JP2009234833A - Carbon nanowall and process for producing the same - Google Patents

Carbon nanowall and process for producing the same Download PDF

Info

Publication number
JP2009234833A
JP2009234833A JP2008081314A JP2008081314A JP2009234833A JP 2009234833 A JP2009234833 A JP 2009234833A JP 2008081314 A JP2008081314 A JP 2008081314A JP 2008081314 A JP2008081314 A JP 2008081314A JP 2009234833 A JP2009234833 A JP 2009234833A
Authority
JP
Japan
Prior art keywords
carbon
substrate
convex portions
nanowall
nanowalls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081314A
Other languages
Japanese (ja)
Other versions
JP5339496B2 (en
Inventor
Masaru Hori
勝 堀
Wakana Takeuchi
和歌奈 竹内
Hiroyuki Kano
浩之 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
NU Eco Engineering Co Ltd
Original Assignee
Nagoya University NUC
NU Eco Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, NU Eco Engineering Co Ltd filed Critical Nagoya University NUC
Priority to JP2008081314A priority Critical patent/JP5339496B2/en
Priority to PCT/JP2009/001255 priority patent/WO2009119052A1/en
Publication of JP2009234833A publication Critical patent/JP2009234833A/en
Application granted granted Critical
Publication of JP5339496B2 publication Critical patent/JP5339496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanowall which bridges adjoining protrusions of a rugged substrate. <P>SOLUTION: By using an apparatus for generating an electron-beam-excited plasma, a chemical species having extremely high energy can be produced from a carbon source. By regulating the spacing between protrusions to 200 nm and forming a film of titanium or another metal on the surface, a carbon nanowall bridging adjoining protrusions was able to be formed (2.B). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はいわゆるカーボンナノウォールに関する。カーボンナノウォールはグラフェン(グラフェンシートとも呼称される)の積層構造体であり、例えば基板面上に立設されて形成されるものである。   The present invention relates to a so-called carbon nanowall. The carbon nanowall is a laminated structure of graphene (also referred to as a graphene sheet), and is formed standing on a substrate surface, for example.

本発明者らはフラーレン、カーボンナノチューブ、グラフェン等のカーボンナノ構造体の開発と、それら構造体の製造方法の開発及びそれら構造体の電気/光素子への展開を検討している。
また、電子線励起プラズマを用いてカーボンナノウォールが形成可能であることも報告している(非特許文献1)。また、本発明者らによる論文も投稿予定である(T. Mori et al., Diamond and Related Materials, Science Direct)。
森貴照, 第54回応用物理学関係連合講演会 28a-ZR-8 (2007)
The present inventors are examining the development of carbon nanostructures such as fullerenes, carbon nanotubes, and graphene, the development of methods for producing these structures, and the development of these structures in electrical / optical devices.
It has also been reported that carbon nanowalls can be formed using electron beam excited plasma (Non-Patent Document 1). A paper by the present inventors will also be submitted (T. Mori et al., Diamond and Related Materials, Science Direct).
Takateru Mori, 54th Applied Physics Related Conference 28a-ZR-8 (2007)

単なる高周波やマイクロ波によるプラズマでは、カーボンナノウォールが形成されたとしても、凹部を跨いで隣り合う凸部と凸部を繋ぐようなカーボンナノウォールは形成されなかった。
本発明者らは凹凸基板上に、凹部を跨いで隣り合う凸部と凸部を繋ぐようなカーボンナノウォールを形成可能であることを見出し、本発明を完成した。
Even if carbon nanowalls were formed by plasma generated by mere high frequency or microwaves, carbon nanowalls were not formed to connect the convex portions adjacent to each other across the concave portions.
The inventors of the present invention have found that carbon nanowalls can be formed on a concavo-convex substrate so as to connect the convex portions adjacent to each other across the concave portions, thereby completing the present invention.

請求項1に係る発明は、電子線励起プラズマを用い、凹凸を形成した基板上に、当該基板の凹部を跨いで隣り合う凸部の橋架け状にカーボンナノウォールを形成することを特徴とするカーボンナノウォールの製造方法である。
請求項2に係る発明は、基板の少なくとも凸部には金属膜が形成されていることを特徴とする。
請求項3に係る発明は、凸部と凸部の間隙が、基板面方向に250nm以下であることを特徴とする。
請求項4に係る発明は、凹凸を形成した基板上に立設されたカーボンナノウォールであって、凹部を跨いで隣り合う凸部と凸部を繋ぐように形成されたことを特徴とするカーボンナノウォールである。
請求項5に係る発明は、電子線を照射することによって形成される電子線励起プラズマ中に、内部に絶縁層を有し、表面に凹凸を有する基板を配置し、少なくとも炭素を含む化学種のガスと水素との混合ガスを導入して、カーボンナノウォールを、凸部に選択成長させると共に、隣り合う凸部に橋架け状に形成することを特徴とするカーボンナノウォールの製造方法である。ここで内部に絶縁層を有する基板とは、凸部の層構成中に絶縁層を有する場合を含むものとする。
請求項6に係る発明は、凸部をプラズマによって帯電させ、電界を集中させてカーボンナノウォールを電界方向に成長させることを特徴とする。
請求項7に係る発明は、内部に絶縁層を有し、表面に凹凸を有する基板に電子線を照射して帯電させ、少なくとも炭素を含む化学種のガスと水素との混合ガスから生成したラジカルを前記基板表面に導入して、カーボンナノウォールを、凸部に選択成長させると共に、隣り合う凸部に橋架け状に形成することを特徴とするカーボンナノウォールの製造方法である。
The invention according to claim 1 is characterized in that an electron beam-excited plasma is used to form carbon nanowalls on a substrate having projections and depressions in a bridge shape of adjacent projections across the depressions of the substrate. It is a manufacturing method of carbon nanowall.
The invention according to claim 2 is characterized in that a metal film is formed on at least the convex portion of the substrate.
The invention according to claim 3 is characterized in that the gap between the convex portions is 250 nm or less in the substrate surface direction.
The invention according to claim 4 is a carbon nanowall erected on a substrate on which irregularities are formed, wherein the carbon nanowalls are formed so as to connect adjacent convex portions and convex portions across the concave portions. It is a nanowall.
According to a fifth aspect of the present invention, there is provided a chemical species including at least carbon, in which an electron beam-excited plasma formed by irradiating an electron beam includes an insulating layer inside and a substrate having irregularities on the surface. A carbon nanowall manufacturing method is characterized in that a mixed gas of gas and hydrogen is introduced to selectively grow carbon nanowalls on convex portions and to form bridges on adjacent convex portions. Here, the substrate having the insulating layer inside includes the case where the insulating layer is included in the layer structure of the convex portion.
The invention according to claim 6 is characterized in that the convex portion is charged with plasma and the electric field is concentrated to grow the carbon nanowall in the electric field direction.
The invention according to claim 7 is a radical generated from a mixed gas of at least carbon-containing chemical species and hydrogen by charging an electron beam onto a substrate having an insulating layer inside and having an uneven surface. Is introduced to the surface of the substrate, and carbon nanowalls are selectively grown on the convex portions, and are formed in a bridge shape on the adjacent convex portions.

電子線励起プラズマによるプラズマは、極めて大きなエネルギーを有する。また、電子線励起プラズマを形成する際に対象物である基板に垂直に電子線を照射することになるので、基板が帯電し、基板に垂直に電界が生ずる。
プラズマが極めて大きなエネルギーを有することにより、原料となる炭素源から、反応性の極めて高い活性化学種が生成する。これにより、凸部上に形成されたカーボンナノウォールの端部に、当該反応性の極めて高い活性化学種の合体が効率的に生ずるため、カーボンナノウォールの、基板面に平行な方向の成長速度が大きくなる。すると、例えば凸部上部に立設されるように形成されたカーボンナノウォールが、隣の凸部側方向に面又は積層面の端部を有していると、当該端部が当該隣の凸部側に成長していく。こうして、カーボンナノウォールの成長端が、当該隣の凸部上の別のカーボンナノウォールの端部と近接すれば合体が生じて、凹部を跨いで隣り合う凸部と凸部を繋ぐように1つの連続したカーボンナノウォールが形成される。或いは、カーボンナノウォールの成長端が、当該隣の凸部に達すれば、やはり凹部を跨いで隣り合う凸部と凸部を繋ぐようなカーボンナノウォールが形成される。
また、基板が帯電し、基板に垂直に電界が生ずることから、凸部のエッジ部分に電荷が集中し、これにより凸部にカーボンナノウォールが集中的に成長することも考えられる。この際、基板に垂直な電界方向に、カーボンナノウォールが成長しやすいと考えられる。この際、基板内部に絶縁層が形成されていると、凸部の帯電量が大きくなりやすく、好適である。
基板の少なくとも凸部は、チタンその他の金属膜を形成することが好ましい。
また、凸部と凸部との間隙が250nmを越えると、凹部を跨いで隣り合う凸部と凸部を繋ぐようなカーボンナノウォールは形成されにくくなる。
凹部を跨いで隣り合う凸部と凸部を繋ぐようなカーボンナノウォールは本発明者らの報告以前には無い、新規なカーボンナノウォールである。
Plasma by electron beam excitation plasma has extremely large energy. In addition, since the electron beam is irradiated perpendicularly to the target substrate when forming the electron beam excited plasma, the substrate is charged and an electric field is generated perpendicularly to the substrate.
Since the plasma has extremely large energy, active chemical species with extremely high reactivity are generated from a carbon source as a raw material. As a result, coalescence of the highly reactive active chemical species is efficiently generated at the end portion of the carbon nanowall formed on the convex portion, so that the growth rate of the carbon nanowall in the direction parallel to the substrate surface is increased. Becomes larger. Then, for example, if the carbon nanowall formed so as to be erected on the upper part of the convex part has an end of a surface or a laminated surface in the direction of the adjacent convex part, the end part is adjacent to the adjacent convex part. Growing to the club side. Thus, when the growth end of the carbon nanowall comes close to the end of another carbon nanowall on the adjacent convex portion, coalescence occurs, and the adjacent convex portion and the convex portion are connected across the concave portion. Two continuous carbon nanowalls are formed. Alternatively, when the growth end of the carbon nanowall reaches the adjacent convex portion, the carbon nanowall is formed so as to connect the convex portions adjacent to each other across the concave portion.
In addition, since the substrate is charged and an electric field is generated perpendicular to the substrate, the electric charge is concentrated on the edge portion of the convex portion, which may cause the carbon nanowall to grow intensively on the convex portion. At this time, it is considered that carbon nanowalls are likely to grow in the electric field direction perpendicular to the substrate. At this time, it is preferable that an insulating layer is formed inside the substrate because the amount of charge on the convex portion tends to increase.
It is preferable to form a titanium or other metal film on at least the convex portion of the substrate.
In addition, when the gap between the protrusions exceeds 250 nm, it is difficult to form carbon nanowalls that connect the protrusions adjacent to each other across the recess.
Carbon nanowalls that connect adjacent convex portions across the concave portions are new carbon nanowalls that have not been reported before by the present inventors.

本発明は新規なカーボンナノウォールに関するものであり、現時点では形成方法が限定されているが、本来的にはカーボンナノウォールを形成可能な製造方法は多様に存在するものと考えられる。   The present invention relates to a novel carbon nanowall, and the formation method is limited at present. However, it is considered that there are various production methods that can form a carbon nanowall.

図1は本発明の具体的な一実施例において用いた電子線励起プラズマ発生装置100の構成を示す断面図である。電子線励起プラズマ発生装置100は公知のものであるが、若干の説明をする。図中、斜線部分は絶縁領域である。
アルゴン導入口8から2.1sccmで供給されるアルゴンガス中におかれたフィラメント1において、電子が発生する。本実施例ではフィラメント1には5Aの電流を流した。
これが、加速用電極3a及び3bに引かれて、六ホウ化リチウムから成るピンホール板2から多孔電極4に向って高速の電子が飛び出す。加速電圧は100V、電流は2Aで行った。図1では電子線が発生する領域を電子線発生領域10として示した。
多孔電極4を隔てて右側には、サセプタ6とホルダ5で固定された基板7が載置されている。基板7はサセプタ6内部の加熱装置により570℃に加熱される。尚、基板7は接地(グランド)されておらず、いわゆるフローティング状態でプラズマ処理が行われる。基板7の雰囲気は2.67Pa(20mTorr)で、カーボンナノウォールの原料ガスとして、メタンを4sccm、水素を36sccmで炭素源導入口9から供給した。
こうして、隔壁4により電子線発生領域10のアルゴン中の電子のみ活性種発生領域20に透過される。活性種発生領域20においては高エネルギー電子線により、メタン及び水素が活性化され、炭素を有する活性化学種が基板7表面で化学反応を起こす。電子線を10分間供給することにより、基板7上でカーボンナノウォールを10分間、成長させた。
FIG. 1 is a cross-sectional view showing the configuration of an electron beam excitation plasma generator 100 used in a specific embodiment of the present invention. The electron beam excited plasma generator 100 is a well-known device, but will be described briefly. In the figure, the hatched portion is an insulating region.
Electrons are generated in the filament 1 placed in the argon gas supplied at 2.1 sccm from the argon inlet 8. In this example, a current of 5 A was passed through the filament 1.
This is pulled by the acceleration electrodes 3 a and 3 b, and high-speed electrons jump out from the pinhole plate 2 made of lithium hexaboride toward the porous electrode 4. The acceleration voltage was 100 V and the current was 2 A. In FIG. 1, an area where an electron beam is generated is shown as an electron beam generation area 10.
A substrate 7 fixed by a susceptor 6 and a holder 5 is placed on the right side across the porous electrode 4. The substrate 7 is heated to 570 ° C. by a heating device inside the susceptor 6. The substrate 7 is not grounded (grounded), and plasma processing is performed in a so-called floating state. The atmosphere of the substrate 7 was 2.67 Pa (20 mTorr), and methane was supplied at 4 sccm and hydrogen was supplied at 36 sccm from the carbon source inlet 9 as a carbon nanowall source gas.
Thus, only the electrons in the argon in the electron beam generation region 10 are transmitted to the active species generation region 20 by the partition 4. In the active species generation region 20, methane and hydrogen are activated by a high-energy electron beam, and active chemical species having carbon cause a chemical reaction on the surface of the substrate 7. By supplying an electron beam for 10 minutes, carbon nanowalls were grown on the substrate 7 for 10 minutes.

尚、基板7としては、シリコン基板に、シリコン薄膜、エッチングストッパ層としてSiC膜、絶縁膜としてSiOCH膜を順に形成したのちエッチングにより凹凸を形成した。この状態の基板と、更に、チタン膜を形成した基板とを用いた。
SiC膜の厚さは50nm、SiOCH膜の厚さは200nmとし、凹凸を形成するためのエッチングの際はSiC膜を露出させた。尚、凹部においてSiOCH膜が完全に除去される必要は必ずしもない。また、チタン膜を形成する場合、その厚さは50nmであり、凹凸の凸部にも凹部にもチタン膜を形成した。SiOCH膜はテトラエチルシリケート(Si(OC25)4)を用いて形成した。
As the substrate 7, a silicon thin film, a SiC film as an etching stopper layer, and a SiOCH film as an insulating film were sequentially formed on a silicon substrate, and then unevenness was formed by etching. A substrate in this state and a substrate on which a titanium film was further formed were used.
The thickness of the SiC film was 50 nm, the thickness of the SiOCH film was 200 nm, and the SiC film was exposed during the etching for forming irregularities. Note that the SiOCH film does not necessarily need to be completely removed in the recess. Further, when the titanium film was formed, the thickness was 50 nm, and the titanium film was formed on both the concave and convex portions. The SiOCH film was formed using tetraethyl silicate (Si (OC 2 H 5 ) 4).

上記のようにして、カーボンナノウォールを形成した。尚、凹凸の形成間隔や、チタン膜の有無でカーボンナノウォールの形成状態が変化した。これを顕微鏡写真図として以下に示す。   Carbon nanowalls were formed as described above. In addition, the formation state of the carbon nanowall changed depending on the formation interval of the unevenness and the presence or absence of the titanium film. This is shown below as a photomicrograph.

図2.A及び図2.Bは、チタン膜を形成せず、SiOCH膜が最上層となっている基板を用いた場合である。
図2.Aは、橋架けカーボンナノウォールが生じていない顕微鏡写真図である。
図2.A中、丸1と付した領域は、シリコン基板面が露出した部分にもカーボンナノウォール(白い髭状)が形成されており、特に特徴はない。
図2.A中丸2と付した領域は、凹凸を有し、四角柱状の凸部が500nmの間隙をおいて並んでいる部分である。凸部は、凹部よりも色が薄い部分である。凸部においてはカーボンナノウォール(白い髭状)が形成されている。凹部部においてはカーボンナノウォール(白い髭状)が形成されていない。また、隣り合う凸部と凸部を橋架けするように形成されたカーボンナノウォールは見あたらない。
FIG. A and FIG. B is a case where a substrate in which the titanium film is not formed and the SiOCH film is the uppermost layer is used.
FIG. A is a photomicrograph showing the absence of bridged carbon nanowalls.
FIG. In A, the region marked with circle 1 has carbon nanowalls (white ridges) formed in the exposed portions of the silicon substrate surface, and has no particular characteristics.
FIG. The region marked with A middle circle 2 is a portion having projections and depressions, and quadrangular columnar projections lined up with a gap of 500 nm. The convex part is a part lighter in color than the concave part. Carbon nanowalls (white ridges) are formed on the protrusions. Carbon nanowalls (white ridges) are not formed in the recesses. Moreover, the carbon nanowall formed so that the adjacent convex part and the convex part may be bridged is not found.

図2.Bは、橋架けカーボンナノウォールが生じている顕微鏡写真図である。
図2.Bのように、基板7はストライプ状に凹凸を形成した。凸部がA、凹部がBと付した部分であり、やはり凸部は、凹部よりも色が薄い。隣り合う凸部と凸部の間隙を200nmとした場合であり、隣り合う凸部と凸部を橋架けするように形成されたカーボンナノウォールが形成されている。
FIG. B is a photomicrograph showing the formation of bridged carbon nanowalls.
FIG. Like B, the board | substrate 7 formed the unevenness | corrugation in stripe form. A convex part is a part which attached | subjected A and a recessed part with B, and a convex part is also lighter in color than a recessed part. This is a case where the gap between adjacent convex portions is 200 nm, and carbon nanowalls formed so as to bridge adjacent convex portions and convex portions are formed.

図3.Aは、チタン膜を形成して、橋架けカーボンナノウォールを形成した様子の顕微鏡写真図である。図2.Bと比較すると、形成されたカーボンナノウォールの密度が高い。これは、カーボンナノウォールの生成の初期段階で、チタンが触媒的作用を生じることにより、カーボンナノウォールが極めて形成されやすいからとの理由が考えられる。一方、酸化物層の表面にカーボンナノウォールを形成しても密度が低いことについては、酸素原子によりカーボンナノウォールの初期生成物が分解され、或いは不活性化されやすいとの理由が考えられる。   FIG. A is a photomicrograph of a state in which a titanium film is formed to form bridged carbon nanowalls. FIG. Compared with B, the density of the formed carbon nanowall is higher. This may be because carbon nanowalls are very easily formed by the catalytic action of titanium in the initial stage of carbon nanowall production. On the other hand, the low density even when carbon nanowalls are formed on the surface of the oxide layer may be because the initial product of carbon nanowalls is easily decomposed or inactivated by oxygen atoms.

尚、図3.Aの顕微鏡写真図にて髭状に示されたものの、ラマンスペクトルを図3.Bに示す。D−band、G−band、D'−bandがはっきり確認され、グラフェン構造又はその積層体構造を有するカーボンナノウォールであることが証明された。   FIG. A Raman spectrum is shown in FIG. Shown in B. D-band, G-band, and D′-band were clearly confirmed and proved to be a carbon nanowall having a graphene structure or a laminate structure thereof.

図4.A及び図4.Bは、言わば比較例であって、橋架けカーボンナノウォールが生じいない顕微鏡写真図である。この際、チタン膜を形成した。図4.Aは断面図であり、図4.Bは平面図である。凹部の幅が1μmを越えており、凸部から凸部へ、橋架けするカーボンナノウォールは全く形成されていない。また、凹部の大部分にもカーボンナノウォールが生じているが、凸部の側壁面及びその近傍の凹部部分には、カーボンナノウォールは生じていない。   FIG. A and FIG. B is a micrograph showing a comparative example, in which no bridging carbon nanowalls are formed. At this time, a titanium film was formed. FIG. A is a cross-sectional view, FIG. B is a plan view. The width of the concave portion exceeds 1 μm, and no carbon nanowall is bridged from the convex portion to the convex portion. In addition, although carbon nanowalls are generated in most of the recesses, no carbon nanowalls are generated on the side wall surface of the protrusions and the recesses in the vicinity thereof.

本発明の橋架けカーボンナノウォールは、隣あう凸部を電極とし、橋架けカーボンナノウォール部分をチャネルとすることで、電界効果トランジスタ等の素子を形成できるものと考えられる。このような例を図示する。図5.Aは電界効果トランジスタを形成するためのTi層の形成領域である。例えばシリコン基板表面全体をSiO2絶縁膜で覆い、図5.AのようにTi層を形成する。図5.Aで、Ti層の下層にはSiO2層があり、Ti層を形成していない部分は当該SiO2層を露出させる。ソース領域S、とドレイン領域Dは間隙200nmの橋架け形成部分Sb、Dbで向かい合っており、それらとゲート領域G、或いは他の領域とは500nmの間隙を形成しておく。本発明の電子線励起プラズマにより、このような状態でカーボンナノウォールを形成すると、ソース領域Sとドレイン領域Dの、間隙200nmの橋架け形成部分Sb及びDbに橋架けカーボンナノウォールCNW−Bが形成される。橋架けカーボンナノウォールCNW−Bは、チタン膜のゲート領域Gに近いので、ゲート電圧により流れる電流を調整できる、電界効果トランジスタとなり得る。 The bridged carbon nanowall of the present invention is considered to be capable of forming an element such as a field effect transistor by using the adjacent convex part as an electrode and the bridged carbon nanowall part as a channel. Such an example is illustrated. FIG. A is a Ti layer forming region for forming a field effect transistor. For example, the entire surface of the silicon substrate is covered with a SiO 2 insulating film, and FIG. A Ti layer is formed as in A. FIG. In A, there is an SiO 2 layer below the Ti layer, and the portion where the Ti layer is not formed exposes the SiO 2 layer. The source region S and the drain region D face each other at the bridge forming portions Sb and Db having a gap of 200 nm, and a gap of 500 nm is formed between them and the gate region G or other region. When carbon nanowalls are formed in such a state by the electron beam excitation plasma of the present invention, bridged carbon nanowalls CNW-B are formed in bridge formation portions Sb and Db with a gap of 200 nm between source region S and drain region D. It is formed. Since the bridged carbon nanowall CNW-B is close to the gate region G of the titanium film, it can be a field effect transistor capable of adjusting the current flowing by the gate voltage.

本発明の具体的な一実施例において用いた電子線励起プラズマ発生装置100の構成を示す断面図。Sectional drawing which shows the structure of the electron beam excitation plasma generator 100 used in one specific Example of this invention. 2.Aは、橋架けカーボンナノウォールが生じていない顕微鏡写真図、2.Bは橋架けカーボンナノウォールが生じている顕微鏡写真図。2. A is a photomicrograph showing no bridging carbon nanowalls. B is a photomicrograph of bridged carbon nanowalls. 3.Aはチタン膜表面に橋架けカーボンナノウォールが生じている顕微鏡写真図、3.Bは、3.Aで得られたカーボンナノウォールのラマンスペクトル図。3. 2. A is a photomicrograph showing a bridged carbon nanowall formed on the titanium film surface. B is 3. The Raman spectrum figure of carbon nanowall obtained by A. 比較例に係るカーボンナノウォールを形成した、断面顕微鏡写真図(4.A)と平面顕微鏡写真図(4.B)Cross-sectional micrograph (4.A) and plane micrograph (4.B) on which carbon nanowalls according to the comparative example were formed 本発明によるカーボンナノウォールをチャネルとした電界効果トランジスタを形成するための2つの工程図。FIG. 2 is two process diagrams for forming a field effect transistor using a carbon nanowall as a channel according to the present invention.

符号の説明Explanation of symbols

100:電子線励起プラズマ発生装置
1:フィラメント
2:六ホウ化リチウムから成るピンホール板
3a、3b:加速用電極
4:多孔電極
5:ホルダ
6:サセプタ
7:基板
8:アルゴン導入口
9:炭素源導入口
10:電子線発生領域
20:活性種発生領域
DESCRIPTION OF SYMBOLS 100: Electron beam excitation plasma generator 1: Filament 2: Pinhole board which consists of lithium hexaboride 3a, 3b: Electrode for acceleration 4: Porous electrode 5: Holder 6: Susceptor 7: Substrate 8: Argon inlet 9: Carbon Source inlet 10: Electron beam generation region 20: Active species generation region

Claims (7)

電子線励起プラズマを用い、
凹凸を形成した基板上に、当該基板の凹部を跨いで隣り合う凸部の橋架け状にカーボンナノウォールを形成することを特徴とするカーボンナノウォールの製造方法。
Using electron beam excited plasma,
A method for producing a carbon nanowall, comprising: forming a carbon nanowall on a substrate having projections and depressions in a bridging shape between adjacent projections across the depression of the substrate.
前記基板の少なくとも凸部には金属膜が形成されていることを特徴とする請求項1に記載のカーボンナノウォールの製造方法。 The method for producing a carbon nanowall according to claim 1, wherein a metal film is formed on at least the convex portion of the substrate. 前記凸部と凸部の間隙が、基板面方向に250nm以下であることを特徴とする請求項1又は請求項2に記載のカーボンナノウォールの製造方法。 The method for producing a carbon nanowall according to claim 1 or 2, wherein a gap between the protrusions is 250 nm or less in the substrate surface direction. 凹凸を形成した基板上に立設されたカーボンナノウォールであって、凹部を跨いで隣り合う凸部と凸部を繋ぐように形成されたことを特徴とするカーボンナノウォール。 A carbon nanowall standing on a substrate on which irregularities are formed, wherein the carbon nanowall is formed so as to connect adjacent convex portions and convex portions across a concave portion. 電子線を照射することによって形成される電子線励起プラズマ中に、内部に絶縁層を有し、表面に凹凸を有する基板を配置し、少なくとも炭素を含む化学種のガスと水素との混合ガスを導入して、カーボンナノウォールを、凸部に選択成長させると共に、隣り合う凸部に橋架け状に形成することを特徴とするカーボンナノウォールの製造方法。 In an electron beam-excited plasma formed by irradiating an electron beam, a substrate having an insulating layer inside and an uneven surface is disposed, and a mixed gas of at least carbon-containing species gas and hydrogen is used. A method for producing carbon nanowalls, comprising introducing carbon nanowalls selectively on convex portions and forming bridges on adjacent convex portions. 凸部をプラズマによって帯電させ、電界を集中させてカーボンナノウォールを電界方向に成長させることを特徴とする請求項5に記載のカーボンナノウォールの製造方法。 6. The method for producing carbon nanowalls according to claim 5, wherein the convex portions are charged with plasma and the electric field is concentrated to grow the carbon nanowalls in the electric field direction. 内部に絶縁層を有し、表面に凹凸を有する基板に電子線を照射して帯電させ、少なくとも炭素を含む化学種のガスと水素との混合ガスから生成したラジガルを前記基板表面に導入して、カーボンナノウォールを、凸部に選択成長させると共に、隣り合う凸部に橋架け状に形成することを特徴とするカーボンナノウォールの製造方法。 A substrate having an insulating layer inside and having an uneven surface is charged by irradiating it with an electron beam and introducing a radical generated from a mixed gas of at least carbon and a chemical gas containing hydrogen into the substrate surface. A method for producing carbon nanowalls, wherein carbon nanowalls are selectively grown on convex portions and are formed in a bridge shape on adjacent convex portions.
JP2008081314A 2008-03-26 2008-03-26 Method for producing carbon nanowall Active JP5339496B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008081314A JP5339496B2 (en) 2008-03-26 2008-03-26 Method for producing carbon nanowall
PCT/JP2009/001255 WO2009119052A1 (en) 2008-03-26 2009-03-20 Carbon nanowall and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081314A JP5339496B2 (en) 2008-03-26 2008-03-26 Method for producing carbon nanowall

Publications (2)

Publication Number Publication Date
JP2009234833A true JP2009234833A (en) 2009-10-15
JP5339496B2 JP5339496B2 (en) 2013-11-13

Family

ID=41113263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081314A Active JP5339496B2 (en) 2008-03-26 2008-03-26 Method for producing carbon nanowall

Country Status (2)

Country Link
JP (1) JP5339496B2 (en)
WO (1) WO2009119052A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190156A (en) * 2010-03-16 2011-09-29 Nagoya Univ Selective growth method of carbon nanowall, and electronic device using carbon nanowall
JP2013014478A (en) * 2011-07-05 2013-01-24 Chube Univ Carbon nanowall array and method for producing carbon nanowall
JP2014225679A (en) * 2014-07-01 2014-12-04 国立大学法人名古屋大学 Electronic device using carbon nanowall
CN104505147A (en) * 2014-11-13 2015-04-08 中国科学院重庆绿色智能技术研究院 Preparation method for graphene nanowall flexible conductive film
JP5856303B2 (en) * 2012-08-23 2016-02-09 学校法人中部大学 Thin film transistor and manufacturing method thereof
WO2022259870A1 (en) * 2021-06-08 2022-12-15 国立大学法人東海国立大学機構 Metal substrate for carbon nanowall growth, metal substrate equipped with carbon nanowalls, and production methods therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103879989B (en) * 2012-12-20 2016-01-13 海洋王照明科技股份有限公司 The preparation method of nitrogen-doped graphene nano belt
CN103879988A (en) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 Boron-doped graphene nano-belt preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097113A (en) * 2004-11-26 2005-04-14 Mineo Hiramatsu Method and device for producing carbon nanowall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097113A (en) * 2004-11-26 2005-04-14 Mineo Hiramatsu Method and device for producing carbon nanowall

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013016796; Alexander A. BALANDIN et al.: 'Superior Thermal Conductivity of Single-Layer Graphen' NANO LETTERS Vol. 8, No. 3, 20080220, pp. 902-907 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190156A (en) * 2010-03-16 2011-09-29 Nagoya Univ Selective growth method of carbon nanowall, and electronic device using carbon nanowall
JP2013014478A (en) * 2011-07-05 2013-01-24 Chube Univ Carbon nanowall array and method for producing carbon nanowall
CN103648978A (en) * 2011-07-05 2014-03-19 学校法人中部大学 Carbon nanowall array and method for manufacturing carbon nanowall
JP5856303B2 (en) * 2012-08-23 2016-02-09 学校法人中部大学 Thin film transistor and manufacturing method thereof
JP2014225679A (en) * 2014-07-01 2014-12-04 国立大学法人名古屋大学 Electronic device using carbon nanowall
CN104505147A (en) * 2014-11-13 2015-04-08 中国科学院重庆绿色智能技术研究院 Preparation method for graphene nanowall flexible conductive film
WO2022259870A1 (en) * 2021-06-08 2022-12-15 国立大学法人東海国立大学機構 Metal substrate for carbon nanowall growth, metal substrate equipped with carbon nanowalls, and production methods therefor

Also Published As

Publication number Publication date
JP5339496B2 (en) 2013-11-13
WO2009119052A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5339496B2 (en) Method for producing carbon nanowall
JP4783169B2 (en) Dry etching method, fine structure forming method, mold and manufacturing method thereof
US20100009242A1 (en) Carbon nanowall with controlled structure and method for controlling carbon nanowall structure
Kondo et al. Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition
KR100537512B1 (en) carbon-nano tube structure and manufacturing method thereof and field emitter and display device both adopting the same
JP2010212619A (en) Graphene manufacturing method, graphene, graphene manufacturing device, and semiconductor device
JP5578548B2 (en) Method for selective growth and formation of carbon nanowall
JP2005350342A (en) Method of manufacturing carbon nanotube and plasma cvd(chemical vapor deposition) apparatus for implementing the method
JP2005239541A (en) Method of horizontally growing carbon nanotube and device having carbon nanotube
JP2012041249A (en) Manufacturing method for carbon nanostructure
JP2006237490A (en) Plasma processing device
JP2006507211A (en) Method for forming carbon nanotube
JP3837451B2 (en) Method for producing carbon nanotube
Kondo et al. Critical factors for nucleation and vertical growth of two dimensional nano-graphene sheets employing a novel Ar+ beam with hydrogen and fluorocarbon radical injection
WO2013005610A1 (en) Carbon nanowall array and method for manufacturing carbon nanowall
JP5614180B2 (en) Plasma CVD equipment
JP5467452B2 (en) Method for surface modification of amorphous carbon film
US20110045207A1 (en) Method for producing carbon nanowalls
JP4975289B2 (en) Electronic devices using carbon nanowalls
JP4737672B2 (en) Film-forming method by plasma CVD, electron emission source, field emission display and illumination lamp
JP2007247014A (en) Plasma cvd apparatus, and film deposition method
JP5888685B2 (en) Electronic devices using carbon nanowalls
JP4919272B2 (en) Carbon nanotube forming apparatus and carbon nanotube forming method
JP2007095604A (en) Method of manufacturing transparent conductive film, and transparent conductive film
Kim et al. Transition of carbon nanotubes growth mode on NH3 plasma-modified Ni films at different plasma powers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5339496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250