JP2009231149A - Ferrite system roughened surface stainless steel plate for separator, and separator - Google Patents

Ferrite system roughened surface stainless steel plate for separator, and separator Download PDF

Info

Publication number
JP2009231149A
JP2009231149A JP2008076867A JP2008076867A JP2009231149A JP 2009231149 A JP2009231149 A JP 2009231149A JP 2008076867 A JP2008076867 A JP 2008076867A JP 2008076867 A JP2008076867 A JP 2008076867A JP 2009231149 A JP2009231149 A JP 2009231149A
Authority
JP
Japan
Prior art keywords
separator
stainless steel
less
roughened
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008076867A
Other languages
Japanese (ja)
Inventor
Yoshikazu Morita
芳和 守田
Shinichi Kamoshita
真一 鴨志田
Masaji Hiraoka
正司 平岡
Keiji Izumi
圭二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008076867A priority Critical patent/JP2009231149A/en
Publication of JP2009231149A publication Critical patent/JP2009231149A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferrite system stainless steel plate having a roughened surface to be extremely effective for reducing contact resistance at a contact part as is used for a structure member of a platy member complex separator of a polymer electrolyte fuel cell. <P>SOLUTION: In the roughened surface stainless steel plate for a separator of a polymer electrolyte fuel cell, the steel plate includes a coarse surface of its surface roughness SPa of 0.3 to 2 μm on at least one surface of a steel plate made of ferrite system stainless steel type containing Cr of 16 to 40 mass% and Mo of 0.2 to 5 mass%. When the coarse surface of the steel plate and a coarse surface of another steel plate having the surface with the same condition as above are made in contact with each other with a contact surface pressure of 1 MPa, a contact resistance is ≤10 mΩ cm<SP>2</SP>, preferably ≤3 mΩ cm<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子型燃料電池の金属セパレータを構成するための粗面化されたフェライト系ステンレス鋼板、およびそのフェライト系ステンレス鋼板を部材に使用して構成される固体高分子型燃料電池のセパレータに関する。   The present invention relates to a roughened ferritic stainless steel plate for constituting a metal separator of a solid polymer fuel cell, and a solid polymer fuel cell configured using the ferritic stainless steel plate as a member. It relates to a separator.

燃料電池の中でも、固体高分子型の燃料電池は100℃以下での低温作動が可能であり、短時間で起動する長所を備えている。また、各部材が固体からなる構造であるためメンテナンスが容易であり、振動や衝撃に曝される用途にも適用できる。更に、出力が高いため小型化に適し、燃料効率が高く騒音が小さい等の長所も備えている。   Among fuel cells, a polymer electrolyte fuel cell can operate at a low temperature of 100 ° C. or less, and has an advantage of starting in a short time. In addition, since each member is made of a solid structure, maintenance is easy, and it can also be applied to applications that are exposed to vibration and impact. In addition, it has advantages such as high output, suitable for downsizing, high fuel efficiency and low noise.

固体高分子型燃料電池は、1セルあたりの発電量が小さいため、実用的な電力を取り出すには、固体高分子膜をセパレータで挟んだセルを1セルとし、多数のセルをスタックする必要がある。固体高分子型燃料電池は、分子中にプロトン交換基をもつ固体高分子樹脂がプロトン導電性電解質として機能することを利用したものであり、他の形式の燃料電池と同様に固体高分子膜を挟んで一方の側に水素等の燃料ガスを、他方の側に空気等の酸化性ガスをそれぞれ流す構造となっている。   Since a polymer electrolyte fuel cell has a small power generation amount per cell, it is necessary to stack a large number of cells with one cell having a polymer electrolyte membrane sandwiched between separators in order to extract practical power. is there. The polymer electrolyte fuel cell utilizes the function of a solid polymer resin having a proton exchange group in the molecule as a proton conductive electrolyte. Like other types of fuel cells, the polymer electrolyte fuel cell The fuel gas such as hydrogen is flowed on one side and the oxidizing gas such as air is flowed on the other side.

図1に、金属製セパレータを用いた車載用の固体高分子型燃料電池の断面構造を模式的に例示する。固体高分子膜の両側に電極(それぞれ負極および正極)を挟んでセパレータが配置されている。セパレータは、金属板をプレスにより畝状の凹凸断面を有する形状に加工してなる一対のセパレータ部材1とセパレータ部材2を、押圧した状態(すなわち接触部に接触面圧が付与された状態)で接触させ、一体化した構造を有している。そのセパレータ部材1は負極(例えばカーボンペーパー)と電気的に接触しているとともに、負極と当該部材の間には燃料ガス(水素を主体とするもの)が通る流路が形成されている。一方、セパレータ部材2は隣のセルにおける正極(例えばカーボンペーパー)と電気的に接触しているとともに、正極と当該部材の間には酸化剤ガス(例えば空気を主体とするもの)が通る流路が形成されている。そして、セパレータを構成する一対のセパレータ部材1とセパレータ部材2どうしは、互いに電気的接触を有するとともに、両部材の間には冷却水が通る流路が設けられることが多い。   FIG. 1 schematically illustrates a cross-sectional structure of an in-vehicle solid polymer fuel cell using a metal separator. Separators are arranged on both sides of the solid polymer membrane with electrodes (a negative electrode and a positive electrode, respectively) interposed therebetween. The separator is in a state in which a pair of separator member 1 and separator member 2 formed by processing a metal plate into a shape having a bowl-shaped concavo-convex cross section by pressing (that is, a contact surface pressure is applied to the contact portion). It has a contact and integrated structure. The separator member 1 is in electrical contact with a negative electrode (for example, carbon paper), and a channel through which fuel gas (mainly hydrogen) passes is formed between the negative electrode and the member. On the other hand, the separator member 2 is in electrical contact with a positive electrode (for example, carbon paper) in an adjacent cell, and a flow path through which an oxidant gas (for example, mainly air) passes between the positive electrode and the member. Is formed. And a pair of separator member 1 and separator member 2 which constitute a separator have electrical contact mutually, and a channel through which cooling water passes is often provided between both members.

図2に、家庭などで用いる定置用として想定される固体高分子型燃料電池の断面構造を模式的に例示する。この場合、車載用ほど高電流で運転されることは少ないので、例えば3セルに1セル程度の割合でセパレータ部材間に冷却水を通す構造が想定される。冷却水を通すセルでは、金属板をプレスにより畝状の凹凸断面を有する形状に加工してなるセパレータ部材3およびセパレータ部材4を一対として、それらを押圧した状態で接触させて一体化し、セパレータを構成する。この場合も、一対のセパレータ部材3とセパレータ部材4どうしは、互いに電気的接触を有するとともに、両部材の間には冷却水が通る流路が設けられる。   FIG. 2 schematically illustrates a cross-sectional structure of a polymer electrolyte fuel cell that is assumed for stationary use in homes and the like. In this case, since it is less likely to be operated at a higher current as in-vehicle use, for example, a structure in which cooling water is passed between the separator members at a rate of about 1 cell per 3 cells is assumed. In the cell through which the cooling water passes, a separator member 3 and a separator member 4 formed by processing a metal plate into a shape having a bowl-shaped concavo-convex cross section by pressing are combined in contact with each other in a pressed state. Constitute. Also in this case, the pair of separator members 3 and the separator members 4 are in electrical contact with each other, and a flow path through which cooling water passes is provided between the members.

図1や図2に示されるような、プレス成形された一対の板状部材を押圧した状態で接触させて一体化したタイプのセパレータを、以下単に「板状部材複合型セパレータ」と呼ぶことがある。   A separator of a type in which a pair of press-molded plate-like members are brought into contact with each other in a pressed state as shown in FIGS. 1 and 2 is simply referred to as a “plate-like member composite separator” hereinafter. is there.

固体高分子型燃料電池のセパレータは、pH2〜3程度の酸性雰囲気に耐える材料で構成する必要がある。このような強酸性雰囲気に耐え、しかもセパレータに要求される特性を満足する金属材料は、これまでのところ実用化されていない。例えば、強酸性雰囲気に耐える金属材料としてステンレス鋼等の耐酸性材料が考えられる。これらの材料は、表面に形成した強固な不動態皮膜によって耐酸性を呈するが、その不動態皮膜の存在によって表面抵抗や接触抵抗が高くなる。特に、一対のセパレータ部材を組み合わせることによって冷却水流路を区画した上記のような構造の板状部材複合型セパレータでは、両部材の接触箇所において良好な導電性が確保されなければならない。接触抵抗が高くなると、接触部分で多量のジュール熱が発生して大きな熱損失となり、燃料電池の発電効率を低下させる。したがって、ステンレス鋼等の不動態皮膜により耐酸性を確保するタイプの金属材料を実用的な構造のセパレータ材に適用することは容易でない。一方、不動態皮膜によらずに高耐食性を発揮する金属材料としては貴金属が挙げられ、これをセパレータ部材表面にコーティングすれば接触抵抗を低減させることは可能である。しかし、コスト的にそのような手法は採用できない。   The separator of the polymer electrolyte fuel cell needs to be made of a material that can withstand an acidic atmosphere having a pH of about 2 to 3. A metal material that can withstand such a strong acidic atmosphere and satisfies the characteristics required for the separator has not been put to practical use so far. For example, an acid-resistant material such as stainless steel can be considered as a metal material that can withstand a strong acid atmosphere. These materials exhibit acid resistance due to a strong passive film formed on the surface, but surface resistance and contact resistance are increased due to the presence of the passive film. In particular, in the plate-shaped member composite separator having the above-described structure in which the cooling water flow path is partitioned by combining a pair of separator members, good conductivity must be ensured at the contact point between both members. When the contact resistance increases, a large amount of Joule heat is generated at the contact portion, resulting in a large heat loss, which reduces the power generation efficiency of the fuel cell. Therefore, it is not easy to apply a metal material of a type that ensures acid resistance by a passive film such as stainless steel to a separator material having a practical structure. On the other hand, a noble metal is mentioned as a metal material which exhibits high corrosion resistance irrespective of a passive film, and if this is coated on the separator member surface, it is possible to reduce contact resistance. However, such a method cannot be adopted in terms of cost.

これまでに、固体高分子型燃料電池のセパレータを意図して、ステンレス鋼表面の接触抵抗を低減させるための手法が種々検討されてきた。特許文献1〜3にはカーボン粒子をステンレス鋼表面に島状に分布させることにより、耐酸性を確保しながら導電性および接触抵抗を改善したセパレータ材料が開示されている。しかし、ステンレス鋼表面に対するカーボン粒子の付着力を安定して十分に確保することは必ずしも容易ではなく、ハンドリングや加工などの際にカーボン粒子がステンレス鋼表面から脱落することが懸念される。また、良好な密着度でカーボン粒子を付着させるための工程が必要となり、生産工数の増加を招く。   So far, various methods for reducing the contact resistance of the stainless steel surface have been studied with the intention of being a separator for a polymer electrolyte fuel cell. Patent Documents 1 to 3 disclose separator materials that improve conductivity and contact resistance while ensuring acid resistance by distributing carbon particles in an island shape on the surface of stainless steel. However, it is not always easy to stably and sufficiently secure the adhesion of the carbon particles to the stainless steel surface, and there is a concern that the carbon particles may fall off the stainless steel surface during handling or processing. In addition, a process for attaching the carbon particles with a good degree of adhesion is required, resulting in an increase in production man-hours.

特許文献4にはステンレス鋼やチタン表面の酸化物層を除去した後、貴金属または貴金属の合金を付着させ接触抵抗を低減させる方法が記載されている。しかし、この方法は貴金属を使用することによるコスト増大が避けられない。   Patent Document 4 describes a method of reducing contact resistance by attaching a noble metal or an alloy of noble metal after removing an oxide layer on the surface of stainless steel or titanium. However, this method inevitably increases costs due to the use of noble metals.

一方、電解のない酸浸漬のみでは溶解不足となり良好な粗面化ができない。また、公知のアノード電解も接触抵抗の低減には有効でない。   On the other hand, only acid dipping without electrolysis results in insufficient dissolution and a good roughening cannot be achieved. Also, known anode electrolysis is not effective in reducing contact resistance.

特開平11−121018号公報Japanese Patent Laid-Open No. 11-12018 特開平11−126621号公報Japanese Patent Laid-Open No. 11-126621 特開平11−126622号公報JP-A-11-126622 特開2001−6713号公報JP 2001-6713 A

本発明は、このような現状に鑑み、上記のような板状部材複合型セパレータに用いたとき、その接触部における接触抵抗の低減に極めて効果的となる粗面化表面を有するフェライト系ステンレス鋼板を提供しようというものである。また、そのステンレス鋼板を用いたセパレータを提供することを目的とする。   In view of the present situation, the present invention is a ferritic stainless steel sheet having a roughened surface that is extremely effective in reducing contact resistance at the contact portion when used in the plate-shaped member composite separator as described above. Is to provide. Moreover, it aims at providing the separator using the stainless steel plate.

上記目的は、Cr:16〜40質量%、Mo:0.2〜5質量%を含有するフェライト系ステンレス鋼種からなる鋼板の少なくとも片面に、面粗さSPaが0.3〜2μmである粗面化表面を持つ鋼板であって、当該鋼板の前記粗面化表面と、上記同条件の粗面化表面を持つ他の鋼板の粗面化表面とを、接触面圧1MPaで接触させたときに、接触抵抗が10mΩ・cm2以下好ましくは3mΩ・cm2以下さらに好ましくは1mΩ・cm2以下を呈する固体高分子型燃料電池のセパレータ用粗面化ステンレス鋼板によって達成される。前記粗面化表面は、例えば塩化第二鉄水溶液中での交番電解またはアノード電解により粗面化されたものである。 The purpose is to provide a rough surface having a surface roughness SPa of 0.3 to 2 μm on at least one surface of a steel plate made of ferritic stainless steel containing Cr: 16 to 40% by mass and Mo: 0.2 to 5% by mass. When the roughened surface of the steel plate is brought into contact with the roughened surface of another steel plate having the roughened surface under the same conditions at a contact surface pressure of 1 MPa. Further, it is achieved by a roughened stainless steel plate for a separator of a polymer electrolyte fuel cell having a contact resistance of 10 mΩ · cm 2 or less, preferably 3 mΩ · cm 2 or less, more preferably 1 mΩ · cm 2 or less. The roughened surface is roughened by, for example, alternating electrolysis or anodic electrolysis in a ferric chloride aqueous solution.

ここで、「面粗さSPa」は、JIS B0601−2001に規定される断面曲線の算術平均高さPaを一定面積の表面領域について測定し、その平均値をとったものである。具体的には、SPaは走査型レーザー顕微鏡により測定される三次元表面プロファイルのデータを解析することにより求まる面粗さパラメータの1つであり、断面曲面の平均面に対する断面曲面の標高の絶対値の平均値を意味する。三次元表面プロファイルを測定する表面領域は、一辺が50μm以上の矩形の表面領域とする。すなわち50μm×50μm以上の測定面積を確保する。走査型レーザー顕微鏡の深さ方向分解能は0.01μm以上とすることが望ましい。「接触面圧」は、接触している双方の鋼板表面間に付与されている接触面に垂直方向の応力成分である。「接触抵抗」は、当該接触部を介して双方の鋼板間に直流電流(例えば接触面での電流密度1A/cm2)を流した際の電圧降下から算出される抵抗値に接触面積を乗じたものである。 Here, “surface roughness SPa” is obtained by measuring the arithmetic average height Pa of a cross-sectional curve defined in JIS B0601-2001 for a surface area of a certain area and taking the average value. Specifically, SPa is one of surface roughness parameters obtained by analyzing data of a three-dimensional surface profile measured by a scanning laser microscope, and the absolute value of the elevation of the cross-sectional curved surface with respect to the average surface of the cross-sectional curved surface Mean value of The surface region for measuring the three-dimensional surface profile is a rectangular surface region having a side of 50 μm or more. That is, a measurement area of 50 μm × 50 μm or more is ensured. The depth resolution of the scanning laser microscope is desirably 0.01 μm or more. “Contact surface pressure” is a stress component in a direction perpendicular to the contact surface applied between the surfaces of both steel plates in contact. “Contact resistance” is obtained by multiplying the contact area by a resistance value calculated from a voltage drop when a direct current (for example, a current density of 1 A / cm 2 at the contact surface) flows between both steel plates through the contact portion. It is a thing.

前記フェライト系ステンレス鋼種としては、例えばJIS G4305:2005に規定されるフェライト系鋼種に相当し、CrおよびMo含有量が上記の範囲にあるものが例示できる。これらの規格鋼種をベースに、必要に応じて種々の元素を添加して特性改善を図った鋼種を採用することもできる。特にPは0.08質量%までの含有が許容される。成分組成範囲を例示すると、質量%で、C:0.12%以下、Si:1%以下、Mn:2%以下、P:0.08%以下、S:0.03%以下、Cr:16〜40%、Mo:0.2〜5%、N:0.025%以下であり、Ni:0〜0.6%、Cu:0〜1%、Al:0〜1%、Ti:0〜0.8%、Nb:0〜0.8%、V:0〜1%、Ca:0〜0.1%、REM(希土類元素):0〜0.1%、B:0〜0.1%、残部Feおよび不可避的不純物である組成を有する鋼種を挙げることができる。ここで、下限が0%である元素は任意成分であり、0%はその元素が無添加であり、通常の製鋼工程での分析手法において測定限界以下である場合を意味する。   Examples of the ferritic stainless steel types include those corresponding to the ferritic steel types defined in JIS G4305: 2005, and having Cr and Mo contents in the above ranges. Based on these standard steel types, it is also possible to adopt steel types whose characteristics are improved by adding various elements as necessary. In particular, P is allowed to contain up to 0.08% by mass. The component composition range is exemplified by C: 0.12% or less, Si: 1% or less, Mn: 2% or less, P: 0.08% or less, S: 0.03% or less, Cr: 16 -40%, Mo: 0.2-5%, N: 0.025% or less, Ni: 0-0.6%, Cu: 0-1%, Al: 0-1%, Ti: 0 0.8%, Nb: 0 to 0.8%, V: 0 to 1%, Ca: 0 to 0.1%, REM (rare earth element): 0 to 0.1%, B: 0 to 0.1 %, The balance Fe, and a steel type having a composition that is an inevitable impurity. Here, the element whose lower limit is 0% is an optional component, and 0% means that the element is not added and is below the measurement limit in the analysis method in the normal steelmaking process.

また本発明では、上記のような粗面化鋼板をプレス成形してなる一対のセパレータ部材を、それぞれの前記粗面化表面どうしの間で押圧された接触箇所が形成されるように一体化した固体高分子型燃料電池のセパレータが提供される。特に、前記一対のセパレータ部材の間に、前記接触箇所によって仕切られた冷却水流路を有するものが好適な対象となる。図1、図2の例では、太線で示した箇所に前記粗面化表面が適用される。   Further, in the present invention, a pair of separator members formed by press-forming the roughened steel sheet as described above are integrated so that contact points pressed between the respective roughened surfaces are formed. A separator for a polymer electrolyte fuel cell is provided. In particular, one having a cooling water flow path partitioned by the contact portion between the pair of separator members is a suitable target. In the example of FIG. 1 and FIG. 2, the roughened surface is applied to a portion indicated by a thick line.

本発明によれば、フェライト系ステンレス鋼板の表面どうしを接触させたときの接触抵抗が顕著に低減される粗面化ステンレス鋼板が提供された。したがって、本発明の粗面化ステンレス鋼板は、冷却水流路を内在させた合理的な構造の固体高分子型燃料電池セパレータを構成する部材として極めて有用である。また本発明の粗面化ステンレス鋼板で構成される板状部材複合型セパレータは、比較的安価なフェライト系ステンレス鋼を素材としており、しかも貴金属を使用しないので低コストであり、かつ冷却機能を有しながら高い導電性を維持できることから、車載用および定置用の実用的な固体高分子型燃料電池の普及に寄与するものである。   According to the present invention, a roughened stainless steel sheet is provided in which the contact resistance when the surfaces of ferritic stainless steel sheets are brought into contact with each other is significantly reduced. Therefore, the roughened stainless steel sheet of the present invention is extremely useful as a member constituting a solid polymer fuel cell separator having a reasonable structure in which a cooling water flow path is incorporated. The plate-shaped member composite separator made of the roughened stainless steel plate of the present invention is made of a relatively inexpensive ferritic stainless steel and is low in cost because it uses no precious metal and has a cooling function. However, since high conductivity can be maintained, it contributes to the spread of practical solid polymer fuel cells for in-vehicle use and stationary use.

〔フェライト系ステンレス鋼種〕
本発明では、固体高分子型燃料電池のセパレータが曝される酸性環境で高い耐久性を呈するステンレス鋼として、Mo:0.2〜5質量%を含有するフェライト系ステンレス鋼種を対象とする。そのような鋼種としては既存の公知鋼種を採用することができる。例えば、JIS G4305:2005に規定されるフェライト系鋼種であって、Moを上記の範囲で含有するものを例示することができる。
[Ferrite stainless steel grade]
In the present invention, as a stainless steel exhibiting high durability in an acidic environment to which a separator of a polymer electrolyte fuel cell is exposed, a ferritic stainless steel species containing Mo: 0.2 to 5% by mass is targeted. As such a steel type, an existing known steel type can be adopted. For example, a ferritic steel type specified in JIS G4305: 2005, which contains Mo in the above range can be exemplified.

具体的な成分組成範囲を示すと例えば、質量%で、C:0.12%以下好ましくは0.025%以下、Si:1%以下好ましくは0.5%以下、Mn:2%以下好ましくは1%以下、P:0.08%以下、S:0.03%以下、Cr:16〜40%好ましくは16〜35%より好ましくは16〜32%、Mo:0.2〜5%好ましくは1〜3%、N:0.025%以下であり、Ni:0〜0.6%、Cu:0〜1%好ましくは0〜0.5%、Al:0〜1%好ましくは0〜0.3%、Ti:0〜0.8%好ましくは0〜0.3%、Nb:0〜0.8%好ましくは0〜0.3%、V:0〜1%、Ca:0〜0.1%好ましくは0〜0.01%、REM(希土類元素):0〜0.1%好ましくは0〜0.01%、B:0〜0.1%好ましくは0〜0.01%、残部Feおよび不可避的不純物からなる組成が挙げられる。   Specific component composition ranges are shown, for example, in mass%, C: 0.12% or less, preferably 0.025% or less, Si: 1% or less, preferably 0.5% or less, and Mn: 2% or less, preferably 1% or less, P: 0.08% or less, S: 0.03% or less, Cr: 16-40%, preferably 16-35%, more preferably 16-32%, Mo: 0.2-5%, preferably 1 to 3%, N: 0.025% or less, Ni: 0 to 0.6%, Cu: 0 to 1%, preferably 0 to 0.5%, Al: 0 to 1%, preferably 0 to 0 .3%, Ti: 0 to 0.8%, preferably 0 to 0.3%, Nb: 0 to 0.8%, preferably 0 to 0.3%, V: 0 to 1%, Ca: 0 to 0 0.1%, preferably 0-0.01%, REM (rare earth element): 0-0.1%, preferably 0-0.01%, B: 0-0.1%, preferably 0-0.01%, Balance Fe and Compositions consisting avoidable impurities like.

主な成分元素について簡単に説明する。
Cは、0.12質量%まで許容できるが、フェライト系ステンレス鋼の加工性、低温靭性を低下させるので0.12質量%以下とすることが望ましい。それらの特性を重視する場合は0.05質量%以下とすることがより望ましく、0.025質量%以下であることが一層好ましい。
The main component elements will be briefly described.
C can be tolerated up to 0.12% by mass, but it is preferably 0.12% by mass or less because it lowers the workability and low temperature toughness of ferritic stainless steel. When emphasizing those characteristics, it is more desirable to set it as 0.05 mass% or less, and it is still more preferable that it is 0.025 mass% or less.

Siは、多量に含有すると鋼を硬質化して加工性を阻害するので、1質量%以下であることが望ましく、0.5質量%以下がより好ましい。   When Si is contained in a large amount, it hardens the steel and impairs workability, so it is preferably 1% by mass or less, and more preferably 0.5% by mass or less.

Mnは、多量に含有すると加工性低下、耐食性低下、接触抵抗の増大を招くので、2質量%以下であることが望ましく、1質量%以下がより好ましい。   When Mn is contained in a large amount, workability, corrosion resistance, and contact resistance are increased. Therefore, Mn is preferably 2% by mass or less, and more preferably 1% by mass or less.

Pは、セパレータが曝される燃料電池の内部環境における耐食性向上に有効な元素であるが、P含有量増大に伴って加工性が低下するので、0.08質量%以下であることが望ましい。   P is an element effective for improving the corrosion resistance in the internal environment of the fuel cell to which the separator is exposed. However, since the workability decreases as the P content increases, it is preferably 0.08% by mass or less.

Sは、耐食性に有害な元素であり、0.03質量%以下であることが好ましい。   S is an element harmful to corrosion resistance, and is preferably 0.03 mass% or less.

Crは、ステンレス鋼の耐食性を確保するために重要な元素であり、Cr含有量が多くなるほど一般に耐食性は向上する。固体高分子型燃料電池のセル内環境を考慮すると16質量%以上のCr含有量を確保することが望ましい。ただし、多量のCr含有は加工性の低下を招くので、Cr含有量は40質量%以下に抑える必要がある。35質量%以下とすることが望ましく、30質量%以下がより好ましい。   Cr is an important element for ensuring the corrosion resistance of stainless steel, and generally the corrosion resistance improves as the Cr content increases. In view of the in-cell environment of the polymer electrolyte fuel cell, it is desirable to ensure a Cr content of 16% by mass or more. However, since a large amount of Cr causes a decrease in workability, the Cr content must be suppressed to 40% by mass or less. It is desirable to set it as 35 mass% or less, and 30 mass% or less is more preferable.

Moは、Crとの共存によりステンレス鋼の耐食性を向上させる元素である。本発明ではセル内環境に曝されたときに優れた耐久性を呈するように、Mo含有量が0.2質量%以上のオーステナイト系ステンレス鋼を対象とする。Mo含有量は1質量%以上であることがより好ましい。ただし、多量のMo含有はステンレス鋼を硬質化させ加工性劣化を招き、またコスト的にも不利となるので、Mo含有量の上限は5質量%に制限される。3質量%以下とすることがより好ましい。   Mo is an element that improves the corrosion resistance of stainless steel by coexistence with Cr. In the present invention, an austenitic stainless steel having a Mo content of 0.2% by mass or more is targeted so as to exhibit excellent durability when exposed to the in-cell environment. The Mo content is more preferably 1% by mass or more. However, a large amount of Mo hardens stainless steel and causes deterioration of workability, and is also disadvantageous in terms of cost, so the upper limit of the Mo content is limited to 5% by mass. More preferably, the content is 3% by mass or less.

Nは、加工性、低温靭性を低下させるので0.025質量%以下であることが望ましい。   N is preferably 0.025% by mass or less because it lowers workability and low temperature toughness.

Ni、Cuは、酸性雰囲気での耐全面腐食性を改善し、またフェライト系ステンレス鋼の低温靭性を改善する作用があるため、必要に応じてこららの1種以上を添加することができる。上記作用を十分に発揮させるには、Niの場合は0.15質量%以上、Cuの場合は0.2質量%以上の含有量を確保することが望ましい。ただし、これらの元素は溶出しやすい性質があり、なかでも溶出したNiイオンが触媒層に到達すると電池性能が低下しやすい。したがって、Ni、Cuの1種以上を添加する場合は、Niは0.6質量%以下、Cuは0.8質量%以下の範囲で行うことが望ましい。   Since Ni and Cu have the effect of improving the general corrosion resistance in an acidic atmosphere and improving the low temperature toughness of the ferritic stainless steel, one or more of these can be added as necessary. In order to sufficiently exhibit the above-described action, it is desirable to secure a content of 0.15% by mass or more in the case of Ni and 0.2% by mass or more in the case of Cu. However, these elements have a property of easily eluting, and battery performance is likely to deteriorate when the eluted Ni ions reach the catalyst layer. Therefore, when adding 1 or more types of Ni and Cu, it is desirable to carry out Ni in the range of 0.6 mass% or less and Cu in the range of 0.8 mass% or less.

Alは、鋼の脱酸剤として機能するとともに、Nの固定にも有用であることから、必要に応じて添加することができる。この場合、0.04質量%以上の含有量を確保することがより効果的である。ただし、Alを添加する場合は1質量%以下とすることが望ましく、0.3質量%以下がより好ましい。   Al functions as a deoxidizer for steel and is also useful for fixing N. Therefore, Al can be added as necessary. In this case, it is more effective to secure a content of 0.04% by mass or more. However, when adding Al, it is desirable to set it as 1 mass% or less, and 0.3 mass% or less is more preferable.

Ti、Nbは、C、Nを固定し加工性を改善する効果があり、必要に応じて添加される。そのためにはTi:0.03質量%以上、Nb:0.03質量%以上の1種以上を添加することが効果的である。ただし、Ti、Nbの1種以上を添加する場合は、Ti、Nbとも0.8質量%以下の含有量とすることが望ましく、0.3質量%以下がより好ましい。   Ti and Nb have the effect of fixing C and N and improving workability, and are added as necessary. For that purpose, it is effective to add one or more of Ti: 0.03 mass% or more and Nb: 0.03 mass% or more. However, when adding 1 or more types of Ti and Nb, it is desirable to make content of both Ti and Nb into 0.8 mass% or less, and 0.3 mass% or less is more preferable.

Vは、燃料電池内の内部環境における耐食性を改善する作用があるので必要に応じて添加される。その作用を十分に得るには0.2質量%以上のV含有量を確保することが望ましい。ただし、Vを添加する場合は、1質量%以下の含有量とすることが望ましい。   V has an effect of improving the corrosion resistance in the internal environment of the fuel cell, and is added as necessary. In order to obtain the effect sufficiently, it is desirable to secure a V content of 0.2% by mass or more. However, when adding V, it is desirable to make it content of 1 mass% or less.

その他、本発明の効果を阻害しない範囲であれば種々の元素を添加することができる。例えば、Ca:0.1質量%以下%好ましくは0.01質量%以下、REM(希土類元素):0.1質量%以下好ましくは0.01質量%以下、B:0.1質量%以下好ましくは0.01質量%以下の1種以上の添加などが許容される。   In addition, various elements can be added as long as the effects of the present invention are not impaired. For example, Ca: 0.1 mass% or less, preferably 0.01 mass% or less, REM (rare earth element): 0.1 mass% or less, preferably 0.01 mass% or less, B: 0.1 mass% or less, preferably Addition of one or more of 0.01 mass% or less is permitted.

〔粗面化形態〕
図3に、本発明の粗面化鋼板の粗面化表面どうしが1MPaの接触圧力で接触している接触部についての板厚方向に平行な断面におけるSEM写真を例示する。双方の粗面化鋼板は後述の実施例におけるNo.305の条件で得られたものである。尖った突起形状として観察されるピット境界の稜の部分が、押圧による大きな荷重を受けて塑性変形し、その塑性変形に伴い表面の不動態皮膜が破れ新鮮面どうしが接触し良好な通電状態となるものと考えられる。
(Roughened form)
In FIG. 3, the SEM photograph in the cross section parallel to the plate | board thickness direction about the contact part which the roughening surfaces of the roughening steel plate of this invention are contacting with the contact pressure of 1 Mpa is illustrated. Both roughened steel sheets were obtained under the conditions of No. 305 in the examples described later. The edge of the pit boundary observed as a sharp protrusion shape undergoes plastic deformation under a large load due to pressing, and the passive film on the surface breaks along with the plastic deformation, and the fresh surfaces come into contact with each other and have a good energized state. It is considered to be.

図4には、粗面化していない鋼板の表面どうしが1MPaの接触圧力で接触している接触部についての板厚方向に平行な断面におけるSEM写真を例示する。この場合、1MPaの接触圧力を受けても、微視的に見ると両鋼板が接触している部分は少なく、隙間が形成されている部分が多いことがわかる。また、表面の不動態皮膜の破壊も起こりにくい。このような状態では接触抵抗が高く、良好な通電状態が期待できない。   In FIG. 4, the SEM photograph in the cross section parallel to the plate | board thickness direction about the contact part which the surfaces of the steel plate which is not roughened is contacting with the contact pressure of 1 Mpa is illustrated. In this case, even when subjected to a contact pressure of 1 MPa, it can be seen that when viewed microscopically, there are few portions where both the steel plates are in contact and there are many portions where gaps are formed. Further, the surface passive film is not easily destroyed. In such a state, contact resistance is high and a good energized state cannot be expected.

発明者らの検討によれば、板状部材複合型セパレータにおいて、そのセパレータを構成する板状部材間の通電を十分に確保するためには、接触面圧1MPaで接触させたときの接触抵抗が10mΩ・cm2以下であるような接触状態が形成される板状部材を用いることが必要であることがわかった。そのような特性を満たさない板状部材どうしを組み合わせた場合には安定して良好な通電を確保することが難しい。特に接触面圧1MPaで接触させたときの接触抵抗が3mΩ・cm2以下となる粗面化鋼板であることがより好ましく、1mΩ・cm2以下となることがさらに好ましい。 According to the study by the inventors, in a plate-shaped member composite type separator, in order to ensure sufficient energization between the plate-shaped members constituting the separator, the contact resistance when contacting at a contact surface pressure of 1 MPa is It has been found that it is necessary to use a plate-like member in which a contact state such as 10 mΩ · cm 2 or less is formed. When plate-like members that do not satisfy such characteristics are combined, it is difficult to ensure stable and good energization. In particular, the steel sheet is preferably a roughened steel sheet having a contact resistance of 3 mΩ · cm 2 or less when contacted at a contact surface pressure of 1 MPa, and more preferably 1 mΩ · cm 2 or less.

詳細な検討の結果、図3に示したような新鮮面どうしの接触によって、接触面圧1MPaで接触させたときの接触抵抗が10mΩ・cm2以下の接触状態を実現するには、後述する電解粗面化によって得られる特異な粗面化形態(開口部が小さい割に深さが深い球面状のピットが鋼板表面の投影面積に占める割合で約80%以上の高密度で形成されている粗面化形態)において、面粗さSPaが0.3μm以上に調整されている粗面化表面が極めて有効であることがわかった。SPaが0.3μm未満だと鋼板表面の投影面積に占めるピット未発生領域の割合が大きすぎるか、あるいはピットが浅すぎてピット境界の稜の部分の尖り方が不足するものと考えられ、結果的に安定して接触抵抗の十分な低減を図ることが難しい。 As a result of detailed examination, in order to realize a contact state with a contact resistance of 10 mΩ · cm 2 or less by contact between fresh surfaces as shown in FIG. A unique roughening form obtained by roughening (roughness formed with a high density of about 80% or more in terms of the ratio of spherical pits with deep openings to the projected area of the steel sheet surface, although the openings are small. It has been found that a roughened surface having a surface roughness SPa of 0.3 μm or more is extremely effective. If SPa is less than 0.3 μm, the ratio of the pit non-occurrence area to the projected area of the steel sheet surface is too large, or the pit is too shallow and the pit boundary is not sharp enough. It is difficult to achieve stable reduction of contact resistance stably.

〔ステンレス鋼板〕
電解粗面化処理に供するステンレス鋼材としては、一般的な酸洗仕上げ材や調質圧延仕上げ材などが適用可能である。
[Stainless steel plate]
As the stainless steel material used for the electrolytic surface roughening treatment, a general pickling finish material or a temper rolled finish material can be applied.

〔予備処理〕
電解粗面化処理に供する前には、予備処理として通常の電解脱脂を行うことが好ましく、あるいは更に必要に応じて塩酸酸洗を実施することができる。電解脱脂は例えば濃度1〜10質量%のオルソケイ酸ナトリウム水溶液中でのアノード電解が好適に採用できる。電解脱脂の液温およびアノード電流密度は例えば、60℃±5℃、2〜10A/dm2とすることができ、処理時間は例えば5〜30秒の範囲で調製すればよい。塩酸酸洗は常温の塩酸水溶液に浸漬する方法が好適に採用できる。その塩酸濃度は例えば1〜10質量%とし、浸漬時間は5〜30秒程度の範囲で調整すればよい。
[Preliminary processing]
Before being subjected to the electrolytic surface roughening treatment, it is preferable to carry out normal electrolytic degreasing as a preliminary treatment, or further, hydrochloric acid pickling can be carried out as necessary. As the electrolytic degreasing, for example, anode electrolysis in a sodium orthosilicate aqueous solution having a concentration of 1 to 10% by mass can be suitably employed. The liquid temperature and anode current density of electrolytic degreasing can be set to, for example, 60 ° C. ± 5 ° C., 2 to 10 A / dm 2, and the treatment time may be adjusted in the range of, for example, 5 to 30 seconds. As the hydrochloric acid pickling, a method of immersing in an aqueous hydrochloric acid solution at room temperature can be suitably employed. The hydrochloric acid concentration may be, for example, 1 to 10% by mass, and the immersion time may be adjusted in the range of about 5 to 30 seconds.

〔電解粗面化処理〕
上記のような粗面化形態を得るためには、塩化第二鉄水溶液中での交番電解処理またはアノード電解処理が好適に適用できる。電解液としてはFe3+イオンを含む塩化第二鉄が適している。電解液中にはステンレス鋼の酸化作用を促進するNO3―、SO4 2-といったイオンが含まれていないことも、孔食、すなわちピットの形成を容易にさせ、粗面化処理を短時間で終えるために重要となる。Moを含有するフェライト系ステンレス鋼の場合、Cr含有量が概ね25質量%以下の鋼種に対しては交番電解が比較的適しており、Cr含有量がそれより高い高耐食性鋼種に対してはアノード電解が比較的適している。
[Electrolytic roughening treatment]
In order to obtain the roughened form as described above, alternating electrolytic treatment or anodic electrolytic treatment in an aqueous ferric chloride solution can be suitably applied. As the electrolyte, ferric chloride containing Fe 3+ ions is suitable. The fact that the electrolyte does not contain ions such as NO 3− and SO 4 2− that promote the oxidation action of stainless steel also facilitates pitting, that is, the formation of pits, and roughens the surface for a short time. Is important to finish with. In the case of ferritic stainless steel containing Mo, alternating electrolysis is relatively suitable for steel types having a Cr content of approximately 25% by mass or less, and anode for high corrosion resistance steel types having a higher Cr content. Electrolysis is relatively suitable.

電解液の濃度や電解条件は、ステンレス鋼種に応じて上述の粗面化形態が得られる適正範囲に設定する必要がある。例えば、交番電解の場合、Fe3+濃度5〜100g/Lの塩化第二鉄水溶液中で、アノード電解時の電流密度1〜10kA/m2、カソード電解時の電流密度0.03〜2kA/m2とした1〜20Hzの交番電解を10〜300秒間施す条件範囲において、最適条件を定めるとよい。アノード電解の場合は、Fe3+濃度50〜100g/Lの塩化第二鉄水溶液中で、電流密度1〜10kA/m2のアノード電解を10〜300秒間施す条件範囲において、最適条件を定めるとよい。 It is necessary to set the concentration of the electrolytic solution and the electrolysis conditions in an appropriate range in which the above roughened form can be obtained according to the stainless steel type. For example, in the case of alternating electrolysis, in a ferric chloride aqueous solution having an Fe 3+ concentration of 5 to 100 g / L, the current density during anode electrolysis is 1 to 10 kA / m 2 , and the current density during cathode electrolysis 0.03 to 2 kA / Optimum conditions may be determined in a condition range in which alternating electrolysis of 1 to 20 Hz with m 2 is performed for 10 to 300 seconds. In the case of anodic electrolysis, when optimum conditions are determined in a condition range in which anodic electrolysis with a current density of 1 to 10 kA / m 2 is performed for 10 to 300 seconds in an aqueous ferric chloride solution with an Fe 3+ concentration of 50 to 100 g / L, Good.

〔セパレータ〕
以上のような本発明の粗面化ステンレス鋼板は、プレス加工により所定の畝状の凹凸を形成したセパレータ部材とすることができる。そのプレス加工を経ても、板状部材複合型セパレータを構成する一対の部材間における接触抵抗は、プレス加工前のサンプルを用いた場合と遜色ないことが実験により確認されている。一対のセパレータ部材は、通常、周辺部をろう付けまたはかしめ加工することにより一体化され、両部材の接触部が押圧された状態の板状部材複合型セパレータが構築される。
[Separator]
The roughened stainless steel plate of the present invention as described above can be a separator member having predetermined bowl-shaped irregularities formed by pressing. It has been experimentally confirmed that even after the press working, the contact resistance between the pair of members constituting the plate-shaped member composite separator is not inferior to that when the sample before the press working is used. The pair of separator members are usually integrated by brazing or caulking the peripheral portion, and a plate-shaped member composite separator in a state where the contact portions of both members are pressed is constructed.

SUS436J1L(18Cr−0.5Mo)に相当する、2B仕上げ、板厚0.4mmのフェライト系ステンレス鋼板を用意した。
予備処理として供試材の鋼板を濃度5質量%、液温60℃のオルソケイ酸ナトリウム溶液に浸漬し、電流密度5A/dm2でアノード電解脱脂を10秒間実施した。
A ferritic stainless steel plate having a 2B finish and a thickness of 0.4 mm corresponding to SUS436J1L (18Cr-0.5Mo) was prepared.
As a pretreatment, a steel plate as a test material was immersed in a sodium orthosilicate solution having a concentration of 5 mass% and a liquid temperature of 60 ° C., and anodic electrolytic degreasing was performed at a current density of 5 A / dm 2 for 10 seconds.

電解脱脂後の鋼板表面に、塩化第二鉄水溶液中で交番電解処理を施すことによって粗面化処理を行った。処理条件は、Fe3+:20g/Lの塩化第二鉄水溶液を用い、アノード電流密度:3.0kA/m2、交番電解サイクル5Hz、処理時間:60秒で、カソード電流密度および液温を変化させて交番電解処理を行った。すべての条件で微細なピットが全面に形成され、ピット境界には断面形状の尖った稜が形成されていた。比較材として電解粗面化処理を行っていない2B仕上げのままの材料も用意した(実施例2〜4において同じ)。 The surface of the steel sheet after electrolytic degreasing was subjected to a roughening treatment by performing an alternating electrolytic treatment in a ferric chloride aqueous solution. The treatment conditions were: Fe 3+ : ferric chloride aqueous solution of 20 g / L, anode current density: 3.0 kA / m 2 , alternating electrolysis cycle 5 Hz, treatment time: 60 seconds, cathode current density and liquid temperature Alternating electrolytic treatment was performed by changing. Fine pits were formed on the entire surface under all conditions, and sharp edges with a cross-sectional shape were formed at the pit boundaries. As a comparative material, a 2B-finished material that was not subjected to electrolytic surface roughening was also prepared (the same applies to Examples 2 to 4).

粗面化処理を終えた材料および粗面化処理を施さなかった比較材(以下、これらを試料鋼板という)について、面粗さSPa、および接触抵抗を以下のようにして調べた。   The surface roughness SPa and contact resistance of the material that had been subjected to the roughening treatment and the comparative materials that were not subjected to the roughening treatment (hereinafter referred to as sample steel plates) were examined as follows.

〔面粗さSPa〕
各試料鋼板の粗面化表面(粗面化処理を施さなかった比較材は2B仕上げままの表面)について、走査型共焦点レーザー顕微鏡(オリンパス株式会社製;OLS1200)を用いて、51μm×51μmの表面領域について、分解能0.01μmにて面粗さSPaを測定した。具体的には、対物レンズ100倍(深さ方向分解能:0.01μm)、ズーム2.5倍の倍率に設定し、51μm×51μm視野の粗面化表面の画像を取り込んだ後、ピークノイズ除去および画像輝度平均化の画像処理を行うことによって三次元表面プロファイルを求め、そのデータに基づいて算出される面粗さSPaを求めた。
[Surface roughness SPa]
Using a scanning confocal laser microscope (Olympus Co., Ltd .; OLS1200) on the roughened surface of each sample steel plate (the surface of the comparative material that was not roughened was a 2B-finished surface), 51 μm × 51 μm For the surface region, the surface roughness SPa was measured at a resolution of 0.01 μm. Specifically, the objective lens is set to 100 × (depth resolution: 0.01 μm) and the zoom is set to 2.5 × magnification, and after removing the rough surface of the 51 μm × 51 μm field of view, peak noise is removed. Then, a three-dimensional surface profile was obtained by performing image processing for image luminance averaging, and a surface roughness SPa calculated based on the data was obtained.

〔接触抵抗〕
試料鋼板を室内に約72時間放置した後、その鋼板から直径15mmの円形試料を打ち抜いた。2枚の円形試料(いずれも同種の鋼板試料から打ち抜いたもの)を1組として、それぞれの粗面化表面どうしが向き合うように重ね合わせ、その上下にCu製のブロックをあてがい、オートグラフにより1MPaの接触圧力となる荷重を付加した。そして、上下のCu製のブロック間に直流電源より1.77A(1A/cm2)の電流を流し、重ね合わせた双方の円形試料間における電圧降下E(mV)をデジタルマルチメータで測定し、接触抵抗R(mΩ・cm2)=E/Iを求めた。
結果を表1に示す。
[Contact resistance]
The sample steel plate was left in the room for about 72 hours, and then a circular sample having a diameter of 15 mm was punched from the steel plate. Two round specimens (both of which are punched from the same type of steel sheet specimens) are superposed so that the roughened surfaces face each other, Cu blocks are placed on the top and bottom, and 1 MPa is obtained by autograph. The load which becomes the contact pressure of was added. Then, a current of 1.77 A (1 A / cm 2 ) was passed from the DC power source between the upper and lower Cu blocks, and the voltage drop E (mV) between the two stacked circular samples was measured with a digital multimeter, Contact resistance R (mΩ · cm 2 ) = E / I was determined.
The results are shown in Table 1.

電解粗面化処理を施していないNo.118は接触抵抗が25mΩ・cm2であったのに対し、面粗さSPaを0.3〜2μmとした本発明例の接触抵抗は余裕を持って10mΩ・cm2以下をクリアした。 No. 118 not subjected to electrolytic surface roughening treatment had a contact resistance of 25 mΩ · cm 2 , whereas the contact resistance of the present invention in which the surface roughness SPa was 0.3 to 2 μm had a margin. Cleared 10 mΩ · cm 2 or less.

電解粗面化処理に供する鋼板をSUS444(18Cr−2Mo)に相当する、2B仕上げ、板厚0.15mmのフェライト系ステンレス鋼板とし、塩化第二鉄水溶液による電解粗面化処理の条件を、Fe3+:27.5〜48g/L、液温:40〜60℃、アノード電流密度:3.0kA/m2、カソード電流密度:0.3〜1.0A/m2、交番電解サイクル5Hz、処理時間:60秒の交番電解処理としたことを除き、実施例1と同様の条件で実験を行った。結果を表2に示す。 The steel plate used for the electrolytic surface roughening treatment is a ferritic stainless steel plate having a 2B finish and a plate thickness of 0.15 mm corresponding to SUS444 (18Cr-2Mo). 3+ : 27.5 to 48 g / L, liquid temperature: 40 to 60 ° C., anode current density: 3.0 kA / m 2 , cathode current density: 0.3 to 1.0 A / m 2 , alternating electrolysis cycle 5 Hz, Treatment time: An experiment was performed under the same conditions as in Example 1 except that the alternating electrolytic treatment was performed for 60 seconds. The results are shown in Table 2.

面粗さSPaを0.3〜2μmとした本発明例のものは、余裕を持って10mΩ・cm2以下の接触抵抗を実現することができた。 The example of the present invention in which the surface roughness SPa was 0.3 to 2 μm was able to realize a contact resistance of 10 mΩ · cm 2 or less with a margin.

電解粗面化処理に供する鋼板をSUS445J1(22Cr−1.2Mo)に相当する、2D仕上げ、板厚0.2mmのフェライト系ステンレス鋼板とし、塩化第二鉄水溶液による電解粗面化処理の条件を、Fe3+:30g/L、液温:50℃、アノード電流密度3.5kA/m2、カソード電流密度0.8kA/m2、交番電解サイクル10Hzとし、処理時間を種々変化させて交番電解を行ったことを除き、実施例1と同様の条件で実験を行った。結果を表3に示す。 The steel plate used for the electrolytic surface roughening treatment is a ferritic stainless steel plate having a 2D finish and a thickness of 0.2 mm corresponding to SUS445J1 (22Cr-1.2Mo). , Fe 3+ : 30 g / L, liquid temperature: 50 ° C., anode current density of 3.5 kA / m 2 , cathode current density of 0.8 kA / m 2 , alternating electrolysis cycle of 10 Hz, and alternate electrolysis with various treatment times The experiment was performed under the same conditions as in Example 1 except that the above was performed. The results are shown in Table 3.

面粗さSPaを0.3〜2μmとした本発明例のものは、余裕を持って10mΩ・cm2以下の接触抵抗を実現することができた。 The example of the present invention in which the surface roughness SPa was 0.3 to 2 μm was able to realize a contact resistance of 10 mΩ · cm 2 or less with a margin.

電解粗面化処理に供する鋼板をSUS447J1(30Cr−2Mo)に相当する、2B仕上げ、板厚0.25mmのフェライト系ステンレス鋼板とし、塩化第二鉄水溶液による電解粗面化処理の条件を、Fe3+:70g/L、液温:40〜50℃、アノード電流密度3kA/m2、処理時間30〜60秒の、アノード電解としたことを除き、実施例1と同様の条件で実験を行った。結果を表4に示す。 The steel plate used for the electrolytic surface roughening treatment is a ferritic stainless steel plate having a 2B finish and a thickness of 0.25 mm, which corresponds to SUS447J1 (30Cr-2Mo). 3+ : 70 g / L, liquid temperature: 40-50 ° C., anode current density: 3 kA / m 2 , treatment time: 30-60 seconds It was. The results are shown in Table 4.

面粗さSPaを0.3〜2μmとした本発明例のものは、余裕を持って10mΩ・cm2以下の接触抵抗を実現することができた。 The example of the present invention in which the surface roughness SPa was 0.3 to 2 μm was able to realize a contact resistance of 10 mΩ · cm 2 or less with a margin.

金属製セパレータを用いた車載用の固体高分子型燃料電池の断面構造を模式的に例示した図。The figure which illustrated typically the cross-sectional structure of the polymer electrolyte fuel cell for vehicles using a metal separator. 金属製セパレータを用いた定置用の固体高分子型燃料電池の断面構造を模式的に例示した図。The figure which illustrated typically the cross-sectional structure of the polymer electrolyte fuel cell for stationary use using metal separators. 本発明の粗面化鋼板の粗面化表面どうしが押圧された状態で接触している接触部についての板厚方向に平行な断面におけるSEM写真。The SEM photograph in the cross section parallel to the plate | board thickness direction about the contact part which is contacting in the state by which the roughening surfaces of the roughening steel plate of this invention were pressed. 粗面化していない鋼板の表面どうしが押圧された状態で接触している接触部についての板厚方向に平行な断面におけるSEM写真。The SEM photograph in the cross section parallel to the plate | board thickness direction about the contact part which is contacting in the state where the surfaces of the steel plate which is not roughened are pressed.

Claims (6)

Cr:16〜40質量%、Mo:0.2〜5質量%を含有するフェライト系ステンレス鋼種からなる鋼板の少なくとも片面に、面粗さSPaが0.3〜2μmである粗面化表面を持つ鋼板であって、当該鋼板の前記粗面化表面と、上記同条件の粗面化表面を持つ他の鋼板の粗面化表面とを、接触面圧1MPaで接触させたときに、接触抵抗が10mΩ・cm2以下を呈する固体高分子型燃料電池のセパレータ用粗面化ステンレス鋼板。 At least one surface of a steel sheet made of a ferritic stainless steel containing Cr: 16 to 40% by mass and Mo: 0.2 to 5% by mass has a roughened surface with a surface roughness SPa of 0.3 to 2 μm. When the roughened surface of the steel plate is brought into contact with the roughened surface of another steel plate having the roughened surface under the same conditions, the contact resistance is 1 MPa. A roughened stainless steel sheet for a separator of a polymer electrolyte fuel cell exhibiting 10 mΩ · cm 2 or less. 前記粗面化表面は、塩化第二鉄水溶液中での交番電解またはアノード電解により粗面化されたものである請求項1に記載のセパレータ用粗面化ステンレス鋼板。   The roughened stainless steel sheet for a separator according to claim 1, wherein the roughened surface is roughened by alternating electrolysis or anodic electrolysis in a ferric chloride aqueous solution. 前記フェライト系ステンレス鋼種は、JIS G4305:2005に規定されるフェライト系鋼種に相当するものである請求項1または2に記載のセパレータ用粗面化ステンレス鋼板。   The roughened stainless steel sheet for a separator according to claim 1 or 2, wherein the ferritic stainless steel type corresponds to a ferritic steel type specified in JIS G4305: 2005. 前記フェライト系ステンレス鋼種は、質量%で、C:0.12%以下、Si:1%以下、Mn:2%以下、P:0.08%以下、S:0.03%以下、Cr:16〜40%、Mo:0.2〜5%、N:0.025%以下であり、Ni:0〜0.6%、Cu:0〜1%、Al:0〜1%、Ti:0〜0.8%、Nb:0〜0.8%、V:0〜1%、Ca:0〜0.1%、REM(希土類元素):0〜0.1%、B:0〜0.1%、残部Feおよび不可避的不純物である組成を有する鋼種である請求項1または2に記載のセパレータ用粗面化ステンレス鋼板。   The ferritic stainless steel type is, by mass, C: 0.12% or less, Si: 1% or less, Mn: 2% or less, P: 0.08% or less, S: 0.03% or less, Cr: 16 -40%, Mo: 0.2-5%, N: 0.025% or less, Ni: 0-0.6%, Cu: 0-1%, Al: 0-1%, Ti: 0 0.8%, Nb: 0 to 0.8%, V: 0 to 1%, Ca: 0 to 0.1%, REM (rare earth element): 0 to 0.1%, B: 0 to 0.1 The roughened stainless steel sheet for a separator according to claim 1 or 2, which is a steel type having a composition of%, balance Fe and inevitable impurities. 請求項1〜4のいずれかに記載の粗面化鋼板をプレス成形してなる一対のセパレータ部材を、それぞれの前記粗面化表面どうしの間で接触箇所が形成されるように一体化した固体高分子型燃料電池のセパレータ。   The solid which integrated the pair of separator members formed by press-molding the roughened steel plate in any one of Claims 1-4 so that a contact location may be formed between each said roughened surface Polymer fuel cell separator. 前記一対のセパレータ部材の間に、前記接触箇所によって仕切られた冷却水流路を有する請求項5に記載のセパレータ。   The separator according to claim 5, further comprising a cooling water passage partitioned by the contact portion between the pair of separator members.
JP2008076867A 2008-03-24 2008-03-24 Ferrite system roughened surface stainless steel plate for separator, and separator Withdrawn JP2009231149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076867A JP2009231149A (en) 2008-03-24 2008-03-24 Ferrite system roughened surface stainless steel plate for separator, and separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076867A JP2009231149A (en) 2008-03-24 2008-03-24 Ferrite system roughened surface stainless steel plate for separator, and separator

Publications (1)

Publication Number Publication Date
JP2009231149A true JP2009231149A (en) 2009-10-08

Family

ID=41246300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076867A Withdrawn JP2009231149A (en) 2008-03-24 2008-03-24 Ferrite system roughened surface stainless steel plate for separator, and separator

Country Status (1)

Country Link
JP (1) JP2009231149A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016451A (en) * 2011-07-06 2013-01-24 Hyundai Motor Co Ltd Fuel cell stack structure and method of manufacturing the same
US20140023550A1 (en) * 2011-03-29 2014-01-23 Junichi Hamada Ferritic stainless steel sheet excellent in heat resistance and workability and method of production of same
KR101515417B1 (en) 2011-11-30 2015-04-28 제이에프이 스틸 가부시키가이샤 Stainless steel for fuel cell separators

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140023550A1 (en) * 2011-03-29 2014-01-23 Junichi Hamada Ferritic stainless steel sheet excellent in heat resistance and workability and method of production of same
JP2013016451A (en) * 2011-07-06 2013-01-24 Hyundai Motor Co Ltd Fuel cell stack structure and method of manufacturing the same
KR101515417B1 (en) 2011-11-30 2015-04-28 제이에프이 스틸 가부시키가이샤 Stainless steel for fuel cell separators

Similar Documents

Publication Publication Date Title
US9871258B2 (en) Stainless steel for fuel cell separators
JP6418364B1 (en) Stainless steel plate for fuel cell separator and method for producing the same
JP6315158B1 (en) Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5218612B2 (en) Stainless steel for fuel cell separator
JP5972877B2 (en) Method for producing stainless steel for fuel cell separator
JPWO2016052622A1 (en) Ferritic stainless steel material, polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
WO2002023654A1 (en) Separator for low-temperature type fuel cell and production method therefor
JP6057033B1 (en) Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
JP2010013684A (en) Stainless steel for conductive component having low contact electric resistance, and method for producing the same
JP2009231149A (en) Ferrite system roughened surface stainless steel plate for separator, and separator
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP2004232074A (en) Ferritic stainless steel for fuel battery separator, and production method therefor
JP5419816B2 (en) Fuel cell separator material, fuel cell separator and fuel cell stack using the same
JP2009231150A (en) Ferrite system roughened surface stainless steel plate for separator, and separator as well as polymer electrolyte fuel cell
JP2004002960A (en) Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor
JP2004124197A (en) Stainless steel for solid high polymer type fuel cell separator, its production method, and solid high polymer type fuel cell
JP2003272652A (en) Metal separator for fuel cell and its manufacturing method
KR101356954B1 (en) Stainless steel for polymer electrolyte membrane fuel cell separator and the method of manufacturing the same
JPWO2002039530A1 (en) Press separator for fuel cell
JP2003297379A (en) Manufacturing method of separator for low temperature fuel cell
JP2006253107A (en) Separator made of stainless steel for polymer electrolyte fuel cell
JP4017856B2 (en) Fuel cell separator and method for producing the same
JP5703560B2 (en) Stainless steel plate for fuel cell separator with excellent conductivity
JP5288761B2 (en) Material for separator of polymer electrolyte fuel cell
JP2003282104A5 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607