JP2009229136A - Dynamic contact angle measuring device - Google Patents

Dynamic contact angle measuring device Download PDF

Info

Publication number
JP2009229136A
JP2009229136A JP2008072196A JP2008072196A JP2009229136A JP 2009229136 A JP2009229136 A JP 2009229136A JP 2008072196 A JP2008072196 A JP 2008072196A JP 2008072196 A JP2008072196 A JP 2008072196A JP 2009229136 A JP2009229136 A JP 2009229136A
Authority
JP
Japan
Prior art keywords
contact angle
flow path
dynamic contact
liquid
liquid sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008072196A
Other languages
Japanese (ja)
Inventor
Yumiko Tsugawa
祐美子 津川
Katsuya Matsuoka
克弥 松岡
Atsumi Ida
敦巳 井田
Masashi Hirota
真史 廣田
Onori Kato
大典 加藤
Yasuhiro Mizuno
安浩 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2008072196A priority Critical patent/JP2009229136A/en
Publication of JP2009229136A publication Critical patent/JP2009229136A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic contact angle measuring device for measuring a dynamic contact angle excellently, even when a liquid sample is moved at high speed of about several meters/second or higher relative to a solid sample. <P>SOLUTION: A measuring container 10 includes a channel 10a in which the liquid sample flows. A part of the measuring container 10 includes a transparent body, and a part of the inner surface of the measuring container 10 partitioning the channel 10a includes the solid sample. A liquid supply recovery means 20 supplied and/or recovers the liquid sample to/from the channel 10a at an optional flow rate. A photographing means 30 photographs a liquid surface shape of the liquid sample flowing in the channel 10a from a part of the transparent body of the measuring container 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は動的接触角測定装置に関し、詳しくは固体試料とこの固体試料の表面を移動する液体試料との界面における動的接触角を測定する動的接触角測定装置に関する。   The present invention relates to a dynamic contact angle measuring apparatus, and more particularly to a dynamic contact angle measuring apparatus for measuring a dynamic contact angle at an interface between a solid sample and a liquid sample moving on the surface of the solid sample.

液体が流路内を流れる際の流動性は、その流路を区画する固体と液体との界面における濡れ性の影響を受ける。すなわち、流路を区画する固体と液体との界面における濡れ性が良ければ、流路内を流れる液体の流動性が高くなり、濡れ性が悪ければ流動性が低くなる。固体と液体との界面における濡れ性の程度を客観的に評価するための指標として、接触角がある。接触角とは、静止した液体の表面が固体に接するところで液面と固体面とがなす角(液の内部にある角)をいう。また、固体の表面を液体が移動する場合において、移動している状態での接触角を動的接触角という。   The fluidity when the liquid flows in the flow path is affected by the wettability at the interface between the solid and the liquid that defines the flow path. That is, if the wettability at the interface between the solid and the liquid defining the flow path is good, the fluidity of the liquid flowing in the flow path is high, and if the wettability is bad, the flowability is low. A contact angle is an index for objectively evaluating the degree of wettability at the interface between a solid and a liquid. The contact angle is an angle formed by the liquid surface and the solid surface where the surface of the stationary liquid contacts the solid (an angle inside the liquid). In addition, when the liquid moves on the surface of the solid, the contact angle in the moving state is called a dynamic contact angle.

このため、流路を区画する固体面と、流動している状態での液体の液面とがなす動的接触角を測定することにより、液体が流路内を流れる際の流動性を評価することができる。   Therefore, by measuring the dynamic contact angle between the solid surface that defines the flow path and the liquid level of the liquid in a flowing state, the fluidity when the liquid flows in the flow path is evaluated. be able to.

動的接触角の測定方法としては、従来、液適法、拡張/収縮法や滑落法などが知られている。液適法では、瞬時にぬれ広がる液滴の接触角を連続的に測定する。拡張/収縮法では、固体表面に接した液滴を膨らませることにより、液の強制的なぬれ広がり(拡張)における動的前進接触角を測定したり、固体表面に接した液滴を吸い込むことにより、液の強制的な引っ張り(収縮)における動的後進接触角を測定したりする。滑落法では、液滴を載せた固体試料を傾けることにより、液滴を滑らせて、動的前進接触角及び動的後進接触角を測定する。   Conventionally known methods for measuring the dynamic contact angle include a liquid suitability method, an expansion / contraction method, and a sliding method. In the liquid suitability method, the contact angle of a droplet that spreads instantaneously is continuously measured. In the expansion / contraction method, by measuring the dynamic advancing contact angle in the forced wetting and spreading (expansion) of the liquid by inflating the droplet in contact with the solid surface, or inhaling the droplet in contact with the solid surface Thus, the dynamic reverse contact angle in the forced pulling (shrinking) of the liquid is measured. In the sliding-down method, the liquid sample is slid by tilting the solid sample on which the liquid droplet is placed, and the dynamic advancing contact angle and the dynamic backward contact angle are measured.

また、固体試料よりなる一対の平行平板の間に液体試料を挟持して保持するとともに、両平板間への液体試料の供給量を変更することによって両平板間で液体試料を移動させ、移動する液体試料と平板との界面をビデオカメラで撮影して動的接触角を測定する方法も知られている(例えば、特許文献1参照)。
特開2001−116675号公報
In addition, the liquid sample is sandwiched and held between a pair of parallel plates made of a solid sample, and the liquid sample is moved between the two plates by changing the supply amount of the liquid sample between the two plates. A method of measuring the dynamic contact angle by photographing the interface between a liquid sample and a flat plate with a video camera is also known (see, for example, Patent Document 1).
JP 2001-116675 A

ところで、燃料電池においては、ガス拡散層とセパレータとの間に形成される流路内をガス及び水が流れる。このため、ガスが混入した水が流路内を流れる際の排水性について評価したり、あるいは流路幅を決定したりする際、シミュレーションにより、ガスが混入した水とガス拡散層又はセパレータとの界面における動的接触角を測定する場合がある。ここに、燃料電池における流路内を流れるガス混入水の移動速度は、数m/秒程度である。   By the way, in the fuel cell, gas and water flow in a flow path formed between the gas diffusion layer and the separator. For this reason, when evaluating the drainage property when water mixed with gas flows in the flow path or determining the width of the flow path, a simulation is performed to determine whether the water mixed with the gas and the gas diffusion layer or separator. The dynamic contact angle at the interface may be measured. Here, the moving speed of the gas-mixed water flowing in the flow path in the fuel cell is about several m / second.

ところが、前述した従来の液適法、拡張/収縮法や滑落法によって動的接触角を良好に測定できる界面速度の上限は、数mm/秒程度であった。   However, the upper limit of the interface speed at which the dynamic contact angle can be satisfactorily measured by the conventional liquid application method, expansion / contraction method, and sliding method described above is about several mm / second.

また、前記特許文献1に記載の方法では、一対の平板間で挟持した液体試料を移動させるため、両平板間で液体試料を安定に保持しつつ、その液体試料を高速移動させることが困難である。   In the method described in Patent Document 1, since the liquid sample sandwiched between a pair of flat plates is moved, it is difficult to move the liquid sample at high speed while stably holding the liquid sample between both flat plates. is there.

したがって、これらの従来方法によっては、シミュレーションにより、燃料電池における流路内を流れるガス混入水とガス拡散層又はセパレータとの界面における動的接触角を良好に測定することが困難である。   Therefore, depending on these conventional methods, it is difficult to satisfactorily measure the dynamic contact angle at the interface between the gas-mixed water flowing in the flow path in the fuel cell and the gas diffusion layer or separator by simulation.

本発明は上記実情に鑑みてなされたものであり、固体試料に対して液体試料が数m/秒程度以上で高速移動する場合であっても、動的接触角を良好に測定することのできる動的接触角測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even when the liquid sample moves at a high speed of about several m / second or more with respect to the solid sample, the dynamic contact angle can be measured well. An object is to provide a dynamic contact angle measuring device.

(1)上記課題を解決する本発明の動的接触角測定装置は、固体試料と該固体試料の表面を移動する液体試料との界面における動的接触角を測定する動的接触角測定装置であって、前記液体試料が流れる流路を有する計測容器と、前記流路に前記液体試料を任意の流量で供給及び/又は回収する液体供給回収手段と、前記流路内を流れる前記液体試料の液面形状を撮影する撮影手段と、を備え、前記計測容器の一部が透明体よりなり、かつ前記流路を区画する該計測容器の内面の一部が前記固体試料よりなり、前記流路内を流れる前記液体試料の液面における該液体試料と該固体試料との界面を外部から該透明体を介して前記撮影手段で撮影しうるように構成されていることを特徴とする。   (1) A dynamic contact angle measuring apparatus of the present invention that solves the above-mentioned problems is a dynamic contact angle measuring apparatus that measures a dynamic contact angle at an interface between a solid sample and a liquid sample moving on the surface of the solid sample. A measuring container having a flow path through which the liquid sample flows, liquid supply / recovery means for supplying and / or recovering the liquid sample to the flow path at an arbitrary flow rate, and the liquid sample flowing in the flow path. An imaging means for imaging the liquid surface shape, a part of the measurement container is made of a transparent body, and a part of the inner surface of the measurement container defining the flow path is made of the solid sample, and the flow path The interface between the liquid sample and the solid sample on the liquid surface of the liquid sample flowing inside is configured to be photographed by the photographing means from the outside through the transparent body.

本発明の動的接触角測定装置では、液体供給回収手段により、計測容器の流路に液体試料を任意の流量で供給及び/又は回収することにより、この流路内で液体試料を前進及び/又は後退させることができる。このため、液体供給回収手段から計測容器の流路への液体試料の供給及び/又は回収量を調整することにより、この流路内を流れる液体試料の移動速度を容易かつ確実に変更することができる。したがって、計測容器の流路内で液体試料を容易かつ確実に高速移動させることが可能となる。そして、このように流路内を高速移動する液体試料の液面における液体試料と固体試料との界面を、外部から透明体を介して撮影手段で撮影することにより、その界面形状から動的接触角を測定することができる。   In the dynamic contact angle measuring apparatus of the present invention, the liquid sample is fed and / or collected at an arbitrary flow rate to the flow path of the measurement container by the liquid supply / recovery means, so that the liquid sample is advanced and / or recovered in the flow path. Or it can be retracted. Therefore, by adjusting the supply and / or recovery amount of the liquid sample from the liquid supply / recovery means to the flow channel of the measurement container, the moving speed of the liquid sample flowing in the flow channel can be easily and reliably changed. it can. Therefore, the liquid sample can be easily and reliably moved at high speed in the flow channel of the measurement container. Then, the interface between the liquid sample and the solid sample on the liquid surface of the liquid sample moving at high speed in the flow path in this way is photographed by the photographing means through the transparent body from the outside, so that the dynamic contact is made from the interface shape. The angle can be measured.

したがって、本発明の動的接触角測定装置では、計測容器の流路内で液体試料が高速移動する場合であっても、液体試料と固体試料との界面における動的接触角を安定に測定することが可能となる。   Therefore, the dynamic contact angle measurement apparatus of the present invention stably measures the dynamic contact angle at the interface between the liquid sample and the solid sample even when the liquid sample moves at high speed in the flow path of the measurement container. It becomes possible.

(2)本発明の動的接触角測定装置において好ましくは、前記計測容器は、少なくとも一方が前記固体試料よりなり、かつ内面同士が平行に対向する一対の第1対向壁部と、少なくとも一方が前記透明体よりなる一対の第2対向壁部とを有する。そして、この場合、前記流路は両前記第1対向壁部と両前記第2対向壁部とにより区画された断面略矩形状のスリット状流路であり、該スリット状流路における両該第2対向壁部間の距離Dが両該第1対向壁部間の距離dより大きいことが好ましい。   (2) Preferably, in the dynamic contact angle measurement device of the present invention, at least one of the measurement containers is made of the solid sample and the inner surfaces face each other in parallel, and at least one of the pair of first facing walls. A pair of second opposing wall portions made of the transparent body. In this case, the flow path is a slit-shaped flow path having a substantially rectangular cross section defined by both the first opposed wall part and the second second opposed wall part. The distance D between the two opposing wall portions is preferably larger than the distance d between the first opposing wall portions.

このように計測容器の流路が断面略矩形状のスリット状流路であって、このスリット状流路における両第2対向壁部間の距離Dが両第1対向壁部間の距離dより大きい構成によると、第1対向壁部を構成する固体試料と液体試料との界面における動的接触角を測定する際に、例えばこの固体試料の幅方向中央部(すなわち、両第2対向壁部から最も離れた位置)で動的接触角を測定することにより、両第2対向壁部の影響による誤差の少ない測定が可能となる。   Thus, the flow path of the measurement container is a slit-shaped flow path having a substantially rectangular cross section, and the distance D between the two opposing wall portions in the slit-shaped flow path is greater than the distance d between the first opposing wall portions. According to the large configuration, when measuring the dynamic contact angle at the interface between the solid sample and the liquid sample constituting the first opposing wall portion, for example, the center portion in the width direction of the solid sample (that is, both the second opposing wall portions) By measuring the dynamic contact angle at a position farthest from the center, measurement with less error due to the influence of both the second opposing wall portions can be performed.

(3)本発明の動的接触角測定装置において好ましくは、両前記第1対向壁部の双方が前記固体試料よりなり、一方の該固体試料が燃料電池用ガス拡散層を構成する材料よりなり、かつ他方の該固体試料が燃料電池用セパレータを構成する材料よりなる。   (3) Preferably, in the dynamic contact angle measuring device of the present invention, both of the first opposing wall portions are made of the solid sample, and one of the solid samples is made of a material constituting a gas diffusion layer for a fuel cell. The other solid sample is made of a material constituting the fuel cell separator.

この構成によると、例えば液体試料として水を採用すれば、シミュレーションにより、燃料電池において水やガスの流路を区画するガス拡散層及びセパレータのそれぞれと、液体試料としての水との界面における動的接触角を測定することができる。   According to this configuration, for example, when water is used as the liquid sample, the dynamics at the interface between each of the gas diffusion layer and the separator that partitions the flow path of water and gas in the fuel cell and the water as the liquid sample are obtained by simulation. The contact angle can be measured.

(4)本発明の動的接触角測定装置において好ましくは、前記計測容器が回転可能であり、前記流路が鉛直方向に対して任意の角度の方向に延びた状態で該計測容器が保持される。   (4) In the dynamic contact angle measurement device of the present invention, preferably, the measurement container is rotatable, and the measurement container is held in a state where the flow path extends in an arbitrary angle direction with respect to the vertical direction. The

この構成によると、鉛直方向に対して任意の角度の方向に延びた流路内を流れる液体試料と固体試料との界面における動的接触角を測定することができる。このため、流路内を流れる液体試料に作用する重力の方向を任意に変更して、動的接触角を測定することが可能となる。   According to this configuration, it is possible to measure the dynamic contact angle at the interface between the liquid sample and the solid sample flowing in the flow path extending in an arbitrary angle direction with respect to the vertical direction. For this reason, it becomes possible to measure the dynamic contact angle by arbitrarily changing the direction of gravity acting on the liquid sample flowing in the flow path.

(5)本発明の動的接触角測定装置において好ましくは、前記液体供給回収手段は、前記流路内を流れる前記液体試料に任意の割合で気体を混入させる気体混入手段を有している。   (5) In the dynamic contact angle measuring apparatus of the present invention, preferably, the liquid supply / recovery means has gas mixing means for mixing gas at an arbitrary ratio into the liquid sample flowing in the flow path.

この構成によると、任意の割合で気体が混入した液体試料を流路に流すことができるので、気体が混入した液体試料と固体試料との界面における動的接触角の測定が可能となる。   According to this configuration, a liquid sample mixed with gas at an arbitrary ratio can be flowed into the flow path, and therefore, the dynamic contact angle at the interface between the liquid sample mixed with gas and the solid sample can be measured.

このように本発明の動的接触角測定装置によれば、計測容器の流路内を高速移動する液体試料と固体試料との界面における動的接触角を安定に測定することができる。このため、本発明の動的接触角測定装置は、例えば燃料電池における流路の排水性を評価する際に好適に利用することが可能となる。   Thus, according to the dynamic contact angle measuring apparatus of the present invention, the dynamic contact angle at the interface between the liquid sample and the solid sample moving at high speed in the flow channel of the measurement container can be stably measured. For this reason, the dynamic contact angle measuring device of the present invention can be suitably used, for example, when evaluating the drainage performance of the flow path in the fuel cell.

以下、本発明の動的接触角測定装置の実施形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の動的接触角測定装置は、下記実施形態に限定されるものではない。本発明の動的接触角測定装置は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the dynamic contact angle measuring device of the present invention will be described in detail. In addition, embodiment described is only one Embodiment and the dynamic contact angle measuring apparatus of this invention is not limited to the following embodiment. The dynamic contact angle measuring device of the present invention can be implemented in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention.

図1〜図3に示されるように、本実施形態の動的接触角測定装置は、計測容器10と、液体供給回収手段20と、撮影手段30と、計測容器10を保持する保持手段40とを備えている。   As shown in FIGS. 1 to 3, the dynamic contact angle measuring device of the present embodiment includes a measurement container 10, a liquid supply / recovery means 20, an imaging means 30, and a holding means 40 that holds the measurement container 10. It has.

ここに、図1は、本実施形態の動的接触角測定装置の概略構成を模式的に示す一部断面構成図である。図2は、この動的接触角測定装置における計測容器の斜視図である。図3は、この計測容器の断面図である。   FIG. 1 is a partial cross-sectional configuration diagram schematically showing a schematic configuration of the dynamic contact angle measuring apparatus of the present embodiment. FIG. 2 is a perspective view of a measuring container in this dynamic contact angle measuring apparatus. FIG. 3 is a cross-sectional view of the measurement container.

計測容器10は内部に流路10aを有している。この計測容器10の形状は、内部に流路10aを有する形状であれば、特に限定されない。また、流路10aの断面形状も特に限定されない。ただし、この計測容器10は、その一部が透明体よりなり、かつ流路10aを区画する計測容器10の内面の一部が固体試料よりなるものである。   The measurement container 10 has a flow path 10a inside. The shape of the measuring container 10 is not particularly limited as long as it has a flow path 10a inside. Further, the cross-sectional shape of the channel 10a is not particularly limited. However, the measurement container 10 is made of a transparent body, and a part of the inner surface of the measurement container 10 that partitions the flow path 10a is made of a solid sample.

本実施形態の動的接触角測定装置における計測容器10は、内面同士が平行に対向する一対の第1対向壁部11、12と、内面同士が平行に対向する一対の第2対向壁部13、14と、を有している。   The measurement container 10 in the dynamic contact angle measuring apparatus of this embodiment includes a pair of first opposing wall portions 11 and 12 whose inner surfaces face each other in parallel and a pair of second opposing wall portions 13 whose inner surfaces face each other in parallel. , 14.

第1対向壁部11、12は、同一の平板形状を呈している。また、第2対向壁部13、14は、同一の断面T字形状を呈している。第1対向壁部11、12と、第2対向壁部13、14とが例えば接着剤により固定されることで、直方体形状の外形状を有する計測容器10とされている。   The 1st opposing wall parts 11 and 12 are exhibiting the same flat plate shape. Moreover, the 2nd opposing wall parts 13 and 14 are exhibiting the same cross-sectional T shape. The first opposing wall portions 11 and 12 and the second opposing wall portions 13 and 14 are fixed by, for example, an adhesive, whereby the measuring container 10 having a rectangular parallelepiped outer shape is obtained.

そして、この計測容器10内に形成された流路10aは、両第1対向壁部11、12と両第2対向壁部13、14とにより区画された断面略矩形状のスリット状流路とされている。   And the flow path 10a formed in this measurement container 10 is a slit-shaped flow path having a substantially rectangular cross section defined by the first opposing wall portions 11 and 12 and the second opposing wall portions 13 and 14. Has been.

また、このスリット状流路としての流路10aにおいては、両第2対向壁部13、14間の距離Dが両第1対向壁部11、12間の距離dより大きくされている。ここに、両第2対向壁部13、14間の距離Dは、両第1対向壁部11、12間の距離dの5倍以上であることが好ましく、10倍以上であることがより好ましく、20倍以上であることが特に好ましい。本実施形態では、両第2対向壁部13、14間の距離Dが10mm、両第1対向壁部11、12間の距離dが0.5mmとされ、D/d=20とされている。   Further, in the flow path 10a as the slit-shaped flow path, the distance D between the second opposing wall portions 13 and 14 is set larger than the distance d between the first opposing wall portions 11 and 12. Here, the distance D between the second opposing wall portions 13 and 14 is preferably at least 5 times the distance d between the first opposing wall portions 11 and 12, and more preferably at least 10 times. , 20 times or more is particularly preferable. In the present embodiment, the distance D between the second opposing wall portions 13 and 14 is 10 mm, the distance d between the first opposing wall portions 11 and 12 is 0.5 mm, and D / d = 20. .

一対の第1対向壁部11、12の少なくとも一方は、固体試料よりなる。すなわち、第1対向壁部11、12の双方を固体試料により構成してもよいし、どちらか一方のみを固体試料により構成してもよい。   At least one of the pair of first opposing wall portions 11 and 12 is made of a solid sample. That is, both of the first opposing wall portions 11 and 12 may be constituted by a solid sample, or only one of them may be constituted by a solid sample.

固体試料の材質としては特に限定されない。また、第1対向壁部11、12の双方を固体試料により構成する場合、両者を同種の材質としてもよいし、異種の材質としてもよい。 この固体試料は、好ましくは、燃料電池用ガス拡散層を構成する材料や燃料電池用セパレータを構成する材料とすることができる。すなわち、第1対向壁部11、12の双方を固体試料により構成する場合は、一方の固体試料が燃料電池用ガス拡散層を構成する材料よりなり、かつ他方の固体試料が燃料電池用セパレータを構成する材料よりなることが好ましい。また、第1対向壁部11、12のどちらか一方のみを固体試料により構成する場合は、その固体試料が燃料電池用ガス拡散層を構成する材料又は燃料電池用セパレータを構成する材料よりなることが好ましい。   The material of the solid sample is not particularly limited. Moreover, when both the 1st opposing wall parts 11 and 12 are comprised with a solid sample, both may be made into the same kind of material, and it is good also as a different kind of material. This solid sample can preferably be a material constituting a fuel cell gas diffusion layer or a material constituting a fuel cell separator. That is, when both the first opposing wall portions 11 and 12 are made of a solid sample, one solid sample is made of a material constituting the fuel cell gas diffusion layer, and the other solid sample is a fuel cell separator. It is preferable to consist of the material which comprises. When only one of the first opposing wall portions 11 and 12 is formed of a solid sample, the solid sample is made of a material constituting a fuel cell gas diffusion layer or a material constituting a fuel cell separator. Is preferred.

燃料電池用ガス拡散層を構成する材料としては、例えば炭素材料を挙げることができる。また、燃料電池用セパレータを構成する材料としては、例えばSUS(ステンレス鋼)を挙げることができる。   Examples of the material constituting the fuel cell gas diffusion layer include a carbon material. Moreover, as a material which comprises the separator for fuel cells, SUS (stainless steel) can be mentioned, for example.

なお、第1対向壁部11、12のどちらか一方のみを固体試料により構成する場合、他方の第1対向壁部の材質は適宜選択すればよい。   When only one of the first opposing wall portions 11 and 12 is made of a solid sample, the material of the other first opposing wall portion may be selected as appropriate.

一対の第2対向壁部13、14の少なくとも一方は、透明体よりなる。すなわち、第2対向壁部13、14の双方を透明体により構成してもよいし、どちらか一方のみを透明体により構成してもよい。   At least one of the pair of second opposing wall portions 13 and 14 is made of a transparent body. That is, both the second opposing wall portions 13 and 14 may be configured by a transparent body, or only one of them may be configured by a transparent body.

透明体の材質としては特に限定されない。また、第2対向壁部13、14の双方を透明体により構成する場合、両者を同種の材質としてもよいし、異種の材質としてもよい。この透明体の材質としては、透明な有機又は無機ガラスとすることができ、例えば透明なアクリル樹脂とすることができる。   The material of the transparent body is not particularly limited. Moreover, when both the 2nd opposing wall parts 13 and 14 are comprised with a transparent body, both may be made into the same kind of material and it is good also as a different kind of material. As a material of the transparent body, a transparent organic or inorganic glass can be used, and for example, a transparent acrylic resin can be used.

ここに、本実施形態では、第1対向壁部11、12の双方が固体試料よりなり、また、第2対向壁部13、14の双方が透明体よりなる。そして、第1対向壁部11を構成する第1の固体試料が燃料電池用ガス拡散層を構成する材料としての炭素材料よりなり、第2対向壁部12を構成する第2の固体試料が燃料電池用セパレータを構成する材料としてのSUSよりなる。また、第2対向壁部13、14の双方を構成する透明体が透明なアクリル樹脂よりなる。   Here, in this embodiment, both the 1st opposing wall parts 11 and 12 consist of solid samples, and both the 2nd opposing wall parts 13 and 14 consist of transparent bodies. And the 1st solid sample which comprises the 1st opposing wall part 11 consists of a carbon material as a material which comprises the gas diffusion layer for fuel cells, and the 2nd solid sample which comprises the 2nd opposing wall part 12 is a fuel. It consists of SUS as a material which comprises a battery separator. Moreover, the transparent body which comprises both the 2nd opposing wall parts 13 and 14 consists of a transparent acrylic resin.

液体供給回収手段20としては、計測容器10の流路10aに液体試料を任意の流量で供給及び/又は回収するものであれば特に限定されない。この液体供給回収手段20としては、流路10aに液体試料を任意の流量で、供給しかつ回収するものであってもよいし、供給又は回収のどちらか一方のみをするものであってもよい。   The liquid supply / recovery means 20 is not particularly limited as long as it supplies and / or recovers a liquid sample to the flow path 10a of the measurement container 10 at an arbitrary flow rate. The liquid supply / recovery means 20 may supply and recover the liquid sample at an arbitrary flow rate in the flow path 10a, or may supply or recover only one of the liquid samples. .

本実施形態の動的接触角測定装置における液体供給回収手段20は、計測容器10の流路10aの下端に一端が接続された管路21と、この管路21の他端が接続されたシリンダ部22と、シリンダ部22内を往復摺動することでシリンダ部22に蓄えられた液体試料を流路10aに対して供給/回収するピストン部23と、流路10a内を流れる液体試料に任意の割合で気体を混入させる気体混入手段24とを備えている。   The liquid supply / recovery means 20 in the dynamic contact angle measuring apparatus of the present embodiment includes a pipe line 21 having one end connected to the lower end of the flow path 10a of the measurement container 10 and a cylinder connected to the other end of the pipe line 21. A part 22, a piston part 23 for supplying / recovering the liquid sample stored in the cylinder part 22 by reciprocatingly sliding in the cylinder part 22, and a liquid sample flowing in the channel 10 a Gas mixing means 24 for mixing gas at a ratio of

すなわち、本実施形態の動的接触角測定装置では、シリンダ部22内の液体試料を計測容器10の流路10aに対して任意の流量で、ピストン部23の往動により供給し、かつピストン部23の復動により回収する。   That is, in the dynamic contact angle measuring device of this embodiment, the liquid sample in the cylinder part 22 is supplied to the flow path 10a of the measurement container 10 at an arbitrary flow rate by the forward movement of the piston part 23, and the piston part. Recovered by 23 backward movement.

ピストン部23の駆動は手動又は電動のいずれで行ってもよい。また、電動によりピストン部23を駆動する場合は、例えばコンピュータによりアクチュエータの作動を制御してもよい。   The piston 23 may be driven manually or electrically. Moreover, when driving the piston part 23 electrically, you may control the action | operation of an actuator by a computer, for example.

なお、液体供給回収手段20におけるピストン部23の代わりにポンプを採用してもよい。   A pump may be employed instead of the piston portion 23 in the liquid supply / recovery means 20.

気体混入手段24としては、液体試料中に気体を混入することができるものであれば特に限定されず、例えば注射器やポンプを採用することができる。また、液体試料中に混入する気体の種類も特に限定されず、例えば空気、酸素、水素とすることができる。   The gas mixing means 24 is not particularly limited as long as it can mix a gas into a liquid sample, and for example, a syringe or a pump can be employed. Moreover, the kind of gas mixed in the liquid sample is not particularly limited, and can be, for example, air, oxygen, or hydrogen.

なお、気体混入手段24は、必要に応じて設けることができる。すなわち、気体が混入する液体試料について動的接触角を測定したい場合に、液体供給回収手段20に気体混入手段24を設ければよい。   In addition, the gas mixing means 24 can be provided as needed. That is, the gas supply means 24 may be provided in the liquid supply / recovery means 20 when it is desired to measure the dynamic contact angle of a liquid sample mixed with gas.

撮影手段30は、計測容器10の流路10a内を移動する液体試料の液面形状を撮影可能なものであれば特に限定されず、例えば高速度カメラ(ビデオカメラ等)を採用することができる。撮影手段30は、透明体よりなる第2対向壁部13又は14を介して、計測容器10の流路10a内を移動する液体試料の液面における液体試料と固体体試料との界面を外部から撮影する。   The photographing means 30 is not particularly limited as long as it can photograph the liquid surface shape of the liquid sample moving in the flow path 10a of the measurement container 10, and for example, a high-speed camera (video camera or the like) can be employed. . The imaging means 30 externally connects the interface between the liquid sample and the solid sample on the liquid surface of the liquid sample moving in the flow path 10a of the measurement container 10 via the second opposing wall portion 13 or 14 made of a transparent body. Take a picture.

保持手段40は、計測容器10を所定の角度で保持可能なものであれば特に限定されない。なお、計測容器10自体が所定の姿勢を保つものであれば、別途保持手段40を設ける必要はない。   The holding means 40 is not particularly limited as long as it can hold the measurement container 10 at a predetermined angle. In addition, if the measurement container 10 itself maintains a predetermined posture, it is not necessary to provide the holding means 40 separately.

本実施形態の動的接触角測定装置における保持手段40は、計測容器10を回転可能に保持するものである。すなわち、この保持手段40は、基台41と、この基台41に対して任意の回転角で保持される保持部42とを有している。この保持部42に計測容器10を保持させることにより、流路10aが鉛直方向に対して任意の角度の方向に延びた状態で計測容器10を保持させることができる。   The holding means 40 in the dynamic contact angle measuring device of this embodiment holds the measurement container 10 rotatably. That is, the holding means 40 includes a base 41 and a holding portion 42 that is held at an arbitrary rotation angle with respect to the base 41. By holding the measurement container 10 in the holding portion 42, the measurement container 10 can be held in a state where the flow path 10a extends in a direction at an arbitrary angle with respect to the vertical direction.

なお、図示はしないが、本実施形態の動的接触角測定装置においては、透明体よりなる第2対向壁部13又は14を介して、計測容器10の流路10a内を照射する照射手段を必要に応じて設けることができる。   Although not shown, in the dynamic contact angle measurement apparatus of the present embodiment, an irradiation unit that irradiates the inside of the flow channel 10a of the measurement container 10 through the second opposing wall portion 13 or 14 made of a transparent body. It can be provided as necessary.

以下、本実施形態の動的接触角測定装置による動的接触角の測定方法について、図4〜図6を参照しつつ説明する。   Hereinafter, a method for measuring a dynamic contact angle by the dynamic contact angle measuring apparatus of the present embodiment will be described with reference to FIGS.

まず、例えば流路10aが鉛直方向に延びるように、計測容器10を保持手段40で保持しておく。そして、液体供給回収手段20により、計測容器10の流路10a内に液体試料を狙いの流量だけ供給し、撮影手段30により撮影可能な領域において、流路10a内の液体試料の液面を狙いの流速で前進(上昇)させる。このとき、流路10a内を前進する液体試料の液面を撮影手段30で撮影する。次に、撮影手段30により撮影可能な領域に液体試料を満たしておき、液体供給回収手段20により、計測容器10の流路10a内から液体試料を狙いの流量だけ回収し、撮影手段30により撮影可能な領域において、流路10a内の液体試料の液面を狙いの流速で後退(下降)させる。このとき、流路10a内を後退する液体試料の液面を撮影手段30で撮影する。これらの液体試料の前進、後退の操作を、供給、回収の流量を変えながら繰り返す。   First, for example, the measurement container 10 is held by the holding means 40 so that the flow path 10a extends in the vertical direction. Then, the liquid supply / recovery means 20 supplies the liquid sample to the flow path 10a of the measurement container 10 at a target flow rate, and aims at the liquid surface of the liquid sample in the flow path 10a in an area where the imaging means 30 can take an image. Move forward (rise) at a flow rate of At this time, the liquid level of the liquid sample moving forward in the flow path 10 a is imaged by the imaging means 30. Next, a liquid sample is filled in an area that can be imaged by the imaging unit 30, the liquid sample is collected from the flow channel 10 a of the measurement container 10 by the liquid supply / recovery unit 20, and the imaging unit 30 performs imaging. In a possible region, the liquid level of the liquid sample in the flow channel 10a is retracted (lowered) at a target flow rate. At this time, the imaging means 30 images the liquid level of the liquid sample that retreats in the flow path 10a. These forward and backward operations of the liquid sample are repeated while changing the flow rate of supply and recovery.

そして、撮影手段30により撮影した画像を、例えば明るさを基準に二値化することで白黒表示する。流路10a内で液体試料を前進させたときに撮影した画像を二値化して白黒表示したものを図4(a)に示し、流路10a内で液体試料を後退させたときに撮影した画像を二値化して白黒表示したものを図4(b)に示す。   Then, the image photographed by the photographing means 30 is displayed in black and white by binarizing, for example, based on the brightness. An image taken when the liquid sample is advanced in the flow path 10a is binarized and displayed in black and white as shown in FIG. 4A. The image is taken when the liquid sample is moved backward in the flow path 10a. FIG. 4 (b) shows a binarized and black and white display.

図4(a)において、両側にある一対の黒色長方形状部51、52は、それぞれ第1対向壁部11、12を構成する固体試料である。両側の黒色長方形状部51、52間の上下方向の中央にある黒色中間部53の上端面53aは、前進(上昇)する液体試料の液面である。両側の黒色長方形状部51、52間の黒色中間部53よりも上方の白色長方形状部54が流路10a内の空気である。両側の黒色長方形状部51、52間の黒色中間部53よりも下方の白色略長方形状部55が液体試料である。なお、黒色中間部53は、液体試料と空気とが混在している部分である。   In FIG. 4A, the pair of black rectangular portions 51 and 52 on both sides are solid samples constituting the first opposing wall portions 11 and 12, respectively. The upper end surface 53a of the black intermediate portion 53 at the center in the vertical direction between the black rectangular portions 51 and 52 on both sides is the liquid surface of the liquid sample that moves forward (rises). The white rectangular portion 54 above the black intermediate portion 53 between the black rectangular portions 51 and 52 on both sides is air in the flow path 10a. A white substantially rectangular portion 55 below the black intermediate portion 53 between the black rectangular portions 51 and 52 on both sides is a liquid sample. The black intermediate portion 53 is a portion where a liquid sample and air are mixed.

同様に、図4(b)において、両側にある一対の黒色長方形状部61、62は、それぞれ第1対向壁部11、12を構成する固体試料である。両側の黒色長方形状部61、62間の上下方向の中央にある黒色中間部63の下端面63aは、後退(下降)する液体試料の液面である。両側の黒色長方形状部61、62間の黒色中間部63よりも上方の白色部54が流路10a内の空気である。両側の黒色長方形状部61、62間の黒色中間部63よりも下方の白色略長方形状部65が液体試料である。なお、黒色中間部63は、液体試料と空気とが混在している部分である。   Similarly, in FIG. 4B, the pair of black rectangular portions 61 and 62 on both sides are solid samples constituting the first opposing wall portions 11 and 12, respectively. The lower end surface 63a of the black intermediate portion 63 at the center in the vertical direction between the black rectangular portions 61 and 62 on both sides is the liquid surface of the liquid sample that retreats (lowers). The white portion 54 above the black intermediate portion 63 between the black rectangular portions 61 and 62 on both sides is air in the flow path 10a. A white substantially rectangular portion 65 below the black intermediate portion 63 between the black rectangular portions 61 and 62 on both sides is a liquid sample. The black intermediate portion 63 is a portion where a liquid sample and air are mixed.

そして、図4(a)において、液体試料と固体試料としての一方の黒色長方形状部61との界面において、液体試料の液面の接線を引き、分度器でその接線と固体試料としての一方の黒色長方形状部61との間の角度を分度器で測定して、前進する液体試料の前進動的接触角θaを測定する(図5(a)参照)。   In FIG. 4A, the tangent line of the liquid sample is drawn at the interface between the liquid sample and one black rectangular portion 61 as the solid sample, and the tangent line and one black as the solid sample are drawn with a protractor. The angle with the rectangular portion 61 is measured with a protractor to measure the forward dynamic contact angle θa of the liquid sample that moves forward (see FIG. 5A).

同様に、図4(b)において、液体試料と固体試料としての一方の黒色長方形状部61との界面において、液体試料の液面の接線を引き、分度器でその接線と固体試料としての一方の黒色長方形状部61との間の角度を分度器で測定して、後退する液体試料の後退動的接触角θbを測定する(図5(a)参照)。   Similarly, in FIG. 4B, at the interface between the liquid sample and one black rectangular portion 61 as the solid sample, a tangent line of the liquid surface of the liquid sample is drawn and the tangent line and one of the solid sample as the solid sample are drawn. The angle with the black rectangular portion 61 is measured with a protractor, and the receding dynamic contact angle θb of the receding liquid sample is measured (see FIG. 5A).

ここに、図4又は図5において、前進、後退する液体試料の液面を測定する位置は、流路10a内で透明体よりなる第2対向壁部13、14から最も離れた位置(すなわち、固体試料よりなる第1対向壁部11又は12の幅方向中央部)Pである(図6参照)。   Here, in FIG. 4 or FIG. 5, the position for measuring the liquid level of the liquid sample that moves forward and backward is the position farthest from the second opposing wall portions 13 and 14 made of a transparent body in the channel 10a (that is, It is the width direction center part P of the 1st opposing wall part 11 or 12 which consists of a solid sample (refer FIG. 6).

そして、例えば、前進、後退する液体試料の界面速度と前進動的接触角θa、後退動的接触角θbとの関係を、界面速度−接触角の特性データとしてまとめる。   Then, for example, the relationship between the interface velocity of the liquid sample moving forward and backward, the forward dynamic contact angle θa, and the backward dynamic contact angle θb is summarized as characteristic data of interface velocity-contact angle.

このように本実施形態の動的接触角測定装置では、液体供給回収手段20により、計測容器10の流路10aに液体試料を任意の流量で供給及び回収することにより、この流路10a内で液体試料を前進及び後退させることができる。このため、液体供給回収手段20から計測容器10の流路10aへの液体試料の供給及び回収量を調整することにより、この流路10a内を流れる液体試料の移動速度を容易かつ確実に変更することができる。したがって、計測容器10の流路10a内で液体試料を容易かつ確実に高速移動させることが可能となる。そして、このように流路10a内を高速移動する液体試料の液面における液体試料と固体試料よりなる第1対向壁部11又は12との界面を、外部から透明体よりなる第2対向壁部13又は14を介して撮影手段30で撮影することにより、その界面形状から動的接触角を測定することができる。   As described above, in the dynamic contact angle measuring apparatus according to the present embodiment, the liquid sample is supplied to and recovered from the flow channel 10a of the measurement container 10 by the liquid supply / recovery means 20 within the flow channel 10a. The liquid sample can be advanced and retracted. Therefore, by adjusting the supply and recovery amount of the liquid sample from the liquid supply / recovery means 20 to the flow channel 10a of the measurement container 10, the moving speed of the liquid sample flowing in the flow channel 10a can be easily and reliably changed. be able to. Therefore, the liquid sample can be easily and reliably moved at high speed in the flow channel 10a of the measurement container 10. Then, the second opposing wall portion made of a transparent body is provided at the interface between the liquid sample and the first opposing wall portion 11 or 12 made of the solid sample on the liquid surface of the liquid sample moving at high speed in the flow path 10a. By photographing with the photographing means 30 via 13 or 14, the dynamic contact angle can be measured from the interface shape.

したがって、本実施形態の動的接触角測定装置では、計測容器10の流路10a内で液体試料が高速移動する場合であっても、液体試料と固体試料との界面における動的接触角を安定に測定することが可能となる。   Therefore, in the dynamic contact angle measurement device of the present embodiment, the dynamic contact angle at the interface between the liquid sample and the solid sample is stabilized even when the liquid sample moves at high speed in the flow path 10a of the measurement container 10. It becomes possible to measure.

また、本実施形態の動的接触角測定装置では、計測容器10の流路10aが断面略矩形状のスリット状流路であって、このスリット状流路における両第2対向壁部13、14間の距離Dが両第1対向壁部間11、12の距離dより十分に大きくされている。このため、第1対向壁部11、12を構成する固体試料と液体試料との界面における動的接触角を測定する際に、固体試料の幅方向中央部(すなわち、両第2対向壁部13、14から最も離れた位置)Pで動的接触角を測定することができ、両第2対向壁部13、14の影響による誤差の少ない測定が可能となる。   Moreover, in the dynamic contact angle measuring apparatus of this embodiment, the flow path 10a of the measurement container 10 is a slit-shaped flow path having a substantially rectangular cross section, and both the second opposing wall portions 13 and 14 in the slit-shaped flow path. The distance D between them is sufficiently larger than the distance d between the first opposing wall portions 11 and 12. For this reason, when measuring the dynamic contact angle at the interface between the solid sample and the liquid sample constituting the first opposing wall portions 11 and 12, the width direction central portion of the solid sample (that is, both the second opposing wall portions 13). The dynamic contact angle can be measured at a position P which is farthest from 14), and measurement with less error due to the influence of the second opposing wall portions 13 and 14 can be performed.

さらに、本実施形態の動的接触角測定装置では、両第1対向壁部11、12の双方が固体試料よりなり、一方の固体試料が燃料電池用ガス拡散層を構成する材料よりなり、かつ他方の固体試料が燃料電池用セパレータを構成する材料よりなる。このため、例えば液体試料として水を採用すれば、シミュレーションにより、燃料電池において水やガスの流路を区画するガス拡散層及びセパレータのそれぞれと、液体試料としての水との界面における動的接触角を測定することができる。   Furthermore, in the dynamic contact angle measuring apparatus of the present embodiment, both the first opposing wall portions 11 and 12 are made of a solid sample, and one of the solid samples is made of a material constituting the fuel cell gas diffusion layer, and The other solid sample is made of a material constituting the fuel cell separator. Therefore, for example, if water is adopted as the liquid sample, the dynamic contact angle at the interface between each of the gas diffusion layer and the separator that partitions the flow path of water and gas in the fuel cell and the water as the liquid sample is shown by simulation. Can be measured.

加えて、本実施形態の動的接触角測定装置では、保持手段40により、流路10aが鉛直方向に対して任意の角度の方向に延びた状態で計測容器10を保持することができる。このため、鉛直方向に対して任意の角度の方向に延びた流路10a内を流れる液体試料と固体試料との界面における動的接触角を測定することができる。したがって、流路10a内を流れる液体試料に作用する重力の方向を任意に変更して、動的接触角を測定することが可能となる。   In addition, in the dynamic contact angle measuring device of the present embodiment, the measuring container 10 can be held by the holding means 40 in a state where the flow path 10a extends in an arbitrary angle direction with respect to the vertical direction. For this reason, it is possible to measure the dynamic contact angle at the interface between the liquid sample and the solid sample flowing in the flow path 10a extending in an arbitrary angle direction with respect to the vertical direction. Therefore, it is possible to measure the dynamic contact angle by arbitrarily changing the direction of gravity acting on the liquid sample flowing in the flow channel 10a.

また、本実施形態の動的接触角測定装置では、液体供給回収段20が気体混入手段24を有している。このため、流路10a内を流れる液体試料に任意の割合で気体を混入させることができる。したがって、気体が混入した液体試料と固体試料との界面における動的接触角の測定が可能となる。   Further, in the dynamic contact angle measuring device of the present embodiment, the liquid supply / recovery stage 20 has the gas mixing means 24. For this reason, gas can be mixed in the liquid sample which flows in the flow path 10a in arbitrary ratios. Therefore, the dynamic contact angle at the interface between the liquid sample mixed with gas and the solid sample can be measured.

前記実施形態の動的接触角測定装置において、第1対向壁部11及び12を構成する固体試料としてSUSを採用し、液体試料としての水に気体混入手段24から気体を混入することなく、動的接触角を測定して界面速度−接触角の特性データをまとめることを3回(N=1〜3)繰り返して実施した。   In the dynamic contact angle measuring apparatus of the above embodiment, SUS is adopted as the solid sample constituting the first opposing wall portions 11 and 12, and the movement is performed without mixing gas from the gas mixing means 24 into the water as the liquid sample. It was repeated 3 times (N = 1 to 3) to collect the characteristic data of the interface velocity and the contact angle by measuring the target contact angle.

その結果を図7に示す。なお、図7において、○でプロットしたものが1回目(N=1)の特性データであり、□でプロットしたものが、2回目(N=2)の特性データであり、△でプロットしたものが3回目(N=3)の特性データである。   The result is shown in FIG. In FIG. 7, the characteristic data plotted for ◯ is the first (N = 1) characteristic data, and the characteristic data plotted for □ is the second (N = 2) characteristic data plotted with Δ. Is characteristic data for the third time (N = 3).

また、前記実施形態の動的接触角測定装置において、第1対向壁部11及び12を構成する固体試料としてSUSを採用し、液体試料としての水に気体混入手段24から空気を混入しつつ、動的接触角を測定して界面速度−接触角の特性データをまとめた。その結果を図7に併せて示す。なお、図7において、×でプロットしたものが空気を混入した水を液体試料に用いた特性データである。   Further, in the dynamic contact angle measuring device of the above embodiment, SUS is adopted as a solid sample constituting the first opposing wall portions 11 and 12, and air is mixed into the water as the liquid sample from the gas mixing means 24, The dynamic contact angle was measured and the interface velocity-contact angle characteristic data was summarized. The results are also shown in FIG. In FIG. 7, the data plotted with x is characteristic data using water mixed with air as a liquid sample.

これらの結果から、流路10a内を数m/秒の高速で液体試料が前進、後退する場合であっても、良好に動的接触角を測定できることが確認できた。   From these results, it was confirmed that the dynamic contact angle can be measured satisfactorily even when the liquid sample moves forward and backward at a high speed of several m / second in the channel 10a.

本実施形態の動的接触角測定装置の概略構成を模式的に示す一部断面構成図である。It is a partial section lineblock diagram showing typically a schematic structure of a dynamic contact angle measuring device of this embodiment. 本実施形態の動的接触角測定装置における計測容器の斜視図である。It is a perspective view of a measurement container in a dynamic contact angle measuring device of this embodiment. 本実施形態の動的接触角測定装置における計測容器の断面図である。It is sectional drawing of the measurement container in the dynamic contact angle measuring apparatus of this embodiment. 本実施形態の動的接触角測定装置を用いて動的接触角を測定する際に、撮影手段により液体試料の液面を撮影した画像を二値化することにより、白黒表示した様子を示し、(a)が前進動的接触角を測定する場合を示し、(b)が後退動的接触角を測定する場合を示す。When measuring the dynamic contact angle using the dynamic contact angle measuring device of the present embodiment, the image obtained by photographing the liquid surface of the liquid sample by the photographing means is binarized to show a state of monochrome display, (A) shows the case where the forward dynamic contact angle is measured, and (b) shows the case where the backward dynamic contact angle is measured. 本実施形態の動的接触角測定装置を用いて測定する動的接触角を説明する部分断面であり、(a)が前進動的接触角を測定する場合を示し、(b)が後退動的接触角を測定する場合を示す。It is a partial cross section explaining the dynamic contact angle measured using the dynamic contact angle measuring apparatus of this embodiment, (a) shows the case where an advancing dynamic contact angle is measured, (b) is a backward dynamic. The case where the contact angle is measured is shown. 本実施形態の動的接触角測定装置を用いて動的接触角を測定する際に、液体試料の液面における測定部位を説明する部分断面図である。It is a fragmentary sectional view explaining the measurement part in the liquid level of a liquid sample, when measuring a dynamic contact angle using the dynamic contact angle measuring device of this embodiment. 本発明の実施例で界面速度−接触角の特性データをまとめた結果を示す図である。It is a figure which shows the result which put together the characteristic data of the interface speed-contact angle in the Example of this invention.

符号の説明Explanation of symbols

10…計測容器 10a…流路
11、12…第1対向壁部 13、14…第2対向壁部
20…液体供給回収手段 30…撮影手段
40…保持手段
DESCRIPTION OF SYMBOLS 10 ... Measuring container 10a ... Flow path 11, 12 ... 1st opposing wall part 13, 14 ... 2nd opposing wall part 20 ... Liquid supply collection | recovery means 30 ... Imaging | photography means 40 ... Holding means

Claims (5)

固体試料と該固体試料の表面を移動する液体試料との界面における動的接触角を測定する動的接触角測定装置であって、
前記液体試料が流れる流路を有する計測容器と、
前記流路に前記液体試料を任意の流量で供給及び/又は回収する液体供給回収手段と、
前記流路内を流れる前記液体試料の液面形状を撮影する撮影手段と、を備え、
前記計測容器の一部が透明体よりなり、かつ前記流路を区画する該計測容器の内面の一部が前記固体試料よりなり、前記流路内を流れる前記液体試料の液面における該液体試料と該固体試料との界面を外部から該透明体を介して前記撮影手段で撮影しうるように構成されていることを特徴とする動的接触角測定装置。
A dynamic contact angle measuring device for measuring a dynamic contact angle at an interface between a solid sample and a liquid sample moving on the surface of the solid sample,
A measurement container having a flow path through which the liquid sample flows;
Liquid supply / recovery means for supplying and / or recovering the liquid sample to the flow path at an arbitrary flow rate;
Photographing means for photographing the liquid surface shape of the liquid sample flowing in the flow path,
A part of the measurement container is made of a transparent body, and a part of the inner surface of the measurement container defining the flow path is made of the solid sample, and the liquid sample on the liquid surface of the liquid sample flowing in the flow path A dynamic contact angle measuring apparatus configured to be able to photograph the interface between the solid sample and the solid sample from the outside through the transparent body with the photographing means.
前記計測容器は、少なくとも一方が前記固体試料よりなり、かつ内面同士が平行に対向する一対の第1対向壁部と、少なくとも一方が前記透明体よりなる一対の第2対向壁部とを有し、
前記流路は両前記第1対向壁部と両前記第2対向壁部とにより区画された断面略矩形状のスリット状流路であり、該スリット状流路における両該第2対向壁部間の距離Dが両該第1対向壁部間の距離dより大きいことを特徴とする請求項1に記載の動的接触角測定装置。
The measurement container has a pair of first opposing wall portions at least one of which is made of the solid sample and whose inner surfaces face each other in parallel, and a pair of second opposing wall portions at least one of which is made of the transparent body. ,
The flow path is a slit-shaped flow path having a substantially rectangular cross section defined by both the first opposed wall portions and the second opposed wall portions, and between the second opposed wall portions in the slit-shaped flow path. The dynamic contact angle measuring device according to claim 1, wherein the distance D is greater than the distance d between the first opposing wall portions.
両前記第1対向壁部の双方が前記固体試料よりなり、一方の該固体試料が燃料電池用ガス拡散層を構成する材料よりなり、かつ他方の該固体試料が燃料電池用セパレータを構成する材料よりなることを特徴とする請求項1又は2に記載の動的接触角測定装置。   Both of the first opposing wall portions are made of the solid sample, one of the solid samples is made of a material constituting a gas diffusion layer for a fuel cell, and the other solid sample is made of a material constituting a fuel cell separator. The dynamic contact angle measuring device according to claim 1 or 2, characterized by comprising: 前記計測容器が回転可能であり、前記流路が鉛直方向に対して任意の角度の方向に延びた状態で該計測容器が保持されることを特徴とする請求項1乃至3のいずれか一つに記載の動的接触角測定装置。   4. The measurement container according to claim 1, wherein the measurement container is rotatable, and the measurement container is held in a state where the flow path extends in a direction at an arbitrary angle with respect to a vertical direction. The dynamic contact angle measuring device described in 1. 前記液体供給回収手段は、前記流路内を流れる前記液体試料に任意の割合で気体を混入させる気体混入手段を有していることを特徴とする請求項1乃至4のいずれか一つに記載の動的接触角測定装置。   5. The liquid supply / recovery means includes gas mixing means for mixing gas at an arbitrary ratio into the liquid sample flowing in the flow path. Dynamic contact angle measuring device.
JP2008072196A 2008-03-19 2008-03-19 Dynamic contact angle measuring device Pending JP2009229136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072196A JP2009229136A (en) 2008-03-19 2008-03-19 Dynamic contact angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072196A JP2009229136A (en) 2008-03-19 2008-03-19 Dynamic contact angle measuring device

Publications (1)

Publication Number Publication Date
JP2009229136A true JP2009229136A (en) 2009-10-08

Family

ID=41244721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072196A Pending JP2009229136A (en) 2008-03-19 2008-03-19 Dynamic contact angle measuring device

Country Status (1)

Country Link
JP (1) JP2009229136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308428A (en) * 2013-06-17 2013-09-18 李明远 Method for measuring contact angle of liquid in solid micro-gap
JP2014084519A (en) * 2012-10-26 2014-05-12 Sumitomo Metal Mining Co Ltd Method of testing coating weight for hot dip galvanization

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116675A (en) * 1999-10-22 2001-04-27 Seiko Epson Corp Contact angle measuring device, dynamic surface tension measuring device, contact angle measuring method and dynamic surface tension measuring method
WO2003091706A1 (en) * 2002-04-24 2003-11-06 Hitachi, Ltd. Microreactor for solid-liquid interface reaction and method for conducting meaurement concerning solid-liquid interface reaction
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2005147943A (en) * 2003-11-18 2005-06-09 Seiko Epson Corp Apparatus and method for measuring dynamic wettability
JP2005243442A (en) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp Fuel cell
JP2006522996A (en) * 2003-01-15 2006-10-05 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Quality control method for gas diffusion media
JP2007242315A (en) * 2006-03-07 2007-09-20 Toyota Motor Corp Manufacturing method of separator for fuel cell, separator for fuel cell, and manufacturing device of separator for fuel cell
JP2008059917A (en) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd Manufacturing method of gas diffusion layer for fuel cell, paint composition for fuel cell, and gas diffusion layer for fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116675A (en) * 1999-10-22 2001-04-27 Seiko Epson Corp Contact angle measuring device, dynamic surface tension measuring device, contact angle measuring method and dynamic surface tension measuring method
WO2003091706A1 (en) * 2002-04-24 2003-11-06 Hitachi, Ltd. Microreactor for solid-liquid interface reaction and method for conducting meaurement concerning solid-liquid interface reaction
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2006522996A (en) * 2003-01-15 2006-10-05 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Quality control method for gas diffusion media
JP2005147943A (en) * 2003-11-18 2005-06-09 Seiko Epson Corp Apparatus and method for measuring dynamic wettability
JP2005243442A (en) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp Fuel cell
JP2007242315A (en) * 2006-03-07 2007-09-20 Toyota Motor Corp Manufacturing method of separator for fuel cell, separator for fuel cell, and manufacturing device of separator for fuel cell
JP2008059917A (en) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd Manufacturing method of gas diffusion layer for fuel cell, paint composition for fuel cell, and gas diffusion layer for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084519A (en) * 2012-10-26 2014-05-12 Sumitomo Metal Mining Co Ltd Method of testing coating weight for hot dip galvanization
CN103308428A (en) * 2013-06-17 2013-09-18 李明远 Method for measuring contact angle of liquid in solid micro-gap

Similar Documents

Publication Publication Date Title
Knoche et al. In situ visualization of the electrolyte solvent filling process by neutron radiography
Fakhari et al. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale
García-Salaberri et al. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study
US10107782B2 (en) Method to perform limited two dimensional separation of proteins and other biologicals
Iranzo et al. Liquid water preferential accumulation in channels of PEM fuel cells with multiple serpentine flow fields
TW201000885A (en) Electronic component inspection method and device used therein
JP2009229136A (en) Dynamic contact angle measuring device
Käding et al. Three-dimensional stereoscopy of Yukawa (Coulomb) balls in dusty plasmas
Etrati et al. Two-layer displacement flow of miscible fluids with viscosity ratio: Experiments
CN106996857B (en) A kind of convection current combined experiments system of Hull Xiao box and its composition
CN208872293U (en) Tunnel defect feature detection system
Jia et al. Portable detection of trace metals in airborne particulates and sediments via μPADs and smartphone
JP3932739B2 (en) Contact angle measuring device, dynamic surface tension measuring device, contact angle measuring method, and dynamic surface tension measuring method
Bazylak et al. Liquid water transport between graphite paper and a solid surface
de Boer et al. Control of an electrowetting-based beam deflector
JP2005295818A5 (en)
JP2014153055A (en) Air bubble inspection device and air bubble inspection method
Morris et al. Behaviour of a galena particle in a thin film, revisiting dippenaar
CN202720202U (en) X-ray microscopy imaging system
KR20110095924A (en) Three diemensional digital imaging grating and photosensitive material photosensitive device and imaging method thereof
Borrelli et al. Water transport visualization and two-phase pressure drop measurements in a simulated PEMFC cathode minichannel
JP2014149235A (en) Calibration method
CN215179755U (en) Flaw detection device for battery module welding
JP7438543B2 (en) Evaluation method for electrochemical devices
Rangel-German et al. Microvisual analysis of matrix-fracture interaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121018