JP2009231407A - Organic semiconductor thin-film and organic thin-film transistor using same - Google Patents

Organic semiconductor thin-film and organic thin-film transistor using same Download PDF

Info

Publication number
JP2009231407A
JP2009231407A JP2008072856A JP2008072856A JP2009231407A JP 2009231407 A JP2009231407 A JP 2009231407A JP 2008072856 A JP2008072856 A JP 2008072856A JP 2008072856 A JP2008072856 A JP 2008072856A JP 2009231407 A JP2009231407 A JP 2009231407A
Authority
JP
Japan
Prior art keywords
thin film
organic
film
polymer
organic semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008072856A
Other languages
Japanese (ja)
Other versions
JP5403578B2 (en
Inventor
Masahiro Funahashi
正浩 舟橋
Fapei Zhang
発培 張
Nobuyuki Tamaoki
信之 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008072856A priority Critical patent/JP5403578B2/en
Publication of JP2009231407A publication Critical patent/JP2009231407A/en
Application granted granted Critical
Publication of JP5403578B2 publication Critical patent/JP5403578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new organic semiconductor thin-film that maintains a freedom degree of molecular motion, has flexibility, shows excellent stability with respect to deformation such as bending, and further, shows high carrier mobility and a high on/off ratio, and prevents the mobility and the on/off ratio from deteriorating even when a substrate is bent, and an organic thin-film transistor using the same. <P>SOLUTION: The organic semiconductor thin-film is configured such that a liquid crystalline semiconductor layer, including a liquid crystal compound expressed by general formula (1), is provided on a polymer film. The organic thin-film transistor uses the organic semiconductor thin-film. In the formula, R<SB>1</SB>represents a 1-8C straight alkyl group while R<SB>2</SB>represents a 1-8C alkyl group or a 1-8C alkoxy group. In the formula, n represents an integer of 0-3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はフレキシブルな高分子フィルム上に、室温で安定な高次のスメクティック相を示す液晶性半導体薄膜を設けた有機半導体薄膜及び該薄膜を用いた有機薄膜トランジスターに関する。   The present invention relates to an organic semiconductor thin film in which a liquid crystalline semiconductor thin film exhibiting a high-order smectic phase stable at room temperature is provided on a flexible polymer film, and an organic thin film transistor using the thin film.

近年、実用レベルに達した有機LEDを始めとして、薄膜トランジスター、太陽電池など有機半導体の光電子デバイスへの展開が盛んに検討されている。有機半導体のメリットとしては、一般に安価であり薄膜形成が容易であることが挙げられる。それに加えて、無機半導体にはない柔軟性を有することから、高分子基板上にデバイスを作製・集積し、フレキシブルなデバイスを作製する試みが検討されている。特に、有機薄膜トランジスターは電子ペーパーなどのフレキシブルディスプレー実現のためのキーとなるデバイスである。   In recent years, development of organic semiconductors such as thin-film transistors and solar cells in optoelectronic devices such as organic LEDs that have reached a practical level has been actively studied. The merit of the organic semiconductor is that it is generally inexpensive and easy to form a thin film. In addition, since it has flexibility not found in inorganic semiconductors, attempts have been made to fabricate and integrate devices on polymer substrates to fabricate flexible devices. In particular, an organic thin film transistor is a key device for realizing a flexible display such as electronic paper.

一般に、有機薄膜トランジスターにおいては、高速のスイッチング特性を実現し、実用的なデバイスを低コストで作製するためには、高いキャリア移動度に加えて、欠陥密度の低い大面積均一薄膜が容易に作製できなくてはならない。現在、ペンタセンなどの縮合多環芳香族化合物の真空蒸着膜を用いた有機薄膜トランジスターが検討されている。   In general, for organic thin film transistors, large-area uniform thin films with low defect density are easily produced in addition to high carrier mobility in order to realize high-speed switching characteristics and to produce practical devices at low cost. It must be possible. Currently, organic thin-film transistors using vacuum-deposited films of condensed polycyclic aromatic compounds such as pentacene are being studied.

しかし、低コストでデバイスを作製するためには、高コストで、結晶成長条件の厳密な制御が必要である真空プロセスよりも、大面積にわたって均一な薄膜を容易に作製できる、スピンコートなどの溶液プロセスの方が望ましい。   However, in order to fabricate devices at low cost, a solution such as spin coating that can easily produce a uniform thin film over a large area is more expensive than a vacuum process that requires strict control of crystal growth conditions. Process is preferred.

溶液プロセスによる有機薄膜トランジスター作製の例としては、たとえば、ペンタセンにトリアルキルシリルエチニル基を導入することにより有機溶媒に対する溶解性を付与したシリコンを基板とする有機薄膜トランジスターが知られている(非特許文献1)。また、可溶性の前駆体を溶液プロセスによりシリコン基板に塗布した後、薄膜を加熱して高品位の半導体薄膜に変換する方法が知られている(非特許文献2)。   As an example of producing an organic thin film transistor by a solution process, for example, an organic thin film transistor using a silicon substrate provided with solubility in an organic solvent by introducing a trialkylsilylethynyl group into pentacene is known (non-patent document). Reference 1). Further, a method is known in which a soluble precursor is applied to a silicon substrate by a solution process and then the thin film is heated to convert it into a high-quality semiconductor thin film (Non-patent Document 2).

しかし、上記のような溶液プロセスで作製した基板をシリコンとする薄膜トランジスターは、真空蒸着で作製したものに比べ、結晶の成長条件の制御が困難なため、品質が劣り、移動度、オンオフ比ともに大きく劣り、その特性は十分なものとはいえず、また、薄膜は多結晶であり、電気伝導を阻害する多くの結晶粒界や欠陥を含む。   However, a thin film transistor using silicon as a substrate manufactured by the above-described solution process is inferior in quality and has low mobility, mobility and on / off ratio compared to those manufactured by vacuum deposition because the crystal growth conditions are difficult to control. The film is greatly inferior and its characteristics are not sufficient, and the thin film is polycrystalline and includes many crystal grain boundaries and defects that hinder electrical conduction.

また、ポリチオフェンなどの共役高分子を用いて溶液プロセスにより、シリコン基板上に作製した結晶性半導体薄膜トランジスターも検討されているが(非特許文献3)、その性能は分子量や分子量分散、薄膜の作成条件に強く依存し、良好な性能を示す材料も限られている。   A crystalline semiconductor thin film transistor fabricated on a silicon substrate by solution process using a conjugated polymer such as polythiophene has also been studied (Non-Patent Document 3), but its performance is molecular weight, molecular weight dispersion, and thin film creation. There are also limited materials that are highly dependent on conditions and that exhibit good performance.

最近、このような欠点を解消するために、共役高分子とは異なり、分子構造が明確に規定できる低分子化合物を利用した液晶性半導体薄膜が提案されている(非特許文献4,5)。
このものは、分子運動の自由度のため、結晶性薄膜に比べて柔軟性に富み、フレキシブルな液晶性半導体を用いた薄膜トランジスターに適していると期待できる。また、物性値の再現性は良好であり、ロットごとのばらつきもほとんどない。
しかしながら、これらの有機薄膜トランジスターにおいては、基板はシリコンであり、また、ここで用いられている液晶化合物は、室温付近では結晶化してしまうビス(アルキルチエニルエチニル)ターチオフェンやビス(アルキルチエニル)ナフタレンであるため、たとえ、薄膜作成時には液晶性を利用したとしても、得られた薄膜は結晶性の薄膜となってしまい、しかもデバイスの駆動も結晶相において行われることから、液晶相の柔軟性を利用することができないといった難点があった。
Recently, in order to eliminate such drawbacks, a liquid crystalline semiconductor thin film using a low molecular weight compound that can clearly define the molecular structure has been proposed, unlike conjugated polymers (Non-Patent Documents 4 and 5).
This is expected to be suitable for a thin film transistor using a flexible liquid crystal semiconductor because it has a higher degree of molecular motion and is more flexible than a crystalline thin film. Also, the reproducibility of physical property values is good, and there is almost no variation from lot to lot.
However, in these organic thin film transistors, the substrate is silicon, and the liquid crystal compound used here is bis (alkylthienylethynyl) terthiophene or bis (alkylthienyl) naphthalene which crystallizes near room temperature. Therefore, even if the liquid crystallinity is used at the time of forming the thin film, the obtained thin film becomes a crystalline thin film, and the device is also driven in the crystal phase. There was a difficulty that it could not be used.

更に、非対称構造を持つアルキルアルキルフェニルオリゴチオフェン誘導体(液晶性半導体)が室温を含む広い温度領域で高次のスメクティック相を示し、スピンコート法により厚さ20〜100 nmの薄膜をシリコン基板上に作製することができ、その薄膜はポリドメインではあるものの、各ドメインのサイズは100μmを超え、さらに、105℃でアニールすることにより分子レベルで平坦な構造欠陥の少ない薄膜が作製でき、それを用いてトランジスターを作製すると、大気中ではp型動作を示し、その電界効果移動度は0.05 cm2/Vsに達することが本発明者等により報告されている(特許文献1、非特許文献6、7)。 Furthermore, an alkylalkylphenyl oligothiophene derivative (liquid crystalline semiconductor) having an asymmetric structure exhibits a high-order smectic phase in a wide temperature range including room temperature, and a thin film having a thickness of 20 to 100 nm is formed on a silicon substrate by spin coating. Although the thin film is a polydomain, the size of each domain exceeds 100 μm, and by annealing at 105 ° C, a thin film with few structural defects that is flat at the molecular level can be produced and used. Thus, it has been reported by the present inventors that a p-type operation is exhibited in the atmosphere and its field effect mobility reaches 0.05 cm 2 / Vs (Patent Document 1, Non-Patent Documents 6 and 7). ).

しかし、この報告で得られる有機薄膜トランジスターも、上記と同様に基板としてシリコンを用いたものであり、高分子フィルムの使用に関しては何ら言及されていない。また、分子運動の自由度が保持され、柔軟性を有し、しかも曲げなどの変形に対して優れた安定性を示し、更には、高いキャリア移動度、高いon/off比を有し、また、基板を曲げた場合でも移動度、on/off比、閾値電圧が低下しない、有機半導体薄膜については何ら開示するところがない。   However, the organic thin film transistor obtained in this report also uses silicon as a substrate in the same manner as described above, and no mention is made regarding the use of a polymer film. In addition, the degree of freedom of molecular motion is maintained, it has flexibility, exhibits excellent stability against deformation such as bending, and further has high carrier mobility, high on / off ratio, There is no disclosure of an organic semiconductor thin film in which mobility, on / off ratio, and threshold voltage do not decrease even when the substrate is bent.

ところで、前記したように、有機半導体膜は無機半導体膜に比べて柔軟性に富むので、現在、電子ペーパーなどのフレキシブルなディスプレーの用途に対する研究開発が強く指向されている。
有機半導体を用いたフレキシブルデバイスを実現するには、軽量で耐熱性に優れた高分子フィルムを基板として用いること、有機半導体層が優れた電荷輸送特性を示すことに加えて、十分な柔軟性を有することが必要であり、曲げなどの変形を受けた際にもデバイスが正常に動作することが求められている。
Incidentally, as described above, organic semiconductor films are more flexible than inorganic semiconductor films. Therefore, research and development for flexible display applications such as electronic paper are strongly directed at present.
In order to realize flexible devices using organic semiconductors, in addition to using a polymer film that is lightweight and excellent in heat resistance as a substrate, the organic semiconductor layer exhibits excellent charge transport properties, and sufficient flexibility It is necessary for the device to operate normally even when subjected to deformation such as bending.

これまでに、高分子基板上に有機薄膜トランジスターを作製する試みはいくつか検討されている。たとえば、高分子基板上にペンタセンを真空蒸着して作製した薄膜トランジスターにおいて、基板の曲げに対するデバイス特性の変化が検討されている(非特許文献8)。
しかし、ここで得られる薄膜は非常にリジッドな分子性結晶構造を有するため、曲げなどの変形に対しては十分な強度と安定性を有しているわけではなく、例えば、ペンタセンの蒸着膜を用いたトランジスターでは、1%の変形を加えただけでキャリア移動度は一桁以上低下する。
Until now, several attempts to produce an organic thin film transistor on a polymer substrate have been studied. For example, in a thin film transistor manufactured by vacuum-depositing pentacene on a polymer substrate, changes in device characteristics with respect to bending of the substrate have been studied (Non-Patent Document 8).
However, since the thin film obtained here has a very rigid molecular crystal structure, it does not have sufficient strength and stability against deformation such as bending. For example, a deposited film of pentacene is used. In the transistor used, carrier mobility decreases by an order of magnitude or more with only 1% deformation.

また、分子性結晶よりも柔軟性に富む共役高分子、たとえばポリチオフェン誘導体で高いキャリア移動度を示すものを高分子基板上に設けたものも、知られているが(非特許文献9)、デバイスの特性が共役高分子の分子量や分子量分布、純度の影響を受けるため、再現性の問題や、ロットごとの物性のばらつきが問題となる。   Also known is a conjugated polymer which is more flexible than a molecular crystal, for example, a polythiophene derivative having a high carrier mobility provided on a polymer substrate (Non-patent Document 9). Since the above characteristics are affected by the molecular weight, molecular weight distribution, and purity of the conjugated polymer, reproducibility problems and variations in physical properties from lot to lot become problems.

最近の試みの例としては、ルブレンの単結晶を高分子基板上に並べてトランジスターアレイを作製した例も知られている(非特許文献10)。
しかし、物性値とサイズのそろった単結晶を多数作成するのはまだ難しく、一般的な技術にはなっていない。
As an example of recent attempts, a transistor array is also known in which rubrene single crystals are arranged on a polymer substrate (Non-patent Document 10).
However, it is still difficult to produce a large number of single crystals having the same physical properties and sizes, and this is not a general technique.

このように、有機半導体層が優れた電荷輸送特性を示し、かつ十分な柔軟性を有すると共に曲げなどの変形を受けた際にもデバイスが正常に動作することが可能な、軽量で耐熱性に優れた高分子フィルムを基板とした有機薄膜トランジスターが開発されていないのが現状である。   In this way, the organic semiconductor layer exhibits excellent charge transport characteristics, has sufficient flexibility, and can operate normally even when subjected to deformation such as bending, making it lightweight and heat resistant. At present, an organic thin film transistor using an excellent polymer film as a substrate has not been developed.

特開2008-13539号公報JP 2008-13539 J. E. Anthony et al., J. Am. Chem. Soc., 127, 4986 (2005).J. E. Anthony et al., J. Am. Chem. Soc., 127, 4986 (2005). A. R. Murphy, P. C. Chang, P. VanDyke, J. Liu, J. M. Frechet, V. Subramanian, D. M. DeLongechamp, S. Sambasivan, D. A. Fischer, and E. K. Lin, Chem. Mater., 17, 6033 (2005).A. R. Murphy, P. C. Chang, P. VanDyke, J. Liu, J. M. Frechet, V. Subramanian, D. M. DeLongechamp, S. Sambasivan, D. A. Fischer, and E. K. Lin, Chem. Mater., 17, 6033 (2005). A. Salleo, Materials Today, 10, 38 (2007).A. Salleo, Materials Today, 10, 38 (2007). A. J. J. M. van Breemen, P. T. Herwig, C. H. T. Chlon, J. Sweelssen, H. F. M. Schoo, S. Setayesh, W. M. Hardeman, C. A. Martin, D. M. de Leeuw, J. J. P. Valeton, C. W. M. Bastiaasen, D. J. Broer, A. R. Popa-Merticaru, S. C. J. Meskers, J. Am. Chem. Soc., 128, 2336 (2006).AJJM van Breemen, PT Herwig, CHT Chlon, J. Sweelssen, HFM Schoo, S. Setayesh, WM Hardeman, CA Martin, DM de Leeuw, JJP Valeton, CWM Bastiaasen, DJ Broer, AR Popa-Merticaru, SCJ Meskers, J. Am. Chem. Soc., 128, 2336 (2006). K. Oikawa, H. Monobe, K. Nakayama, T. Kishimoto, K. Tsuchiya, B. Heinrich, D. Guillon, Y. Shimizu, M. Yokoyama, Adv. Mater., 19, 1864 (2007).K. Oikawa, H. Monobe, K. Nakayama, T. Kishimoto, K. Tsuchiya, B. Heinrich, D. Guillon, Y. Shimizu, M. Yokoyama, Adv. Mater., 19, 1864 (2007). M. Funahashi, F. Zhang, and N. Tamaoki, Adv. Mater., 19, 353 (2007).M. Funahashi, F. Zhang, and N. Tamaoki, Adv. Mater., 19, 353 (2007). F. Zhang, M. Funahashi, and N. Tamaoki, Appl. Phys. Lett., 91, 063515 (2007).F. Zhang, M. Funahashi, and N. Tamaoki, Appl. Phys. Lett., 91, 063515 (2007). T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci., 101, 9966 (2004).T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci., 101, 9966 (2004). T. Makela, S. Jussila, H. Kosonen, T. G. Backlund, H. G. O. Sandberg, and H. Stubb, Synth. Metal., 153, 285 (2005).T. Makela, S. Jussila, H. Kosonen, T. G. Backlund, H. G. O. Sandberg, and H. Stubb, Synth. Metal., 153, 285 (2005). A. L. Briseno, R. J. Tseng, M-M. Ling, E. H. L. Falcao, Y. Yang, F. Wudl, and Z. Bao, Adv. Mater., 18, 2320(2006).A. L. Briseno, R. J. Tseng, M-M. Ling, E. H. L. Falcao, Y. Yang, F. Wudl, and Z. Bao, Adv. Mater., 18, 2320 (2006).

本発明は、分子運動の自由度が保持され、柔軟性を有し、しかも曲げなどの変形に対して優れた安定性を示し、更には、高いキャリア移動度、高いon/off比を有し、また、基板を曲げた場合でも移動度、on/off比、閾値電圧が低下しない、新規な有機半導体薄膜およびこれを用いた有機薄膜トランジスターを提供することを目的とする。   The present invention retains the degree of freedom of molecular motion, has flexibility, exhibits excellent stability against deformation such as bending, and further has high carrier mobility and high on / off ratio. Another object of the present invention is to provide a novel organic semiconductor thin film and an organic thin film transistor using the same, in which mobility, on / off ratio, and threshold voltage do not decrease even when the substrate is bent.

本発明者は、本発明者等が先に開発した前記特許文献1に記載された、室温付近で高次のスメクティック相を示す非対称構造を有するフェニルオリゴチオフェン誘導体の溶液を用いて、高分子フィルム上に薄膜を作製したところ、熱酸化膜付シリコン基板上に薄膜を作成した場合と同様に、液晶性の薄膜が得られ、しかもその薄膜はポリドメインではあるものの、各ドメインのサイズは100μmを超えていること、及びこの薄膜を用いてトランジスターを作製すると室温で高次の液晶相を示し、柔軟な液晶状態で動作すること、加えて大気中でp型動作を示し、その電界効果移動度は最大で0.03 cm2/Vsに達すること、更には、この薄膜トランジターは曲げた場合にも、キャリア移動度やon/off比などのデバイス特性が低下しないことを見出し、本発明を完成するに至った。 The present inventor uses a solution of a phenyl oligothiophene derivative having an asymmetric structure exhibiting a high-order smectic phase near room temperature described in Patent Document 1 previously developed by the present inventors. When a thin film was formed on top, a liquid crystalline thin film was obtained in the same way as when a thin film was formed on a silicon substrate with a thermal oxide film, and although the thin film was a polydomain, the size of each domain was 100 μm. When a transistor is fabricated using this thin film, it exhibits a high-order liquid crystal phase at room temperature, operates in a flexible liquid crystal state, and also exhibits p-type operation in the atmosphere, and its field effect mobility. up to reach 0.03 cm 2 / Vs, more, even when the thin film Toranjita is bent, it found that the device characteristics such as carrier mobility and on / off ratio is not reduced, the present invention It has been completed.

すなわち、この出願によれば、以下の発明が提供される。
〈1〉高分子フィルム上に下記一般式(1)で示される液晶化合物を含む液晶性半導体層を設けた有機半導体薄膜。
(式中、R1は炭素数1〜8の直鎖アルキル基を、R2は炭素数1〜8のアルキル基又はアルコキシ基を、nは0〜3の整数を示す。)
〈2〉高分子フィルムと液晶性半導体層の間に高分子絶縁膜を設けたことを特徴とする上記〈1〉に記載の有機半導体薄膜。
〈3〉上記〈1〉又は〈2〉に記載の有機半導体薄膜を用いた有機薄膜トランジスター。
〈4〉前記半導体層は、p型半導体であり、該p型半導体層は電界効果移動度0.01 cm2/Vsを備えることを特徴とする上記〈3〉に記載の有機薄膜トランジスター。
〈5〉高分子フィルム上に前記一般式(1)で示される液晶化合物を含む有機半導体薄膜を設ける工程と、該薄膜をアニールする工程を備えることを特徴とする上記〈1〉に記載の有機半導体薄膜の製造法。
That is, according to this application, the following invention is provided.
<1> An organic semiconductor thin film in which a liquid crystalline semiconductor layer containing a liquid crystal compound represented by the following general formula (1) is provided on a polymer film.
(In the formula, R 1 represents a linear alkyl group having 1 to 8 carbon atoms, R 2 represents an alkyl group or alkoxy group having 1 to 8 carbon atoms, and n represents an integer of 0 to 3)
<2> The organic semiconductor thin film according to <1>, wherein a polymer insulating film is provided between the polymer film and the liquid crystalline semiconductor layer.
<3> An organic thin film transistor using the organic semiconductor thin film according to <1> or <2>.
<4> The organic thin film transistor according to <3>, wherein the semiconductor layer is a p-type semiconductor, and the p-type semiconductor layer has a field-effect mobility of 0.01 cm 2 / Vs.
<5> The organic material according to <1>, further comprising a step of providing an organic semiconductor thin film containing the liquid crystal compound represented by the general formula (1) on the polymer film and a step of annealing the thin film. Manufacturing method of semiconductor thin film.

本発明に係る高分子フィルムを基板とする有機半導体薄膜は、室温を含む広い温度領域で高次の液晶相を示すため、室温において、スピンコートなどの溶液プロセスによって簡便に作製することが可能である。また、液晶相を採るために、分子運動の自由度を有し、かつ柔軟性を有するため、曲げなどの変形に対して、優れた安定性を示す。
また、本発明に係る高分子フィルムと液晶性半導体層の間に高分子絶縁膜を設けた有機半導体薄膜は発光トランジスターやセンサーデバイスにも応用可能である。
また、本発明に係る有機薄膜トランジスターは溶液プロセスにより作製できるため、デバイスの低コスト化、大面積化に有効である。また、曲げなどの変形に対しても安定な特性を示すことから、電子ペーパーやフレキシブルディスプレーの駆動素子として使用可能である。
具体的には、本発明の有機薄膜トランジスターは、高いキャリア移動度、高いon/off比を示し、基板を曲げた場合でも移動度、on/off比は低下しない。
Since the organic semiconductor thin film using the polymer film according to the present invention as a substrate exhibits a high-order liquid crystal phase in a wide temperature range including room temperature, it can be easily produced at room temperature by a solution process such as spin coating. is there. In addition, since it has a degree of freedom of molecular motion and flexibility in order to adopt a liquid crystal phase, it exhibits excellent stability against deformation such as bending.
The organic semiconductor thin film in which a polymer insulating film is provided between the polymer film and the liquid crystalline semiconductor layer according to the present invention can also be applied to a light emitting transistor and a sensor device.
Further, since the organic thin film transistor according to the present invention can be produced by a solution process, it is effective for reducing the cost and area of the device. In addition, since it exhibits stable characteristics against deformation such as bending, it can be used as a driving element for electronic paper or a flexible display.
Specifically, the organic thin film transistor of the present invention exhibits high carrier mobility and high on / off ratio, and the mobility and on / off ratio do not decrease even when the substrate is bent.

本発明に係る有機半導体薄膜は、高分子フィルム上に下記一般式(1)で示される液晶化合物を含む液晶性半導体層を設けたことを特徴としている。
(式中、R1は炭素数1〜8の直鎖アルキル基を、R2は炭素数1〜8のアルキル基又はアルコキシ基を、nは0〜3の整数を示す。)
The organic semiconductor thin film according to the present invention is characterized in that a liquid crystalline semiconductor layer containing a liquid crystal compound represented by the following general formula (1) is provided on a polymer film.
(In the formula, R 1 represents a linear alkyl group having 1 to 8 carbon atoms, R 2 represents an alkyl group or alkoxy group having 1 to 8 carbon atoms, and n represents an integer of 0 to 3)

前記高分子フィルムとしては、アニール処理温度に耐え得るものであれば、特に制限はなく、たとえば、ポリイミド、テフロン(登録商標)、ポリエチレンテレフタラート(PET)、ポリエステルなどの高分子を素材とする高分子フィルムが例示される。この中でも耐熱性と耐薬品性、柔軟性に優れた、ポリイミドフィルムが好ましく使用される。高分子フィルムの厚みは特に制約されず、0.1〜1.0 mm、好ましくは0.2〜0.5 mmである。   The polymer film is not particularly limited as long as it can withstand the annealing temperature. For example, a polymer film made of a polymer such as polyimide, Teflon (registered trademark), polyethylene terephthalate (PET), or polyester is used. Molecular films are exemplified. Among these, a polyimide film excellent in heat resistance, chemical resistance and flexibility is preferably used. The thickness of the polymer film is not particularly limited, and is 0.1 to 1.0 mm, preferably 0.2 to 0.5 mm.

また、前記液晶性半導体層は少なくとも下記一般式(1)で示されるスメクティック液晶化合物から形成される。
(式中、R1は炭素数1〜8の直鎖アルキル基を、R2は炭素数1〜8のアルキル基又はアルコキシ基を、nは0〜3の整数を示す。)
前記一般式(I)において、R1は炭素数1〜8の直鎖アルキル基を示す。具体的には、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられるが、プロピル基が好ましい。
また、R2は炭素数1〜8の直鎖アルキル基、あるいはアルコキシ基を示す。具体的には、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられるが、プロピル基が好ましい。nは0〜3の整数であり、好ましくは1である。このスメクティック液晶化合物それ自体公知であり、たとえば、特開2008−13539号公報記載の方法によって合成することができる。
The liquid crystalline semiconductor layer is formed of at least a smectic liquid crystal compound represented by the following general formula (1).
(In the formula, R 1 represents a linear alkyl group having 1 to 8 carbon atoms, R 2 represents an alkyl group or alkoxy group having 1 to 8 carbon atoms, and n represents an integer of 0 to 3)
In the general formula (I), R 1 represents a linear alkyl group having 1 to 8 carbon atoms. Specific examples include an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a propyl group is preferable.
R 2 represents a linear alkyl group having 1 to 8 carbon atoms or an alkoxy group. Specific examples include an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a propyl group is preferable. n is an integer of 0 to 3, preferably 1. This smectic liquid crystal compound is known per se and can be synthesized, for example, by the method described in JP-A-2008-13539.

この液晶化合物は、210℃以下で高次のスメクティック相を示し、−50℃まで冷却しても結晶化せず、室温付近で安定な液晶性の薄膜を作製できる。さらに、液晶相において、分子性結晶に匹敵する高いホール、および、電子移動度を示す。   This liquid crystal compound exhibits a high-order smectic phase at 210 ° C. or lower, does not crystallize even when cooled to −50 ° C., and can produce a liquid crystalline thin film that is stable near room temperature. Furthermore, in the liquid crystal phase, high holes comparable to molecular crystals and electron mobility are exhibited.

本発明に係る有機半導体薄膜を作製するには、たとえば、前記一般式(1)で示される液晶化合物をクロルベンゼンなどの有機溶媒に溶解させた溶液を、高分子フィルム上にスピンコートなどの製膜手段により製膜し、ついでアニール化すれば、厚さが20から100 nmの薄膜を得ることができる。アニール化は、たとえば、真空下、薄膜をホットステージ上で100℃で10分加熱する、などの方法によって行えばよい。   In order to produce the organic semiconductor thin film according to the present invention, for example, a solution obtained by dissolving the liquid crystal compound represented by the general formula (1) in an organic solvent such as chlorobenzene is formed on a polymer film such as a spin coat. If a film is formed by film means and then annealed, a thin film having a thickness of 20 to 100 nm can be obtained. Annealing may be performed by a method such as heating the thin film on a hot stage at 100 ° C. for 10 minutes under vacuum.

この薄膜は、偏光顕微鏡観察により、熱酸化膜付シリコン基板上に製膜した場合と同様に、得られた薄膜は数百μm程度のサイズのドメインからなる。このドメインサイズは、通常のペンタセンなどの分子性結晶の蒸着膜(通常、数μm)に比べて大きく、本発明に係るトランジスターのチャンネル長よりも大きい。   This thin film is composed of domains having a size of about several hundred μm, as in the case where the thin film is formed on a silicon substrate with a thermal oxide film by observation with a polarizing microscope. This domain size is larger than that of an ordinary deposited film of molecular crystals such as pentacene (usually several μm) and larger than the channel length of the transistor according to the present invention.

本発明の有機半導体薄膜は、高分子フィルム上に前記液晶性半導体層を設けたものであるが、薄膜トランジスターとして使用するためには、両者の間に高分子絶縁層を設けておく必要がある。このような高分子絶縁層としては、ポリビニルアルコール(PVA)、ポリビニルフェノールなどの高分子絶縁材料が用いられる。高分子絶縁層の厚みは特に制約されず、0.5μm〜5μm、好ましくは1〜2μmである。   The organic semiconductor thin film of the present invention is the one in which the liquid crystalline semiconductor layer is provided on a polymer film. However, in order to use as a thin film transistor, it is necessary to provide a polymer insulating layer between them. . As such a polymer insulating layer, a polymer insulating material such as polyvinyl alcohol (PVA) or polyvinyl phenol is used. The thickness of the polymer insulating layer is not particularly limited, and is 0.5 μm to 5 μm, preferably 1 to 2 μm.

本発明に係る有機半導体薄膜は、有機薄膜トランジスターとして利用することができる。本発明で作製される代表的な有機薄膜トランジスターは、図1に示される。図1において、1は高分子フィルム、2はゲート電極、3は高分子絶縁層、4は液晶性半導体層、5はソース電極、6はドレイン電極である。このような薄膜トランジスターは、種々の方法により作製でき、たとえば、ポリイミドフィルムに金からなるゲート電極を蒸着し、その上に、ポリビニルアルコールからなる絶縁膜をスピンコート法により製膜し、ついで、その絶縁膜状に液晶性半導体層を積層し、該液晶性半導体層上に、金からなるソース電極、および、ドレイン電極を蒸着することにより作製される。   The organic semiconductor thin film according to the present invention can be used as an organic thin film transistor. A typical organic thin film transistor fabricated in the present invention is shown in FIG. In FIG. 1, 1 is a polymer film, 2 is a gate electrode, 3 is a polymer insulating layer, 4 is a liquid crystalline semiconductor layer, 5 is a source electrode, and 6 is a drain electrode. Such a thin film transistor can be manufactured by various methods. For example, a gate electrode made of gold is vapor-deposited on a polyimide film, and an insulating film made of polyvinyl alcohol is formed thereon by a spin coating method. It is produced by laminating a liquid crystalline semiconductor layer in the form of an insulating film and depositing a source electrode and a drain electrode made of gold on the liquid crystalline semiconductor layer.

本発明の有機薄膜トランジスターの作製例を、高分子フィルムとしてポリイミドフィルムを用いた場合について更に具体的に説明する。
ポリイミドフィルム(2 cm角、厚さ0.3 mm)上に金を蒸着してゲート電極を作製し、その上に、10 wt% ポリビニルアルコール水溶液をスピンコートして、絶縁層を形成する。ついで、80℃で一昼夜加熱する。絶縁層の厚さは2μm、静電容量は3.5 nF/cm2程度になる。さらに、オクチルトリクロロシランのトルエン溶液に浸して表面を疎水処理する。
こうして得られた薄膜上に長さ5 mm、幅0.2 mmの金電極を20〜50μmの間隔で真空蒸着し、ソース電極、および、ドレイン電極とする。
An example of producing the organic thin film transistor of the present invention will be described more specifically in the case where a polyimide film is used as the polymer film.
Gold is deposited on a polyimide film (2 cm square, thickness 0.3 mm) to produce a gate electrode, and a 10 wt% polyvinyl alcohol aqueous solution is spin-coated thereon to form an insulating layer. Then heat at 80 ° C overnight. The thickness of the insulating layer is 2 μm, and the capacitance is about 3.5 nF / cm 2 . Further, the surface is subjected to hydrophobic treatment by dipping in a toluene solution of octyltrichlorosilane.
On the thin film thus obtained, a gold electrode having a length of 5 mm and a width of 0.2 mm is vacuum-deposited at an interval of 20 to 50 μm to form a source electrode and a drain electrode.

このようにして得られる本発明の有機薄膜トランジスターは、大気中では、p型の動作を示し、その電界効果移動度は最大で0.03 cm2/Vs、オンオフ比は104にも達する。この値は、絶縁膜状での分子配向処理や電極マスクの配置の工夫により改善可能である。また、溶液プロセスによって作製したトランジスターとしては、良好な特性を保持する。また、この薄膜トランジスターを曲げた際の電気特性を測定したところ、2.7 %の曲げ変形を与えても、トランジスターの電界効果移動度と閾値電圧は低下しないことが確認された。 The organic thin film transistor of the present invention thus obtained exhibits p-type operation in the atmosphere, and has a field effect mobility of 0.03 cm 2 / Vs at the maximum and an on / off ratio of 10 4 . This value can be improved by devising the molecular orientation treatment in the form of an insulating film or the arrangement of the electrode mask. In addition, as a transistor manufactured by a solution process, good characteristics are maintained. In addition, when the electrical characteristics when the thin film transistor was bent were measured, it was confirmed that the field effect mobility and the threshold voltage of the transistor did not decrease even when a bending deformation of 2.7% was given.

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

実施例1
(有機半導体薄膜の作製)
厚さ0.3 mmのポリイミドフィルム上に、金電極を真空蒸着する。その上に、ポリビニルアルコール水溶液(濃度10 wt%)を回転速度1000 rpmでスピンコートして高分子絶縁層を製膜した後、ポリイミドフィルムを80℃で12時間加熱乾燥する。その後、フィルムをオクチルトリクロロシランのトルエン溶液(5%)に浸し3時間放置してフィルムの表面を疎水処理した。
つぎに、前記一般式に示されるスメクティック液晶化合物(R:C3H7:C5H11 n:1)をクロロベンゼンに溶解し、濃度0.6 wt%の溶液とした。この溶液を上記で作製した高分子絶縁層上にスピンコートした(回転速度;1500 rpm、回転時間;25秒)。
得られた薄膜を真空オーブン中100℃で10分間熱アニールした。その後、室温まで冷却した。図2の(a)、(b)にアニール後の薄膜のAFM像を示す。層状構造を反映したテラス構造が明確に観察される。約20 nmの段差は分子長に対応しているものと考えられる。図2の(c)にアニール後の薄膜のX線回折を示す。層状構造を示す鋭い回折ピークが低角度側に現れ、2次の回折ピークまで観測されることから、この膜が明確な層状構造を持っており、液晶分子が基板に対して垂直に立っていることがわかる。
ここで得られたAFMによる表面モルフォロジーやX線回折パターンは熱酸化膜付シリコン基板上に薄膜を作成した場合と同様であり、高分子フィルム上に液晶性薄膜を作成した場合にも、液晶分子が基板に対して垂直に立ち、高い分子配向秩序を持った層状構造を形成しているものと考えられる。
Example 1
(Preparation of organic semiconductor thin film)
A gold electrode is vacuum-deposited on a polyimide film having a thickness of 0.3 mm. A polyvinyl alcohol aqueous solution (concentration: 10 wt%) is spin-coated thereon at a rotational speed of 1000 rpm to form a polymer insulating layer, and then the polyimide film is heated and dried at 80 ° C. for 12 hours. Thereafter, the film was immersed in a toluene solution (5%) of octyltrichlorosilane and allowed to stand for 3 hours to subject the film surface to a hydrophobic treatment.
Next, the smectic liquid crystal compound (R 1 : C 3 H 7 R 2 : C 5 H 11 n: 1) represented by the above general formula was dissolved in chlorobenzene to obtain a solution having a concentration of 0.6 wt%. This solution was spin-coated on the polymer insulating layer prepared above (rotation speed: 1500 rpm, rotation time: 25 seconds).
The resulting thin film was thermally annealed at 100 ° C. for 10 minutes in a vacuum oven. Then, it cooled to room temperature. 2A and 2B show AFM images of the annealed thin film. The terrace structure reflecting the layered structure is clearly observed. The step of about 20 nm is considered to correspond to the molecular length. FIG. 2 (c) shows X-ray diffraction of the annealed thin film. A sharp diffraction peak showing a layered structure appears on the low angle side and is observed up to the second-order diffraction peak, so this film has a clear layered structure and the liquid crystal molecules stand perpendicular to the substrate. I understand that.
The surface morphology and X-ray diffraction pattern obtained by AFM are the same as when a thin film was formed on a silicon substrate with a thermal oxide film, and even when a liquid crystalline thin film was formed on a polymer film, the liquid crystal molecules Is considered to form a layered structure having a high molecular orientation order.

実施例2
(有機薄膜トランジスターの作製と評価)
熱アニール処理した上記薄膜にシャドウマスクを介して金電極を蒸着した。蒸着速度は1 A/s、電極の厚さは60 nmとした。図3に、電極のマスクパターンとデバイスの構成を示す。トランジスター特性はKethley digital source meterを用いて行った。図4(a)に大気中でトランジスターを駆動した場合のoutput特性を、図4(b)にtransfer特性を示す。ゲート電極に負電圧が印加された場合にソースドレイン電流が流れることから、本トランジスターがp型の特性を示していることがわかる。
式(1)より、キャリア移動度を求めると、最大で0.03 cm2/Vsが得られた。オンオフ比は104に達した。この結果は、高分子フィルム上に溶液プロセスによって作製したトランジスターとしては非常に優れたものである。
Example 2
(Production and evaluation of organic thin-film transistors)
A gold electrode was deposited on the thin film subjected to the thermal annealing through a shadow mask. The deposition rate was 1 A / s, and the electrode thickness was 60 nm. FIG. 3 shows an electrode mask pattern and a device configuration. Transistor characteristics were measured using a Kethley digital source meter. FIG. 4 (a) shows the output characteristics when the transistor is driven in the atmosphere, and FIG. 4 (b) shows the transfer characteristics. Since a source-drain current flows when a negative voltage is applied to the gate electrode, it can be seen that this transistor exhibits p-type characteristics.
From the equation (1), the carrier mobility was determined to be 0.03 cm 2 / Vs at the maximum. The on / off ratio reached 10 4 . This result is very excellent as a transistor fabricated by a solution process on a polymer film.

実施例3
(有機薄膜トランジスターを曲げた際のデバイス特性の変化)
図5に示すように、実施例2で得たフレキシブルトランジスターを半径Rの円筒に密着させ、トランジスターの特性を測定した。
曲げ変形εは、絶縁層の厚さdd、高分子フィルム基板の厚さds、曲げの半径Rを用いると、
と表すことができる。
図6の(a)にトランジスターを曲げた場合の移動度、および、(b)に閾値電圧の変化を示す。変形が2.7 %になっても、変形がない場合と同等かそれ以上の特性を示している。これまで主に検討されてきたペンタセンなどの分子性結晶薄膜を用いて作製した有機薄膜トランジスターは変形εが1 %を超えると特性が大幅に低下することから、液晶性半導体が変形に対して安定であり、フレキシブルディスプレーなどに適した材料であることがわかる。
Example 3
(Change in device characteristics when an organic thin film transistor is bent)
As shown in FIG. 5, the flexible transistor obtained in Example 2 was brought into close contact with a cylinder having a radius R, and the characteristics of the transistor were measured.
The bending deformation ε is obtained by using the thickness d d of the insulating layer, the thickness d s of the polymer film substrate, and the bending radius R,
It can be expressed as.
FIG. 6A shows the mobility when the transistor is bent, and FIG. 6B shows the change in threshold voltage. Even when the deformation is 2.7%, the characteristics are equal to or better than those without deformation. Organic thin-film transistors fabricated using molecular crystal thin films such as pentacene, which have been mainly studied so far, have characteristics that greatly deteriorate when the deformation ε exceeds 1%. It can be seen that the material is suitable for flexible displays.

本発明の代表的な有機薄膜トランジスターの説明図Illustration of representative organic thin film transistor of the present invention (a)実施例1で作製した有機半導体薄膜の原子間力顕微鏡(AFM)による表面モルフォロジーのheight image (b)実施例1で作製した有機半導体薄膜の原子間力顕微鏡(AFM)による表面モルフォロジーのphase image (c)実施例1で作製した有機半導体薄膜のX線回折図(A) Height image of the surface morphology of the organic semiconductor thin film produced in Example 1 by atomic force microscope (AFM) (b) Surface morphology of the organic semiconductor thin film produced in Example 1 by atomic force microscope (AFM) phase image (c) X-ray diffraction pattern of the organic semiconductor thin film prepared in Example 1 実施例2で作製した有機薄膜トランジターのマスクパターンとデバイスの構成Mask pattern of organic thin film transistor fabricated in Example 2 and device configuration (a)実施例2で作製した有機薄膜トランジスターの大気中でのoutput特性 (b)実施例2で作製した有機薄膜トランジスターの大気中でのtransfer特性(A) Output characteristics in air of the organic thin film transistor fabricated in Example 2 (b) Transfer characteristics in air of the organic thin film transistor fabricated in Example 2 実施例2で作製した有機薄膜トランジスターの変形実験の説明図Explanatory drawing of the deformation experiment of the organic thin film transistor produced in Example 2 (a)有機薄膜トランジスターの変形実験(実施例3)によるtransfer特性の変化 (b)有機薄膜トランジスターの変形実験(実施例3)による移動度と閾値電圧の変化(A) Change in transfer characteristics by organic thin film transistor deformation experiment (Example 3) (b) Change in mobility and threshold voltage by organic thin film transistor deformation experiment (Example 3)

Claims (5)

高分子フィルム上に下記一般式(1)で示される液晶化合物を含む液晶性半導体層を設けた有機半導体薄膜。
(式中、R1は炭素数1〜8の直鎖アルキル基を、R2は炭素数1〜8のアルキル基又はアルコキシ基を、nは0〜3の整数を示す。)
An organic semiconductor thin film in which a liquid crystalline semiconductor layer containing a liquid crystal compound represented by the following general formula (1) is provided on a polymer film.
(In the formula, R 1 represents a linear alkyl group having 1 to 8 carbon atoms, R 2 represents an alkyl group or alkoxy group having 1 to 8 carbon atoms, and n represents an integer of 0 to 3)
高分子フィルムと液晶性半導体層の間に高分子絶縁膜を設けたことを特徴とする請求項1に記載の有機半導体薄膜。   2. The organic semiconductor thin film according to claim 1, wherein a polymer insulating film is provided between the polymer film and the liquid crystalline semiconductor layer. 請求項1又は2に記載の有機半導体薄膜を用いた有機薄膜トランジスター。   An organic thin film transistor using the organic semiconductor thin film according to claim 1. 前記半導体層は、p型半導体であり、該p型半導体層は電界効果移動度0.01 cm2/Vsを備えることを特徴とする請求項3に記載の有機薄膜トランジスター。 The organic thin film transistor according to claim 3, wherein the semiconductor layer is a p-type semiconductor, and the p-type semiconductor layer has a field effect mobility of 0.01 cm 2 / Vs. 高分子フィルム上に前記一般式(1)で示される液晶化合物を含む液晶半導体薄膜を設ける工程と、該薄膜をアニールする工程を備えることを特徴とする請求項1に記載の有機半導体薄膜の製造法。   2. The method for producing an organic semiconductor thin film according to claim 1, comprising: a step of providing a liquid crystal semiconductor thin film containing the liquid crystal compound represented by the general formula (1) on a polymer film; and a step of annealing the thin film. Law.
JP2008072856A 2008-03-21 2008-03-21 Organic semiconductor thin film and organic thin film transistor using the same Expired - Fee Related JP5403578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072856A JP5403578B2 (en) 2008-03-21 2008-03-21 Organic semiconductor thin film and organic thin film transistor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072856A JP5403578B2 (en) 2008-03-21 2008-03-21 Organic semiconductor thin film and organic thin film transistor using the same

Publications (2)

Publication Number Publication Date
JP2009231407A true JP2009231407A (en) 2009-10-08
JP5403578B2 JP5403578B2 (en) 2014-01-29

Family

ID=41246503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072856A Expired - Fee Related JP5403578B2 (en) 2008-03-21 2008-03-21 Organic semiconductor thin film and organic thin film transistor using the same

Country Status (1)

Country Link
JP (1) JP5403578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137853A1 (en) 2011-04-04 2012-10-11 国立大学法人香川大学 PERYLENE TETRACARBOXYLIC ACID BISIMIDE DERIVATIVE, n-TYPE SEMICONDUCTOR, PROCESS FOR PRODUCING n-TYPE SEMICONDUCTOR, AND ELECTRONIC DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233872A (en) * 2000-02-28 2001-08-28 Dainippon Printing Co Ltd Asymmetric liquid crystalline charge transport material having terthiophene skeleton
JP2003119255A (en) * 2001-10-15 2003-04-23 Fujitsu Ltd Electroconductive organic compound and electronic device
WO2005045946A1 (en) * 2003-11-10 2005-05-19 Matsushita Electric Industrial Co., Ltd. Method for orientation treatment of electronic functional material and thin film transistor
JP2005240021A (en) * 2004-01-27 2005-09-08 Canon Inc Pi-CONJUGATED COMPOUND AND CONDUCTIVE ORGANIC THIN FILM CONTAINING THE SAME, AND ORGANIC FIELD EFFECT TYPE TRANSISTOR USING THE SAME
JP2008013539A (en) * 2006-06-08 2008-01-24 National Institute Of Advanced Industrial & Technology Smectic liquid crystal compound
JP2009057506A (en) * 2007-09-03 2009-03-19 National Institute Of Advanced Industrial & Technology Liquid crystal compound, and thin film transistor using this

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233872A (en) * 2000-02-28 2001-08-28 Dainippon Printing Co Ltd Asymmetric liquid crystalline charge transport material having terthiophene skeleton
JP2003119255A (en) * 2001-10-15 2003-04-23 Fujitsu Ltd Electroconductive organic compound and electronic device
WO2005045946A1 (en) * 2003-11-10 2005-05-19 Matsushita Electric Industrial Co., Ltd. Method for orientation treatment of electronic functional material and thin film transistor
JP2005240021A (en) * 2004-01-27 2005-09-08 Canon Inc Pi-CONJUGATED COMPOUND AND CONDUCTIVE ORGANIC THIN FILM CONTAINING THE SAME, AND ORGANIC FIELD EFFECT TYPE TRANSISTOR USING THE SAME
JP2008013539A (en) * 2006-06-08 2008-01-24 National Institute Of Advanced Industrial & Technology Smectic liquid crystal compound
JP2009057506A (en) * 2007-09-03 2009-03-19 National Institute Of Advanced Industrial & Technology Liquid crystal compound, and thin film transistor using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137853A1 (en) 2011-04-04 2012-10-11 国立大学法人香川大学 PERYLENE TETRACARBOXYLIC ACID BISIMIDE DERIVATIVE, n-TYPE SEMICONDUCTOR, PROCESS FOR PRODUCING n-TYPE SEMICONDUCTOR, AND ELECTRONIC DEVICE
US8987044B2 (en) 2011-04-04 2015-03-24 National University Corporation Kagawa University Perylene tetracarboxylic acid bisimide derivative, N-type semiconductor, a method for producing N-type semiconductor, and electronic device

Also Published As

Publication number Publication date
JP5403578B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Funahashi et al. High ambipolar mobility in a highly ordered smectic phase of a dialkylphenylterthiophene derivative that can be applied to solution‐processed organic field‐effect transistors
US7166689B2 (en) Aryl amine polymer, thin film transistor using the aryl amine polymer, and method of manufacturing the thin film transistor
Funahashi Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors
Tian et al. An asymmetric oligomer based on thienoacene for solution processed crystal organic thin-film transistors
KR20120043009A (en) Novel organic semiconductive material and electronic device using the same
JP2007535163A (en) Method of forming an organic semiconductor device by a melting technique
JP5071921B2 (en) Smectic liquid crystal compounds
EP2377178B1 (en) Method of manufacturing organic semiconductor nanofibrillar network dispersed in insulating polymer using a blend of organic semiconductor/insulating polymer and organic thin film transistor using the same
Iino et al. High uniformity and high thermal stability of solution-processed polycrystalline thin films by utilizing highly ordered smectic liquid crystals
TW200537569A (en) Thin film of condensed polycyclic aromatic compound, and method for preparing thin film of condensed polycyclic aromatic compound
JP5025074B2 (en) Organic thin film transistor and method for producing organic thin film transistor
JP2010280623A (en) Compound having highly plane molecular structure and organic transistor obtained using the same
WO2020171131A1 (en) Organic semiconductor device, method for manufacturing organic semiconductor single-crystal film, and method for manufacturing organic semiconductor device
JP5403578B2 (en) Organic semiconductor thin film and organic thin film transistor using the same
JP4480410B2 (en) Organic semiconductor material, organic thin film transistor, and manufacturing method thereof
TWI724241B (en) Microcrystalline organic semiconductor film, organic semiconductor transistor, and manufacturing method of organic semiconductor transistor
JP2010123951A (en) Thin-film transistor and semiconductor composition
Zhang et al. Fabrication and physical properties of self-assembled ultralong polymer/small molecule hybrid microstructures
JP4891552B2 (en) Organic thin film transistor and manufacturing method thereof
JP2010083785A (en) Compound having molecular structure high in planarity and organic transistor using the same
TW201448305A (en) A method of forming an organic semiconductor thin film and a method of manufacturing an organic semiconductor device as well as a flexible organic semiconductor device
JP5635407B2 (en) Thin film formation method using organic semiconductor material molecules
JP2004235277A (en) Organic semiconductor element, organic semiconductor device, organic electroluminescent element, and organic electroluminescent equipment
JP5218812B2 (en) Organic thin film transistor
JP4942943B2 (en) Organic semiconductor material, field effect transistor using the same, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees