JP2009228041A - Electrolytic apparatus and electrolytic method - Google Patents

Electrolytic apparatus and electrolytic method Download PDF

Info

Publication number
JP2009228041A
JP2009228041A JP2008073003A JP2008073003A JP2009228041A JP 2009228041 A JP2009228041 A JP 2009228041A JP 2008073003 A JP2008073003 A JP 2008073003A JP 2008073003 A JP2008073003 A JP 2008073003A JP 2009228041 A JP2009228041 A JP 2009228041A
Authority
JP
Japan
Prior art keywords
electrolytic
electrolysis
electrodes
electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008073003A
Other languages
Japanese (ja)
Inventor
Shunichi Kanamori
春一 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008073003A priority Critical patent/JP2009228041A/en
Publication of JP2009228041A publication Critical patent/JP2009228041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly discharge a by-product gas formed between electrodes in an electrolytic cell generating the by-product gas by the electrolysis and to dispenses with the pressure to the electrodes preliminary to passing a liquid by pressure transporting with a pump. <P>SOLUTION: The electrolytic apparatus is provided with an electrolyte tank 1 storing an electrolyte and the electrolytic cell 10 arranged in the electrolyte tank 1 and dipped in the electrolyte 2. The electrolytic cell 10 is provided with a pair of the electrodes 25, 25 comprising an anode and a cathode and in the arrangement, the upper part and the lower part between the electrodes are opened and the sides of the electrodes are shielded. Because the liquid is passed between the electrodes with natural convection by the action of the gas generated by the electrolysis, preliminary to pressure transporting with a pump, the pressure to the electrodes can be dispensed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電解液を電解する電解装置に係り、特にダイヤモンド電極を使用して高い電流密度で電解できる電解装置に係る。また電解液を電解装置によって電解して得られた有効成分を多く含んだ電解液を有効利用しようとする電解方法に係る。   The present invention relates to an electrolysis apparatus for electrolyzing an electrolytic solution, and more particularly to an electrolysis apparatus capable of electrolysis at a high current density using a diamond electrode. Further, the present invention relates to an electrolysis method in which an electrolytic solution containing a large amount of active ingredients obtained by electrolyzing the electrolytic solution with an electrolytic device is to be effectively used.

従来、半導体産業において、シリコンウエハなどの基板上の被覆物(レジスト等)を高濃度硫酸溶液で洗浄剥離するプロセスに用いられる電解セルとして例えば図9に示すような電解セルが提案されている(特許文献1参照)。
この電解セル100は、外部ポンプによる通液に対し、電解セルの電極板101の耐圧性を向上させるとともに、電極板101と通電体(銅板)102との接触抵抗を少なくすることを目的として、一番外側の電極板101に通電体(銅板)を圧縮バネ103で外側から押付ける構造としている。また一番外側の電極板101がバネの外側からの圧縮力で破損しない様に、その裏面にスペーサ104を設けている。さらに、一番外側の電極板101と通電体102(銅板)とは可能な限り接触面積が広くなる様にしている。
特開2007−262531号公報
Conventionally, in the semiconductor industry, for example, an electrolytic cell as shown in FIG. 9 has been proposed as an electrolytic cell used in a process of cleaning and peeling a coating (resist or the like) on a substrate such as a silicon wafer with a high-concentration sulfuric acid solution ( Patent Document 1).
The electrolytic cell 100 is intended to improve the pressure resistance of the electrode plate 101 of the electrolytic cell against the liquid flow through an external pump, and to reduce the contact resistance between the electrode plate 101 and the current-carrying body (copper plate) 102. A current-carrying body (copper plate) is pressed against the outermost electrode plate 101 from the outside by a compression spring 103. Further, a spacer 104 is provided on the back surface so that the outermost electrode plate 101 is not damaged by the compressive force from the outside of the spring. Furthermore, the contact area between the outermost electrode plate 101 and the current-carrying body 102 (copper plate) is made as wide as possible.
JP 2007-262531 A

しかし、従来の電解セルでは、その構造に起因して以下の問題点を有している。
1)電極にポンプ送液に耐える耐圧性をもたせる為に、電極間にスペーサを使用していたが、このスペーサにより電極面に電解性能に不均一な状態を作り出し、電解効率の低下、電極の局部的損耗の起点となっている。
2)電極面で発生するガス(水素と酸素など)の気泡の抜けが悪くセル内の上部にガス溜まりが発生し、有効電解面積が減少する。
3)電解により発生した反応液の濃度を高める場合、同一液を循環しながら濃度を高めるが、外部ポンプによる循環作用を行なう必要がある。
4)電極面で発生したガス(水素と酸素など)と液を分離する為、ガスはガス処理工程に排出する為の気液分離器をセルの後段に設置する必要がある。
However, the conventional electrolytic cell has the following problems due to its structure.
1) A spacer was used between the electrodes in order to give the electrodes pressure resistance to withstand pumping. However, this spacer creates a non-uniform state in the electrolysis performance on the electrode surface, lowering the electrolysis efficiency, It is the starting point for local wear.
2) Bubbles of gas (hydrogen, oxygen, etc.) generated on the electrode surface are not easily removed, and a gas pool is generated in the upper part of the cell, reducing the effective electrolysis area.
3) When increasing the concentration of the reaction solution generated by electrolysis, the concentration is increased while circulating the same solution, but it is necessary to perform a circulation action by an external pump.
4) In order to separate the gas (hydrogen and oxygen, etc.) generated on the electrode surface and the liquid, it is necessary to install a gas-liquid separator for discharging the gas to the gas treatment process after the cell.

本発明は、上記事情を背景としてなされたものであり、簡易かつ安全な構造でありながら高効率に電解することが可能な電解装置および電解方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide an electrolysis apparatus and an electrolysis method capable of performing electrolysis with high efficiency while having a simple and safe structure.

すなわち、本発明の電解装置のうち、第1の本発明は、電解液を貯留する電解液貯留槽と、該電解液貯留槽内に配置されて前記電解液に浸漬される電解セルとを備え、該電解セルは、陽極と陰極からなる少なくとも1対の電極を備え、前記配置状態で前記電極間の上部および下部が開口されているとともに、前記電極間の側方が周壁で遮蔽されていることを特徴とする。   That is, among the electrolytic devices of the present invention, the first present invention includes an electrolytic solution storage tank that stores an electrolytic solution, and an electrolytic cell that is disposed in the electrolytic solution storage tank and is immersed in the electrolytic solution. The electrolysis cell includes at least one pair of electrodes including an anode and a cathode, and an upper portion and a lower portion between the electrodes are opened in the arrangement state, and a side between the electrodes is shielded by a peripheral wall. It is characterized by that.

第2の本発明の電解装置は、前記第1の本発明において、前記電極に通電するための通電体が、前記電解液貯留槽に貯留された電解液に接触することなくシールされた室に格納されていることを特徴とする。   In the electrolysis apparatus according to a second aspect of the present invention, in the first aspect of the present invention, an energization body for energizing the electrode is sealed in a chamber without contacting the electrolyte stored in the electrolyte storage tank. It is stored.

第3の本発明の電解装置は、前記第1または第2の本発明において、前記周壁に、前記電極を保持する電極保持部が設けられていることを特徴とする。   The electrolysis apparatus according to a third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, an electrode holding portion for holding the electrode is provided on the peripheral wall.

第4の本発明の電解装置は、前記第1〜第3の本発明のいずれかにおいて、前記電解液貯留槽内上部を開放系とし、電極面で発生した電解ガスと電解液とを前記電解液貯留槽内で分離する構成としたことを特徴とする。   The electrolysis apparatus according to a fourth aspect of the present invention is the electrolysis apparatus according to any one of the first to third aspects of the present invention, wherein the upper part in the electrolytic solution storage tank is an open system, and the electrolytic gas generated on the electrode surface and the electrolytic solution are electrolyzed. It is characterized by being configured to separate in the liquid storage tank.

第5の本発明の電解装置は、前記第1〜第4の本発明のいずれかにおいて、前記電極のうち少なくとも陽極がダイヤモンド電極であることを特徴とする。   The electrolysis apparatus according to a fifth aspect of the present invention is characterized in that in any one of the first to fourth aspects of the present invention, at least an anode of the electrodes is a diamond electrode.

第6の本発明の電解方法は、前記第1〜第5の本発明に記載された電解装置で電解セルに通電をして電解液を自然対流によって電極間に通液しつつ電解することを特徴とする。   In the electrolysis method of the sixth aspect of the present invention, the electrolysis apparatus described in the first to fifth aspects of the present invention energizes the electrolysis cell and performs electrolysis while allowing the electrolytic solution to pass between the electrodes by natural convection. Features.

第7の本発明の電解方法は、前記第6の本発明において、前記電解セルに通電する電流密度が0.5〜250A/dm2であることを特徴とする。   The electrolysis method according to a seventh aspect of the present invention is characterized in that, in the sixth aspect of the present invention, a current density applied to the electrolysis cell is 0.5 to 250 A / dm2.

第8の本発明の電解方法は、前記第6または第7の本発明において、前記電解液が濃度8〜18Mの硫酸溶液であることを特徴とする。   An electrolysis method according to an eighth aspect of the present invention is characterized in that, in the sixth or seventh aspect of the present invention, the electrolytic solution is a sulfuric acid solution having a concentration of 8 to 18M.

すなわち、本発明によれば、電解により気泡が発生して電解セル内外で気液比に差が生じるため、電解セル下部から電解液が流入する。そのため電解液貯留槽内を電解液が自然対流で循環して電解セル内の通液速度を高く保つことができ、通電不良の原因となる電解ガスを電解セル内に溜まることなく逸早く電解セル外に排出する。
なお、電解セルを構成する両端電極およびバイポーラ電極の各電極の極間距離は3mm〜50mmであることが好ましい。極間距離が大きすぎると電解効率が下がる上、電解セルが大型になってしまう。ただし極間距離が小さすぎると電解ガスの電解セル外部への抜けが悪くなり電解の阻害となってしまうため却って好ましくない。
That is, according to the present invention, bubbles are generated by electrolysis and a difference in gas-liquid ratio occurs inside and outside the electrolysis cell, so that the electrolyte flows from the bottom of the electrolysis cell. Therefore, the electrolytic solution circulates in the electrolytic solution storage tank by natural convection and the flow rate in the electrolytic cell can be kept high, and the electrolytic gas that causes the conduction failure is quickly accumulated outside the electrolytic cell without accumulating in the electrolytic cell. To discharge.
In addition, it is preferable that the distance between each electrode of the both-ends electrode and bipolar electrode which comprises an electrolytic cell is 3 mm-50 mm. If the distance between the electrodes is too large, the electrolysis efficiency decreases and the electrolysis cell becomes large. However, if the distance between the electrodes is too small, the escape of the electrolysis gas to the outside of the electrolysis cell will be worsened, which will hinder electrolysis.

本発明は、特に、半導体産業において、シリコンウエハなどの基板上の被覆物(レジスト等)を高濃度硫酸溶液で洗浄剥離するプロセスに好適であって、アッシングプロセスなどの前処理工程を省略してレジスト剥離・酸化効果を高めるために過硫酸溶液を10℃から90℃の温度範囲で電解反応装置によってオンサイト製造し、硫酸溶液を繰り返し利用して外部からの過酸化水素やオゾンなどの薬液添加を必要としない洗浄システムに適用することができる。但し、本発明としては、特定の用途に限定をされるものではなく、電解によってガスが発生し、ガスの滞留によって問題が発生する種々の用途に適用が可能である。   The present invention is particularly suitable in the semiconductor industry for a process of cleaning and peeling a coating (resist, etc.) on a substrate such as a silicon wafer with a high-concentration sulfuric acid solution, and omits a pretreatment step such as an ashing process. In order to enhance the resist stripping and oxidation effect, persulfuric acid solution is produced on-site by electrolytic reactor in the temperature range of 10 ° C to 90 ° C, and chemicals such as hydrogen peroxide and ozone are added from outside by repeatedly using sulfuric acid solution. Can be applied to cleaning systems that do not require However, the present invention is not limited to a specific application, and can be applied to various applications in which gas is generated by electrolysis and problems occur due to gas retention.

上記洗浄システムの概略を以下に述べる。1)高濃度硫酸溶液から過硫酸溶液を製造する電解装置、2)シリコンウエハ、液晶用ガラス基板、フォトマスク基板など電子材料基板を洗浄する洗浄装置、3)高濃度硫酸溶液を循環させるポンプや配管で構成される循環ラインを備え、さらに所望により、4)電解装置からの送り液と洗浄槽からの戻り液の熱を交換する熱交換器、5)電解装置で発生したガスを気液分離して、水素を燃焼させる触媒処理装置などを有する。本発明では、電解液貯留槽内上部を開放系とすることで、気液界面において電解ガスと電解液とを容易に気液分離することができる。   An outline of the cleaning system will be described below. 1) Electrolytic device for producing persulfuric acid solution from high concentration sulfuric acid solution, 2) Cleaning device for cleaning electronic material substrate such as silicon wafer, glass substrate for liquid crystal, photomask substrate, 3) Pump for circulating high concentration sulfuric acid solution, It is equipped with a circulation line composed of piping, and 4) a heat exchanger that exchanges the heat of the feed liquid from the electrolyzer and the return liquid from the washing tank, and 5) gas-liquid separation of the gas generated in the electrolyzer, if desired. And a catalyst processing apparatus for burning hydrogen. In the present invention, by making the upper part in the electrolytic solution storage tank an open system, the electrolytic gas and the electrolytic solution can be easily gas-liquid separated at the gas-liquid interface.

洗浄液となる硫酸の濃度は、電解による過硫酸生成効率とレジスト除去効果に大きな影響を与える。硫酸濃度を4〜7M程度にすると電解による過硫酸生成効率は向上するが、レジストの剥離溶解効果は低下する。そこで、発明者らは種々実験を繰り返し、硫酸濃度が8〜18Mの範囲が適切であることを見出した。   The concentration of sulfuric acid used as a cleaning solution greatly affects the persulfuric acid production efficiency by electrolysis and the resist removal effect. When the sulfuric acid concentration is about 4 to 7M, the persulfuric acid production efficiency by electrolysis is improved, but the resist peeling and dissolving effect is lowered. Therefore, the inventors repeated various experiments and found that a sulfuric acid concentration in the range of 8 to 18M was appropriate.

電解装置では、高濃度硫酸溶液を電解し、洗浄効果を高める過硫酸を生成する。溶液温度が低いほど過硫酸生成効率が高いことから、過硫酸を生成するときの電解温度は10〜90℃で、好ましくは40〜80℃の範囲で行う。このような電解装置内の電極材料として、陽極として白金電極を用いた場合では、白金が溶出するため過硫酸を継続的に製造することができない、という問題がある。そこで、導電性ダイヤモンド電極によって、硫酸から過硫酸を製造することは、電流密度を0.2A/cm2程度にした場合については報告されている(Ch.Comninellis et al.,Electrochemical and Solid−State Letters, Vol.3(2)77−79(2000)、特表2003−511555)。なお、金属等の基板にダイヤモンド薄膜を担持した電極ではダイヤモンド膜の剥離が生じて、作用効果が短期間で消失する場合があるという問題があるので、基板上に析出させた後に基板を取り去った自立型導電性ダイヤモンド電極あるいは基板の全面に20〜100μmのダイヤモンド層を被覆した基板被覆型ダイヤモンド電極が望ましい。なお、導電性ダイヤモンド薄膜は、合成の際にボロンまたは窒素の所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜20,000ppmの範囲のものが適している。
電解装置における電解処理は、電極表面の電流密度を0.5〜250A/dm2とすることが望ましい。
In the electrolyzer, persulfuric acid is generated by electrolyzing a high-concentration sulfuric acid solution to enhance the cleaning effect. Since the persulfuric acid production efficiency is higher as the solution temperature is lower, the electrolysis temperature when producing persulfuric acid is 10 to 90 ° C., preferably 40 to 80 ° C. When a platinum electrode is used as an anode as an electrode material in such an electrolysis apparatus, there is a problem that persulfuric acid cannot be continuously produced because platinum is eluted. Thus, it has been reported that persulfuric acid is produced from sulfuric acid using a conductive diamond electrode when the current density is about 0.2 A / cm 2 (Ch. Cominellis et al., Electrochemical and Solid-State Letters). , Vol.3 (2) 77-79 (2000), Special Table 2003-511555). In the case of an electrode having a diamond thin film supported on a metal substrate or the like, there is a problem in that the diamond film peels off and the action effect may disappear in a short period of time, so the substrate is removed after being deposited on the substrate. A self-supporting conductive diamond electrode or a substrate-coated diamond electrode in which a 20-100 μm diamond layer is coated on the entire surface of the substrate is desirable. In addition, the conductive diamond thin film is obtained by doping a predetermined amount of boron or nitrogen at the time of synthesis to impart conductivity, and generally boron doped. If the doping amount is too small, technical significance does not occur. If the doping amount is too large, the doping effect is saturated. Therefore, a doping amount in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film is suitable. .
In the electrolytic treatment in the electrolytic apparatus, it is desirable that the current density on the electrode surface is 0.5 to 250 A / dm2.

以上説明したように、本発明の電解装置または電解方法によれば、電解液を貯留する電解液貯留槽と、該電解液貯留槽内に配置されて前記電解液に浸漬される電解セルとを備え、該電解セルは、陽極と陰極からなる少なくとも1対の電極を備え、前記配置状態で前記電極間の上部および下部が開口されているとともに、前記電極間の側方が遮蔽されているので、電解により気泡が発生して電解セル内外で気液比に差が生じるため、電解セル下部から電解液が流入する。そのため電解液貯留槽内を電解液が自然対流で循環して電解セル内の通液速度を高く保つことができ、通電不良の原因となる電解ガスを電解セル内に溜まることなく逸早く電解セル外に排出することができる。   As described above, according to the electrolytic device or the electrolytic method of the present invention, the electrolytic solution storage tank that stores the electrolytic solution, and the electrolytic cell that is disposed in the electrolytic solution storage tank and is immersed in the electrolytic solution. The electrolytic cell includes at least one pair of electrodes composed of an anode and a cathode, and the upper and lower portions between the electrodes are opened and the sides between the electrodes are shielded in the arrangement state. Since air bubbles are generated by electrolysis and a difference in gas-liquid ratio occurs inside and outside the electrolytic cell, the electrolytic solution flows from the lower part of the electrolytic cell. Therefore, the electrolytic solution circulates in the electrolytic solution storage tank by natural convection and the flow rate in the electrolytic cell can be kept high, and the electrolytic gas that causes the conduction failure is quickly accumulated outside the electrolytic cell without accumulating in the electrolytic cell. Can be discharged.

以下に、本発明の一実施形態を図1〜図5に基づいて説明する。
電解セル10は、図1、2に示すように有底円筒状のセルケース11を有し、該セルケース11は、軸線に直角な方向において2分割されて同一構造のセルケース部12、12で構成されている。
セルケース部12は、図3に示すように、軸線を中心にして丸穴の通電体収納凹部13が形成されており、該通電体収納凹部13に連通する電線導入穴13aが筒壁上部にかけて形成されている。該通電体収納凹部13の外周側にはリング状の平坦面が形成されており、該平坦面にOリング装着溝14が形成され、該平坦面の外周側に、傾斜面を有する段部15を介してリング状の筒壁端面12aが位置している。
Below, one Embodiment of this invention is described based on FIGS.
The electrolysis cell 10 has a bottomed cylindrical cell case 11 as shown in FIGS. 1 and 2, and the cell case 11 is divided into two in a direction perpendicular to the axis line and has the same structure. It consists of
As shown in FIG. 3, the cell case portion 12 has a round hole energizing body housing recess 13 formed around the axis, and an electric wire introduction hole 13 a communicating with the energizing body housing recess 13 extends to the upper part of the cylinder wall. Is formed. A ring-shaped flat surface is formed on the outer peripheral side of the current-carrying member recess 13, an O-ring mounting groove 14 is formed on the flat surface, and a step portion 15 having an inclined surface on the outer peripheral side of the flat surface. A ring-shaped cylindrical wall end face 12a is located through the gap.

上記セルケース部12には、通電体収納凹部13にほぼ穴径と同等の径を有する円盤状の通電体20が収容され、外部電線21が電線導入穴13aから導入されて前記通電体20に導電状態で接続されている。通電体20の軸方向内側には、コイルスプリング22が所定角度間隔で配置され(図1では一つのみを図示)、該コイルスプリング22の軸方向内側に円板状の第2通電体23が通電体収納凹部13内に収納されるようにして配置されている。前記Oリング装着溝14には、Oリング24が装着されている。このOリング24に片面が接するように、前記段部15の内側に収まる円板状のダイヤモンド電極25が配置されている。段部15の傾斜面には、円周上にシールリング装着溝15aが形成されており、該シールリング装着溝15aに前記ダイヤモンド電極25の軸方向内面側に接するようにして剛性を有するシールリング26が装着されている。該シールリング26によってダイヤモンド電極25は、軸方向外側に押圧されており、これにより前記Oリング24の内周側は、Oリング24とダイヤモンド電極25とによって封止される。すなわち、通電体20および第2通電体23は電解液に接することなくシールされた空間(室)に格納されることになる。また、ダイヤモンド電極25には、コイルスプリング22で付勢されて第2通電体23が確実に当接して導電状態が確保されている。この段部15は本発明のダイヤモンド電極25の電極保持部に相当する。   In the cell case portion 12, a disk-shaped electric current body 20 having a diameter substantially equal to the hole diameter is accommodated in the electric current body accommodating recess 13, and an external electric wire 21 is introduced from the electric wire introduction hole 13 a to the electric current body 20. They are connected in a conductive state. Coil springs 22 are arranged at predetermined angular intervals on the inner side in the axial direction of the current-carrying body 20 (only one is shown in FIG. 1), and a disk-shaped second current-carrying body 23 is disposed on the inner side in the axial direction of the coil spring 22. It arrange | positions so that it may accommodate in the electrically-conductive body accommodation recessed part 13. As shown in FIG. An O-ring 24 is mounted in the O-ring mounting groove 14. A disk-shaped diamond electrode 25 that is accommodated inside the step portion 15 is disposed so that one surface thereof is in contact with the O-ring 24. A seal ring mounting groove 15a is formed on the circumference of the inclined surface of the step portion 15. The seal ring has rigidity so as to contact the seal ring mounting groove 15a on the inner surface side in the axial direction of the diamond electrode 25. 26 is attached. The diamond electrode 25 is pressed axially outward by the seal ring 26, whereby the inner peripheral side of the O-ring 24 is sealed by the O-ring 24 and the diamond electrode 25. That is, the current-carrying body 20 and the second current-carrying body 23 are stored in a sealed space (chamber) without being in contact with the electrolytic solution. Further, the diamond electrode 25 is urged by the coil spring 22 so that the second current-carrying body 23 is surely brought into contact therewith to ensure a conductive state. This step portion 15 corresponds to an electrode holding portion of the diamond electrode 25 of the present invention.

さらに、図4に示すように、セルケース部12、12の前記筒壁端面12a、12a間には、電解セル10を設置した状態で上部側となる部分に、電解セル10の中央部縦軸を挟むように2つの円柱状の電極支え部材27、27が間隔をおいて周方向両側に配置され、また、電解セル10を設置した状態で下側となる部分にも、同じく中央部縦軸を挟むように2つの円柱状の電極支え部材27、27が間隔をおいて周方向両側に配置されている。該電極支え部材27…27の軸方向両端側は、セルケース部12、12の組み立てに際し、それぞれ前記筒壁端面12a、12a側に密着固定される。また、左右同じ側において上方側に位置する電極支え部材27と下方側に位置する電極支え部材27との間には、前記筒壁端面12aに沿って、前記電極支え部材27と同じ厚さを有する周壁16、16が配置され、上下に位置する前記電極支え部材27、27で保持固定される。   Furthermore, as shown in FIG. 4, the central vertical axis of the electrolytic cell 10 is placed between the cylindrical wall end faces 12 a, 12 a of the cell case parts 12, 12 on the upper side with the electrolytic cell 10 installed. Two columnar electrode support members 27, 27 are arranged on both sides in the circumferential direction so as to sandwich the electrode, and the lower portion in the state where the electrolytic cell 10 is installed is also provided in the central vertical axis. Two columnar electrode support members 27, 27 are arranged on both sides in the circumferential direction with a gap therebetween. The both ends in the axial direction of the electrode support members 27... 27 are tightly fixed to the cylindrical wall end faces 12 a and 12 a when the cell case portions 12 and 12 are assembled. Further, between the electrode support member 27 located on the upper side and the electrode support member 27 located on the lower side on the same left and right sides, the same thickness as the electrode support member 27 is formed along the cylindrical wall end surface 12a. The surrounding walls 16 and 16 are disposed and are held and fixed by the electrode support members 27 and 27 positioned above and below.

この結果、電解セル10を設置した状態で上部側となる部分に、上部側の二つの電極支え部材27、27で挟まれて縦方向に沿って上部開口部16aが形成され、設置状態で下部側となる部分に、下部側の二つの電極支え部材27、27で挟まれて縦方向に沿って下部開口部16bが形成される。これにより、二つのセルケース部12、12を組み合わせた状態では、上部開口部16a、下部開口部16bのみが開口され、これら開口部の周囲は周壁16、16および電極支え部材27…27で遮蔽されたセルケース11が得られる。したがって、各電極支え部材27は、本発明の周壁としての機能も果たしている。   As a result, the upper opening 16a is formed along the vertical direction between the two electrode support members 27, 27 on the upper side in the portion on the upper side with the electrolytic cell 10 installed, and the lower portion in the installed state. A lower opening 16b is formed along the vertical direction between the two lower electrode support members 27 and 27 in the lower portion. As a result, in a state where the two cell case parts 12 and 12 are combined, only the upper opening 16a and the lower opening 16b are opened, and the periphery of these openings is shielded by the peripheral walls 16 and 16 and the electrode support members 27. The obtained cell case 11 is obtained. Accordingly, each electrode support member 27 also functions as the peripheral wall of the present invention.

なお、上記周壁16、16は、セルケース部12、12間に配置されて電極支え部材27で保持固定されるものとして説明したが、セルケース部12の筒壁端面12aに固定されるものでもよく、また、セルケース部12と一体に構成されているものであってもよい。また、この実施形態では、周壁16と電極支え部材27とは別部材のものとして説明したが、これらが一体になって構成されているものであってもよい。   In addition, although the said surrounding walls 16 and 16 were demonstrated as what is arrange | positioned between the cell case parts 12 and 12 and hold | maintained and fixed by the electrode supporting member 27, even if fixed to the cylinder wall end surface 12a of the cell case part 12. Moreover, it may be configured integrally with the cell case portion 12. In this embodiment, the peripheral wall 16 and the electrode support member 27 are described as separate members. However, they may be configured integrally.

前記電極支え部材27の周方向内側には、周面に前記ダイヤモンド電極25と同サイズのバイポーラ用ダイヤモンド電極25aの周縁の一部が挿入される3つの電極保持溝27aが軸方向に間隔を置いて形成されている。この電極保持溝27aは、本発明のバイポーラ用ダイヤモンド電極25a用の電極保持部に相当する。図では電極保持溝27aは3つであるが、バイポーラ用ダイヤモンド電極25aの枚数に応じて適宣設定することができる。   On the inner side in the circumferential direction of the electrode support member 27, three electrode holding grooves 27a into which a part of the periphery of the bipolar diamond electrode 25a having the same size as the diamond electrode 25 is inserted on the circumferential surface are spaced apart in the axial direction. Is formed. The electrode holding groove 27a corresponds to an electrode holding portion for the bipolar diamond electrode 25a of the present invention. Although there are three electrode holding grooves 27a in the figure, it can be appropriately set according to the number of bipolar diamond electrodes 25a.

上記電極保持溝27aにそれぞれバイポーラ用ダイヤモンド電極25a…25aを収納し、各電極支え部材27の軸心およびセルケース部12、12の筒壁にそれぞれ軸方向に設けた貫通孔を通して両セルケース部12、12間にボルト28を通し、ボルト両端をナット29で締め付けセルケース部12、12を固定することで、図4に示すように各電極が保持された電解セル10が得られる。
上記構成の電解セル10は、それぞれのセルケース部12に接続された外部電線21、21の一方を外部電源の正極、他方を負極にすることで、ダイヤモンド電極25、25の一方が陽極、他方が陰極になる。
The bipolar diamond electrodes 25a... 25a are accommodated in the electrode holding grooves 27a, respectively, and both cell case portions pass through the axial centers of the electrode support members 27 and the through holes provided in the axial direction of the cylindrical walls of the cell case portions 12 and 12, respectively. By passing bolts 28 between 12 and 12 and fastening both ends of the bolts with nuts 29 and fixing the cell case parts 12 and 12, the electrolytic cell 10 holding each electrode as shown in FIG. 4 is obtained.
The electrolytic cell 10 having the above-described configuration is configured such that one of the external wires 21 and 21 connected to each cell case portion 12 is a positive electrode of an external power source and the other is a negative electrode, so that one of the diamond electrodes 25 and 25 is an anode and the other. Becomes the cathode.

上記電解セル10は、図1に示すように、電解液貯留槽1に配置され、該電解液貯留槽1に収容されている電解液2中に浸漬される。該電解液2は、電解液貯留槽1内の所定の高さに位置しており、その上部は、空間とされ、上部には貯留槽蓋3が設けられており、該貯留槽蓋3に、図示しない排気管が接続される。上記構成により本発明の電解装置が構成されている。   As shown in FIG. 1, the electrolytic cell 10 is disposed in an electrolytic solution storage tank 1 and immersed in an electrolytic solution 2 accommodated in the electrolytic solution storage tank 1. The electrolytic solution 2 is located at a predetermined height in the electrolytic solution storage tank 1, and the upper part is a space, and the upper part is provided with a storage tank lid 3. An exhaust pipe (not shown) is connected. The electrolysis apparatus of this invention is comprised by the said structure.

上記電解装置の作用について以下に説明する。
上記した外部電線21、21に図示しない外部電源を接続して通電する。
電解セル10では、印加電圧が通電体20、第2通電体23を通して電解セル10の両端のダイヤモンド電極25、25へと伝わる。この電圧印加によってダイヤモンド電極25,25の内側にあるバイポーラ用ダイヤモンド電極25a…25aが分極し、所定の間隔で陽極、陰極が出現する。この結果、ダイヤモンド電極25、25a間およびバイポーラ用ダイヤモンド電極25a、25a間で電解反応が生じる。例えば、硫酸溶液を電解液とすると、電解液中の硫酸イオンが酸化して過硫酸イオンが生成される。また電解反応に伴って水素などの副生ガスが生成される。電極面で水素ガスと酸素ガスの気泡が発生するに伴って電極面に接する液が上昇し、また同時に電極面に向かって下部から未電解の液を引き込み上昇する流れができる。その結果、電極間の電解液は、図5の概略図(図では概略のためダイヤモンド電極25、25のみ示している)に示すように、上部開口部16aを通して上昇し、電解液貯留槽1の電解液2は、下部開口部16bを通して電極間に導入され、その自然対流によって電解ガスが気泡30としてスムーズに電解セル10外に排出される。
The operation of the electrolyzer will be described below.
An external power source (not shown) is connected to the external electric wires 21 and 21 and energized.
In the electrolytic cell 10, the applied voltage is transmitted to the diamond electrodes 25, 25 at both ends of the electrolytic cell 10 through the conductive body 20 and the second conductive body 23. By applying this voltage, the bipolar diamond electrodes 25a... 25a inside the diamond electrodes 25 and 25 are polarized, and an anode and a cathode appear at predetermined intervals. As a result, an electrolytic reaction occurs between the diamond electrodes 25 and 25a and between the bipolar diamond electrodes 25a and 25a. For example, when a sulfuric acid solution is used as an electrolytic solution, sulfate ions in the electrolytic solution are oxidized to generate persulfate ions. In addition, a by-product gas such as hydrogen is generated along with the electrolytic reaction. As bubbles of hydrogen gas and oxygen gas are generated on the electrode surface, the liquid in contact with the electrode surface rises, and at the same time, an unelectrolyzed liquid is drawn upward from the bottom toward the electrode surface. As a result, the electrolyte solution between the electrodes rises through the upper opening 16a as shown in the schematic diagram of FIG. The electrolytic solution 2 is introduced between the electrodes through the lower opening 16b, and electrolytic gas is smoothly discharged out of the electrolytic cell 10 as bubbles 30 by natural convection.

また、電解液とともに電解セル10外に排出された気泡30は、さらに電解液2中で上昇を続け、気液界面2aによって電解液2上に気液分離される。分離された水素などのガスは、貯留槽蓋3に連結した排気管などによって排気をし、電解液貯留槽1外で適宜の処理を行うことができる。   Further, the bubbles 30 discharged out of the electrolytic cell 10 together with the electrolytic solution continue to rise in the electrolytic solution 2 and are separated into the liquid electrolyte 2 by the gas-liquid interface 2a. The separated gas such as hydrogen can be exhausted by an exhaust pipe or the like connected to the storage tank lid 3 and can be appropriately treated outside the electrolyte storage tank 1.

以上説明した上記実施形態の電解セルによれば、以下の利点が得られる。
1)電解セル上部を開口し、電解時に発生する電解ガスの気泡を上部に逃がす流れを阻害しない電解セル構造としたことにより、電解ガスの抜けが良くなり、電解セル内の上部にガスが溜まらなくなった。
2)電極面で発生した電解ガスと電解液を電解液貯留槽内(上部)で気液分離できるため、別途気液分離器を設置する必要がなくなった。
3)硫酸電解過硫酸生成に用いる場合、電解液貯留槽内を硫酸溶液が自然対流で循環することにより、外部動力なく過硫酸を濃縮することができ、また濃縮液の貯留槽を兼ねることができる。
4)電解セルを開放系の電解液貯留槽に浸漬するだけなので、セル電極にポンプからの圧力が掛からない為、耐圧性をもたせる必要がなくなり、補強用のスペーサーが不要となった。これにより電極面全面が電解面となり電流の分布が均一な状態となり、電解効率が向上した。
According to the electrolytic cell of the embodiment described above, the following advantages are obtained.
1) The electrolytic cell structure that opens the upper part of the electrolytic cell and does not hinder the flow of electrolytic gas bubbles generated during electrolysis to the upper part improves the escape of the electrolytic gas, and the gas is collected in the upper part of the electrolytic cell. lost.
2) Since the electrolytic gas and the electrolytic solution generated on the electrode surface can be gas-liquid separated in the electrolytic solution storage tank (upper part), it is no longer necessary to install a separate gas-liquid separator.
3) When used for sulfuric acid electrolytic persulfuric acid production, the sulfuric acid solution circulates in the electrolytic solution storage tank by natural convection, so that it is possible to concentrate the persulfuric acid without external power, and it can also serve as the concentrated solution storage tank. it can.
4) Since the electrolytic cell is simply immersed in an open electrolyte storage tank, pressure from the pump is not applied to the cell electrode, so there is no need to provide pressure resistance, and a reinforcing spacer is not required. As a result, the entire electrode surface became an electrolytic surface, and the current distribution became uniform, and the electrolysis efficiency was improved.

次に、本発明のより好ましい実施形態について以下の通り説明する。
図6(a)に示すように、陽極41と陰極42との間にバイポーラ電極43…43を配置した電解セル40を電解液中に浸漬して使用した場合、両端電極(陽極41、陰極42)に比べ内側のバイポーラ電極43の方が電解ガスの発生が少ない(つまりバイポーラ電極の方が電解量が少ない)ことが観察された。これは両端電極の内側に配置したバイポーラ電極43が1枚以上で発生するが特に3枚以上のときに顕著となる。この現象の理由としては以下のように推測される。
Next, a more preferred embodiment of the present invention will be described as follows.
As shown in FIG. 6A, when an electrolytic cell 40 in which bipolar electrodes 43... 43 are disposed between an anode 41 and a cathode 42 is immersed in an electrolytic solution, both end electrodes (anode 41, cathode 42) are used. It was observed that the inner bipolar electrode 43 generated less electrolysis gas than the inner bipolar electrode 43 (that is, the bipolar electrode had less electrolysis). This occurs when one or more bipolar electrodes 43 are arranged inside both end electrodes, but this is particularly noticeable when there are three or more bipolar electrodes. The reason for this phenomenon is presumed as follows.

このような電解セル40に通電した場合、電解液を挟んだ向かい合う電極間で流れる直接伝達電流だけでなく、両端電極端部から、向かい合う隣のバイポーラ電極43を飛び越えたバイポーラ電極端部へセル外側の液を伝達して迂回する電流も発生する。そして今回実験した電解セル構造では直接伝達電流の電流抵抗よりも迂回電流の電気抵抗の方が小さいため、迂回電流が優先的に流れたものと思われる。
実際にこの様な構造の電解セルを用いて電極5枚(バイポーラ電極3枚)で運転した場合、電極2枚(バイポーラ電極0枚)のときの電解効率と比較して、電解効率が半分程度と低くなっている事が確認されている。
When such an electrolytic cell 40 is energized, not only the direct transmission current flowing between the opposing electrodes sandwiching the electrolyte solution, but also the outside of the cell from the ends of both ends to the ends of the bipolar electrodes jumping over the adjacent bipolar electrode 43 facing each other A current that bypasses the liquid is also generated. And in the electrolytic cell structure tested this time, the electric resistance of the bypass current is smaller than the current resistance of the direct transmission current, so it seems that the bypass current flowed preferentially.
When an electrolysis cell having such a structure is actually used and operated with 5 electrodes (3 bipolar electrodes), the electrolysis efficiency is about half of the electrolysis efficiency with 2 electrodes (0 bipolar electrodes). It has been confirmed that it is lower.

上記問題を解消するためには直接伝達電流の電気抵抗よりも迂回電流の電気抵抗が大きくなるようにすればよい。ここで迂回電流の電気抵抗は、(1)迂回部分の流路長さ、(2)迂回部分の流路面積、に依存する。
そこで図6(b)に示すように、バイポーラ電極43…43の外周面を絶縁材44で覆い、電解セルと外部とを貫通する開口部45、46を設ける。その結果、迂回部分の流路長さが長くなると共に、迂回部分の流路面積が狭くなったため迂回電流の電気抵抗を直接伝達電流の電気抵抗より大きくすることができる。これにより迂回電流を抑制して直接伝達電流を優先的に通電することができる。
In order to solve the above problem, the electrical resistance of the bypass current may be made larger than the electrical resistance of the direct transmission current. Here, the electrical resistance of the bypass current depends on (1) the flow path length of the bypass portion and (2) the flow path area of the bypass portion.
Therefore, as shown in FIG. 6B, the outer peripheral surfaces of the bipolar electrodes 43... 43 are covered with an insulating material 44, and openings 45 and 46 penetrating the electrolysis cell and the outside are provided. As a result, the flow path length of the bypass portion is increased and the flow path area of the bypass portion is reduced, so that the electrical resistance of the bypass current can be made larger than the electrical resistance of the direct transmission current. Thereby, it is possible to preferentially energize the direct transmission current while suppressing the bypass current.

図7,8は、上記構成を有する電解セルの具体的な構造を示すものである。なお、前記実施形態と同様の構成については、その説明を省略する。
この実施形態では、絶縁材44は、リング状に形成され、表裏面に電極を収納するリング状の電極収納溝44a、44aを有している。また、該絶縁材44は、図8に示すように、設置時に下方となる位置には、絶縁材44を径方向に貫通する下部開口部45が複数形成されており、また、設置時に上方となる位置には、絶縁材44を径方向に貫通する上部開口部46が複数形成されている。
電極の設置に際しては、図7では、バイポーラ電極43を3枚使用するものとして、陽極41と1枚のバイポーラ電極43との間、バイポーラ電極43、43間、1枚のバイポーラ電壁43と陰極42との間にそれぞれ絶縁材44を配置して、該絶縁材44の電極収納溝にそれぞれの電極を収納する。
これにより、電解液は、下部開口部45を通して電極間に流入し、電極間を通って上部開口部46から電解セル外に電解ガスとともに効果的に移動する。また、絶縁材44の配置によって、電極の周縁を覆うとともに、電流が流れる出入り口が絶縁材44に設けた開口部に限定されるため、迂回電流が小さくなり、電解効率が向上する。
7 and 8 show a specific structure of the electrolytic cell having the above configuration. Note that the description of the same configuration as in the above embodiment is omitted.
In this embodiment, the insulating material 44 is formed in a ring shape, and has ring-shaped electrode storage grooves 44a and 44a for storing electrodes on the front and back surfaces. In addition, as shown in FIG. 8, the insulating material 44 has a plurality of lower openings 45 penetrating the insulating material 44 in the radial direction at the lower position when installed, In this position, a plurality of upper openings 46 penetrating the insulating material 44 in the radial direction are formed.
In the installation of the electrodes, in FIG. 7, three bipolar electrodes 43 are used, and between the anode 41 and one bipolar electrode 43, between the bipolar electrodes 43 and 43, one bipolar electrical wall 43 and the cathode. Insulating material 44 is disposed between each electrode 42 and the electrode is accommodated in the electrode housing groove of the insulating material 44.
Thus, the electrolytic solution flows between the electrodes through the lower opening 45 and effectively moves together with the electrolytic gas from the upper opening 46 to the outside of the electrolytic cell through the electrodes. Further, the arrangement of the insulating material 44 covers the periphery of the electrode, and the entrance / exit through which the current flows is limited to the opening provided in the insulating material 44, so that the detour current is reduced and the electrolysis efficiency is improved.

なお上記のような電解セル構造の改良により電解効率をより高めることができるが、この改良によってダイヤモンド電極の剥離が発生しやすい端面部をシールして電解液が侵入しないように構成することができるため、ダイヤモンド電極の剥離を生じにくくし、寿命をより長期化することができるという副次効果も得られる。   Although the electrolysis cell structure can be improved as described above, the electrolysis efficiency can be further improved. However, the improvement can be made so that the end face portion where the diamond electrode is likely to be peeled off is sealed so that the electrolyte does not enter. Therefore, it is possible to obtain a secondary effect that the diamond electrode is hardly peeled off and the life can be extended.

以上本発明について上記各実施形態および実施例に基づいて説明を行ったが、本発明は、上記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない範囲で当然に変更が可能である。   Although the present invention has been described based on the above embodiments and examples, the present invention is not limited to the above description, and can naturally be modified without departing from the scope of the present invention. It is.

本発明の一実施形態の電解装置を示す正面断面図である。It is a front sectional view showing an electrolysis device of one embodiment of the present invention. 同じく、側面図である。Similarly, it is a side view. 本発明の電解セルを構成するセルケースの一部を示す図である。It is a figure which shows a part of cell case which comprises the electrolytic cell of this invention. 図2のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 本発明の実施形態における電解状況を示す概略説明図である。It is a schematic explanatory drawing which shows the electrolysis condition in embodiment of this invention. 電解セルにおける電解状況を示す概略説明図である。It is a schematic explanatory drawing which shows the electrolysis condition in an electrolytic cell. 本発明の他の実施形態における電解セルの構造を示す正面断面図である。It is front sectional drawing which shows the structure of the electrolytic cell in other embodiment of this invention. 同じく、側面図である。Similarly, it is a side view. 従来の電解セルの構造を示す分解図および正面断面図である。It is the exploded view and front sectional drawing which show the structure of the conventional electrolytic cell.

符号の説明Explanation of symbols

1 電解液貯留槽
2 電解液
2a 気液界面
10 電解セル
11 セルケース
12 セルケース部
13 通電体収納凹部
15 段部
16 周壁
16a 上部開口部
16b 下部開口部
25 ダイヤモンド電極
25a バイポーラ用ダイヤモンド電極
27 電極支え部材
27a 電極保持溝
DESCRIPTION OF SYMBOLS 1 Electrolyte storage tank 2 Electrolyte 2a Gas-liquid interface 10 Electrolysis cell 11 Cell case 12 Cell case part 13 Current carrying part accommodation recessed part 15 Step part 16 Peripheral wall 16a Upper opening part 16b Lower opening part 25 Diamond electrode 25a Bipolar diamond electrode 27 Electrode Support member 27a Electrode holding groove

Claims (8)

電解液を貯留する電解液貯留槽と、該電解液貯留槽内に配置されて前記電解液に浸漬される電解セルとを備え、該電解セルは、陽極と陰極からなる少なくとも1対の電極を備え、前記配置状態で前記電極間の上部および下部が開口されているとともに、前記電極間の側方が周壁で遮蔽されていることを特徴とする電解装置。   An electrolytic solution storage tank for storing an electrolytic solution, and an electrolytic cell disposed in the electrolytic solution storage tank and immersed in the electrolytic solution, the electrolytic cell having at least one pair of an anode and a cathode And an upper portion and a lower portion between the electrodes are opened in the arrangement state, and a side wall between the electrodes is shielded by a peripheral wall. 前記電極に通電するための通電体が、前記電解液貯留槽に貯留された電解液に接触することなくシールされた室に格納されていることを特徴とする請求項1記載の電解装置。   The electrolyzer according to claim 1, wherein an energizing body for energizing the electrode is stored in a sealed chamber without contacting the electrolyte stored in the electrolyte storage tank. 前記周壁に、前記電極を保持する電極保持部が設けられていることを特徴とする請求項1または2に記載の電解装置。   The electrolysis apparatus according to claim 1, wherein an electrode holding portion that holds the electrode is provided on the peripheral wall. 前記電解液貯留槽内上部を開放系とし、電極面で発生した電解ガスと電解液とを前記電解液貯留槽内で分離する構成としたことを特徴とする請求項1〜3のいずれかに記載の電解装置。   The upper part in the said electrolyte solution storage tank is made into an open system, It was set as the structure which isolate | separates the electrolytic gas and electrolyte solution which generate | occur | produced in the electrode surface in the said electrolyte solution storage tank. The electrolyzer described. 前記電極のうち少なくとも陽極がダイヤモンド電極であることを特徴とする請求項1〜4のいずれかに記載の電解装置。   The electrolytic apparatus according to claim 1, wherein at least an anode of the electrodes is a diamond electrode. 請求項1乃至5のいずれか1項に記載の電解装置で電解セルに通電をして電解液を自然対流によって電極間に通液しつつ電解することを特徴とする電解方法。   6. An electrolysis method characterized in that the electrolysis apparatus according to any one of claims 1 to 5 is energized in an electrolysis cell and electrolysis is performed while the electrolyte is passed between electrodes by natural convection. 前記電解セルに通電する電流密度が0.5〜250A/dmであることを特徴とする請求項6記載の電解方法。 The electrolysis method according to claim 6, wherein a current density for energizing the electrolysis cell is 0.5 to 250 A / dm 2 . 前記電解液が濃度8〜18Mの硫酸溶液であることを特徴とする請求項6または7に記載の電解方法。   The electrolytic method according to claim 6 or 7, wherein the electrolytic solution is a sulfuric acid solution having a concentration of 8 to 18M.
JP2008073003A 2008-03-21 2008-03-21 Electrolytic apparatus and electrolytic method Pending JP2009228041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073003A JP2009228041A (en) 2008-03-21 2008-03-21 Electrolytic apparatus and electrolytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073003A JP2009228041A (en) 2008-03-21 2008-03-21 Electrolytic apparatus and electrolytic method

Publications (1)

Publication Number Publication Date
JP2009228041A true JP2009228041A (en) 2009-10-08

Family

ID=41243774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073003A Pending JP2009228041A (en) 2008-03-21 2008-03-21 Electrolytic apparatus and electrolytic method

Country Status (1)

Country Link
JP (1) JP2009228041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150113957A (en) * 2013-01-31 2015-10-08 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
KR20180051570A (en) * 2013-11-17 2018-05-16 돈 리 한센 Systems and methods for generating hydrogen and oxygen
CN115350393A (en) * 2022-08-23 2022-11-18 南京工业职业技术大学 Preparation method of pyramid-shaped drug-loaded microneedle array

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150113957A (en) * 2013-01-31 2015-10-08 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
KR101664972B1 (en) 2013-01-31 2016-10-11 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
KR20180051570A (en) * 2013-11-17 2018-05-16 돈 리 한센 Systems and methods for generating hydrogen and oxygen
KR102608706B1 (en) 2013-11-17 2023-11-30 돈 리 한센 Systems and methods for generating hydrogen and oxygen
CN115350393A (en) * 2022-08-23 2022-11-18 南京工业职业技术大学 Preparation method of pyramid-shaped drug-loaded microneedle array

Similar Documents

Publication Publication Date Title
KR101340239B1 (en) Ozone generating apparatus
US20060011489A1 (en) Electrolysis process and apparatus
JPH11333458A (en) Apparatus for producing electrolytic water
JP5096054B2 (en) Ozone generation method
JP4623307B2 (en) Electrolytic cell and sulfuric acid recycle type cleaning system using the electrolytic cell
JP2013139607A (en) Gas generation device
JP2009228041A (en) Electrolytic apparatus and electrolytic method
US11542182B2 (en) Hydrogen-containing water generator
JP2015086454A (en) Differential pressure-system high-pressure water electrolysis apparatus
US20120125782A1 (en) Gas diffusion electrode equipped ion exchange membrane electrolyzer
KR20030079726A (en) Functional water, the process and the apparatus for preparing the same, and the process and the apparatus for cleansing the electronic part using the functional water
KR20200134267A (en) Electrolyzer with bipolar electrode for wastewater treatment
US10494275B2 (en) Electrolysis module
KR101481327B1 (en) Bipolar type electrolysis reactor
US10550485B2 (en) Pipe-type electrolysis cell
JP2015196871A (en) Apparatus and method for production of radical oxygen water
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP2002224674A (en) Apparatus and method for manufacturing substrate washing water, substrate washing water manufactured by the same, and method for washing substrate by using substrate washing water
CN1074954A (en) Electrochemical cell
JP5791841B1 (en) Ozone water production equipment
KR101581810B1 (en) Recycling system for oxidizer
RU2139594C1 (en) Chemical surface cleaning unit for parts, primarily semiconductor plates
JP2006066728A (en) Substrate treatment apparatus and method thereof