JP2009233572A - Ozone supply method and ozone supply device - Google Patents

Ozone supply method and ozone supply device Download PDF

Info

Publication number
JP2009233572A
JP2009233572A JP2008082784A JP2008082784A JP2009233572A JP 2009233572 A JP2009233572 A JP 2009233572A JP 2008082784 A JP2008082784 A JP 2008082784A JP 2008082784 A JP2008082784 A JP 2008082784A JP 2009233572 A JP2009233572 A JP 2009233572A
Authority
JP
Japan
Prior art keywords
ozone
gas
concentration
supply
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008082784A
Other languages
Japanese (ja)
Other versions
JP5095466B2 (en
Inventor
Hitoshi Inaba
仁 稲葉
Ken Yuasa
憲 湯浅
Minehiko Sato
峰彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2008082784A priority Critical patent/JP5095466B2/en
Publication of JP2009233572A publication Critical patent/JP2009233572A/en
Application granted granted Critical
Publication of JP5095466B2 publication Critical patent/JP5095466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more uniformly supply ozone into a tank by increasing a supply gas total flow, without changing an ozone supply amount or using equipment such as a blower or a compressor separately. <P>SOLUTION: A high concentration oxygen gas from an oxygen concentrator 2, for generating the high concentration oxygen gas with air as a raw material, is used as raw material, and ozone generated by an ozone generator 6 is sent to a supply pipe 8. A waste gas of a high nitrogen gas concentration generated when generating the high concentration oxygen gas is sent from the oxygen concentrator 2 to the supply pipe 8, and dilutes an ozone-containing gas inside the supply pipe 8. The diluted ozone gas is supplied through the supply pipe 8 into a biological treatment tank 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、オゾン供給方法及びその装置に関するものである。   The present invention relates to an ozone supply method and an apparatus therefor.

有機性排水の生物処理槽、有機性排水の流量調整槽(貯留槽)、排水等の生物処理で生成する余剰汚泥貯留槽、処理水の配管内において、微量のオゾンを供給することで、これら槽や配管での悪臭発生の抑制や、生物処理性能悪化の原因となる糸状菌増殖の抑制が達成できることが知られている。   By supplying a small amount of ozone in organic wastewater biological treatment tanks, organic wastewater flow rate adjustment tanks (storage tanks), surplus sludge storage tanks generated by biological treatment such as wastewater, and pipes for treated water, It is known that it is possible to suppress the generation of malodors in tanks and pipes and to suppress the growth of filamentous fungi that causes deterioration of biological treatment performance.

このような目的に使用するオゾン発生装置では、放電によるNOx発生防止のために、使用する原料ガスとして一般的に空気を酸素と窒素に分離することで得られる窒素濃度の低い高濃度酸素含有ガスを用いている。このような原料ガスを使用した場合、生成されるオゾン濃度は数〜十数%レベルである。一方、有機性排水の生物処理槽、流量調整槽、余剰汚泥貯留槽に供給する際、所期の効果を得るのに必要なオゾン量は、生物処理槽に供給されるばっき用の空気供給量(ばっき量)に比べてはるかに少なく、一般的にはばっき用の空気供給量の1/数十〜1/数百程度である。   In an ozone generator used for such a purpose, a high-concentration oxygen-containing gas having a low nitrogen concentration obtained by separating air into oxygen and nitrogen as a raw material gas generally used to prevent NOx generation due to discharge Is used. When such a raw material gas is used, the generated ozone concentration is on the order of several to several tens%. On the other hand, when supplying organic wastewater to biological treatment tanks, flow rate adjustment tanks, and excess sludge storage tanks, the amount of ozone required to obtain the desired effect is the supply of air for the supply to the biological treatment tank It is much smaller than the amount (absorbing amount) and is generally about 1 / several tens to 1 / several hundreds of the air supply amount for the ablating.

前記した目的のためにオゾンを供給する場合、オゾン自体の供給量が前記したように少なく、かつ高濃度のオゾンをそのまま供給すると以下のような問題がある。
・微量のオゾン添加効果は、供給オゾンと汚泥との接触を薄く均一にすることが重要であるが、局所的に高濃度オゾンと排水有機成分が接触すると、一部のオゾンは有機成分の完全酸化あるいは有用な分解菌(汚泥)の不活化に消費されてしまう。
・送気量(ガス容積)が少ないと、槽内への均一な供給が難しくなる。
When ozone is supplied for the above-mentioned purpose, there are the following problems when the supply amount of ozone itself is small as described above and high concentration ozone is supplied as it is.
・ For the effect of adding a small amount of ozone, it is important to make the contact between the supplied ozone and sludge thin and uniform. However, when high concentration ozone and wastewater organic components come in contact locally, some ozone is completely organic components. It will be consumed by oxidation or inactivation of useful degrading bacteria (sludge).
-If the amount of air supply (gas volume) is small, uniform supply to the tank becomes difficult.

このような問題の解決策として、従来では以下の手法が採られている。
(1)空気ばっきをしている生物処理槽においては、空気ばっき系統にオゾン供給系を合流させることで、槽内に均一にオゾンを供給する(特許文献1)。
(2)希釈せずにオゾンを供給することで、局所的にオゾンが過剰消費されることによる全体への効果の低下を補うため、より多くのオゾンを供給する。
(3)空気(ブロワー送気あるいはコンプレッサーによる圧縮空気)で数倍から10倍程度に希釈することで総供給ガス流量を増やし、それと共に、槽内に多くの給気ポイントをとることで、槽内に均一にオゾンを供給する。
Conventionally, the following method has been adopted as a solution to such a problem.
(1) In a biological treatment tank that is exposed to air, ozone is uniformly supplied into the tank by joining the ozone supply system to the air exposure system (Patent Document 1).
(2) By supplying ozone without diluting, more ozone is supplied in order to compensate for a reduction in the overall effect due to local excessive consumption of ozone.
(3) By increasing the total supply gas flow rate by diluting several times to 10 times with air (blower air supply or compressed air by a compressor), and taking many supply points in the tank, Supply ozone uniformly inside.

特開2006−314911号公報JP 2006-314911 A

しかしながら前記(1)〜(3)に記載した従来技術では、以下のような課題がある。
(1)については、ばっき空気量が供給損含有ガス量に比べて数十倍以上と非常に多く、混合されたオゾン含有空気は槽内に短時間で一様に供給される反面、給気量が多くなると気泡が大きくなり短時間で槽外へ放出される。そのためオゾンと水との接触時間が非常に短く、かつ希釈率が高くオゾン濃度が非常に低くなっているため溶解効率が低くなる。つまり、供給オゾン量に対する有効利用率が下がることから、結果的により大量のオゾンを生成する装置が必要となり、設備コスト、ランニングコスト共に高くなる。しかも排オゾンの処理負荷も増えるために、排オゾン処理コストも高くなるという問題もある。
(2)については、より多くのオゾンの供給が必要となるので、(1)同様にオゾン発生装置コストおよび運転コストの増加が課題となる。また生物処理槽への供給においては、高濃度なオゾンガスが供給されることから、槽内へのオゾンガス吹き出し付近では排水内へのオゾン溶解量が多くなり、悪玉菌である糸状菌ばかりか、排水処理に有用な菌までがダメージを受け、処理性能の低下リスクが高くなる。
(3)については、希釈ガス供給用の設備(ブロワーあるいはコンプレッサー)が新たに必要となり、設備コストが上昇すると共に、これら機器の電力が余計にかかることから、運転コストも上昇するという問題がある。。
However, the conventional techniques described in the above (1) to (3) have the following problems.
With regard to (1), the amount of air to be supplied is very large, several tens of times greater than the amount of gas containing the supply loss, and the mixed ozone-containing air is supplied uniformly into the tank in a short time. When the air volume increases, the bubbles become larger and are released outside the tank in a short time. Therefore, the contact time between ozone and water is very short, the dilution rate is high, and the ozone concentration is very low, so the dissolution efficiency is low. In other words, since the effective utilization rate with respect to the supplied ozone amount is lowered, an apparatus for generating a larger amount of ozone is required as a result, and both the equipment cost and the running cost are increased. In addition, since the waste ozone treatment load increases, there is also a problem that the waste ozone treatment cost increases.
As for (2), since it is necessary to supply more ozone, similarly to (1), an increase in the cost of the ozone generator and the operating cost becomes a problem. In addition, since high-concentration ozone gas is supplied to the biological treatment tank, the amount of ozone dissolved in the wastewater increases in the vicinity of the ozone gas blowout into the tank, and not only filamentous fungi that are bad bacteria, Even bacteria useful for treatment are damaged, and the risk of deterioration in treatment performance increases.
As for (3), there is a problem that the equipment for supplying the dilution gas (blower or compressor) is newly required, the equipment cost is increased, and the electric power of these devices is excessive, so that the operating cost is also increased. . .

本発明はかかる点に鑑みてなされたものであり、オゾン供給量を変えず、しかもブロワーやコンプレッサー等の機器を用いることなく供給ガス総流量を増加させることで、槽や配管内に対してより均一にオゾンを供給することを目的としている。   The present invention has been made in view of such points, and by increasing the total flow rate of the supply gas without changing the ozone supply amount and without using equipment such as a blower or a compressor, the present invention is more effective than the inside of the tank or piping. The purpose is to supply ozone uniformly.

前記目的を達成するため、本発明は、有機性排水または有機性汚泥が存在する、槽または配管内に対してオゾンを供給する方法であって、空気を原料としてPSA酸素濃縮装置によって生成された高濃度酸素ガスを原料ガスとしてオゾンを生成し、前記オゾン生成の際に前記PSA酸素濃縮装置で排出される窒素ガス濃度が高い排ガスを、希釈ガスとして前記オゾンに混合させて希釈オゾンガスを生成し、当該希釈オゾンガスを、前記槽または配管内に供給することを特徴としている。ここで窒素ガス濃度が高い排ガスとは、大気中の窒素ガス濃度より高い濃度の窒素ガスを有する排ガスをいう。   In order to achieve the above object, the present invention is a method for supplying ozone to a tank or piping in which organic wastewater or organic sludge is present, which is generated by a PSA oxygen concentrator using air as a raw material. Ozone is generated using high-concentration oxygen gas as a raw material gas, and exhaust gas having a high nitrogen gas concentration discharged from the PSA oxygen concentrator at the time of the ozone generation is mixed with the ozone as a dilution gas to generate diluted ozone gas. The diluted ozone gas is supplied into the tank or the pipe. Here, the exhaust gas having a high nitrogen gas concentration refers to an exhaust gas having a nitrogen gas concentration higher than the nitrogen gas concentration in the atmosphere.

オゾンを生成する場合、原料ガスとして窒素を多く含む空気を用いると有害な窒素酸化物(NOx)を発生させると共にオゾン発生効率も低下することから、このような有害物質の発生を大幅に低減する方法として、PSA(Pressure Swing Adsorption)タイプの酸素濃縮装置(PSA酸素濃縮装置)によって窒素を排除した高濃度な酸素が原料ガスとして用いられる。そして従来のこのような酸素濃縮処理で排気ガスとして生成される窒素ガス濃度が高いガスは、通常そのまま排気されている。   When generating ozone, if air containing a large amount of nitrogen is used as a source gas, harmful nitrogen oxides (NOx) are generated and the efficiency of ozone generation is reduced, so the generation of such harmful substances is greatly reduced. As a method, high-concentration oxygen from which nitrogen is removed by a PSA (Pressure Swing Adsorption) type oxygen concentrator (PSA oxygen concentrator) is used as a source gas. And the gas with high nitrogen gas concentration produced | generated as exhaust gas by such conventional oxygen concentration processing is normally exhausted as it is.

たとえば連続で高濃度の酸素供給が可能なPSA酸素濃縮装置においては、加圧と減圧を繰り返し、ゼオライトなど酸素以外のものを原料空気から選択的に吸着し、吸着した酸素以外の物質は、加熱、大気圧への復帰によって吸着塔から排出され、大気中に放出されている。またこのようにして排出される排ガスは窒素ガス濃度が高いガスである。本発明は、この窒素ガス濃度が高い排気ガスを高濃度オゾンガスの希釈ガスとして利用することで、希釈ガスのための機器、設備を不要とし、かつ希釈ガス供給のためのエネルギーも、元々PSA酸素濃縮装置に具備されているポンプによる送気圧をそのまま用いることができるので、格別専用のエネルギーは不要である。
そして本発明によれば、そのようにして排ガスを希釈ガスとして前記オゾンに混合させて希釈オゾンガスを生成し、当該希釈オゾンガスを、有機性排水の処理槽や配管に供給するようにしたので、オゾン自体の供給量を変えずに供給ガス総流量を増加させ、槽や配管内に対してより均一にオゾンを供給することができる。
For example, in a PSA oxygen concentrator capable of continuously supplying high-concentration oxygen, pressurization and depressurization are repeated to selectively adsorb non-oxygen materials such as zeolite from the raw material air. It is discharged from the adsorption tower by returning to atmospheric pressure and released into the atmosphere. Further, the exhaust gas discharged in this way is a gas having a high nitrogen gas concentration. The present invention uses the exhaust gas having a high nitrogen gas concentration as a dilution gas for the high-concentration ozone gas, thereby eliminating the need for equipment and facilities for the dilution gas, and the energy for supplying the dilution gas is originally PSA oxygen. Since the air pressure supplied by the pump provided in the concentrator can be used as it is, no special energy is required.
And according to the present invention, the exhaust gas is mixed with the ozone as a diluent gas to generate diluted ozone gas, and the diluted ozone gas is supplied to the treatment tank and piping for organic waste water. The total supply gas flow rate can be increased without changing the supply amount of itself, and ozone can be supplied more uniformly to the tank and the pipe.

なお本発明で使用するPSA酸素濃縮装置は、圧力スイング方式の他、圧力温度スイング方式の酸素濃縮装置も使用できる。またオゾン発生装置としては、放電式、紫外線照射式等、各種のタイプを使用できるが、放電式の方が効率はよい。また除湿処理については、通常はPSA酸素濃縮装置の前段で行なわれるが(水蒸気等はそのまま吸着塔で吸着され)、酸素濃縮プロセスの機能を損なわない範囲であればその限りではなく、例えば酸素濃縮装置に装備されている送気用ブロワあるいは加圧用のコンプレッサ前段でも、酸素濃縮時でもよく、原料空気の水分含有量によっては必要ない場合もある。   As the PSA oxygen concentrator used in the present invention, a pressure temperature swing type oxygen concentrator can be used in addition to the pressure swing type. As the ozone generator, various types such as a discharge type and an ultraviolet irradiation type can be used, but the discharge type is more efficient. The dehumidifying treatment is usually performed at the front stage of the PSA oxygen concentrator (water vapor is adsorbed as it is in the adsorption tower), but is not limited as long as it does not impair the function of the oxygen concentration process. It may be before the air blower or pressurization compressor equipped in the apparatus, or at the time of oxygen concentration, and may not be necessary depending on the moisture content of the raw air.

本発明のオゾン供給装置は、空気を原料として高濃度酸素ガスを生成するPSA酸素濃縮装置と、前記高濃度酸素ガスを原料としてオゾンを生成するオゾン発生装置と、前記オゾン発生装置によって生成されたオゾンと、PSA酸素濃縮装置から発生した窒素ガス濃度が高い排ガスとが、混合されて有機性排水または有機性汚泥が存在する、槽または配管内に対して供給される供給路と、を有している。この場合、前記窒素ガス濃度が高い排ガスの混合量を可変とする流量調整装置を有していれば、なお好ましい。流量調整装置としては,たとえば三方弁が最も簡易であり,その他マスフローコントローラも用いることができる。   The ozone supply device of the present invention is generated by a PSA oxygen concentrator that generates high-concentration oxygen gas using air as a raw material, an ozone generator that generates ozone using the high-concentration oxygen gas as a raw material, and the ozone generator. A supply path that is mixed with ozone and exhaust gas with a high concentration of nitrogen gas generated from the PSA oxygen concentrator and is supplied to the tank or pipe in which organic wastewater or organic sludge exists. ing. In this case, it is more preferable to have a flow rate adjusting device that makes the mixing amount of the exhaust gas having a high nitrogen gas concentration variable. As the flow rate adjusting device, for example, a three-way valve is the simplest, and other mass flow controllers can be used.

本発明によれば、オゾン供給量を変えず、しかもブロワーやコンプレッサー等の機器を用いることなく供給ガス総流量を増加させて、槽や配管内に対してより均一にオゾンを供給することが可能である。   According to the present invention, it is possible to supply ozone more uniformly into the tank and piping by increasing the total supply gas flow rate without changing the ozone supply amount and without using equipment such as a blower or a compressor. It is.

以下、本発明の好ましい実施の形態について説明する。図1は、実施の形態にかかるオゾン供給装置の概要を示しており、本実施の形態は、空気ばっきによる生物処理槽1に対して希釈オゾンガスを供給する装置して構成されている。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1: has shown the outline | summary of the ozone supply apparatus concerning Embodiment, This Embodiment is comprised as an apparatus which supplies diluted ozone gas with respect to the biological treatment tank 1 by air exposure.

酸素濃縮装置2は、ポンプ3(コンプレッサー)によって濃縮酸素を生成するための原料である空気を装置内に取り入れ、PSA方式によって濃縮酸素を生成する。その際発生したポンプ3によって圧縮された窒素ガス濃度が高い排ガスは装置外へと排出される。   The oxygen concentrator 2 takes in air, which is a raw material for generating concentrated oxygen, by the pump 3 (compressor) and generates concentrated oxygen by the PSA method. At that time, the exhaust gas having a high nitrogen gas concentration compressed by the pump 3 is discharged outside the apparatus.

酸素濃縮装置2によって生成された高濃度酸素ガスは、配管5を通じてオゾン発生装置6へと送られる。オゾン発生装置6は、高濃度酸素ガスを原料ガスとしてオゾンを生成する。オゾン発生装置6としては、放電式、紫外線照射方式等、種々のタイプを使用することができるが、本発明においては、効率のよい放電式の発生装置が適している。オゾン発生装置6で生成されたオゾンは残余の酸素ガスと共に、配管7を通じて供給管8へと送られる。前記したポンプ3は、酸素濃縮装置2に付設された、酸素濃縮装置2固有の機器である。   The high concentration oxygen gas generated by the oxygen concentrator 2 is sent to the ozone generator 6 through the pipe 5. The ozone generator 6 generates ozone using high-concentration oxygen gas as a raw material gas. As the ozone generator 6, various types such as a discharge type and an ultraviolet irradiation method can be used. In the present invention, an efficient discharge type generator is suitable. The ozone generated by the ozone generator 6 is sent to the supply pipe 8 through the pipe 7 together with the remaining oxygen gas. The pump 3 described above is a device unique to the oxygen concentrator 2 attached to the oxygen concentrator 2.

一方、酸素濃縮装置2から排出された排ガスは、配管11を通じて、外部へと放出されるが、その全部または一部が、供給管8へと供給可能になっている。かかる切り替えは、配管11と供給管8の端部に設けられた三方弁12によって切り替えられ、また供給管8に流れる排ガスの流量も、三方弁12の開度によって調整される。   On the other hand, the exhaust gas discharged from the oxygen concentrator 2 is released to the outside through the pipe 11, but all or part of the exhaust gas can be supplied to the supply pipe 8. Such switching is switched by the three-way valve 12 provided at the end of the pipe 11 and the supply pipe 8, and the flow rate of the exhaust gas flowing through the supply pipe 8 is also adjusted by the opening degree of the three-way valve 12.

前記したような三方弁12の開度調整は、たとえば配管7を流れるガス中のオゾン濃度に基づいて行なうことができ、それに基づいて所望の希釈度、流量を算出して、供給管8に混合する排ガスの流量から三方弁12の開度が制御される。もちろん予め配管7を流れるガス中のオゾン濃度、所望の希釈度が判明している場合には、試運転時に開度調整しておいてもよい。なお酸素濃縮装置2から排出される窒素ガス濃度の高いガスのガス量は、高濃度酸素のガス量の約20倍あることから、オゾンガスの希釈倍率は最大約20倍まで可能である。   The opening degree of the three-way valve 12 as described above can be adjusted based on, for example, the ozone concentration in the gas flowing through the pipe 7, and based on this, the desired dilution and flow rate are calculated and mixed in the supply pipe 8. The opening degree of the three-way valve 12 is controlled from the flow rate of exhaust gas. Of course, when the ozone concentration in the gas flowing through the pipe 7 and the desired dilution are known in advance, the opening degree may be adjusted during the trial operation. Since the amount of gas with a high nitrogen gas concentration discharged from the oxygen concentrator 2 is about 20 times the amount of high concentration oxygen, the ozone gas can be diluted up to about 20 times.

生物処理槽1は、好気性微生物の働きによって有機性排水を活性汚泥処理するための処理槽であり、好気性環境を維持するために、ポンプ21によって取り入れた空気を、槽内に配置した第1の散気管22によって槽内に放出して排水をばっきするようになっている。   The biological treatment tank 1 is a treatment tank for activated sludge treatment of organic wastewater by the action of aerobic microorganisms. In order to maintain the aerobic environment, the air taken in by the pump 21 is disposed in the tank. A single air diffuser 22 discharges the water into the tank to discharge the drainage.

そして供給管8を通じて流れる希釈オゾンガスは、第2の散気管13によって、槽内に供給されるになっている。   The diluted ozone gas flowing through the supply pipe 8 is supplied into the tank by the second air diffuser 13.

本実施の形態は、以上のように構成されており、生物処理槽1に対してオゾンを供給する場合、酸素濃縮装置2によって生成された高濃度の酸素含有ガスを原料ガスとしてオゾン発生装置6によって発生させたオゾン含有ガスに、酸素濃縮装置2から排出された窒素ガス濃度が高い排ガスが、希釈ガスとして供給管8に混入して希釈オゾンガスが生成される。そして当該希釈オゾンガスが、第2の散気管13によって、槽内に供給される。これによって、オゾン自体の供給量を変えることなく、しかも専用のブロワーやコンプレッサー等の機器を用いることなくオゾンを含有した供給ガスの総流量を増加させて、槽内に供給することができる。したがって、高濃度オゾン供給による槽内での無駄なオゾン消費を防止できるとともに、従来よりもより均一にオゾンを供給することが可能である。   The present embodiment is configured as described above. When ozone is supplied to the biological treatment tank 1, the ozone generator 6 uses the high-concentration oxygen-containing gas generated by the oxygen concentrator 2 as a source gas. Exhaust gas having a high nitrogen gas concentration discharged from the oxygen concentrator 2 is mixed into the supply pipe 8 as a dilution gas in the ozone-containing gas generated by the above, and diluted ozone gas is generated. Then, the diluted ozone gas is supplied into the tank by the second air diffuser 13. Thus, the total flow rate of the supply gas containing ozone can be increased and supplied into the tank without changing the supply amount of ozone itself and without using a dedicated blower or compressor. Therefore, wasteful ozone consumption in the tank due to the supply of high-concentration ozone can be prevented, and ozone can be supplied more uniformly than before.

以下、本実施の形態にかかるオゾン供給装置を使用しての具体的効果を説明し、オゾン希釈の有効性と、希釈用ガス流体として酸素濃縮装置の排ガスを利用することの有効性について説明する。図2は、図1の生物処理槽1に対して容積負荷に対する処理水のBOD(Biochemical Oxygen Demand:生物化学的酸素要求量)の変化を示し、オゾン無添加の場合、オゾンを希釈しない場合(すなわち酸素濃縮装置2からの排ガスを供給管8に混入しない場合)、オゾンを希釈した場合(すなわち酸素濃縮装置2からの排ガスを供給管8に混入して4倍に希釈した場合)の各々について調べた結果を示す。図のグラフ中、縦軸はBOD約400mg/lの排水を処理した処理水のBOD値で、目標水質は20mg/lである。横軸には1日当たり1mの処理槽で処理したBOD総量を示しており、高いほど処理水量が多いことを意味する。 Hereinafter, specific effects of using the ozone supply device according to the present embodiment will be described, and the effectiveness of ozone dilution and the effectiveness of using the exhaust gas of the oxygen concentrator as a dilution gas fluid will be described. . FIG. 2 shows a change in BOD (Biochemical Oxygen Demand) of the treated water with respect to the volumetric load with respect to the biological treatment tank 1 of FIG. 1. That is, when the exhaust gas from the oxygen concentrator 2 is not mixed into the supply pipe 8), when ozone is diluted (that is, when the exhaust gas from the oxygen concentrator 2 is mixed into the supply pipe 8 and diluted four times) The results of the investigation are shown. In the graph, the vertical axis represents the BOD value of treated water obtained by treating wastewater with a BOD of about 400 mg / l, and the target water quality is 20 mg / l. The horizontal axis shows the total amount of BOD processed in a treatment tank of 1 m 3 per day, and the higher the value, the greater the amount of treated water.

有機性排水の活性汚泥処理において微量のオゾンを活性汚泥処理槽に供給することによって処理性能の向上、余剰汚泥の削減、汚泥沈降性の改善効果が得られることを発明者らはすでに確認している。この場合、ばっき用の空気量に対するオゾン含有ガス供給量は、処理する排水の水質及び供給するオゾン含有ガスのオゾン濃度により異なるが、PSA方式の酸素濃縮装置2を使用した際のオゾン発生装置6での濃度(数〜十数%)では、1/数十〜1/数百程度である。   The inventors have already confirmed that the treatment performance can be improved, the excess sludge can be reduced, and the sludge settling can be improved by supplying a small amount of ozone to the activated sludge treatment tank in the activated sludge treatment of organic wastewater. Yes. In this case, the amount of ozone-containing gas supplied relative to the amount of air used for exposure varies depending on the quality of the wastewater to be treated and the ozone concentration of the supplied ozone-containing gas, but the ozone generator when using the PSA-type oxygen concentrator 2 The concentration at 6 (several to several tens%) is about 1 / several tens to 1 / several hundreds.

図2に示した結果を見ると、オゾン無添加の空気ばっき処理では、容積負荷が0.5kgBOD/(m・d)辺りで処理目標レベルを超えている。一方、酸素濃縮装置2の排ガスを希釈ガスとして用いたオゾン供給処理では、0.8kgBOD/(m・d)を超える辺りまでは目標レベルでの処理ができており、オゾン無添加に比べて2倍近く性能が向上している。一方、供給オゾン量は同じで、希釈せずに供給した処理では、希釈オゾン供給計に比べて明らかに改善幅は小さいことがわかる。なお、この実験での希釈前のオゾン濃度は約4%、希釈後は1%である。 When the result shown in FIG. 2 is seen, in the air exposure treatment without addition of ozone, the volume load exceeds the treatment target level around 0.5 kg BOD / (m 3 · d). On the other hand, in the ozone supply process using the exhaust gas of the oxygen concentrator 2 as a dilution gas, the process can be performed at a target level until it exceeds 0.8 kgBOD / (m 3 · d), compared with the case where no ozone is added. Nearly twice the performance has been improved. On the other hand, it can be seen that the amount of ozone supplied is the same, and that the amount of improvement is clearly smaller in the treatment supplied without dilution than in the diluted ozone supply meter. In this experiment, the ozone concentration before dilution is about 4%, and after dilution is 1%.

このように、同じオゾン供給処理においても、希釈した方がより高いオゾン添加効果かがあることが確認できた。なお、PSA方式の酸素濃縮装置2からの高濃度酸素含有ガスを原料ガスとして使用したオゾン発生装置6では、生成オゾン濃度範囲は通常数%〜十数%であり、この範囲では、希釈処理した方がより高いオゾン添加効果が得られるものと本結果より推定される。   Thus, even in the same ozone supply treatment, it was confirmed that the diluted ozone has a higher ozone addition effect. In addition, in the ozone generator 6 using the high-concentration oxygen-containing gas from the PSA-type oxygen concentrator 2 as a raw material gas, the generated ozone concentration range is usually several% to several tens%, and in this range, dilution treatment was performed. It is estimated from this result that a higher ozone addition effect is obtained.

このように同じオゾン量を添加する場合、高濃度よりも、ある程度希釈した方がより高いオゾン添加効果が得られるメカニズムは完全には解明していないが、以下の理由の何れかと推察される。
(1)供給水槽内において、希釈しないオゾン含有ガスの供給では、供給ガス流量が少ないため水槽内広範囲において散気注入することが難しく、結果的に局所的な効果になってしまう。
(2)有機性排水の活性汚泥処理へのオゾン添加では、オゾン添加量を適正値よりも多くしていくと次第に殺菌効果が顕在化し始め、活性汚泥の活性度が低下していくことを確認している。一方、オゾンに対する活性汚泥構成微生物の耐性においては、活性汚泥処理のトラブル元の悪玉菌である糸状菌と他の有効な菌では、糸状菌の方がオゾン耐性が低く、より不活性化しやすいことが分かっている。つまり、より低濃度のオゾン添加では有効な菌にはダメージを与えなく糸状菌に対しては繁殖を抑制しするのに対して、高濃度オゾンの供給においては局所的に糸状菌と一緒に有効な菌にもダメージを与えることから、結果的に槽内全体では有効菌のダメージ増加と、これにオゾンが消費されることによる糸状菌の抑制効果の低下が起こっている。
Thus, when adding the same amount of ozone, the mechanism by which a higher ozone addition effect is obtained by diluting to some extent rather than a high concentration has not been completely clarified, but it is presumed that it is due to one of the following reasons.
(1) When supplying an ozone-containing gas that is not diluted in the supply water tank, since the supply gas flow rate is small, it is difficult to inject aeration in a wide area in the water tank, resulting in a local effect.
(2) In the addition of ozone to the activated sludge treatment of organic wastewater, it is confirmed that if the amount of ozone added is increased from the appropriate value, the bactericidal effect will gradually begin to manifest and the activated sludge activity will decrease. is doing. On the other hand, in the resistance of activated sludge constituent microorganisms to ozone, filamentous fungi that are the bad bacteria that caused trouble in activated sludge treatment and other effective fungi are less resistant to ozone and more inactive. I know. In other words, the addition of ozone at a lower concentration does not damage effective bacteria and suppresses the growth of filamentous fungi, whereas the supply of high-concentration ozone is effective together with the filamentous fungus locally. As a result, damage is also caused to various bacteria, resulting in an increase in the damage of effective bacteria in the entire tank and a decrease in the suppression effect of filamentous fungi due to consumption of ozone.

なお前記実施の形態は、空気ばっきによる生物処理槽1に対して希釈オゾンガスを供給する例として挙げたが、これに限らず本発明は、排水処理装置の流量調整槽、無酸素槽、汚泥貯留槽、処理水送水配管に対して、オゾンを供給する際にも適用できる。さらにまた本発明は、オゾンを利用した浄水処理システム、中水処理システム、難分解性物質含有水処理システムにおいても適用でき、オゾンを利用した脱臭方法、装置、さらには液中、気中のオゾン殺菌システムに対しても適用することが可能である。   In addition, although the said embodiment was mentioned as an example which supplies diluted ozone gas with respect to the biological treatment tank 1 by air exposure, this invention is not restricted to this, The flow volume adjustment tank of a waste water treatment apparatus, an oxygen-free tank, sludge The present invention can also be applied when ozone is supplied to the storage tank and the treated water supply pipe. Furthermore, the present invention can be applied to a water purification system, a middle water treatment system, a water treatment system containing a hardly decomposable substance using ozone, and a deodorization method and apparatus using ozone, as well as ozone in liquid and air. The present invention can also be applied to a sterilization system.

本発明は、有機性排水の生物処理槽、有機性排水の流量調整槽(貯留槽)、さらには排水等の生物処理で生成する余剰汚泥貯留槽等に対して、所定量のオゾンを供給して処理する際に有用である。   The present invention supplies a predetermined amount of ozone to a biological treatment tank for organic wastewater, a flow rate adjustment tank (storage tank) for organic wastewater, and an excess sludge storage tank generated by biological treatment such as wastewater. It is useful when processing.

実施の形態にかかるオゾン供給装置の構成の概要を模式的に示した説明図である。It is explanatory drawing which showed typically the outline | summary of the structure of the ozone supply apparatus concerning embodiment. 図1のオゾン供給装置によって生物処理槽に対して希釈オゾンガスを供給した場合の容積負荷に対する処理水のBODの変化を、希釈しない場合、オゾンを添加しない場合とを比較して示すグラフである。It is a graph which shows the change of the BOD of the treated water with respect to the volume load at the time of supplying diluted ozone gas with respect to the biological treatment tank with the ozone supply apparatus of FIG. 1 compared with the case where it does not dilute and does not add ozone.

符号の説明Explanation of symbols

1 生物処理槽
2 酸素濃縮装置
3 ポンプ
4 ポンプ
5、7、11 配管
6 オゾン発生装置
8 供給管
12 三方弁
13 第1の散気管
21 ポンプ
22 第2の散気管
DESCRIPTION OF SYMBOLS 1 Biological treatment tank 2 Oxygen concentrator 3 Pump 4 Pump 5, 7, 11 Piping 6 Ozone generator 8 Supply pipe 12 Three-way valve 13 1st air diffuser 21 Pump 22 2nd air diffuser

Claims (3)

有機性排水または有機性汚泥が存在する、槽または配管内に対してオゾンを供給する方法であって、
空気を原料としてPSA酸素濃縮装置によって生成された高濃度酸素ガスを原料ガスとしてオゾンを生成し、
前記オゾン生成の際に前記PSA酸素濃縮装置で排出される窒素ガス濃度が高い排ガスを、希釈ガスとして前記オゾンに混合させて希釈オゾンガスを生成し、
当該希釈オゾンガスを、前記槽または配管内に供給することを特徴とする、オゾン供給方法。
A method of supplying ozone to a tank or piping in which organic wastewater or organic sludge exists,
Ozone is generated using high-concentration oxygen gas generated by a PSA oxygen concentrator using air as a raw material,
Exhaust gas having a high nitrogen gas concentration discharged from the PSA oxygen concentrator during the ozone generation is mixed with the ozone as a dilution gas to generate a diluted ozone gas,
An ozone supply method comprising supplying the diluted ozone gas into the tank or pipe.
有機性排水または有機性汚泥が存在する、槽または配管内に対してオゾンを供給する装置であって、
空気を原料として高濃度酸素ガスを生成するPSA酸素濃縮装置と、
前記高濃度酸素ガスを原料としてオゾンを生成するオゾン発生装置と、
前記オゾン発生装置によって生成されたオゾンと、PSA酸素濃縮装置から発生した窒素ガス濃度が高い排ガスとが、混合されて前記槽または配管内に対して供給される供給路と、を有することを特徴とする、オゾン供給装置。
A device for supplying ozone to a tank or pipe in which organic drainage or organic sludge exists,
A PSA oxygen concentrator that generates high-concentration oxygen gas using air as a raw material;
An ozone generator that generates ozone using the high-concentration oxygen gas as a raw material;
A supply path in which ozone generated by the ozone generator and exhaust gas having a high nitrogen gas concentration generated from the PSA oxygen concentrator are mixed and supplied to the tank or the pipe. An ozone supply device.
前記窒素ガス濃度が高い排ガスの混合量を可変とする流量調整装置を有することを特徴とする、請求項2に記載のオゾン供給装置。 The ozone supply device according to claim 2, further comprising a flow rate adjusting device that makes the mixing amount of the exhaust gas having a high nitrogen gas concentration variable.
JP2008082784A 2008-03-27 2008-03-27 Ozone supply method and ozone supply apparatus Active JP5095466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082784A JP5095466B2 (en) 2008-03-27 2008-03-27 Ozone supply method and ozone supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082784A JP5095466B2 (en) 2008-03-27 2008-03-27 Ozone supply method and ozone supply apparatus

Publications (2)

Publication Number Publication Date
JP2009233572A true JP2009233572A (en) 2009-10-15
JP5095466B2 JP5095466B2 (en) 2012-12-12

Family

ID=41248223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082784A Active JP5095466B2 (en) 2008-03-27 2008-03-27 Ozone supply method and ozone supply apparatus

Country Status (1)

Country Link
JP (1) JP5095466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071238A (en) * 2010-09-28 2012-04-12 Takasago Thermal Eng Co Ltd Ozone supply device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294694A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Ozone diffuser for water treatment
JPH1017305A (en) * 1996-07-02 1998-01-20 Fuji Electric Co Ltd Ozone producing equipment and its operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294694A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Ozone diffuser for water treatment
JPH1017305A (en) * 1996-07-02 1998-01-20 Fuji Electric Co Ltd Ozone producing equipment and its operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071238A (en) * 2010-09-28 2012-04-12 Takasago Thermal Eng Co Ltd Ozone supply device

Also Published As

Publication number Publication date
JP5095466B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP2010264436A (en) Method for sludge treatment
US7803272B2 (en) Water treatment system
US20070034230A1 (en) Method and system for producing ozonized deionized water
JP4465628B2 (en) Biological treatment method and apparatus for nitrous oxide gas
JP2008190753A (en) Air conditioner and pure water production system
JP2009056364A (en) Piping type water treatment apparatus
KR20110060854A (en) Exhaust oxygen recycling device of ozone processing equipment and ozonation system having the recycling device
US20170028095A1 (en) Air purifier for bringing gas into contact with plasma-treated liquid
JP2010022991A (en) Liquid treatment device and liquid treatment method
KR100934479B1 (en) Hazardous Gas Treatment System
JP4709608B2 (en) Radical treatment equipment
JP2008307475A (en) Hydrogen sulfide removing method and hydrogen sulfide removing apparatus
JP5166014B2 (en) Equipment for removing dissolved hydrogen sulfide in anaerobic treatment
JP5095466B2 (en) Ozone supply method and ozone supply apparatus
JP5292240B2 (en) Ozone supply method and ozone supply apparatus
JP2014064976A (en) Water treatment apparatus
JP2016013498A (en) Apparatus and method for aerating/purifying contaminated water
JP2009255011A (en) Water treatment apparatus and water treating method
JP2002355684A (en) Wastewater treatment method and apparatus
JP2012071238A (en) Ozone supply device
JP2008272761A (en) Accelerated oxidation treatment apparatus
JP2006281061A (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2002307083A (en) Accelerated oxidation treatment apparatus
JP2009255015A (en) Water treatment apparatus and water treating method
JP6818671B2 (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3