fins F and are fitted by a pipe expanding means. is there.

熱交換パイプPは、直状部分が長いU字状に折り返し形成されて、フィンFに設けられる熱交換パイプ取付け用孔を貫通する。U字管の折り返し部は並べられたフィンFの一側端から突出する。
これらU字管の他端開口部は、並べられたフィンFの他側端から突出する。隣接するU字管の開ロ端相互は、Uベンドや三方ベンドあるいはジャンパパイプ等で接続される。したがって、熱交換器8を構成する熱交換パイプPは、並べられたフィンFを一側端から他側端に亘って蛇行しながら貫通した状態となる。
The heat exchange pipe P is formed so that the straight part is folded back into a long U shape, and penetrates the heat exchange pipe mounting hole provided in the fin F. The folded portion of the U-shaped tube protrudes from one end of the fins F arranged.
The other end openings of these U-shaped tubes protrude from the other end of the fins F arranged. The open ends of adjacent U-shaped tubes are connected by a U-bend, a three-way bend, a jumper pipe, or the like. Therefore, the heat exchange pipe P constituting the heat exchanger 8 is in a state of penetrating the arranged fins F while meandering from one end to the other end.

前側熱交換器8Aは、この幅方向に亘って熱交換パイプPが2列に並設される2列部構成と、3列に並設される3列部構成とが存在している。具体的には、上下方向の略中間位置にある円弧状部から上部側が3列部構成であり、円弧状部を含む下部側が2列部構成となっている。後側熱交換器は、全体に3部列構成である。   The front heat exchanger 8A has a two-row configuration in which the heat exchange pipes P are arranged in two rows and a three-row configuration in which three rows are arranged in the width direction. Specifically, the upper side has a three-row configuration from the arc-shaped portion at a substantially intermediate position in the vertical direction, and the lower side including the arc-shaped portion has a two-row configuration. The rear heat exchanger has a three-part configuration as a whole.

たとえば、2列部構成の熱交換パイプPには、直径7mmのものが選択される。3列部構成で、最も風上側列と、最も風下側列の熱交換パイプPには、直径5mmのものが選択される。中間列の熱交換パイプPには、直径5mmまたは直径6.35mmものが選択される。   For example, the heat exchange pipe P having a two-row configuration is selected to have a diameter of 7 mm. In the three-row configuration, the heat exchange pipe P in the most leeward row and the most leeward row has a diameter of 5 mm. As the heat exchange pipe P in the middle row, one having a diameter of 5 mm or a diameter of 6.35 mm is selected.

後述するように、暖房運転時は前側熱交換器部8Aにおける2部列構成の風下側列熱交換パイプPが冷媒の入り口部となる。そして、前側熱交換器部8Aと後側熱交換器部8Bの3部列構成の熱交換パイプPを介して、それぞれの最上端の熱交換パイプPが冷媒出口部となる。   As will be described later, during the heating operation, the leeward side row heat exchange pipe P having a two-part configuration in the front side heat exchanger portion 8A serves as an inlet portion of the refrigerant. And the heat exchange pipe P of each uppermost end becomes a refrigerant | coolant exit part through the heat exchange pipe P of the 3 part row structure of 8 A of front side heat exchanger parts, and the rear side heat exchanger part 8B.

このとき熱交換器8は凝縮器として作用するが、冷媒入り口側の熱交換パイプP直径を他の部位の熱交換パイプP直径よりも太いものを選択した。熱交換パイプP内の熱伝達率は若干低下する反面、冷媒流通抵抗が大幅に低下し、その結果、熱交換能力としては大幅に増大する。   At this time, the heat exchanger 8 acts as a condenser, but the heat exchange pipe P diameter on the refrigerant inlet side is selected to be thicker than the heat exchange pipe P diameter of other parts. While the heat transfer coefficient in the heat exchange pipe P is slightly reduced, the refrigerant flow resistance is greatly reduced. As a result, the heat exchange capacity is greatly increased.

また、冷房運転時は暖房運転時とは逆方向に冷媒が流れて、蒸発器として作用する。上記したように、この冷房運転では冷媒入り口側の熱交換パイプP直径を他の部位の熱交換パイプP直径よりも細くている。このことにより、熱交換パイプP内の熱伝達率が向上して、熱交換能力が大幅に増大する。   Further, during the cooling operation, the refrigerant flows in the direction opposite to that during the heating operation, and acts as an evaporator. As described above, in this cooling operation, the heat exchange pipe P diameter on the refrigerant inlet side is narrower than the heat exchange pipe P diameter of other parts. As a result, the heat transfer rate in the heat exchange pipe P is improved, and the heat exchange capacity is greatly increased.

上記前側熱交換器部8Aにおける熱交換パイプP列のうち、前面吸込み口4に対向する側の列が熱交換空気の導入側となるので、前側熱交換器部8Aの最も風上側列となる。室内送風機10と対向する側の列が熱交換空気の導出側になるので、前側熱交換器部8Aの最も風下側列となる。   Of the heat exchange pipes P row in the front heat exchanger portion 8A, the row on the side facing the front suction port 4 is the heat exchange air introduction side, so that it is the most windward row of the front heat exchanger portion 8A. . Since the row on the side facing the indoor blower 10 is the heat exchange air outlet side, it is the most leeward row of the front heat exchanger section 8A.

同様に、上記後側熱交換器8Bにおける熱交換パイプP列も、上面吸込み口5に対向する側の列が熱交換空気の導入側となるので、後側熱交換器部8Bの最も風上側列となる。室内送風機10と対向する側の列が空気導出側になるので、後側熱交換器部8Bの最も風下側列となる。   Similarly, also in the heat exchange pipe P row in the rear heat exchanger 8B, the row on the side facing the upper surface suction port 5 is the heat exchange air introduction side, so that the most upwind side of the rear heat exchanger portion 8B. It becomes a column. Since the row | line | column facing the indoor air blower 10 becomes an air derivation | leading-out side, it becomes the leeward side row | line | column of the rear side heat exchanger part 8B.

前側熱交換器部8Aにおける最も風上側列で、図の最上部にハッチングで示す熱交換パイプP領域および、後側熱交換器部8Bにおける最も風上側列で、図の最上部にハッチングで示す熱交換パイプP領域は、それぞれ過冷却領域Rであって、これについては後述する。   In the most upstream side of the front heat exchanger section 8A, the heat exchange pipe P region indicated by hatching at the top of the figure, and in the most upwind side array of the rear heat exchanger section 8B, indicated by hatching at the top of the figure. Each heat exchange pipe P region is a supercooling region R, which will be described later.

図2は、熱交換器8のパス構成図であり、暖房運転時における冷媒の流れを示している。
前側熱交換器部8Aの最も風下側列で、中間部よりやや下部側に、2方向に分流する冷媒入り口部A1が設けられる。この冷媒入り口部A1から前側熱交換器部8Aの風下側列の上部側と下部側とに分流する。それぞれが風下側列から風上側列に移り、下部側と上部側に流れ、略中間部で前側熱交換器部8Aから出て合流する。
FIG. 2 is a path configuration diagram of the heat exchanger 8 and shows the flow of the refrigerant during the heating operation.
In the most leeward row of the front heat exchanger section 8A, a refrigerant inlet section A1 that splits in two directions is provided slightly below the middle section. The refrigerant is branched from the refrigerant inlet A1 to the upper side and the lower side of the leeward side row of the front heat exchanger 8A. Each moves from the leeward row to the windward row, flows to the lower side and the upper side, and exits and joins from the front heat exchanger portion 8A at a substantially middle portion.

合流部A2から再熱除湿用の除湿弁Jに接続され、さらに上記除湿弁Jから出て分流部A3で2方向に分流される。分流の一方は前側熱交換器部8Aの3列部構成の最も風下側列に導かれ、分流の他方は後側熱交換器部8Bの3列部構成の最も風下側列に導かれる。前側熱交換器部8Aと後側熱交換器部8Bでは、分流部A4で上下2方向に分流される。   It is connected to the dehumidifying valve J for reheat dehumidification from the merging portion A2, and further flows out from the dehumidifying valve J and is divided into two directions at the diverting portion A3. One of the divided flows is led to the most leeward side row of the three-row configuration of the front heat exchanger section 8A, and the other of the divided flows is led to the most leeward row of the three-row portion configuration of the rear heat exchanger section 8B. In the front side heat exchanger section 8A and the rear side heat exchanger section 8B, the flow is divided in two directions in the vertical direction by the flow dividing section A4.

そして、それぞれが中間列に入り、中間列における合流部A5で合流する。中間列の合流部A5から最も風上側列における最下端にジャンピングする。それから最上端へ向って上昇し、最上端から出て、前側熱交換器部8Aと後側熱交換器部8Bとが折曲げ形成される部位の近傍部位で合流する冷媒出口部A6となる。   And each enters an intermediate row and merges at the junction A5 in the intermediate row. Jumping is performed from the junction A5 in the middle row to the lowermost end in the windward row. Then, it rises toward the uppermost end, exits from the uppermost end, and becomes the refrigerant outlet portion A6 that joins in the vicinity of the portion where the front heat exchanger portion 8A and the rear heat exchanger portion 8B are bent.

暖房運転時は、室外機に備えられる圧縮機で圧縮され高温高圧化した冷媒ガスが室内機本体1内に備えられる熱交換器8に導かれる。冷媒ガスは冷媒入り口部A1で分流され、前側熱交換器部8Aの2列部構成された熱交換パイプPからなる冷媒流路を導かれる。この間に、送風機10の駆動により熱交換器8を流通する室内空気と熱交換する。   During the heating operation, the refrigerant gas compressed by the compressor provided in the outdoor unit and heated to high temperature and pressure is guided to the heat exchanger 8 provided in the indoor unit body 1. The refrigerant gas is diverted at the refrigerant inlet portion A1, and is guided through the refrigerant flow path composed of the heat exchange pipes P configured in two rows of the front heat exchanger portion 8A. During this time, the fan 10 is driven to exchange heat with indoor air flowing through the heat exchanger 8.

冷媒ガスが前側熱交換器部8Aの冷媒流路から出て合流部A2で合流し、さらに除湿弁Jを介して分流部A3で分流される。このとき冷媒は、室内空気との熱交換作用により、ガス冷媒と液冷媒との二相域となっているが、ガス冷媒の占める割合は大である。
分流部A3から出た冷媒は、前側熱交換器部8Aと後側熱交換器部8Bの最も風下側列における分流部A4で分流され、中間列へ移動する。冷媒は、ガス冷媒よりも液冷媒の占める割合が大となっているが、依然として二相域であることは変りがない。
The refrigerant gas exits from the refrigerant flow path of the front heat exchanger section 8A, merges at the merge section A2, and further flows through the dehumidification valve J at the branch section A3. At this time, the refrigerant has a two-phase region of a gas refrigerant and a liquid refrigerant due to a heat exchange effect with the room air, but the ratio of the gas refrigerant is large.
The refrigerant that has flowed out from the diversion part A3 is diverted in the diversion part A4 in the most leeward row of the front heat exchanger part 8A and the rear heat exchanger part 8B, and moves to the intermediate line. Although the ratio of the liquid refrigerant to the refrigerant is larger than that of the gas refrigerant, it is still a two-phase region.

前側熱交換器部8Aと後側熱交換器部8Bのそれぞれにおいて、中間列の合流部A5に到達したとき、ほとんどのガス冷媒が熱交換されて液冷媒に変っている。そして、中間列の合流部A5から最も風上側列の最下端部にジャンピングし、さらに最上端部に向って上昇流通するときは全て液冷媒に変っているばかりか、過冷却状態となる。   In each of the front-side heat exchanger 8A and the rear-side heat exchanger 8B, when the intermediate row merging portion A5 is reached, most of the gas refrigerant is heat-exchanged and changed to liquid refrigerant. And when it jumps from the junction A5 of the middle row to the lowermost end of the windward row and further flows upward toward the uppermost end, it is not only changed to a liquid refrigerant but also becomes a supercooled state.

前側熱交換器部8Aと後側熱交換器部8Bとが、側面視で略逆V字状に形成された状態で温度勾配をもつ過冷却領域Rは、図にハッチングで示すように、前側熱交換器部8Aの最も風上側列における最上端部から4段目までの熱交換パイプPと、後側熱交換器部8Bの最も風上側列における最上端部から4段目までの熱交換パイプPに存在する。   A supercooling region R having a temperature gradient in a state in which the front heat exchanger portion 8A and the rear heat exchanger portion 8B are formed in a substantially inverted V shape in a side view is shown in FIG. Heat exchange pipe P from the uppermost end in the windward row of the heat exchanger section 8A to the fourth stage and heat exchange from the uppermost end in the windward row of the rear heat exchanger section 8B to the fourth stage Present in pipe P.

前側熱交換器部8Aと後側熱交換器部8Bにおける過冷却領域R以外の大部分の流域は、ガス冷媒と液冷媒とが混合する二相領域であって、冷媒は等温変化する。そして、冷媒出口部A6は、前側熱交換器部8Aと後側熱交換器部8Bの、最も風上側列の最上端部から出た近傍部位に位置している。   Most of the flow regions other than the supercooling region R in the front heat exchanger unit 8A and the rear heat exchanger unit 8B are two-phase regions in which the gas refrigerant and the liquid refrigerant are mixed, and the refrigerant changes isothermally. And the refrigerant | coolant exit part A6 is located in the vicinity site | part which came out from the uppermost end part of the windward row | line | column of 8 A of front side heat exchanger parts, and the rear side heat exchanger part 8B.

加えて、過冷却領域Rをなす、前側熱交換器部8Aの風上側列における最上端部から4段目までの熱交換パイプPおよび、後側熱交換器部8Bの風上側列における最上端部から4段目までの熱交換パイプPを囲むように、熱遮断用スリットKが設けられている。   In addition, the heat exchange pipe P from the uppermost end in the windward row of the front heat exchanger section 8A to the fourth stage, which forms the supercooling region R, and the uppermost end in the windward row of the rear heat exchanger section 8B A heat shielding slit K is provided so as to surround the heat exchange pipe P from the section to the fourth stage.

特に、過冷却領域Rを囲む熱遮断用スリットKは、それぞれの風下側列の熱交換パイプPとの間と段間にかけて、鍵状(L字状)に切込み形成されている。熱遮断用スリットKの上端部は、それぞれがフィンFの端縁に連通していて、これによって過冷却領域RのフィンF部分は、3辺が独立した形となる。   In particular, the heat blocking slits K surrounding the supercooling region R are formed in a key shape (L shape) between each leeward side heat exchange pipe P and the interstage. The upper end portions of the heat shut-off slits K communicate with the end edges of the fins F, respectively, so that the fin F portions of the supercooling region R have three independent sides.

なお説明すると、過冷却領域RのフィンF部分は、風上側の辺部と、折り曲げ部側の辺部および、熱遮断用スリットKが設けられる辺部とが開放される。わずかに、熱遮断用スリットKの鍵状に形成される部分の先端と、フィンF端縁との間のみが連結されて熱伝導を許すが、他の3辺が独立して熱の遮断をなす。   In other words, in the fin F portion of the supercooling region R, the side portion on the windward side, the side portion on the bent portion side, and the side portion on which the heat blocking slit K is provided are opened. Slightly, only the tip of the key-shaped portion of the heat blocking slit K and the fin F edge are connected to allow heat conduction, but the other three sides independently block heat. Eggplant.

したがって、熱遮断用スリットKが、温度勾配がある過冷却領域(低温度)Rと、温度勾配のない等温変化の二相領域のフィンF部との間での熱干渉を防止する。過冷却領域Rを形成するフィンF部分に対する遮熱がほとんど完全になされ、過冷却度が増して、熱交換性能の大幅な向上化を得られる。   Therefore, the heat shut-off slit K prevents thermal interference between the supercooling region (low temperature) R having a temperature gradient and the fin F portion of the two-phase region having an isothermal change without the temperature gradient. The fin F part forming the supercooling region R is almost completely shielded from heat, the degree of supercooling is increased, and the heat exchange performance is greatly improved.

なお、過冷却領域Rの熱交換パイプP間でも熱干渉が生じる。そこで、これら熱交換パイプP相互間(たとえば、最上端から2段目の熱交換パイプPと3段目の熱交換パイプPとの間)にも補助スリットKdを設けることで、温度勾配による熱干渉を防止する。
また、前側熱交換器部8Aと後側熱交換器部8Bにおける過冷却領域Rのうちで、最も低温となるのは、冷媒出口部A6において合流する直前の、最も風上側列で最上端の熱交換パイプPである。
Note that thermal interference also occurs between the heat exchange pipes P in the supercooling region R. Therefore, by providing auxiliary slits Kd between these heat exchange pipes P (for example, between the second-stage heat exchange pipe P and the third-stage heat exchange pipe P from the uppermost end), heat due to the temperature gradient is provided. Prevent interference.
In the supercooling region R in the front heat exchanger portion 8A and the rear heat exchanger portion 8B, the lowest temperature is the lowest in the windward row immediately before joining at the refrigerant outlet portion A6. This is a heat exchange pipe P.

冷媒出口部A6近傍部位における風上側列の最上端の熱交換パイプP周辺に設けられる熱遮断用スリットKは、フィンFの上端縁まで切り込まれている。この切込みにより、中間列と最も風下側列の熱交換パイプPが貫通するフィンF部分とは完全に離間して、熱遮断効果が大きい。   The heat shut-off slit K provided in the vicinity of the heat exchange pipe P at the uppermost end of the windward row in the vicinity of the refrigerant outlet A6 is cut to the upper end edge of the fin F. Due to this incision, the intermediate row and the fin F portion through which the heat exchange pipe P in the leeward side row penetrates are completely separated from each other, and the heat blocking effect is great.

さらに、熱交換器8を構成する前側熱交換器部8Aと後側熱交換器部8Bのそれぞれにおいて、(最も)風上側列の熱交換パイプPと風下側列の熱交換パイプPとの間や、同じ列の熱交換パイプPで段間には、フィンFの剛性を損なわない程度に補助的に熱遮断用のスリットcが設けられている。   Further, in each of the front side heat exchanger part 8A and the rear side heat exchanger part 8B constituting the heat exchanger 8, between the (most) windward side heat exchange pipe P and the leeward side heat exchange pipe P. In addition, between the stages of the heat exchange pipes P in the same row, heat-slit slits c are supplementarily provided so as not to impair the rigidity of the fins F.

つぎに、熱交換器8の製造方法について説明する。
図3は、プレス加工により成形されるフィンFに熱交換パイプPを貫通して取付けた状態を示している。
Below, the manufacturing method of the heat exchanger 8 is demonstrated.
FIG. 3 shows a state in which the heat exchange pipe P is attached to the fin F formed by press working.

製造方法として、はじめに、極く薄肉の板体を図中矢印の方向に移動し、図に示すフィンFをプレス加工により成形する工程が行われる。いわゆる、列方向送りの加工である。
すなわち、前側熱交換器部8AのフィンFと後側熱交換器部8BのフィンFとなる部分に対し、熱交換空気の流通方向に対して複数列の熱交換パイプ取付け用孔aを設ける工程が行われる。
As a manufacturing method, first, a process is performed in which an extremely thin plate body is moved in the direction of the arrow in the figure and the fin F shown in the figure is formed by press working. This is so-called row direction feed processing.
That is, a step of providing a plurality of rows of heat exchange pipe mounting holes a with respect to the flow direction of the heat exchange air in the portions that become the fins F of the front heat exchanger 8A and the fins F of the rear heat exchanger 8B. Is done.

上述したように、前側熱交換器部8Aにおいて、図の上下方向の略中間部から下部側(は、フィンFの幅方向に沿って熱交換パイプPは2列部構成であり、上部側が3列部構成である。また、後側熱交換器部8Bにおいては、フィンFの幅方向に3列部構成となっている。   As described above, in the front heat exchanger portion 8A, the heat exchange pipe P has a two-row configuration along the width direction of the fins F from the substantially middle portion in the vertical direction in the figure, and the upper side is 3 The rear heat exchanger 8B has a three-row configuration in the width direction of the fins F.

この熱交換パイプ取付け用孔aを設ける工程と同時、もしくは次の工程として、前側熱交換器部8Aと後側熱交換器部8Bの熱交換パイプ取付け用孔a相互間(段部間)に、切起しbを設ける工程が行われる。
上記切起しbは、2列部構成の熱交換パイプ取付け用孔a相互間には、フィンFの幅方向に沿って3列の切起しbが設けられる。また、3列部構成の熱交換パイプ取付け用孔a相互間には、2列の切起しbが設けられる。
Simultaneously with the step of providing the heat exchange pipe mounting hole a, or as the next step, between the heat exchange pipe mounting holes a of the front heat exchanger portion 8A and the rear heat exchanger portion 8B (between the step portions). The step of providing the cut and raised b is performed.
The cut and raised b is provided with three rows of cut and raised b along the width direction of the fins F between the heat exchange pipe mounting holes a having a two-row configuration. In addition, two rows of cut-and-raised b are provided between the heat exchange pipe mounting holes a having a three-row configuration.

この切起しbを設ける工程と同時に、もしくは次の工程として、前側熱交換器部8Aと後側熱交換器部8BのフィンFにおいて、風上側列と風下側列との熱交換パイプ取付け用孔a相互間に、長手方向に断続的に補助スリットcを設け、前側熱交換器部8Aの熱交換パイプ取付け用孔aの段間にも補助スリットcを設ける工程がある。   At the same time as the step of providing the cut-and-raised b, or as the next step, for mounting the heat exchange pipe between the windward side row and the leeward side row in the fins F of the front heat exchanger portion 8A and the rear heat exchanger portion 8B. There is a step of providing auxiliary slits c intermittently in the longitudinal direction between the holes a, and also providing auxiliary slits c between the stages of the heat exchange pipe mounting holes a of the front heat exchanger section 8A.

同時に、前側熱交換器部8Aと後側熱交換器部8BのフィンFにおける、最も風上側列となる熱交換パイプ取付け用孔aと、この風下側列の熱交換パイプ取付け用孔aとの間に、熱遮断用スリットKを設ける工程がある。この熱遮断用スリットKは、ハッチングで示す上述した過冷却領域Rを囲んで設けられている。   At the same time, in the fins F of the front heat exchanger section 8A and the rear heat exchanger section 8B, the heat exchange pipe mounting holes a that are the most leeward row and the heat exchange pipe mounting holes a of the leeward row are There is a step of providing a heat shielding slit K between them. The heat blocking slit K is provided so as to surround the above-described supercooling region R indicated by hatching.

同時に、過冷却領域Rにおける最上端から2段目の熱交換パイプPと3段目の熱交換パイプPとの段間に、補助スリットKdを設ける工程がある。これら熱遮断用スリットKと補助スリットKdは過冷却領域Rに係るので、上記した補助スリットcとは別符号にして示している。   At the same time, there is a step of providing an auxiliary slit Kd between the second heat exchange pipe P and the third heat exchange pipe P from the uppermost end in the supercooling region R. Since the heat shut-off slit K and the auxiliary slit Kd relate to the supercooling region R, they are indicated by different symbols from the auxiliary slit c described above.

前側熱交換器部8AのフィンFに設けられる熱遮断用スリットKの上端部と、後側熱交換器部8BのフィンFに設けられる熱遮断用スリットKの下端部同士は、前側熱交換器部8Aと後側熱交換器部8Bとの連結部Mにおいて、フィンFの幅方向に互いに重なる(ラップする)ように設けられる。   The upper end of the heat blocking slit K provided in the fin F of the front heat exchanger 8A and the lower end of the heat blocking slit K provided in the fin F of the rear heat exchanger 8B are the front heat exchanger. The connecting portion M between the portion 8A and the rear heat exchanger portion 8B is provided so as to overlap (wrap) with each other in the width direction of the fin F.

また、前側熱交換器部8AのフィンFに設けられる熱遮断用スリットKの下端部と、後側熱交換器部8BのフィンFに設けられる熱遮断用スリットKの上端部同士は、フィンFの風上側端縁へ向って鍵状に形成される。この鍵状の先端とフィンFの風上側端縁との間にはわずかな非切断部dが残される。   Further, the lower end portion of the heat blocking slit K provided in the fin F of the front heat exchanger portion 8A and the upper end portion of the heat blocking slit K provided in the fin F of the rear heat exchanger portion 8B are the fins F It is formed in a key shape toward the windward side edge. A slight uncut portion d is left between the key-shaped tip and the windward edge of the fin F.

最後に、フィンF全体を、図3に示す形状に打ち抜く(切り離す)。この工程により、下部側に前側熱交換器部8AをなすフィンFが、上部側に後側熱交換器部8BをなすフィンFが、互いに長手方向に連続して一体に成形される。   Finally, the entire fin F is punched (separated) into the shape shown in FIG. By this process, the fin F forming the front heat exchanger portion 8A on the lower side and the fin F forming the rear heat exchanger portion 8B on the upper side are integrally formed continuously in the longitudinal direction.

この状態で、前側熱交換器部8AのフィンFは、図の上下方向の略中間部が略円弧状をなし、円弧状部の上部側と下部側が直状に形成される。後側熱交換器部8Bは、全体に亘って直状をなす。前側熱交換器部8Aと後側熱交換器部8Bとの境をなす連結部Mは、大きく切込まれていて、幅方向寸法が狭く、括れて形成される。   In this state, the fin F of the front heat exchanger portion 8A has a substantially middle portion in the vertical direction in the drawing formed in a substantially arc shape, and an upper portion and a lower portion of the arc portion are formed in a straight shape. The rear heat exchanger portion 8B has a straight shape throughout. The connecting part M that forms the boundary between the front side heat exchanger part 8A and the rear side heat exchanger part 8B is largely cut, has a narrow dimension in the width direction, and is tightly formed.

なお、上記した各工程の順序は、特に限定されるものではない。
つぎに、上記前側熱交換器部8Aと後側熱交換器部8BのそれぞれフィンFに設けられる熱交換パイプ取付け用孔aに、適合した直径の熱交換パイプPを挿通する。この状態で、熱交換パイプPはU字状に折り曲げられたU字管である。このU字管を所定の状態に挿入したあと熱交換パイプPを拡管加工し、フィンFに嵌着固定する工程が行われる。
In addition, the order of each process mentioned above is not specifically limited.
Next, the heat exchange pipe P having a suitable diameter is inserted into the heat exchange pipe mounting holes a provided in the fins F of the front heat exchanger section 8A and the rear heat exchanger section 8B. In this state, the heat exchange pipe P is a U-shaped tube bent in a U-shape. After the U-shaped tube is inserted into a predetermined state, a process of expanding the heat exchange pipe P and fitting and fixing it to the fin F is performed.

つぎに、熱遮断用スリットKの一端部同士に形成される重なり部分もしくは連通部分に跨り、フィンFの幅方向にカット加工を行ってカット部Kbを形成する工程が行われる。カット部KbはフィンFの風上側端縁から切込まれ、この先端はフィンの風下側端縁とわずかな間隙を存する。   Next, a process of forming a cut portion Kb by performing cut processing in the width direction of the fin F across the overlapping portion or the communicating portion formed at one end portions of the heat shielding slit K is performed. The cut portion Kb is cut from the leeward edge of the fin F, and this tip has a slight gap from the leeward edge of the fin.

つぎに、前側熱交換器部8Aと後側熱交換器部8Bを、上記工程で得られたカット部Kbから折曲し、カット部Kbを上端部として、前側熱交換器8Aと後側熱交換器部8Bとを側面視で略逆V字状に折り曲げる工程が行われる。   Next, the front heat exchanger portion 8A and the rear heat exchanger portion 8B are bent from the cut portion Kb obtained in the above process, and the front heat exchanger 8A and the rear heat are used with the cut portion Kb as an upper end portion. A step of bending the exchanger portion 8B into a substantially inverted V shape in a side view is performed.

なお、上記フィンFの幅方向のカット加工をフィンを幅方向の全長に亘って行い、前側熱交換器部8Aと後側熱交換器部8Bを完全に分離するようにしてもよい。分離された前側熱交換器8Aと後側熱交換器部8Bとは、カット部を上端部として、側面視で略逆V字状に配置される。この場合、互いの上端部を離間させると、略ハの字状に形成されるが、この形態も含まれる。
最後に、フィンFに嵌着固定された熱交換パイプPで、隣り合うU字管の開口端相互にUベンド等を流路構成に合せてロー付けすることで、熱交換器8が完成する。
The fin F may be cut in the width direction over the entire length in the width direction to completely separate the front heat exchanger portion 8A and the rear heat exchanger portion 8B. The separated front heat exchanger 8A and rear heat exchanger portion 8B are arranged in a substantially inverted V shape in a side view with the cut portion as an upper end portion. In this case, when the upper end portions are separated from each other, a substantially C-shape is formed, but this form is also included.
Finally, the heat exchanger 8 is completed by brazing U-bends or the like to the open ends of adjacent U-shaped pipes with the heat exchange pipes P fitted and fixed to the fins F in accordance with the flow path configuration. .

このようにして、熱交換器8を構成する前側熱交換器部8Aと後側熱交換器部8Bとを製造するのと同時に、過冷却領域Rを囲む熱遮断用スリットKを設けているので、製造上の手間がかからず、工数に影響しないですむ。
熱遮断用スリットKは、前側熱交換器部8Aと後側熱交換器部8Bの一端側である連結部M側が、互いにフィンFの幅方向に重なる (ラップする)ように設けられて、熱遮断用スリットKの他端側は、風上側に折曲して鍵状に形成される。
In this way, since the front heat exchanger portion 8A and the rear heat exchanger portion 8B constituting the heat exchanger 8 are manufactured, the heat blocking slit K surrounding the supercooling region R is provided. , Manufacturing effort is not required and man-hours are not affected.
The heat shield slit K is provided so that the connecting part M side, which is one end side of the front heat exchanger part 8A and the rear heat exchanger part 8B, overlaps (wraps) in the width direction of the fins F. The other end side of the blocking slit K is bent to the windward side and formed in a key shape.

鍵状の先端とフィンFの風上側端縁間にはわずかな非切断部dが残されていて、この状態で、熱遮断用スリットKの両端側に非切断部が存在する。したがって、プレス加工された状態でのフィンF単体での剛性低下は少くてすみ、フィンFの変形が小さく、製造性に大きな悪影響はない。   A slight uncut portion d is left between the key-shaped tip and the windward edge of the fin F, and in this state, there are uncut portions on both ends of the heat blocking slit K. Therefore, the rigidity reduction of the fin F alone in the pressed state is small, the deformation of the fin F is small, and the manufacturability is not greatly adversely affected.

また、鍵状の熱遮断用スリットK部分は、熱交換パイプP相互の段間(フィンFの長手方向)を仕切り、かつわずかな非切断部dを残すのみであるため、フィンFの長手方向に隣接する熱交換パイプP同士の熱伝達も防止できる。
先に説明した実施の形態では、前側熱交換器部8Aと後側熱交換器部8Bとの連結部Mにおいて、熱遮断用スリットKの一端部同士を重なる(ラップ)するように設けたが、これに限定されるものではない。
Further, the key-shaped heat shielding slit K part partitions the steps between the heat exchange pipes P (longitudinal direction of the fin F) and only leaves a slight uncut portion d. Heat transfer between adjacent heat exchange pipes P can also be prevented.
In the embodiment described above, in the connecting portion M between the front heat exchanger portion 8A and the rear heat exchanger portion 8B, the heat shielding slits K are provided so as to overlap (wrap) one end portions thereof. However, the present invention is not limited to this.

図4は、プレス加工され、熱交換パイプPが挿入固定されたフィンFの一部を拡大した正面図である。
すなわち、若干フィンFの剛性は低下するが、前側熱交換器8Aと後側熱交換器のスリットの一端部同士が連通するように形成し、この連通部Kcに対してカット部Kbを設けるようにしてもよい。
FIG. 4 is an enlarged front view of a part of the fin F that has been press processed and to which the heat exchange pipe P is inserted and fixed.
That is, although the rigidity of the fin F slightly decreases, it is formed so that one end portions of the slits of the front heat exchanger 8A and the rear heat exchanger communicate with each other, and the cut portion Kb is provided for the communication portion Kc. It may be.

熱交換パイプ取付け用孔aに熱交換パイプPを挿入し、拡管加工を行ってフィンFに固着した後、熱遮断用スリットKにおける鍵状部分の先端と、フィンFの風上側端縁との間に残された非切断部dを、完全にカットするようにしてもよい。このようにすれば、過冷却領域R部分は二相域フィンF部分とは完全に独立し、熱交換性能がより向上する。   After the heat exchange pipe P is inserted into the heat exchange pipe mounting hole a and expanded and fixed to the fin F, the tip of the key-shaped portion of the heat shield slit K and the windward edge of the fin F The uncut portion d left in between may be completely cut. In this way, the supercooling region R portion is completely independent of the two-phase region fin F portion, and the heat exchange performance is further improved.

図5は、熱交換器8の両側部に設けられる端板20の正面図である。
上記端板20は、熱交換器8を構成する前側熱交換器部8Aと後側熱交換器部8Bの両側部に位置して、フィンFを貫通する熱交換パイプPを支持する支持用孔21が設けられる。ただし、上述した過冷却領域Rに位置する熱交換パイプPに対しては、風上側端縁から切込まれ、一端部が開放される長孔部22となっている。
FIG. 5 is a front view of the end plates 20 provided on both sides of the heat exchanger 8.
The end plate 20 is located on both sides of the front heat exchanger portion 8A and the rear heat exchanger portion 8B constituting the heat exchanger 8 and supports holes for supporting the heat exchange pipes P penetrating the fins F. 21 is provided. However, the heat exchange pipe P located in the supercooling region R described above has a long hole portion 22 that is cut from the windward end edge and one end portion is opened.

フィンFにおいては、過冷却領域Rの熱交換パイプPを囲むように熱遮断用スリットKが設けられている。熱遮断用スリットKは、鍵状部分先端とフィンFの風上側端縁との間にはごくわずかな非切断部dが残されているに過ぎないため、過冷却領域Rを形成する熱交換パイプPに対して図5の二点鎖線矢印に示す方向に力を付勢すると、上記非切断部dが比較的容易に変形する。   In the fin F, a heat blocking slit K is provided so as to surround the heat exchange pipe P in the supercooling region R. The heat blocking slit K has only a slight uncut portion d between the tip of the key-shaped portion and the windward edge of the fin F, so that heat exchange that forms the supercooling region R is performed. When a force is applied to the pipe P in the direction indicated by the two-dot chain line arrow in FIG. 5, the non-cut portion d is deformed relatively easily.

その結果、熱遮断用スリットKの幅寸法が拡大するし、過冷却領域Rのみ隣接するフィンF部分から離間し独立する。隣接するフィンF部分からの直接的な伝熱を遮断するばかりでなく、輻射熱の伝導も防止でき、熱交換性能がより向上する。   As a result, the width dimension of the heat shut-off slit K increases, and only the supercooling region R is separated from the adjacent fin F portion and becomes independent. Not only can direct heat transfer from adjacent fin F portions be blocked, but also conduction of radiant heat can be prevented, and heat exchange performance is further improved.

図6は、図5で説明した加工をなしたあとの熱交換器8の一部正面図である。ここでは、前側熱交換器部8A上端と後側熱交換器部8Bの下端において熱遮断用スリットKが互いに連通するよう設けられる場合を示している。上記加工は、前側熱交換器8Aと後側熱交換器部8Bとを側面視で略逆V字状に配置した後に行なうことも可能である。   FIG. 6 is a partial front view of the heat exchanger 8 after the processing described in FIG. 5 is performed. Here, a case is shown in which the heat blocking slits K are provided so as to communicate with each other at the upper end of the front heat exchanger portion 8A and the lower end of the rear heat exchanger portion 8B. The above processing can also be performed after the front heat exchanger 8A and the rear heat exchanger portion 8B are arranged in a substantially inverted V shape in a side view.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における一実施の形態に係る、空気調和機の室内機の概略縦断面図。The schematic longitudinal cross-sectional view of the indoor unit of the air conditioner based on one Embodiment in this invention. 同実施の形態に係る、暖房運転時における熱交換器のパス構成図。The path | pass block diagram of the heat exchanger at the time of heating operation based on the embodiment. 同実施の形態に係る、プレス加工されたフィンの正面図。The front view of the fin by which the press process based on the embodiment was carried out. 同実施の形態に変形例に係る、プレス加工されたフィンの一部正面図。The partial front view of the press-processed fin based on the modification in the embodiment. 同実施の形態に係る、熱交換器端板の正面図。The front view of the heat exchanger endplate based on the embodiment. 同実施の形態に係る、得られる熱交換器の一部正面図。The partial front view of the heat exchanger obtained based on the embodiment.

符号の説明Explanation of symbols

F…フィン、P…熱交換パイプ、8A…前側熱交換器部、8B…後側熱交換器部、8…熱交換器、a…熱交換パイプ取付け用孔、K…熱遮断用スリット、Kb…カット部、d…非切断部、20…端板、22…長孔部、4…前面吸込み口、5…上面吸込み口、6…吹出し口、1…室内機本体、10…送風機、R…過冷却領域、A6…冷媒出口部。   F ... Fin, P ... Heat exchange pipe, 8A ... Front heat exchanger part, 8B ... Rear heat exchanger part, 8 ... Heat exchanger, a ... Heat exchange pipe mounting hole, K ... Heat insulation slit, Kb ... cut part, d ... non-cut part, 20 ... end plate, 22 ... long hole part, 4 ... front suction port, 5 ... top suction port, 6 ... blowout port, 1 ... indoor unit body, 10 ... blower, R ... Supercooling region, A6 ... refrigerant outlet.

Claims (6)

所定間隔を存して並設される複数枚のフィンと、これらフィンに貫通し熱交換空気の流通方向に沿って複数列設けられる熱交換パイプとからなり、前側熱交換器部と後側熱交換器部とから側面視で略逆V字状をなすよう構成される熱交換器を製造する熱交換器の製造方法において、
長手方向に連続して、上記前側熱交換器部を形成するフィンと上記後側熱交換器部を形成するフィンとを一体に成形するとともに、前側熱交換器部のフィンと後側熱交換器部のフィンのそれぞれにおいて、最も風上側列となる熱交換パイプ取付け用孔と風下側列の熱交換パイプ取付け用孔との間に、互いの一端部同士がフィンの幅方向に重なる、もしくは互いに連通するように、フィンの長手方向に沿って熱遮断用スリットを設ける工程と、
上記前側熱交換器部と後側熱交換器部のそれぞれに設けられる上記熱遮断用スリットの一端部同士に形成される重なり部分もしくは連通部分に跨り、フィンの幅方向にカットする工程と、
上記カット部を上端として上記前側熱交換器と後側熱交換器部とを側面視で略逆V字状になるように配置する工程と
を具備することを特徴とする熱交換器の製造方法。
It consists of a plurality of fins arranged side by side at a predetermined interval, and heat exchange pipes that penetrate the fins and are provided in a plurality of rows along the flow direction of the heat exchange air. In the manufacturing method of the heat exchanger for manufacturing the heat exchanger configured to form a substantially inverted V shape in a side view from the exchanger part,
The fins forming the front heat exchanger part and the fins forming the rear heat exchanger part are integrally formed continuously in the longitudinal direction, and the fins of the front heat exchanger part and the rear heat exchanger are formed. In each of the fins, the one end of each of the fins overlaps in the width direction of the fins between the heat exchange pipe mounting hole that is the most leeward row and the heat exchange pipe mounting hole that is the leeward row, or Providing a heat blocking slit along the longitudinal direction of the fin so as to communicate with each other;
A step of cutting in the width direction of the fin across the overlapping portion or the communicating portion formed between the one end portions of the heat shielding slit provided in each of the front heat exchanger portion and the rear heat exchanger portion, and
And a step of arranging the front heat exchanger and the rear heat exchanger portion so as to have a substantially inverted V shape in a side view with the cut portion as an upper end. .
上記前側熱交換器部と後側熱交換器部のそれぞれに設けられる上記熱遮断用スリットは、互いの他端部が、フィンの風上側端縁へ向って折曲して設けられ、その先端はフィンの風上側端縁と間隙を存し非切断部が残される
ことを特徴とする請求項1記載の熱交換器の製造方法。
The heat shut-off slit provided in each of the front heat exchanger part and the rear heat exchanger part is provided such that the other end of each is bent toward the windward edge of the fin, and the tip thereof 2. The method for manufacturing a heat exchanger according to claim 1, wherein a gap is left between the windward edge of the fin and a non-cut portion is left.
上記前側熱交換器部および後側熱交換器部の側部に、上記熱交換パイプを貫通支持する端板が設けられ、
これら端板は、上記熱遮断用スリットより風上側列の熱交換パイプを、さらに風上側へ変位可能にする長孔部を備えた
ことを特徴とする請求項1および請求項2のいずれかに記載の熱交換器の製造方法。
An end plate for penetrating and supporting the heat exchange pipe is provided on the sides of the front heat exchanger part and the rear heat exchanger part,
3. The end plate according to claim 1, further comprising a long hole portion that allows the heat exchange pipes in the windward row to be further displaced further to the windward side than the heat blocking slits. The manufacturing method of the heat exchanger of description.
吸込み口および吹出し口を備えた室内機本体と、
この室内機本体内に配置されるとともに側面視で略逆V字状をなし、上記室内機本体の前面側に位置する前側熱交換器部および後面側に位置する後側熱交換器部とから構成される熱交換器と、
上記熱交換器の前側熱交換器部と後側熱交換器部間に配置される送風機とを具備し、
上記熱交換器は、上記請求項1ないし請求項3記載のいずれかの熱交換器の製造方法をもって製造されることを特徴とする空気調和機の室内機。
An indoor unit body equipped with a suction port and a blowout port;
From the front side heat exchanger part located in the front side of the said indoor unit main body, and the rear side heat exchanger part located in the rear surface side which are arrange | positioned in this indoor unit main body, and comprise substantially reverse V shape by side view. A heat exchanger composed of;
A blower disposed between the front heat exchanger part and the rear heat exchanger part of the heat exchanger,
The indoor unit of an air conditioner, wherein the heat exchanger is manufactured by the method for manufacturing a heat exchanger according to any one of claims 1 to 3.
上記熱交換器を構成する前側熱交換器部と後側熱交換器部において、暖房運転時に、上記熱遮断用スリットよりも風上側列の熱交換パイプが過冷却領域となるように冷媒流路が構成されることを特徴とする請求項4記載の空気調和機の室内機。   In the front side heat exchanger part and the rear side heat exchanger part constituting the heat exchanger, the refrigerant flow path is set so that the heat exchange pipes in the windward row are located in the supercooling region with respect to the heat blocking slit during heating operation. The indoor unit of the air conditioner according to claim 4, wherein 上記熱遮断用スリットよりも風上側列で過冷却領域を構成する熱交換パイプは、最上端に位置する熱交換パイプが冷媒出口部となるように構成されることを特徴とする請求項5記載の空気調和機の室内機。   6. The heat exchange pipe constituting the supercooling region in the windward row from the heat blocking slit is configured such that the heat exchange pipe located at the uppermost end serves as a refrigerant outlet portion. Air conditioner indoor unit.
JP2008078917A 2008-03-25 2008-03-25 Manufacturing method of heat exchanger and indoor unit of air conditioner Active JP5037400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078917A JP5037400B2 (en) 2008-03-25 2008-03-25 Manufacturing method of heat exchanger and indoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078917A JP5037400B2 (en) 2008-03-25 2008-03-25 Manufacturing method of heat exchanger and indoor unit of air conditioner

Publications (2)

Publication Number Publication Date
JP2009236324A true JP2009236324A (en) 2009-10-15
JP5037400B2 JP5037400B2 (en) 2012-09-26

Family

ID=41250504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078917A Active JP5037400B2 (en) 2008-03-25 2008-03-25 Manufacturing method of heat exchanger and indoor unit of air conditioner

Country Status (1)

Country Link
JP (1) JP5037400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092295A (en) * 2012-10-31 2014-05-19 Daikin Ind Ltd Air heat exchanger
CN106500185A (en) * 2016-12-09 2017-03-15 美的集团武汉制冷设备有限公司 Heat exchanger for air-conditioner indoor machine and indoor apparatus of air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127732A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Air conditioner
JPH04177092A (en) * 1990-11-08 1992-06-24 Toshiba Corp Heat exchanger and manufacture thereof
JP2004019999A (en) * 2002-06-14 2004-01-22 Matsushita Electric Ind Co Ltd Heat exchanger with fin, and manufacturing method therefor
JP2004085139A (en) * 2002-08-28 2004-03-18 Toshiba Kyaria Kk Indoor unit for air conditioner
JP2005083606A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fin and its manufacturing method
JP2005315455A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2008051352A (en) * 2006-08-22 2008-03-06 Daikin Ind Ltd Heat exchanger, indoor unit of air conditioner and manufacturing method of heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127732A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Air conditioner
JPH04177092A (en) * 1990-11-08 1992-06-24 Toshiba Corp Heat exchanger and manufacture thereof
JP2004019999A (en) * 2002-06-14 2004-01-22 Matsushita Electric Ind Co Ltd Heat exchanger with fin, and manufacturing method therefor
JP2004085139A (en) * 2002-08-28 2004-03-18 Toshiba Kyaria Kk Indoor unit for air conditioner
JP2005083606A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fin and its manufacturing method
JP2005315455A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2008051352A (en) * 2006-08-22 2008-03-06 Daikin Ind Ltd Heat exchanger, indoor unit of air conditioner and manufacturing method of heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092295A (en) * 2012-10-31 2014-05-19 Daikin Ind Ltd Air heat exchanger
CN106500185A (en) * 2016-12-09 2017-03-15 美的集团武汉制冷设备有限公司 Heat exchanger for air-conditioner indoor machine and indoor apparatus of air conditioner
WO2018103255A1 (en) * 2016-12-09 2018-06-14 美的集团武汉制冷设备有限公司 Air conditioner indoor unit heat exchanger and air conditioner indoor unit

Also Published As

Publication number Publication date
JP5037400B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
EP1798490A4 (en) Air conditioner and method of producing air conditioner
JP5079857B2 (en) Air conditioner indoor unit
JP4796814B2 (en) Heat exchanger and air conditioner indoor unit
JP2016200338A (en) Air conditioner
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
JP2010249388A (en) Heat exchanger and air conditioner equipped with the same
JP4857776B2 (en) Heat exchanger
JP5037400B2 (en) Manufacturing method of heat exchanger and indoor unit of air conditioner
WO2016181509A1 (en) Corrugated fin-type heat exchanger, refrigeration cycle device, device for producing corrugated fins, and method for producing corrugated fin-type heat exchanger
JP6624851B2 (en) Air conditioner and its indoor unit
JP5636676B2 (en) Air conditioner
JP6111024B2 (en) Heat exchanger
JP5569409B2 (en) Heat exchanger and air conditioner
JP2004333013A (en) Heat exchanger for air conditioner
JP2010096480A (en) Indoor unit for air conditioner
JP2004085139A (en) Indoor unit for air conditioner
JP4266131B2 (en) Air conditioner
WO2012011364A1 (en) Indoor unit for air conditioner
JP2017048953A (en) Air conditioner
JP6758968B2 (en) Heat exchanger
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP4861867B2 (en) Heat exchanger and air conditioner
JP2009168282A (en) Indoor unit of air conditioner
JP6340583B2 (en) Heat exchanger
JP4495369B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250