JP2009231158A - Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell - Google Patents

Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell Download PDF

Info

Publication number
JP2009231158A
JP2009231158A JP2008077053A JP2008077053A JP2009231158A JP 2009231158 A JP2009231158 A JP 2009231158A JP 2008077053 A JP2008077053 A JP 2008077053A JP 2008077053 A JP2008077053 A JP 2008077053A JP 2009231158 A JP2009231158 A JP 2009231158A
Authority
JP
Japan
Prior art keywords
fuel cell
sulfonic acid
catalyst layer
acid group
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008077053A
Other languages
Japanese (ja)
Inventor
Saori Okada
早織 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008077053A priority Critical patent/JP2009231158A/en
Publication of JP2009231158A publication Critical patent/JP2009231158A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst layer for fuel cell with high durability, which shows high power-generation performance, and to provide a membrane electrode assembly, a fuel cell, and a manufacturing method of electrode catalyst layer for fuel cell. <P>SOLUTION: The electrode catalyst layer for fuel cell contains a polymer electrolyte, a carrier carrying a catalyst material, and an amorphous carbon introduced sulfonic acid group. If the total weight of the weight of the amorphous carbon introduced sulfonic acid group (A) and the weight of only carrier (B) is defined as (X), the weight ratio (Y/X) of (X) to the polymer electrolyte Y is 0.8 or larger and 3.0 or smaller, and (A) contains 0.1% or higher and 30% or lower by the weight ratio to (B). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池用電極触媒層、膜電極接合体、燃料電池及び燃料電池用電極触媒層の製造方法に関する。さらに詳しくは、スルホン酸基が導入された無定形炭素を含有させることにより、高加湿な条件下において、フラディングを抑制し、高い発電特性を示す燃料電池用電極触媒層、膜電極接合体、燃料電池及び燃料電池用電極触媒層の製造方法に関するものである。   The present invention relates to a fuel cell electrode catalyst layer, a membrane electrode assembly, a fuel cell, and a method for producing a fuel cell electrode catalyst layer. More specifically, by containing amorphous carbon introduced with a sulfonic acid group, under high humidification conditions, flooding is suppressed, and a fuel cell electrode catalyst layer exhibiting high power generation characteristics, a membrane electrode assembly, The present invention relates to a fuel cell and a method for producing a fuel cell electrode catalyst layer.

燃料電池は水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す発電システムである。これは、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。燃料電池はその電解質により分類することができ、溶融炭酸塩型燃料電池、リン酸型燃料電池、固体酸化物型燃料電池、固体高分子型燃料電池等がある。   A fuel cell is a power generation system that generates electricity by using hydrogen and oxygen as fuel and causing reverse reaction of water electrolysis. This has features such as high efficiency, low environmental load and low noise compared with the conventional power generation method, and is attracting attention as a clean energy source in the future. Fuel cells can be classified according to their electrolyte, and include molten carbonate fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, solid polymer fuel cells, and the like.

燃料電池の中でも、固体高分子型燃料電池は低温領域での運転が可能であり、80℃〜100℃の運転温度で使用されるのが一般的であり、車載用電源や家庭据置用電源などへの使用が有望視されている。固体高分子型燃料電池は、MEA(電解質膜電極接合体)と呼ばれる高分子電解質膜の両面に一対の電極を配置させた接合体を、電極の一方に水素を含有する燃料ガスを供給し、電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。ここで、燃料ガスを供給する電極を燃料極、酸化剤を供給する電極を空気極と呼んでいる。上述の電極は、白金系の貴金属などの触媒物質を担持したカーボン粒子と高分子電解質とを積層してなる電極触媒層と、ガス通気性と電導性を兼ね備えたガス拡散層からなる接合体である。   Among the fuel cells, the polymer electrolyte fuel cell can be operated in a low temperature region, and is generally used at an operating temperature of 80 ° C. to 100 ° C., such as an in-vehicle power source or a household stationary power source. Promising use. A polymer electrolyte fuel cell supplies a joined body in which a pair of electrodes are arranged on both sides of a polymer electrolyte membrane called MEA (electrolyte membrane electrode assembly), and a fuel gas containing hydrogen is supplied to one of the electrodes, The battery is sandwiched between a pair of separator plates in which a gas channel for supplying an oxidant gas containing oxygen to the other electrode is formed. Here, the electrode for supplying the fuel gas is called a fuel electrode, and the electrode for supplying the oxidant is called an air electrode. The above-mentioned electrode is a joined body composed of an electrode catalyst layer formed by laminating carbon particles supporting a catalyst material such as a platinum-based noble metal and a polymer electrolyte, and a gas diffusion layer having both gas permeability and conductivity. is there.

固体高分子型燃料電池は、電解質膜の導電性を確保するために、MEAを補機により、加湿されたガスをMEAに供給する。また、発電に伴い、燃料極で解離したプロトンが、電解質膜を通り、空気極側の電極触媒層にて、水が生成される。この生成水の排水性が悪いと、フラディングがおこり、発電性能が著しく低下する。また、空気極で生じた水が逆拡散して燃料極に移動する場合には、燃料極においても同様の問題が生じる。   In the polymer electrolyte fuel cell, in order to ensure the conductivity of the electrolyte membrane, the humidified gas is supplied to the MEA by using the MEA as an auxiliary device. In addition, as power is generated, protons dissociated at the fuel electrode pass through the electrolyte membrane, and water is generated at the electrode catalyst layer on the air electrode side. If the generated water has poor drainage, flooding occurs and power generation performance is significantly reduced. Further, when water generated at the air electrode is back-diffused and moves to the fuel electrode, the same problem occurs at the fuel electrode.

上記のような問題を解決する為に、特許文献1では、電極触媒層内に、多孔質親水繊維を備え、フラディングを抑制する技術が開示されている(特許文献1参照)。   In order to solve the above problems, Patent Document 1 discloses a technique in which porous hydrophilic fibers are provided in an electrode catalyst layer to suppress flooding (see Patent Document 1).

しかしながら、触媒層中に繊維状物質を備えることは、電解質膜へ、繊維が突き刺さることが懸念され、燃料極と空気極とのクロスリークや短絡などの問題が生じる。電解質膜自体が薄くなればなるほど、上記の問題は深刻となる。
特開2007−328936号公報
However, providing the fibrous material in the catalyst layer is concerned that the fibers may pierce the electrolyte membrane, and problems such as cross leakage and short circuit between the fuel electrode and the air electrode occur. The thinner the electrolyte membrane itself, the more serious the above problem.
JP 2007-328936 A

本発明は、耐久性が高く、高い発電性能を示す燃料電池用電極触媒層、膜電極接合体、燃料電池及び燃料電池用電極触媒層の製造方法を提供することである。   An object of the present invention is to provide a fuel cell electrode catalyst layer, a membrane electrode assembly, a fuel cell, and a method for producing a fuel cell electrode catalyst layer having high durability and high power generation performance.

本発明者は鋭意検討を重ねた結果、上記課題を解決することができ、本発明を完成するに至った。   As a result of intensive studies, the present inventor has been able to solve the above-mentioned problems and has completed the present invention.

本発明の請求項1に係る発明は、高分子電解質と、触媒物質を担持した担体と、スルホン酸基が導入された無定形炭素と、を含有し、スルホン酸基が導入された無定形炭素の重量(A)と担体のみの重量(B)とを、合わせた重量を(X)とした時、高分子電解質Yとの重量比(Y/X)が0.8以上3.0以下、且つ(A)は(B)に対して重量比で0.1%以上30%以下を含有することを特徴とする燃料電池用電極触媒層としたものである。   The invention according to claim 1 of the present invention comprises a polymer electrolyte, a carrier carrying a catalyst substance, and amorphous carbon having a sulfonic acid group introduced therein, and having an amorphous carbon having a sulfonic acid group introduced therein. The weight ratio (Y / X) with respect to the polymer electrolyte Y is 0.8 or more and 3.0 or less, when the combined weight (A) and the weight (B) of the carrier alone is (X). In addition, (A) is a fuel cell electrode catalyst layer characterized by containing 0.1% to 30% by weight with respect to (B).

本発明の請求項2に係る発明は、スルホン酸基が導入された無定形炭素の13C核磁気共鳴スペクトルにて、縮合芳香族炭素6員環及びスルホン酸基が結合した縮合芳香族炭素6員環の化学シフトが検出され、且つ、粉末X線回折にて、半値幅(2θ)が5°以上30°以下である炭素(002)面の回折ピークが、検出されることを特徴とする請求項1に記載の燃料電池用電極触媒層としたものである。 The invention according to claim 2 of the present invention relates to a condensed aromatic carbon 6 in which a condensed aromatic carbon 6-membered ring and a sulfonic acid group are bonded to each other in a 13 C nuclear magnetic resonance spectrum of amorphous carbon to which a sulfonic acid group is introduced. A chemical shift of a member ring is detected, and a diffraction peak of a carbon (002) plane having a half width (2θ) of 5 ° or more and 30 ° or less is detected by powder X-ray diffraction. The electrode catalyst layer for a fuel cell according to claim 1 is used.

本発明の請求項3に係る発明は、スルホン酸基が導入された無定形炭素の粉末X線回折において炭素(002)面の回折ピークのみが検出される請求項1に記載の燃料電池用電極触媒層としたものである。   The invention according to claim 3 of the present invention is the electrode for a fuel cell according to claim 1, wherein only the diffraction peak of the carbon (002) plane is detected in powder X-ray diffraction of amorphous carbon into which a sulfonic acid group has been introduced. This is a catalyst layer.

本発明の請求項4に係る発明は、スルホン酸基が導入された無定形炭素のスルホン酸密度が、2mmol/g以上12mmol/g以下である請求項1乃至3のいずれか1項に記載の燃料電池用電極触媒層としたものである。   In the invention according to claim 4 of the present invention, the sulfonic acid density of the amorphous carbon into which the sulfonic acid group is introduced is 2 mmol / g or more and 12 mmol / g or less. This is a fuel cell electrode catalyst layer.

本発明の請求項5に係る発明は、請求項1乃至4のいずれか1項に記載の燃料電池用電極触媒層を備えることを特徴とする膜電極接合体としたものである。   The invention according to claim 5 of the present invention is a membrane electrode assembly comprising the fuel cell electrode catalyst layer according to any one of claims 1 to 4.

本発明の請求項6に係る発明は、請求項1乃至4のいずれか1項に記載の燃料電池用電極触媒層を備えることを特徴とする燃料電池としたものである。   An invention according to claim 6 of the present invention is a fuel cell comprising the fuel cell electrode catalyst layer according to any one of claims 1 to 4.

本発明の請求項7に係る発明は、触媒物質を担持した担体を、スルホン酸基が導入された無定形炭素溶媒中で、スルホン酸基が導入された無定形炭素の重量(A)と担体のみの重量(B)とを、(A)は(B)に対して重量比で0.1%以上30%以下となるように分散処理し、分散処理した担体と高分子電解質とを、スルホン酸基が導入された無定形炭素の重量(A)と担体のみの重量(B)とを、合わせた重量を(X)としたとき、高分子電解質Yとの重量比(Y/X)が0.8以上3.0以下となるように混合することを特徴とする燃料電池用電極触媒層の製造方法としたものである。   In the invention according to claim 7 of the present invention, the carrier carrying the catalyst substance is used in the amorphous carbon solvent into which the sulfonic acid group is introduced, and the weight (A) of the amorphous carbon having the sulfonic acid group introduced therein and the carrier. Only (B) is dispersed in a weight ratio of 0.1% to 30% with respect to (B), and the dispersion-supported carrier and polymer electrolyte are treated with sulfone. The weight ratio (Y / X) with respect to the polymer electrolyte Y is (X) where the combined weight (A) of the amorphous carbon introduced with acid groups and the weight (B) of the carrier alone is (X). A method for producing an electrode catalyst layer for a fuel cell, characterized in that mixing is performed so that the amount is 0.8 or more and 3.0 or less.

本発明の請求項8に係る発明は、スルホン酸基が導入された無定形炭素の13C核磁気共鳴スペクトルにて、縮合芳香族炭素6員環及びスルホン酸基が結合した縮合芳香族炭素6員環の化学シフトが検出され、且つ、粉末X線回折にて、半値幅(2θ)が5°以上30°以下である炭素(002)面の回折ピークが、検出されることを特徴とする請求項7に記載の燃料電池用電極触媒層の製造方法としたものである。 The invention according to claim 8 of the present invention relates to a condensed aromatic carbon 6 in which a condensed aromatic carbon 6-membered ring and a sulfonic acid group are bonded to each other in a 13 C nuclear magnetic resonance spectrum of amorphous carbon into which a sulfonic acid group is introduced. A chemical shift of a member ring is detected, and a diffraction peak of a carbon (002) plane having a half width (2θ) of 5 ° or more and 30 ° or less is detected by powder X-ray diffraction. The method for producing an electrode catalyst layer for a fuel cell according to claim 7.

本発明の請求項9に係る発明は、スルホン酸基が導入された無定形炭素の粉末X線回折において炭素(002)面の回折ピークのみが検出される請求項7に記載の燃料電池用電極触媒層の製造方法としたものである。   The invention according to claim 9 of the present invention is the electrode for a fuel cell according to claim 7, wherein only the diffraction peak of the carbon (002) plane is detected in powder X-ray diffraction of amorphous carbon into which a sulfonic acid group has been introduced. This is a method for producing a catalyst layer.

本発明の請求項10に係る発明は、スルホン酸基が導入された無定形炭素のスルホン酸密度が、2mmol/g以上12mmol/g以下である請求項7乃至9のいずれか1項に記載の燃料電池用電極触媒層の製造方法としたものである。   The invention according to claim 10 of the present invention is the amorphous carbon having a sulfonic acid group introduced therein, wherein the sulfonic acid density is 2 mmol / g or more and 12 mmol / g or less. This is a method for producing an electrode catalyst layer for a fuel cell.

本発明によれば、耐久性が高く、高い発電性能を示す燃料電池用電極触媒層、膜電極接合体、燃料電池及び燃料電池用電極触媒層の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrode catalyst layer for fuel cells which shows high durability and high electric power generation performance, a membrane electrode assembly, a fuel cell, and the electrode catalyst layer for fuel cells can be provided.

以下、本発明は、各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の技術的範囲に含まれうるものである。   Hereinafter, the present invention is not limited to each embodiment, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the technical scope of the present invention.

本発明の実施の形態に係る燃料電池用電極触媒層は、スルホン酸基が導入された無定形炭素は、スルホン酸基を持ち、無定形炭素としての性質を示す物質であればどのようなものでも良い。   In the fuel cell electrode catalyst layer according to the embodiment of the present invention, the amorphous carbon into which the sulfonic acid group is introduced may be any material having a sulfonic acid group and exhibiting properties as amorphous carbon. But it ’s okay.

ここで「無定形炭素」とは、炭素からなる物質であって、ダイヤモンドや黒鉛のような明確な結晶構造を持たない物質であり、より具体的には、粉末X線回折において、明確なピークが検出されないか、あるいは幅の広いピークが検出される物質を意味する。   Here, “amorphous carbon” is a substance composed of carbon and does not have a clear crystal structure such as diamond or graphite, and more specifically, a clear peak in powder X-ray diffraction. Means a substance in which no or a broad peak is detected.

本発明の実施の形態に係る燃料電池用電極触媒層は、スルホン酸基が導入された無定形炭素の表面を化学処理した物質も好適に用いることができる。   For the electrode catalyst layer for a fuel cell according to the embodiment of the present invention, a substance obtained by chemically treating the surface of amorphous carbon into which a sulfonic acid group has been introduced can also be suitably used.

スルホン酸基が導入された無定形炭素を含んだ触媒層は、高分子電解質として、例えばナフィオン(登録商標)を用いた場合、ナフィオンの親水性側鎖部との親和性が向上することにより、発電性能が向上するができる。   When the catalyst layer containing amorphous carbon having a sulfonic acid group introduced is used as a polymer electrolyte, for example, Nafion (registered trademark), the affinity with the hydrophilic side chain of Nafion is improved. Power generation performance can be improved.

スルホン酸基導入無定形炭素のプロトン伝導度は特に限定されないが、0.01S/cm以上、特に、0.04S/cm以上が好ましい。   The proton conductivity of the sulfonic acid group-introduced amorphous carbon is not particularly limited, but is preferably 0.01 S / cm or more, and particularly preferably 0.04 S / cm or more.

無定形炭素のプロトン伝導度が、0.01S/cm以上であれば、カーボン内部に発生したプロトンを効率良く伝導できる。(プロトン伝導度は、温度80℃、相対湿度100%条件下、交流インピーダンス法によって測定される値である。)   If the proton conductivity of amorphous carbon is 0.01 S / cm or more, protons generated inside the carbon can be efficiently conducted. (Proton conductivity is a value measured by the AC impedance method under conditions of a temperature of 80 ° C. and a relative humidity of 100%.)

本発明の実施の形態に係る燃料電池用電極触媒層は、スルホン酸基が導入された無定形炭素の13C核磁気共鳴スペクトルにて、縮合芳香族炭素6員環及びスルホン酸基が結合した縮合芳香族炭素6員環の化学シフトが検出され、且つ、粉末X線回折にて、半値幅(2θ)が5°以上30°以下である炭素(002)面の回折ピークが検出されることが好ましい。スルホン酸基が導入された無定形炭素は、白金触媒付きカーボンのカーボンとその縮合芳香族炭素6員環によりπ−πスタッキングされ、凝集を防ぐことができ、効率良くプロトンを伝導させることができる。 The electrode catalyst layer for a fuel cell according to the embodiment of the present invention has a condensed aromatic carbon 6-membered ring and a sulfonic acid group bonded to each other in a 13 C nuclear magnetic resonance spectrum of amorphous carbon into which a sulfonic acid group has been introduced. A chemical shift of a fused aromatic carbon 6-membered ring is detected, and a diffraction peak of a carbon (002) plane having a half-value width (2θ) of 5 ° to 30 ° is detected by powder X-ray diffraction. Is preferred. Amorphous carbon into which a sulfonic acid group has been introduced is π-π stacked by carbon of platinum-catalyzed carbon and its condensed aromatic carbon 6-membered ring, can prevent aggregation, and can efficiently conduct protons. .

スルホン酸基が導入された無定形炭素の粉末X線回折において炭素(002)面の回折ピークのみが検出されることが好ましい。純度の高いスルホン酸基が導入された無定形炭素を使用すると、さらに効率良くプロトンを伝導させることができる。   It is preferable that only the diffraction peak of the carbon (002) plane is detected in the powder X-ray diffraction of amorphous carbon into which a sulfonic acid group has been introduced. When amorphous carbon having a highly purified sulfonic acid group is used, protons can be conducted more efficiently.

本発明の実施の形態に係るスルホン酸基が導入された無定形炭素のスルホン酸密度は、発電特性を向上させるために2mmol/g以上12mmol/g以下であることが好ましい。スルホン酸密度が2mmol/g未満であるとプロトン伝導性が低くなってしまい、スルホン酸密度が12mmol/gを超えるとスルホン酸基が導入された無定形炭素自体の合成における収率が悪くなってしまう。   The sulfonic acid density of the amorphous carbon into which the sulfonic acid group is introduced according to the embodiment of the present invention is preferably 2 mmol / g or more and 12 mmol / g or less in order to improve the power generation characteristics. When the sulfonic acid density is less than 2 mmol / g, the proton conductivity is lowered, and when the sulfonic acid density exceeds 12 mmol / g, the yield in the synthesis of amorphous carbon itself into which sulfonic acid groups are introduced is deteriorated. End up.

本発明の実施の形態に係る電解質膜は、プロトン伝導性に優れ、且つ電子を流さない材料からなるものであれば特に限定されない。特にパーフルオロ型のスルホン酸膜、例えば、ナフィオン(登録商標)、フレミオン(登録商標)、アシプレックス(登録商標)等の膜が使用される。   The electrolyte membrane according to the embodiment of the present invention is not particularly limited as long as it is made of a material that is excellent in proton conductivity and does not flow electrons. In particular, a perfluoro type sulfonic acid membrane, for example, a membrane of Nafion (registered trademark), Flemion (registered trademark), Aciplex (registered trademark) or the like is used.

電解質膜としては、無機化合物をプロトン伝導材料としポリマーを膜材料とした耐熱性、メタノールクロスオーバー防止性に優れたコンポジット(複合)膜、例えば、無機化合物としてゼオライトを用い、ポリマーとしてスチレン−ブタジエン系ラバーからなる複合膜、または、プロトン伝導基を有するポリイミド等の炭化水素系樹脂、あるいは、炭化水素系グラフト膜を用いても良い。   As the electrolyte membrane, a composite membrane excellent in heat resistance and methanol crossover prevention using an inorganic compound as a proton conducting material and a polymer as a membrane material, for example, using zeolite as the inorganic compound and styrene-butadiene as the polymer A composite film made of rubber, a hydrocarbon resin such as polyimide having a proton conductive group, or a hydrocarbon graft film may be used.

本発明の実施の形態に係る触媒は一般的に用いられているものを使用することができ、特に限定されるものではない。具体的には、白金担持カーボンの白金は、白金単体もしくは白金合金が担持されたカーボン粒子などが使用できる。合金としては、パラジウム、ルテニウム、モリブデンなどが挙げられるが、特にルテニウムが望ましい。また、タングステン、スズ、レニウムなどが白金合金に添加物として含まれていてもよい。上記添加物が含まれているとCO(一酸化炭素)の耐被毒性が高まる。上記添加金属は、白金合金の金蔵間化合物として存在してもよいし、合金を形成してもよい。またこれらの触媒粒径は0.5nm以上20nm以下が好ましい。更に好ましくは1nm以上5nm以下が良い。触媒粒径が20nmより大きいと触媒の活性が低下してしまい、触媒粒径が0.5nmより小さいと触媒の安定性が低下してしまう。触媒の担持率は40重量%以上60重量%以下が好ましい。触媒担持率が40重量%未満では、燃料電池の厚みが厚くなることで電池特性が低下してしまい、触媒担持率が60重量%を超えると、触媒の分散性が悪くなってしまう。   The catalyst which concerns on embodiment of this invention can use what is generally used, and is not specifically limited. Specifically, the platinum-supported carbon platinum may be carbon particles carrying a platinum simple substance or a platinum alloy. Examples of the alloy include palladium, ruthenium, and molybdenum, and ruthenium is particularly desirable. Moreover, tungsten, tin, rhenium, etc. may be contained as an additive in the platinum alloy. When the additive is contained, the poisoning resistance of CO (carbon monoxide) increases. The additive metal may exist as a platinum alloy intermetallic compound or may form an alloy. Moreover, these catalyst particle diameters are preferably 0.5 nm or more and 20 nm or less. More preferably, it is 1 nm or more and 5 nm or less. When the catalyst particle size is larger than 20 nm, the activity of the catalyst is lowered, and when the catalyst particle size is smaller than 0.5 nm, the stability of the catalyst is lowered. The catalyst loading is preferably 40% by weight or more and 60% by weight or less. If the catalyst loading is less than 40% by weight, the fuel cell thickness is increased due to the increase in the thickness of the fuel cell, and if the catalyst loading exceeds 60% by weight, the dispersibility of the catalyst is deteriorated.

本発明の実施の形態に係る触媒インク中に含まれるプロトン伝導性高分子には、様々なものが用いられるが、用いる電解質膜の成分によって、インク中のプロトン伝導性高分子を選択する必要がある。ナフィオンを電解質膜として用いた場合は、ナフィオンを使用するのが好ましい。電解質膜にナフィオン以外の材料を用いた場合はインク中に電解質膜と同じ成分を溶解させるなど、最適化をはかる必要がある。   Various proton conductive polymers are used in the catalyst ink according to the embodiment of the present invention, and it is necessary to select the proton conductive polymer in the ink depending on the components of the electrolyte membrane to be used. is there. When Nafion is used as the electrolyte membrane, it is preferable to use Nafion. When a material other than Nafion is used for the electrolyte membrane, it is necessary to optimize such as dissolving the same components as the electrolyte membrane in the ink.

本発明の実施の形態に係る触媒インクの分散媒として使用される溶媒は、触媒粒子や水素イオン伝導性樹脂を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はないが、発性の液体有機溶媒が含まれることが望ましく、特に限定されるものではないが、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、ペンタノール、2−ヘプタノール、ベンジルアルコール等のアルコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンなどのアミン類、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルなどのエステル類、その他酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1−メトキシ−2−プロパノール等の極性溶媒等が使用される。また、これらの溶媒のうち二種以上を混合させたものも使用できる。   The solvent used as the dispersion medium of the catalyst ink according to the embodiment of the present invention does not erode the catalyst particles or the hydrogen ion conductive resin, and dissolves or finely dissolves the proton conductive polymer in a highly fluid state. There is no particular limitation as long as it can be dispersed as a gel, but it is desirable to include an emissive liquid organic solvent, and although not particularly limited, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol , 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentanol, 2-heptanol, benzyl alcohol, and other alcohols, acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, Heptanone, cyclohexanone, methyl Ketones such as cyclohexanone, acetonyl acetone, diethyl ketone, dipropyl ketone, diisobutyl ketone, tetrahydrofuran, tetrahydropyran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, diethyl ether, dipropyl ether, dibutyl ether and other ethers, isopropyl Amines such as amine, butylamine, isobutylamine, cyclohexylamine, diethylamine, aniline, propyl formate, isobutyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, propionic acid Esters such as methyl, ethyl propionate and butyl propionate, other acetic acid, propionic acid, dimethylform Use polar solvents such as amide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diacetone alcohol, 1-methoxy-2-propanol Is done. Moreover, what mixed 2 or more types of these solvents can also be used.

溶媒の中でも誘電率が異なる二種類の溶媒を用いることで、分散液中のプロトン伝導性高分子の分散状態を制御することができる。これらの溶媒また、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。水素イオン伝導性樹脂となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。また、成膜後の触媒層の空孔率を制御するために、造孔剤として、グリセリンや界面活性剤を添加することもできる。   By using two types of solvents having different dielectric constants among the solvents, the dispersion state of the proton conductive polymer in the dispersion can be controlled. These solvents and those using lower alcohols as the solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water. Water that is compatible with the hydrogen ion conductive resin may be contained. The amount of water added is not particularly limited as long as the proton conductive polymer is not separated to cause white turbidity or gelation. In order to control the porosity of the catalyst layer after film formation, glycerin or a surfactant can be added as a pore-forming agent.

スルホン酸基が導入された無定形炭素の重量(A)と担体のみの重量(B)を、合わせた重量を(X)とした時、高分子電解質Yとの重量比(Y/X)が0.8以上3.0以下が好ましい。重量比(Y/X)が0.8より低い場合は、触媒層中の高分子電解質中の量が少なく、触媒層中を移動するプロトンのパスが切れてしまい、プロトン伝導性が低下する。そのため、できるだけ高分子電解質の量を増やすことが望ましいが、高分子電解質の量を増やしすぎると、水の排水性が低下し、フラディングしてしまうという問題が生じる。そこに、スルホン酸基が導入された無定形炭素(A)を担体(B)に対して重量比で0.1%以上30%以下含有することにより、フラディングを抑制することができる。重量比(Y/X)が3.0を超えてしまうと、無定形炭素を添加しても、高分子電解質量が多すぎるため、フラディングしてしまう。   The weight ratio (Y / X) to the polymer electrolyte Y is (X) where the weight (A) of the amorphous carbon having the sulfonic acid group introduced and the weight (B) of the carrier alone are combined (X). 0.8 or more and 3.0 or less are preferable. When the weight ratio (Y / X) is lower than 0.8, the amount in the polymer electrolyte in the catalyst layer is small, the path of protons moving through the catalyst layer is cut, and proton conductivity is lowered. For this reason, it is desirable to increase the amount of the polymer electrolyte as much as possible. However, if the amount of the polymer electrolyte is increased too much, the drainage performance of water decreases and flooding occurs. By containing amorphous carbon (A) having a sulfonic acid group introduced therein in a weight ratio of 0.1% to 30% with respect to the support (B), flooding can be suppressed. If the weight ratio (Y / X) exceeds 3.0, even if amorphous carbon is added, the amount of polymer electrolysis is too large and flooding occurs.

触媒層の形成方法としては、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などの塗布法が一般的に用いられる。   As a method for forming the catalyst layer, a doctor blade method, a dipping method, a screen printing method, a roll coating method, a spray method or the like is generally used.

触媒インクの粘度は、塗布方法によって最適値が異なる。例えば、スクリーン印刷法やドクターブレード法による塗布の場合、インキの粘度は50cP以上500cP以下であることが好ましい。この範囲の粘度よりも粘度が高い場合も低い場合もインキの塗布は困難になる。一方、スプレー法により基材上に噴霧する場合は、インキの粘度が0.1cP以上100cP以下であることが好ましい。インキの粘度が100cPよりも高いと噴霧が困難になってしまい、インキの粘度が0.1cPより低いと成膜レートが非常に遅く、生産性が低下してしまう。インキ粘度は溶媒の種類、固形分濃度を変化させることで最適化する。またインキの分散時に分散剤を添加することで、粘度の制御をすることもできる。   The optimum value of the viscosity of the catalyst ink varies depending on the coating method. For example, in the case of application by a screen printing method or a doctor blade method, the viscosity of the ink is preferably 50 cP or more and 500 cP or less. Whether the viscosity is higher or lower than this range of viscosity makes it difficult to apply ink. On the other hand, when spraying on a base material by a spray method, it is preferable that the viscosity of an ink is 0.1 cP or more and 100 cP or less. If the viscosity of the ink is higher than 100 cP, spraying becomes difficult, and if the viscosity of the ink is lower than 0.1 cP, the film forming rate is very slow and the productivity is lowered. The ink viscosity is optimized by changing the type of solvent and solid content concentration. Further, the viscosity can be controlled by adding a dispersing agent when the ink is dispersed.

本発明の実施の形態に係る燃料電池用電極触媒層の製造方法は、ガス拡散層の上にインクを噴霧し、これを乾燥させて、プロトン伝導性高分子膜と触媒層を熱圧着により接合する手法や、プロトン伝導性高分子膜の両面に直接インクを噴霧し、これをガス拡散層で挟持させる手法、また離型性の基材上にインクを噴霧し、それをプロトン伝導性高分子膜の両面に転写したものをガス拡散層で挟持させる手法を用いても何ら問題はない。   In the method for producing an electrode catalyst layer for a fuel cell according to an embodiment of the present invention, an ink is sprayed on a gas diffusion layer and dried, and the proton conductive polymer membrane and the catalyst layer are joined by thermocompression bonding. A method of spraying ink directly on both sides of a proton conductive polymer membrane and sandwiching this between gas diffusion layers, or spraying ink on a releasable substrate and then using it as a proton conductive polymer There is no problem even if a method of sandwiching the material transferred on both sides of the film with a gas diffusion layer is used.

図1に示すように、本発明の実施の形態に係る膜電極接合体12は、固体高分子電解質1の両面に電極触媒層2と電極触媒層3とが接合され狭持されている。固体高分子電解質1、電極触媒層2及び電極触媒層3についての説明は前述したために省略する。   As shown in FIG. 1, a membrane electrode assembly 12 according to an embodiment of the present invention is sandwiched between an electrode catalyst layer 2 and an electrode catalyst layer 3 on both surfaces of a solid polymer electrolyte 1. Since description about the solid polymer electrolyte 1, the electrode catalyst layer 2, and the electrode catalyst layer 3 was mentioned above, it abbreviate | omits.

図2に示すように、本発明の実施の形態に係る固体高分子型燃料電池20は、膜電極接合体12の電極触媒層2及び電極触媒層3に対向して空気極側ガス拡散層4及び燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6及び燃料極7が構成される。そしてガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつ不透過性の材料よりなる1組のセパレータ10が配置される。燃料極7側のセパレータ10のガス流路8からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極6側のセパレータ10のガス流路8からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。   As shown in FIG. 2, the polymer electrolyte fuel cell 20 according to the embodiment of the present invention includes an air electrode side gas diffusion layer 4 facing the electrode catalyst layer 2 and the electrode catalyst layer 3 of the membrane electrode assembly 12. The fuel electrode side gas diffusion layer 5 is disposed. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively. Then, a set of separators 10 made of a conductive and impermeable material, which is provided with a gas flow path 8 for gas flow and is provided with a cooling water flow path 9 for cooling water flow on the opposing main surface, is disposed. For example, hydrogen gas is supplied as a fuel gas from the gas flow path 8 of the separator 10 on the fuel electrode 7 side. On the other hand, a gas containing oxygen, for example, is supplied as an oxidant gas from the gas flow path 8 of the separator 10 on the air electrode 6 side.

図2に示すように、本発明の実施の形態に係る固体高分子型燃料電池20は、一組のセパレータ10に固体高分子電解質膜1、電極触媒層2、電極触媒層3、ガス拡散層4、ガス拡散層5が狭持されている。いわゆる単セル構造の固体高分子型燃料電池20である。   As shown in FIG. 2, a solid polymer fuel cell 20 according to an embodiment of the present invention includes a set of separators 10 and a solid polymer electrolyte membrane 1, an electrode catalyst layer 2, an electrode catalyst layer 3, and a gas diffusion layer. 4. The gas diffusion layer 5 is sandwiched. This is a solid polymer fuel cell 20 having a so-called single cell structure.

本発明の実施の形態に係るガス拡散層4、ガス拡散層5及びセパレータ10としては燃料電池に用いられているものを用いることができる。具体的にはガス拡散層4及びガス拡散層5としてはカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材が用いられる。セパレータ10としては、カーボンタイプのもの金属タイプのもの等を用いることができる。   As the gas diffusion layer 4, the gas diffusion layer 5, and the separator 10 according to the embodiment of the present invention, those used in the fuel cell can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and nonwoven fabric are used for the gas diffusion layer 4 and the gas diffusion layer 5. As the separator 10, a carbon type metal type or the like can be used.

この触媒電極をプレス機等でナフィオンやスルホン化されたエンジニアリングプラスチック等の高分子電解質膜1に熱圧着することにより、膜電極接合体12を得ることができ、さらにこの膜電極接合体12にセパレータ10や補助的な装置(ガス供給装置、冷却装置など)を組み立て、単一あるいは積層することにより燃料電池を作製することができる。   A membrane electrode assembly 12 can be obtained by thermocompression bonding the catalyst electrode to a polymer electrolyte membrane 1 such as Nafion or sulfonated engineering plastic with a press or the like. 10 and auxiliary devices (such as a gas supply device and a cooling device) are assembled and united or stacked to produce a fuel cell.

電極触媒層2、電極触媒層3と高分子電解質膜1とを接合する際は熱圧着を行うことができる。さらに、電極触媒層2、電極触媒層3とプロトン伝導性高分子との間には、接合性を高める為に、プロトン伝導性高分子を含む溶液を結着剤として塗布することが好ましく、プロトン伝導性高分子電解質膜1と同一の物質が好ましい。   When the electrode catalyst layer 2, the electrode catalyst layer 3 and the polymer electrolyte membrane 1 are joined, thermocompression bonding can be performed. Furthermore, it is preferable to apply a solution containing a proton conductive polymer as a binder between the electrode catalyst layer 2 and the electrode catalyst layer 3 and the proton conductive polymer in order to improve the bonding property. The same material as that of the conductive polymer electrolyte membrane 1 is preferable.

本発明の実施の形態に係る固体高分子型燃料電池20は、本発明の実施の形態に係る電極触媒層4と電極触媒層5とを備えることにより高加湿な条件下において、フラディングを抑制し、高い発電特性を示すことができる。   The polymer electrolyte fuel cell 20 according to the embodiment of the present invention includes the electrode catalyst layer 4 and the electrode catalyst layer 5 according to the embodiment of the present invention to suppress flooding under highly humid conditions. In addition, high power generation characteristics can be exhibited.

以下に具体的な実施例及び比較例を示し、本発明を説明するが、本発明は実施例によって制限されるものではない。   Specific examples and comparative examples are shown below to explain the present invention, but the present invention is not limited to the examples.

[スルホン酸基が導入された無定形炭素の合成]
ナフタレンを濃硫酸(96%)に加え、250℃で15時間加熱した後、過剰の濃硫酸を250℃での減圧蒸留によって除去し、黒色粉末を得た。この黒色粉末を300mlの蒸留水で洗浄し、洗浄後の蒸留水中の硫酸が元素分析の検出限界以下になるまでこの操作を繰り返し、スルホン酸基導入無定形炭素を得た。スルホン酸密度は2.4mmol/gであった。この化合物をふるいにかけ、水への分散度が15nmと分散性が良好なものを取り出した。分散度は、日機装社製、ナノトラック粒度分析計UPA−EXにより計測し、その個数平均径の値で求めた。
[Synthesis of amorphous carbon with sulfonic acid group]
Naphthalene was added to concentrated sulfuric acid (96%) and heated at 250 ° C. for 15 hours, and then excess concentrated sulfuric acid was removed by vacuum distillation at 250 ° C. to obtain a black powder. This black powder was washed with 300 ml of distilled water, and this operation was repeated until the sulfuric acid in the distilled water after washing was below the detection limit of elemental analysis to obtain sulfonic acid group-introduced amorphous carbon. The sulfonic acid density was 2.4 mmol / g. This compound was sieved to take out a compound having a good dispersibility of 15 nm in water. The degree of dispersion was measured with a Nanotrac particle size analyzer UPA-EX manufactured by Nikkiso Co., Ltd., and the value was obtained as the value of the number average diameter.

[触媒インクの調整]
白金触媒を担持したケッチェンブラック(田中貴金属工業株式会社)、ここで、ケッチェンブラックのみの重量を(B)とした。Du pont社製、商品名「Nafion(登録商標)溶液」で表示されるパーフルオロカーボンスルホン酸(Y)、及び、スルホン酸基が導入された無定形炭素(A)を溶媒中で混合し、分散処理を行った。
[Adjustment of catalyst ink]
Ketjen black (Tanaka Kikinzoku Kogyo Co., Ltd.) carrying a platinum catalyst. Here, the weight of only Ketjen black was (B). Perfluorocarbon sulfonic acid (Y) represented by the trade name “Nafion (registered trademark) solution” manufactured by Du Pont, and amorphous carbon (A) having a sulfonic acid group introduced therein are mixed in a solvent and dispersed. Processed.

スルホン酸基が導入された無定形炭素(A)はケッチェンブラック(B)に対して重量比で5%添加し、高分子電解質は、(Y/X)=1.2の0比率で混合した。(X=A+B)   Amorphous carbon (A) into which sulfonic acid groups have been introduced is added at 5% by weight with respect to ketjen black (B), and the polymer electrolyte is mixed at a ratio of 0 (Y / X) = 1.2. did. (X = A + B)

[電極触媒層の作製方法]
分散処理を行った触媒インクを、アプリケータを用いて塗布することにより、電極触媒層を作製した。電極触媒層の厚さは、電極触媒層における触媒担持量が0.3mg/cmになるように調節した。
[Method for producing electrode catalyst layer]
An electrode catalyst layer was prepared by applying the dispersion-treated catalyst ink using an applicator. The thickness of the electrode catalyst layer was adjusted so that the amount of catalyst supported on the electrode catalyst layer was 0.3 mg / cm 2 .

[比較例1]
スルホン酸基が導入された無定形炭素を使用しなかったこと以外は実施例1と同様に触媒インクを調整、電極触媒層を作製した。
[Comparative Example 1]
A catalyst ink was prepared in the same manner as in Example 1 except that amorphous carbon having a sulfonic acid group introduced was not used, and an electrode catalyst layer was prepared.

[膜電極接合体の作製]
Du pont社製、商品名「Nafion(登録商標)212」で表示されるプロトン伝導性高分子膜を実施例1及び比較例1の触媒電極にて挟持した後、温度140℃、圧力5MPaの条件にてホットプレスを行い、膜電極接合体(MEA)を得た。
[Production of membrane electrode assembly]
After sandwiching the proton conductive polymer membrane represented by the trade name “Nafion (registered trademark) 212” manufactured by Du Pont with the catalyst electrode of Example 1 and Comparative Example 1, the temperature was 140 ° C. and the pressure was 5 MPa. Was subjected to hot pressing to obtain a membrane electrode assembly (MEA).

[固体高分子型燃料電池の作製]
膜電極接合体(MEA)を一対の焼成カーボン製のセパレータで挟持することにより、固体高分子型燃料電池を作製した。
[Production of polymer electrolyte fuel cell]
A membrane electrode assembly (MEA) was sandwiched between a pair of calcined carbon separators to produce a polymer electrolyte fuel cell.

[発電特性評価]
東陽テクニカ社製、商品名「GFT−SG1」で表示される燃料電池測定装置にて発電特性評価を行った。燃料として水素ガス、酸化剤として空気を使用した、セル温度は80℃にで、各電流密度におけるセル電圧値の評価を行った。
[Evaluation of power generation characteristics]
The power generation characteristics were evaluated using a fuel cell measuring device displayed by Toyo Technica Co., Ltd. under the trade name “GFT-SG1”. Hydrogen gas was used as the fuel, air was used as the oxidant, the cell temperature was 80 ° C., and the cell voltage value at each current density was evaluated.

図3は、実施例1及び比較例1の電極触媒層を用いて作製した、固体高分子型燃料電池の発電特性結果である。電流密度0.5A/cm、0.8A/cm、1.0A/cmにおけるセル電圧値を示すグラフである。比較例1はフラディングにより、1.0A/cm時には急激に電圧降下がおきている。すなわち実施例1の方が、比較例1よりもセル電圧が高く、耐フラディング性能が向上していることが確認された。 FIG. 3 shows the results of power generation characteristics of the polymer electrolyte fuel cells produced using the electrode catalyst layers of Example 1 and Comparative Example 1. Current density 0.5A / cm 2, 0.8A / cm 2, is a graph showing a cell voltage value at 1.0A / cm 2. In Comparative Example 1, a voltage drop suddenly occurs at 1.0 A / cm 2 due to flooding. That is, it was confirmed that the cell voltage of Example 1 was higher than that of Comparative Example 1 and the anti-flooding performance was improved.

本発明は、電気自動車、携帯電話、自動販売機、水中ロボット、潜水艦、宇宙船、水中航走体、水中基地用電源等に用いる固体高分子型燃料電池に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a polymer electrolyte fuel cell used for an electric vehicle, a mobile phone, a vending machine, an underwater robot, a submarine, a spacecraft, an underwater vehicle, a power source for an underwater base, and the like.

本発明の実施の形態に係る膜電極接合体を示す概略断面図である。It is a schematic sectional drawing which shows the membrane electrode assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る固体高分子型燃料電池を示す概略断面図である。1 is a schematic cross-sectional view showing a polymer electrolyte fuel cell according to an embodiment of the present invention. 本発明の実施の形態に係る固体高分子型燃料電池の発電特性を示す図である。It is a figure which shows the electric power generation characteristic of the polymer electrolyte fuel cell which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 電極触媒層
3 電極触媒層
4 ガス拡散層
5 ガス拡散層
6 空気極
7 燃料極
8 ガス流路
9 冷却水流路
10 セパレータ
12 膜電極接合体
20 固体高分子型燃料電池
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Electrode catalyst layer 3 Electrode catalyst layer 4 Gas diffusion layer 5 Gas diffusion layer 6 Air electrode 7 Fuel electrode 8 Gas flow path 9 Cooling water flow path 10 Separator 12 Membrane electrode assembly 20 Solid polymer fuel cell

Claims (10)

高分子電解質と,
触媒物質を担持した担体と、
スルホン酸基が導入された無定形炭素と、を含有し、
前記スルホン酸基が導入された前記無定形炭素の重量(A)と前記担体のみの重量(B)とを、合わせた重量を(X)とした時、前記高分子電解質Yとの重量比(Y/X)が0.8以上3.0以下、且つ(A)は(B)に対して重量比で0.1%以上30%以下を含有することを特徴とする燃料電池用電極触媒層。
A polymer electrolyte;
A carrier carrying a catalyst material;
An amorphous carbon having a sulfonic acid group introduced therein,
When the combined weight of the amorphous carbon introduced with the sulfonic acid group (A) and the weight of the carrier alone (B) is (X), the weight ratio to the polymer electrolyte Y ( Y / X) is 0.8 or more and 3.0 or less, and (A) contains 0.1% or more and 30% or less by weight with respect to (B). .
前記スルホン酸基が導入された無定形炭素の13C核磁気共鳴スペクトルにて、縮合芳香族炭素6員環及びスルホン酸基が結合した縮合芳香族炭素6員環の化学シフトが検出され、且つ、粉末X線回折にて、半値幅(2θ)が5°以上30°以下である炭素(002)面の回折ピークが、検出されることを特徴とする請求項1に記載の燃料電池用電極触媒層。 In the 13 C nuclear magnetic resonance spectrum of the amorphous carbon to which the sulfonic acid group is introduced, a chemical shift of the condensed aromatic carbon 6-membered ring and the condensed aromatic carbon 6-membered ring to which the sulfonic acid group is bonded is detected, and 2. The electrode for a fuel cell according to claim 1, wherein a diffraction peak of a carbon (002) surface having a half width (2θ) of 5 ° or more and 30 ° or less is detected by powder X-ray diffraction. Catalyst layer. 前記スルホン酸基が導入された無定形炭素の粉末X線回折において炭素(002)面の回折ピークのみが検出される請求項1に記載の燃料電池用電極触媒層。   2. The electrode catalyst layer for a fuel cell according to claim 1, wherein only a diffraction peak on the carbon (002) plane is detected in powder X-ray diffraction of amorphous carbon into which the sulfonic acid group has been introduced. 前記スルホン酸基が導入された無定形炭素のスルホン酸密度が、2mmol/g以上12mmol/g以下である請求項1乃至3のいずれか1項に記載の燃料電池用電極触媒層。   4. The fuel cell electrode catalyst layer according to claim 1, wherein the amorphous carbon into which the sulfonic acid group is introduced has a sulfonic acid density of 2 mmol / g or more and 12 mmol / g or less. 5. 請求項1乃至4のいずれか1項に記載の燃料電池用電極触媒層を備えることを特徴とする膜電極接合体。   A membrane electrode assembly comprising the fuel cell electrode catalyst layer according to any one of claims 1 to 4. 請求項1乃至4のいずれか1項に記載の燃料電池用電極触媒層を備えることを特徴とする燃料電池。   A fuel cell comprising the fuel cell electrode catalyst layer according to any one of claims 1 to 4. 触媒物質を担持した担体を、スルホン酸基が導入された無定形炭素溶媒中で、前記スルホン酸基が導入された前記無定形炭素の重量(A)と前記担体のみの重量(B)とを、(A)は(B)に対して重量比で0.1%以上30%以下となるように分散処理し、
前記分散処理した担体と高分子電解質とを、前記スルホン酸基が導入された前記無定形炭素の重量(A)と前記担体のみの重量(B)とを、合わせた重量を(X)としたとき、前記高分子電解質Yとの重量比(Y/X)が0.8以上3.0以下となるように混合することを特徴とする燃料電池用電極触媒層の製造方法。
The carrier carrying the catalyst substance is measured in an amorphous carbon solvent into which a sulfonic acid group has been introduced. The weight of the amorphous carbon into which the sulfonic acid group has been introduced (A) and the weight of the carrier alone (B). , (A) is subjected to a dispersion treatment so that the weight ratio is 0.1% or more and 30% or less with respect to (B),
The weight of the amorphous carbon into which the sulfonic acid group was introduced (A) and the weight of the carrier alone (B) were combined (X) with the dispersion-treated carrier and the polymer electrolyte. And mixing so that a weight ratio (Y / X) with the polymer electrolyte Y is 0.8 or more and 3.0 or less.
前記スルホン酸基が導入された無定形炭素の13C核磁気共鳴スペクトルにて、縮合芳香族炭素6員環及びスルホン酸基が結合した縮合芳香族炭素6員環の化学シフトが検出され、且つ、粉末X線回折にて、半値幅(2θ)が5°以上30°以下である炭素(002)面の回折ピークが、検出されることを特徴とする請求項7に記載の燃料電池用電極触媒層の製造方法。 In the 13 C nuclear magnetic resonance spectrum of the amorphous carbon to which the sulfonic acid group is introduced, a chemical shift of the condensed aromatic carbon 6-membered ring and the condensed aromatic carbon 6-membered ring to which the sulfonic acid group is bonded is detected, and 8. The electrode for a fuel cell according to claim 7, wherein a diffraction peak of a carbon (002) plane having a half width (2θ) of 5 ° to 30 ° is detected by powder X-ray diffraction. A method for producing a catalyst layer. 前記スルホン酸基が導入された無定形炭素の粉末X線回折において炭素(002)面の回折ピークのみが検出される請求項7に記載の燃料電池用電極触媒層の製造方法。   The method for producing an electrode catalyst layer for a fuel cell according to claim 7, wherein only the diffraction peak of the carbon (002) plane is detected in powder X-ray diffraction of amorphous carbon into which the sulfonic acid group has been introduced. 前記スルホン酸基が導入された無定形炭素のスルホン酸密度が、2mmol/g以上12mmol/g以下である請求項7乃至9のいずれか1項に記載の燃料電池用電極触媒層の製造方法。   The method for producing an electrode catalyst layer for a fuel cell according to any one of claims 7 to 9, wherein the amorphous carbon having the sulfonic acid group introduced therein has a sulfonic acid density of 2 mmol / g or more and 12 mmol / g or less.
JP2008077053A 2008-03-25 2008-03-25 Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell Pending JP2009231158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077053A JP2009231158A (en) 2008-03-25 2008-03-25 Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077053A JP2009231158A (en) 2008-03-25 2008-03-25 Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell

Publications (1)

Publication Number Publication Date
JP2009231158A true JP2009231158A (en) 2009-10-08

Family

ID=41246308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077053A Pending JP2009231158A (en) 2008-03-25 2008-03-25 Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell

Country Status (1)

Country Link
JP (1) JP2009231158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520190A (en) * 2016-05-02 2019-07-18 エルジー・ケム・リミテッド Carrier-nanoparticle complex, catalyst containing the same, and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025564A (en) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd High polymer molecule electrolyte fuel cell and its manufacturing method
JP2003109615A (en) * 2001-09-28 2003-04-11 Asahi Glass Co Ltd Film/electrode junction of solid high molecular fuel cell
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
JP2006139947A (en) * 2004-11-10 2006-06-01 Honda Motor Co Ltd Method of manufacturing electrode structure for solid polymer fuel cell
JP2007207652A (en) * 2006-02-03 2007-08-16 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode assembly using this, and fuel cell
JP2007265844A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell
JP2007265730A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025564A (en) * 2000-07-06 2002-01-25 Matsushita Electric Ind Co Ltd High polymer molecule electrolyte fuel cell and its manufacturing method
JP2003109615A (en) * 2001-09-28 2003-04-11 Asahi Glass Co Ltd Film/electrode junction of solid high molecular fuel cell
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
JP2006139947A (en) * 2004-11-10 2006-06-01 Honda Motor Co Ltd Method of manufacturing electrode structure for solid polymer fuel cell
JP2007207652A (en) * 2006-02-03 2007-08-16 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode assembly using this, and fuel cell
JP2007265730A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell
JP2007265844A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Catalyst layer for fuel cell, membrane electrode conjugant using the layer, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520190A (en) * 2016-05-02 2019-07-18 エルジー・ケム・リミテッド Carrier-nanoparticle complex, catalyst containing the same, and method for producing the same
US11245119B2 (en) 2016-05-02 2022-02-08 Lg Chem, Ltd. Carrier-nanoparticle composite, catalyst comprising same, and method for producing same

Similar Documents

Publication Publication Date Title
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP5428493B2 (en) Method for producing polymer electrolyte fuel cell
JP2019083167A (en) Electrode catalyst layer
JP5581583B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
Wang et al. Dual-functional phosphoric acid-loaded covalent organic framework for PEMFC self-humidification: optimization on membrane electrode assembly
JP4858658B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
JP5487701B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5262156B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP5672645B2 (en) Electrocatalyst ink for fuel cell
JP5928072B2 (en) Manufacturing method of membrane electrode assembly
KR101504125B1 (en) Slurry for electrode catalyst layer of fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2009231158A (en) Electrode catalyst layer for fuel cell, membrane electrode assembly, the fuel cell, and manufacturing method of the electrode catalyst layer for fuel cell
JP5790049B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5228339B2 (en) Electrode catalyst layer for fuel cell, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell comprising the same
JP7315079B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP2009245932A (en) Electrode catalyst ink for fuel cell, electrode catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell
US20230411640A1 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2009193910A (en) Membrane-electrode assembly and solid polymer fuel cell
WO2023153454A1 (en) Membrane electrode assembly and solid polymer fuel cell
JP5454050B2 (en) POLYMER ELECTROLYTE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY CONTAINING THE POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING THE SAME
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2018181671A (en) Method for manufacturing membrane-electrode assembly
JP2004063409A (en) Manufacturing method of solid high molecular fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409