JP2009227742A - Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device - Google Patents

Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device Download PDF

Info

Publication number
JP2009227742A
JP2009227742A JP2008072456A JP2008072456A JP2009227742A JP 2009227742 A JP2009227742 A JP 2009227742A JP 2008072456 A JP2008072456 A JP 2008072456A JP 2008072456 A JP2008072456 A JP 2008072456A JP 2009227742 A JP2009227742 A JP 2009227742A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
compound
group
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008072456A
Other languages
Japanese (ja)
Inventor
Masahito Akiyama
仁人 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008072456A priority Critical patent/JP2009227742A/en
Publication of JP2009227742A publication Critical patent/JP2009227742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition giving a cured material reduced in an elastic modulus and increased in a glass transition temperature, and to provide an epoxy resin composition using the epoxy resin composition for sealing a semiconductor, and a semiconductor device exhibiting excellent solder resistance in moistening and reduced in a warp. <P>SOLUTION: The epoxy resin composition comprises an epoxy resin (A), a curing agent (B), and a monofunctional phenol compound (C) having one substituent represented by general formula (1). In the formula, X represents a 2-12C aromatic group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エポキシ樹脂組成物、半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition, an epoxy resin composition for semiconductor encapsulation, and a semiconductor device.

半導体パッケージにおける信頼性の向上を目的に、半導体封止用エポキシ樹脂組成物の弾性率を低下させる試みが多数なされている。半導体封止用エポキシ樹脂組成物は、半導体パッケージの製造工程中、特にはんだリフローなどの、極端な温度変化が、封止した半導体素子に与えられた時に、半導体パッケージにおいて基材となる金属フレームやその他の樹脂製基板との界面において、金属などの基材と樹脂組成物の硬化物との線膨張率の差が原因となる剥離が生じ、半導体の不良を引き起こすことが知られている。その対策として、半導体封止用エポキシ樹脂組成物の硬化物の弾性率を低くすることで、上記の界面や成形品内部に生じた応力を緩和する手法や、充填剤の比率を向上させて、上記の基材との線膨張率の差を少なくする手法などが知られている。   Many attempts have been made to lower the elastic modulus of the epoxy resin composition for semiconductor encapsulation for the purpose of improving the reliability of the semiconductor package. An epoxy resin composition for semiconductor encapsulation is a metal frame or a base material in a semiconductor package when an extreme temperature change such as solder reflow is given to the sealed semiconductor element during the manufacturing process of the semiconductor package. It is known that peeling occurs due to a difference in linear expansion coefficient between a base material such as a metal and a cured product of a resin composition at an interface with another resin substrate, thereby causing a semiconductor defect. As a countermeasure, by lowering the elastic modulus of the cured product of the epoxy resin composition for semiconductor encapsulation, the method of relaxing the stress generated in the interface and the molded product, and the ratio of the filler are improved. A technique for reducing a difference in linear expansion coefficient from the above-described base material is known.

半導体封止用エポキシ樹脂組成物の硬化物の弾性率を低下させる手法としては、半導体封止用エポキシ樹脂組成物に低応力剤を利用することが一般的である。低応力剤として、高分子量のシラン成分や、熱可塑性オリゴマーなどを添加する技術(例えば、特許文献1、2参照。)が知られているが、半導体封止用エポキシ樹脂組成物の硬化物のガラス転移温度の低下の問題や、低応力化剤自身が硬化物から染み出し、金型汚れの原因になること、また、成形作業における樹脂組成物の溶融粘度増加などによる成形性の問題などがあった。   As a technique for reducing the elastic modulus of the cured product of the epoxy resin composition for semiconductor encapsulation, it is common to use a low stress agent in the epoxy resin composition for semiconductor encapsulation. As a low-stress agent, a technique of adding a high molecular weight silane component, a thermoplastic oligomer, or the like (see, for example, Patent Documents 1 and 2) is known, but a cured product of an epoxy resin composition for semiconductor encapsulation is known. Problems such as a decrease in the glass transition temperature, the stress-reducing agent itself oozes out of the cured product and causes mold contamination, and a moldability problem due to an increase in the melt viscosity of the resin composition in the molding operation. there were.

また、特定の硬化促進剤を利用することにより、半導体封止用エポキシ樹脂組成物の硬化性の度合いを低くすることで、低弾性率の硬化物を得る手法も知られている。そのような硬化促進剤としては、トリアリールホスフィンとキノン類との付加物が代表的であるが、これらの硬化促進剤を利用して得られる硬化物は、エポキシ樹脂において未反応官能基が多数残り、硬化物の吸水率に悪い影響を与えることがある。また、硬化物の弾性率の制御と、硬化促進剤の本来の役割である硬化性の制御との両立は非常に難しく、目的通りの弾性率に得られないことがある。   Moreover, the technique of obtaining the hardened | cured material of low elasticity modulus by making low the sclerosis | hardenability degree of the epoxy resin composition for semiconductor sealing by utilizing a specific hardening accelerator is also known. As such a curing accelerator, an adduct of triarylphosphine and quinones is typical, but a cured product obtained by using these curing accelerators has many unreacted functional groups in the epoxy resin. In addition, the water absorption rate of the cured product may be adversely affected. Moreover, it is very difficult to achieve both the control of the elastic modulus of the cured product and the control of the curability, which is the original role of the curing accelerator, and the desired elastic modulus may not be obtained.

さらに、液晶性のある硬化性樹脂成分を用いて、硬化後に系内で相分離させ、低弾性率の島を有する海島構造を形成する技術(例えば、特許文献3参照。)も開示されているが、樹脂の選択や組成物成分の混合比率の自由度が低く、所望の弾性率を得られるとは限らないうえ、コスト的にも高価な原料を使用しなければならない問題がある。   Furthermore, a technique for forming a sea-island structure having low-elasticity islands by phase separation in the system after curing using a curable resin component having liquid crystallinity (see, for example, Patent Document 3) is also disclosed. However, there is a problem that the degree of freedom in selecting the resin and the mixing ratio of the composition components is low, and it is not always possible to obtain a desired elastic modulus, and it is necessary to use an expensive raw material in terms of cost.

また、半導体構造として、近年、ボールグリッドアレイ(以下、BGAと称することがある。)構造のものが多く設計されるようになった。BGA構造では、ボール状の電極を下面に有する基板に、半導体素子をマウントし、基板と半導体素子を金属ワイヤーにて接続し、半導体素子とワイヤーボンドした部位をまとめて封止用樹脂で封止する。このような構造では、基板材料と封止用樹脂の線膨張率の違いや、封止用樹脂の硬化収縮により、基板が「反り」と呼ばれる変形をする場合があり、半導体素子の不良として大きな問題になっている。
反りの対策としては、封止用樹脂の硬化物における線膨張率の低減、弾性率の低減、及びガラス転移温度の向上などが一般的である。
In recent years, many semiconductor structures having a ball grid array (hereinafter sometimes referred to as BGA) structure have been designed. In the BGA structure, a semiconductor element is mounted on a substrate having ball-shaped electrodes on the lower surface, the substrate and the semiconductor element are connected with a metal wire, and the semiconductor element and the wire bonded portion are collectively sealed with a sealing resin. To do. In such a structure, the substrate may be deformed as “warping” due to the difference in the coefficient of linear expansion between the substrate material and the sealing resin or the curing shrinkage of the sealing resin. It is a problem.
As countermeasures for warping, reduction of linear expansion coefficient, reduction of elastic modulus, improvement of glass transition temperature, etc. in a cured product of sealing resin are generally used.

上記反り対策の方法として、マレイミド化合物を封止用樹脂中に導入することで、ガラス転移温度を向上させ、耐熱性を改善する技術は良く知られており、反応性を有するマレイミド基を封止用樹脂中で3量化させる技術(例えば、特許文献4参照。)や、マレイミド化合物と封止用樹脂中に存在するアリル基を反応させる技術(例えば、特許文献5参照。)などがある。これらの技術においては、マレイミド基が有する二重結合と、さらにその他に1つの官能基、合計2官能のマレイミド化合物を利用するものであるが、硬化物として耐熱性は優れるものの、上記の官能基による架橋の増加から高弾性率な硬化物となるために、反りの改善効果は見られないものであった。   As a method for preventing the warpage, a technique for improving the glass transition temperature and improving heat resistance by introducing a maleimide compound into a sealing resin is well known, and sealing a reactive maleimide group. There are a technique for trimerization in a resin for use (for example, see Patent Document 4) and a technique for reacting a maleimide compound and an allyl group present in a sealing resin (for example, see Patent Document 5). In these techniques, a double bond possessed by a maleimide group and one other functional group, a total of bifunctional maleimide compounds, are used, but the above functional group is excellent in heat resistance as a cured product. Since the cured product has a high elastic modulus due to the increase in cross-linking due to, the effect of improving the warp was not observed.

封止用樹脂の硬化物における低弾性化とガラス転移温度の向上を同時に達成する技術として、イミド骨格を有する単官能エポキシ化合物をエポキシ樹脂組成物に導入する技術が報告されている(例えば、特許文献6参照。)。これらは、単官能基とすることによって、硬化物における架橋密度の低下させると同時に、イミド骨格により高分子網目の極性的結合を高め、網目分子の摂動性を抑えることで、ガラス転移温度の向上を図ることができる。   A technique for introducing a monofunctional epoxy compound having an imide skeleton into an epoxy resin composition has been reported as a technique for simultaneously achieving a low elasticity and an improved glass transition temperature in a cured resin for sealing (for example, patents) Reference 6). By making these monofunctional groups, the crosslink density in the cured product is reduced, and at the same time, the polar bond of the polymer network is increased by the imide skeleton, and the perturbation of the network molecule is suppressed, thereby improving the glass transition temperature. Can be achieved.

しかし、前記イミド化合物は、特定の条件下において加水分解反応が進行することが知られており(例えば、特許文献7参照。)、例えば、前記加水分解反応は酸性条件下、或いは塩基性条件下で加熱することにより促進される。一方、トリアリールホスフィンとキノン類との付加物に代表される一般的なエポキシ樹脂硬化促進剤は、封止用樹脂系内で塩基性を有し、これらの硬化促進剤と前記イミド化合物が、吸湿した樹脂系内で共存する時、前記イミド化合物の加水分解反応が促進されることが問題であった。   However, it is known that the imide compound undergoes a hydrolysis reaction under specific conditions (see, for example, Patent Document 7). For example, the hydrolysis reaction is performed under acidic conditions or basic conditions. It is promoted by heating with. On the other hand, a general epoxy resin curing accelerator represented by an adduct of triarylphosphine and quinones has basicity in a sealing resin system, and these curing accelerator and the imide compound are When coexisting in a hygroscopic resin system, the hydrolysis reaction of the imide compound is promoted.

前記イミド化合物の加水分解反応により生じるアミド酸は、きわめて酸性度が高く、エポキシ樹脂組成物に前記アミド酸が多量に混入した場合、前記硬化促進剤の硬化促進作用が著しく阻害される。このような硬化性の悪化は、生産効率の向上を目的とした速硬化性の観点から好ましくない。   The amic acid produced by the hydrolysis reaction of the imide compound has a very high acidity, and when a large amount of the amic acid is mixed in the epoxy resin composition, the curing accelerating action of the curing accelerator is significantly inhibited. Such deterioration of curability is not preferable from the viewpoint of fast curability for the purpose of improving production efficiency.

このように、吸湿条件下においても速硬化性を維持したまま、エポキシ樹脂組成物のガラス転移温度の向上と、弾性率の低減を同時に成立させる技術は見出されていなかった。
特開2001−288336号公報(1−3頁) 特開2001−207021号公報(1−3頁) 特開平9―194687号公報(1−2頁) 特開平10−7770号公報(2頁) 特開平3−237126号公報(1―3頁) 特表2006−225544(1−2頁) 特表2006−512445(21−22頁)
As described above, no technique has been found that can simultaneously improve the glass transition temperature of the epoxy resin composition and reduce the elastic modulus while maintaining fast curability even under moisture absorption conditions.
JP 2001-288336 A (page 1-3) JP 2001-207021 (page 1-3) JP-A-9-194687 (page 1-2) Japanese Patent Laid-Open No. 10-7770 (2 pages) JP-A-3-237126 (page 1-3) Special table 2006-225544 (page 1-2) Special table 2006-512445 (pages 21-22)

本発明は、硬化物としての弾性率を低減し、ガラス転移温度を向上することができるエポキシ樹脂組成物、及びこれを用いた半導体封止用エポキシ樹脂組成物、更には、吸湿時の耐半田性に優れ、反りが低減された半導体装置を提供する。   The present invention relates to an epoxy resin composition capable of reducing the elastic modulus as a cured product and improving the glass transition temperature, an epoxy resin composition for semiconductor encapsulation using the same, and solder resistance at the time of moisture absorption Provided is a semiconductor device having excellent properties and reduced warpage.

即ち、本発明は、
1.エポキシ樹脂(A)、硬化剤(B)及び下記一般式(1)で表される置換基を1つ有する単官能フェノール化合物(C)を含むエポキシ樹脂組成物、
That is, the present invention
1. An epoxy resin composition comprising an epoxy resin (A), a curing agent (B), and a monofunctional phenol compound (C) having one substituent represented by the following general formula (1);

Figure 2009227742
[式中、Xは、炭素数2以上12以下の芳香族基を示す]
Figure 2009227742
[Wherein X represents an aromatic group having 2 to 12 carbon atoms]

2. 前記式(1)におけるXとしての芳香族基が、フェニル基又はナフタレニル基である、第1項記載のエポキシ樹脂組成物、
3. 第1項又は第2項に記載のエポキシ樹脂組成物と、無機充填材(D)を含む、半導体封止用エポキシ樹脂組成物、
4. 前記エポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)、単官能フェノール化合物(C)及び無機充填材(D)の総量に対して、無機充填材(D)を50〜95wt%の比率で含む、第3項記載の半導体封止用エポキシ樹脂組成物、
5. 前記半導体封止用エポキシ樹脂組成物は、ボールグリッドアレイ用封止材料である、第4項記載の半導体封止用エポキシ樹脂組成物、
6. 第4項又は第5項記載の半導体封止用エポキシ樹脂組成物の硬化物により電子部品が封止された半導体装置、
7. 前記半導体装置が、ボールグリッドアレイ構造を有するものである第6項記載の半導体装置、
である。
2. The epoxy resin composition according to claim 1, wherein the aromatic group as X in the formula (1) is a phenyl group or a naphthalenyl group,
3. An epoxy resin composition for semiconductor encapsulation, comprising the epoxy resin composition according to item 1 or 2, and an inorganic filler (D),
4). The said epoxy resin composition is 50-95 wt% of inorganic fillers (D) with respect to the total amount of an epoxy resin (A), a hardening | curing agent (B), a monofunctional phenol compound (C), and an inorganic filler (D). The epoxy resin composition for semiconductor encapsulation according to claim 3, which is contained at a ratio of
5. The epoxy resin composition for semiconductor encapsulation according to claim 4, wherein the epoxy resin composition for semiconductor encapsulation is a ball grid array sealing material,
6). A semiconductor device in which an electronic component is sealed with a cured product of the epoxy resin composition for semiconductor sealing according to item 4 or 5,
7). The semiconductor device according to claim 6, wherein the semiconductor device has a ball grid array structure,
It is.

本発明のエポキシ樹脂組成物は、硬化物の弾性率の低減と、硬化物のガラス転移温度を向上することができるものである。本発明のエポキシ樹脂組成物を含む半導体封止用エポキシ樹脂組成物を用いて得られる半導体装置は、吸湿時の耐半田性などの信頼性に優れたものとなる。また、特にBGA型半導体装置などの反りが課題となる半導体装置においては、本発明の半導体封止用エポキシ樹脂組成物の硬化後の半導体素子搭載基板の反りが低減されたものとなる。   The epoxy resin composition of the present invention can reduce the elastic modulus of a cured product and improve the glass transition temperature of the cured product. The semiconductor device obtained using the epoxy resin composition for semiconductor encapsulation containing the epoxy resin composition of the present invention has excellent reliability such as solder resistance at the time of moisture absorption. In particular, in a semiconductor device in which warpage is a problem, such as a BGA type semiconductor device, warpage of the semiconductor element mounting substrate after curing of the epoxy resin composition for semiconductor encapsulation of the present invention is reduced.

以下、本発明のエポキシ樹脂組成物、半導体封止用エポキシ樹脂組成物及び半導体装置の好適実施形態について説明する。   Hereinafter, preferred embodiments of the epoxy resin composition, the epoxy resin composition for semiconductor encapsulation, and the semiconductor device of the present invention will be described.

本発明のエポキシ樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、一般式(1)で表される基を一つ有する単官能フェノール化合物(C)を含むことを特徴とするものであり、これにより、該エポキシ樹脂組成物は、その硬化物としての弾性率を低減することができ、同時に硬化物のガラス転移温度を向上することができる。   The epoxy resin composition of the present invention comprises an epoxy resin (A), a curing agent (B), and a monofunctional phenol compound (C) having one group represented by the general formula (1). Thus, the epoxy resin composition can reduce the elastic modulus of the cured product, and at the same time, can improve the glass transition temperature of the cured product.

さらに、本発明は、該エポキシ樹脂組成物と無機充填材を含む半導体封止用エポキシ樹脂組成物であり、また、本発明は、該半導体封止用エポキシ樹脂組成物の硬化物により電子部品を封止して得られる半導体装置である。これにより得られる半導体装置は、吸湿時の耐半田性に優れたものである。加えて、半導体装置は、封止用樹脂に起因する反りの少ないもとなり、特に、封止される半導体装置がBGA構造である場合には、効果的なものとなる。   Furthermore, the present invention is an epoxy resin composition for semiconductor encapsulation containing the epoxy resin composition and an inorganic filler, and the present invention provides an electronic component using a cured product of the epoxy resin composition for semiconductor encapsulation. It is a semiconductor device obtained by sealing. The semiconductor device thus obtained has excellent solder resistance when absorbing moisture. In addition, the semiconductor device is less warped due to the sealing resin, and is particularly effective when the semiconductor device to be sealed has a BGA structure.

本発明に用いる、エポキシ樹脂(A)は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではないが、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスナフトール型エポキシ樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、等が挙げられ、これらは単独でも混合して用いても差し支えない。これらの中でも、本発明に用いる単官能フェノール化合物(C)より得られる特徴を最大限発現する上で、フェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等を用いることが好ましい。   The epoxy resin (A) used in the present invention is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak Type epoxy resin, cresol novolac type epoxy resin, hydroquinone type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type Epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin, phenol aralkyl type epoxy resin having phenylene and / or biphenylene skeleton, naphthol type epoxy resin, naphth Copolymers of phenols and phenols, naphthalene epoxy resins, bisnaphthol epoxy resins, naphthol aralkyl epoxy resins having a phenylene and / or biphenylene skeleton, sulfur atom-containing epoxy resins, salicylaldehyde epoxy Examples thereof include resins, and these may be used alone or in combination. Among these, a phenol aralkyl type epoxy resin having a phenylene and / or biphenylene skeleton and a naphthol having a phenylene and / or a biphenylene skeleton are used to maximize the characteristics obtained from the monofunctional phenol compound (C) used in the present invention. It is preferable to use an aralkyl type epoxy resin or the like.

本発明に用いる硬化剤(B)は、エポキシ樹脂(A)の硬化剤として機能するもので、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、トリフェノールメタン型フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、アラルキル型フェノール樹脂、フェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂の共重合型樹脂、ビスフェノール化合物、ジヒドロキシナフタレン化合物等が挙げられ、これらは単独でも混合して用いても差し支えない。これらの中でも、本発明に用いる一般式(1)で表される基を一つ有する単官能フェノール化合物(C)を用いることにより得られる特徴を最大限発現する上で、フェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等を用いることが好ましい。   The curing agent (B) used in the present invention functions as a curing agent for the epoxy resin (A), and is a monomer, oligomer or polymer in general having two or more phenolic hydroxyl groups in one molecule. Although the structure is not particularly limited, for example, phenol novolak resin, cresol novolak resin, triphenolmethane type phenol resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, aralkyl type phenol resin, phenylene and / or biphenylene skeleton Phenol aralkyl resin having phenylene, and / or naphthol aralkyl resin having biphenylene skeleton, salicylaldehyde type phenol resin, copolymer resin of benzaldehyde type phenol resin and aralkyl type phenol resin, bisphenol Nord compounds include dihydroxynaphthalene compounds and the like, these are no problem be used singly or in admixture. Among these, the phenylene and / or biphenylene skeleton is used to maximize the characteristics obtained by using the monofunctional phenol compound (C) having one group represented by the general formula (1) used in the present invention. It is preferable to use a phenol aralkyl resin having a phenylene, and / or a naphthol aralkyl resin having a biphenylene skeleton.

本発明に用いるエポキシ樹脂(A)は、反応性基としてエポキシ基を1分子内に2個以上有しているものであり、硬化剤(B)は、反応性基としてフェノール性水酸基を1分子内に2個以上を有するものであるが、好ましくは、それぞれの化合物が3個以上の反応性基を有するものを含むことが好ましい。エポキシ樹脂(A)及び硬化剤(B)の組み合わせとしては、いずれか一方が、3個以上の反応性基を有するものを含んでいても良い。このような具体例としては、エポキシ樹脂(A)又は硬化剤(B)の、少なくともどちらか一方が、3個以上の反応性基を有するものを30wt%以上含むことが好ましく、例えば、エポキシ樹脂(A)においては、1分子内にエポキシ基を2個有する化合物70wt%と、1分子内にエポキシ基を3個以上有するような化合物30wt%との混合物であるものなどが挙げられる。さらには、エポキシ樹脂(A)又は硬化剤(B)の、少なくともどちらか一方が、3個以上の反応性基を有するものを40wt%以上含むことがより好ましい。これら3個以上の反応性基を含む化合物は、複数の種類のものが混合されていても良い。すなわち、エポキシ樹脂(A)の場合、3個のエポキシ基を有する単一化合物でも良く、3個、4個、5個又はそれ以上の個数のエポキシ基を有する化合物の混合物でも良い。   The epoxy resin (A) used in the present invention has two or more epoxy groups as a reactive group in one molecule, and the curing agent (B) has one molecule of a phenolic hydroxyl group as a reactive group. Although it has what has 2 or more in it, Preferably, it is preferable that each compound contains what has 3 or more reactive groups. As a combination of an epoxy resin (A) and a hardening | curing agent (B), any one may contain what has a 3 or more reactive group. As such a specific example, it is preferable that at least one of the epoxy resin (A) and the curing agent (B) contains 30 wt% or more of those having 3 or more reactive groups. (A) includes a mixture of 70 wt% of a compound having two epoxy groups in one molecule and 30 wt% of a compound having three or more epoxy groups in one molecule. Furthermore, it is more preferable that at least one of the epoxy resin (A) and the curing agent (B) contains 40 wt% or more of those having 3 or more reactive groups. A plurality of kinds of these compounds containing three or more reactive groups may be mixed. That is, in the case of the epoxy resin (A), it may be a single compound having three epoxy groups or a mixture of compounds having three, four, five or more epoxy groups.

本発明において、エポキシ樹脂(A)又は硬化剤(B)が、3個以上の反応性基を有しなくとも使用できるが、3個以上の反応性基を有するものが、上記の割合の範囲外である場合、樹脂硬化物の架橋密度が低くなることがあり、また、単官能フェノール化合物(C)を含むことにより、更に架橋密度が低下し、硬化が不十分となる場合がある。   In the present invention, the epoxy resin (A) or the curing agent (B) can be used without having 3 or more reactive groups, but those having 3 or more reactive groups are within the above range. If it is outside, the crosslink density of the cured resin may be low, and the inclusion of the monofunctional phenol compound (C) may further reduce the crosslink density, resulting in insufficient curing.

本発明に用いる一般式(1)で表される基を一つ有する単官能フェノール化合物(C)は、反応性基として、実質的に1つのフェノール性水酸基以外の基を有さないフェノール化合物のことである。
該単官能フェノール化合物(C)における反応性基とは、本発明のエポキシ樹脂組成物の硬化反応や製造過程の温度履歴において、エポキシ樹脂(A)及び硬化剤(B)と、化学的反応をすることができる置換基のこと、又は単官能フェノール化合物(C)が当該置換基を有していた場合に、この置換基同士で化学的反応をすることができる置換基のことである。具体的には、エポキシ基及びオキセタン基などのオキシラン環を含む置換基;フェノール性水酸基、チオール基、カルボキシル基及びアミノ基などの活性水素原子を有する基などのエポキシ基又はフェノール性水酸基と反応する基;ビニル基、アリル基及びマレイミド基などの置換基同士で反応可能な基;などが挙げられる。これらの置換基は、反応により、エポキシ樹脂の架橋密度を向上し、弾性率を低減できないため、本発明の目的に対し適切でない。
The monofunctional phenol compound (C) having one group represented by the general formula (1) used in the present invention is a phenol compound having substantially no group other than one phenolic hydroxyl group as a reactive group. That is.
The reactive group in the monofunctional phenolic compound (C) is a chemical reaction with the epoxy resin (A) and the curing agent (B) in the curing reaction of the epoxy resin composition of the present invention and the temperature history of the production process. It is a substituent that can be chemically reacted with each other when the monofunctional phenol compound (C) has the substituent. Specifically, a substituent containing an oxirane ring such as an epoxy group and an oxetane group; reacts with an epoxy group or a phenolic hydroxyl group such as a group having an active hydrogen atom such as a phenolic hydroxyl group, a thiol group, a carboxyl group, and an amino group. Group; groups capable of reacting with each other by substituents such as vinyl group, allyl group and maleimide group. These substituents are not suitable for the purpose of the present invention because the reaction cannot improve the crosslink density of the epoxy resin and reduce the elastic modulus.

本発明に用いる一般式(1)で表される基を一つ有する単官能フェノール化合物(C)は、1つのフェノール性水酸基以外の、反応性基を有さないことで、効率的に、樹脂硬化物の架橋密度を低減し、弾性率を低減することができる。さらに、一般式(1)で表される構造における、窒素原子と結合する2つのカルボニル基が、エポキシ樹脂の主鎖骨格と水素結合を形成し、擬似的な架橋状態を作り上げる。これにより、硬化物の網目分子の摂動性を抑えることで、硬化物のガラス転移温度の向上を図ることができる。このとき、エポキシ樹脂の主鎖骨格が、フェニレン基、ビフェニレン基又はナフタレニル基を含む場合、水素結合が強固になり、本発明における一般式(1)で表される基を一つ有する単官能フェノール化合物(C)の効果が最大限発現されるので好ましい。   The monofunctional phenol compound (C) having one group represented by the general formula (1) used in the present invention has no reactive group other than one phenolic hydroxyl group, thereby efficiently The crosslink density of the cured product can be reduced and the elastic modulus can be reduced. Furthermore, in the structure represented by the general formula (1), the two carbonyl groups bonded to the nitrogen atom form a hydrogen bond with the main chain skeleton of the epoxy resin to create a pseudo cross-linked state. Thereby, the glass transition temperature of hardened | cured material can be improved by suppressing the perturbation property of the network molecule | numerator of hardened | cured material. At this time, when the main chain skeleton of the epoxy resin contains a phenylene group, a biphenylene group or a naphthalenyl group, the hydrogen bond becomes strong and the monofunctional phenol having one group represented by the general formula (1) in the present invention. Since the effect of compound (C) is expressed to the maximum, it is preferable.

一般式(1)で表される構造について説明する。

Figure 2009227742
[式中、Xは、炭素数2以上12以下の芳香族基を示す。] The structure represented by the general formula (1) will be described.
Figure 2009227742
[Wherein, X represents an aromatic group having 2 to 12 carbon atoms. ]

前記一般式(1)で表される構造において、Xは炭素数2以上12以下の芳香族基を示す。この芳香族基は、複素芳香族基、芳香族炭化水素基のいずれでも良く、具体的には、ピロリル基、フラニル基、ピリジニル基、ピラニル基、イミダゾリル基、チオフェニル基等の複素芳香族基、フェニル基、ナフタレニル基などの芳香族炭化水素基などが挙げられる。
これらの芳香族基のうち、フェニル基又はナフタレニル基を用いた場合、本発明に用いる一般式(1)で表される基を一つ有する単官能フェノール化合物(C)は、上記水素結合が増大し、エポキシ樹脂組成物の硬化物におけるガラス転移温度を向上する効果が大きくなるため、好ましい。
In the structure represented by the general formula (1), X represents an aromatic group having 2 to 12 carbon atoms. This aromatic group may be either a heteroaromatic group or an aromatic hydrocarbon group, specifically, a heteroaromatic group such as a pyrrolyl group, a furanyl group, a pyridinyl group, a pyranyl group, an imidazolyl group, a thiophenyl group, Aromatic hydrocarbon groups such as phenyl group and naphthalenyl group can be mentioned.
Among these aromatic groups, when a phenyl group or a naphthalenyl group is used, the monofunctional phenol compound (C) having one group represented by the general formula (1) used in the present invention has an increased hydrogen bond. And since the effect which improves the glass transition temperature in the hardened | cured material of an epoxy resin composition becomes large, it is preferable.

また、前記芳香族基Xが置換基を有することは、本発明に用いる一般式(1)で表される基を一つ有する単官能フェノール化合物(C)を用いることにより発現する特性を損なうものではないが、前述と同様に、この置換基は反応性を有さないものである必要がある。該置換基としては、例えば、アルキル基、ハロゲン基等が挙げられる。該アルキル基としては、メチル基、エチル基、プロピレン基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の直鎖状のアルキル基及び分岐状のアルキル基、シクロペンチル基、シクロヘキシル基等の環状のシクロアルキル基、などが挙げられる。前記ハロゲン基としては、フルオロ基、クロロ基、ブロモ基及びヨード基などが挙げられる。これらの置換基は、該化合物(C)の選定において、その製法の簡便化や融点などの物性値の調整など、必要に応じ利用される。   Further, the fact that the aromatic group X has a substituent impairs the characteristics expressed by using the monofunctional phenol compound (C) having one group represented by the general formula (1) used in the present invention. However, as before, this substituent must be non-reactive. Examples of the substituent include an alkyl group and a halogen group. Examples of the alkyl group include straight chain alkyl groups such as methyl group, ethyl group, propylene group, butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl group, and branched groups. And a cyclic alkyl group such as a cycloalkyl group, a cyclopentyl group, and a cyclohexyl group. Examples of the halogen group include a fluoro group, a chloro group, a bromo group, and an iodo group. These substituents are used as necessary in the selection of the compound (C), such as simplification of the production method and adjustment of physical property values such as the melting point.

一般式(1)で表される基を一つ有する単官能フェノール化合物(C)において、前記一般式(1)で表される基以外の部分の構造は、フェノール性水酸基を1つ有するフェノール化合物の構造である。このようなフェノール構造をもつ化合物としては、フェノール、1−ナフトール、2−ナフトール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、2−ベンジルフェノール、3−ベンジルフェノール、4−ベンジルフェノール、4−クミルフェノールなどがあげられる。これらのうち、フェノール、1−ナフトール、2−ナフトールの構造を用いた場合、単官能フェノール化合物(C)はエポキシ樹脂(A)との反応性に優れ、硬化物の骨格構造に導入されやすく、その特徴を発揮しやすくなることに加え、加水分解し難い特性を併せ持つ為に好ましい。   In the monofunctional phenol compound (C) having one group represented by the general formula (1), the structure of the portion other than the group represented by the general formula (1) is a phenol compound having one phenolic hydroxyl group. This is the structure. Examples of compounds having such a phenol structure include phenol, 1-naphthol, 2-naphthol, 2-phenylphenol, 3-phenylphenol, 4-phenylphenol, 2-benzylphenol, 3-benzylphenol, and 4-benzylphenol. 4-cumylphenol and the like. Among these, when the structure of phenol, 1-naphthol or 2-naphthol is used, the monofunctional phenol compound (C) is excellent in reactivity with the epoxy resin (A) and is easily introduced into the skeleton structure of the cured product. In addition to being easy to exhibit its characteristics, it is preferable because it has properties that are difficult to hydrolyze.

従来発明におけるイミド化合物におけるイミド基は加水分解されることにより、加水分解生成物であるアミド酸が、硬化性の低下を引き起こし、樹脂組成物の成形性が悪化することがある。しかし、本発明における単官能フェノール化合物(C)は、これを構成する一般式(1)に表される置換基のアミド結合が加水分解しうる構造であるものの、その加水分解性は、上記のイミド化合物に比べて格段に低く、そのような不良が起こる可能性が極めて低く、硬化物の弾性率を低減することができる。   When the imide group in the imide compound in the conventional invention is hydrolyzed, the amic acid that is a hydrolysis product may cause a decrease in curability and the moldability of the resin composition may deteriorate. However, although the monofunctional phenol compound (C) in the present invention has a structure in which the amide bond of the substituent represented by the general formula (1) constituting this can be hydrolyzed, its hydrolyzability is as described above. Compared with an imide compound, it is much lower and the possibility of such a defect is extremely low, and the elastic modulus of the cured product can be reduced.

上記加水分解のしやすさ(加水分解性)は、単官能フェノール化合物(C)に相当する化合物に対し、十分な量の水を、塩酸触媒下で加水分解反応させることで発生するアミド酸の物質量を測定することで測定でき、加水分解率として数値化することができる。
例えば、単官能フェノール400mgを、20mLの1.2mol/L塩酸ピリジン溶液と、20mLのイオン交換水との混合溶液中で、温度140℃、1時間処理することで、加水分解反応を行い、アミド酸を発生させる。この反応後の溶液を0.1mol/L水酸化ナトリウム溶液をセットした、電位差自動滴定装置を用いて滴定し、その等量点における水酸化ナトリウム溶液の滴下量から、加水分解反応で単官能フェノール化合物(C)が分解して発生したカルボン酸の物質量を定量することで測定を行なうことができる。
この発生したカルボン酸の物質量の、400mg中に含まれる化合物(C)の物質量に対する比率(%)を加水分解率としている。この加水分解率は、50%以下であることが好ましく、10%以下であると上記不良が起こる可能性が極めて低くなる為より好ましい。
The easiness of hydrolysis (hydrolyzability) is that of the amic acid generated by subjecting a compound corresponding to the monofunctional phenol compound (C) to a hydrolysis reaction with a sufficient amount of water under a hydrochloric acid catalyst. It can be measured by measuring the amount of substance, and can be quantified as a hydrolysis rate.
For example, 400 mg of monofunctional phenol is treated in a mixed solution of 20 mL of a 1.2 mol / L pyridine hydrochloride solution and 20 mL of ion-exchanged water at a temperature of 140 ° C. for 1 hour to carry out a hydrolysis reaction. Generate acid. The solution after this reaction was titrated using a potentiometric automatic titrator with a 0.1 mol / L sodium hydroxide solution set, and the monofunctional phenol was hydrolyzed from the amount of sodium hydroxide solution dropped at the equivalence point. The measurement can be performed by quantifying the amount of the carboxylic acid generated by the decomposition of the compound (C).
The ratio (%) of the amount of the generated carboxylic acid to the amount of the compound (C) contained in 400 mg is defined as the hydrolysis rate. The hydrolysis rate is preferably 50% or less, and more preferably 10% or less because the possibility of the above-described failure is extremely reduced.

本発明のエポキシ樹脂組成物は、前記エポキシ樹脂(A)と、前記硬化剤(B)との含有(配合)比率について、特に限定されないが、前記エポキシ樹脂(A)のエポキシ基1モルに対し、硬化剤(B)のフェノール性水酸基が0.5〜2モル程度となるように用いるのが好ましく、0.7〜1.5モル程度となるように用いるのが、より好ましい。これにより、エポキシ樹脂組成物の諸特性のバランスを好適なものに維持しつつ、諸特性が、より向上する。   The epoxy resin composition of the present invention is not particularly limited with respect to the content (blending) ratio of the epoxy resin (A) and the curing agent (B), but with respect to 1 mol of the epoxy group of the epoxy resin (A). The phenolic hydroxyl group of the curing agent (B) is preferably used in an amount of about 0.5 to 2 mol, more preferably about 0.7 to 1.5 mol. Thereby, various characteristics improve more, maintaining the balance of the various characteristics of an epoxy resin composition to a suitable thing.

また、一般式(1)で表される基を一つ有する単官能フェノール化合物(C)の好適な使用量は、エポキシ樹脂(A)及び硬化剤(B)の当量比や、目的とする硬化物の弾性率の低減度合いにより異なるが、一般的に用いられるエポキシ樹脂(A)及び硬化剤(B)の組み合わせにおいて、具体的にはエポキシ樹脂(A)及び硬化剤(B)の総和に対し、0.5〜15重量%の間で使用するのが好ましい。硬化物とした場合の弾性率低下の度合いは、この添加量に比例する傾向であり、使用時に任意に調整することができる。添加量が前記範囲外でも使用できるが、上記の範囲を上回ると、ゲル化に必要十分な架橋密度が得られずに、樹脂の硬化不良が発生することがある。また、上記の範囲を下回ると、硬化物の弾性率の低減効果が十分に得られない場合や、ガラス転移温度が向上しない場合がある。   Moreover, the suitable usage-amount of the monofunctional phenol compound (C) which has one group represented by General formula (1) is the equivalent ratio of an epoxy resin (A) and a hardening | curing agent (B), and target hardening. Although it differs depending on the degree of reduction in the elastic modulus of the product, in the combination of generally used epoxy resin (A) and curing agent (B), specifically for the sum of epoxy resin (A) and curing agent (B) , Preferably between 0.5 and 15% by weight. The degree of decrease in elastic modulus in the case of a cured product tends to be proportional to the amount added, and can be arbitrarily adjusted during use. Although the added amount can be used outside the above range, if it exceeds the above range, the crosslinking density necessary and sufficient for gelation cannot be obtained, and resin curing failure may occur. Moreover, when less than said range, the reduction effect of the elasticity modulus of hardened | cured material may not fully be acquired, or a glass transition temperature may not improve.

本発明のエポキシ樹脂組成物には、上記の成分以外に、必要に応じ、無機充填材(D)を使用することができる。とりわけ無機充填材は、半導体封止用エポキシ樹脂組成物など、高い耐熱性を必要とされる分野への利用において有効である。無機充填材(D)の種類については、特に制限はなく、一般に樹脂添加剤として用いられているものを使用することができる。   In addition to the above components, an inorganic filler (D) can be used in the epoxy resin composition of the present invention as necessary. In particular, inorganic fillers are effective for use in fields requiring high heat resistance, such as epoxy resin compositions for semiconductor encapsulation. There is no restriction | limiting in particular about the kind of inorganic filler (D), and what is generally used as a resin additive can be used.

この無機充填材(D)としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト及び窒化珪素等が挙げられ、半導体封止用として、最も好適に使用されるものとしては、球状溶融シリカ及び破砕状溶融シリカである。これらの無機充填材は、単独でも混合して用いても差し支えない。また、これらがカップリング剤により表面処理されていてもかまわない。無機充填材の形状としては、流動性改善のために、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。   As this inorganic filler (D), what is generally used for the epoxy resin composition for semiconductor sealing can be used. For example, fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, silicon nitride, and the like can be mentioned, and those most preferably used for semiconductor encapsulation are spherical fused silica and crushed fused. Silica. These inorganic fillers may be used alone or in combination. Moreover, these may be surface-treated with a coupling agent. The shape of the inorganic filler is preferably as spherical as possible and the particle size distribution is broad in order to improve fluidity.

無機充填材(D)の含有量は、特に限定されないが、全エポキシ樹脂組成物中50〜95重量%が好ましい。前記範囲外でも使用できるが、下限値を下回ると十分な耐半田性が得られない可能性があり、上限値を超えると十分な流動性が得られない可能性がある。   Although content of an inorganic filler (D) is not specifically limited, 50 to 95 weight% is preferable in all the epoxy resin compositions. Although it can be used outside the above range, if it falls below the lower limit, sufficient solder resistance may not be obtained, and if it exceeds the upper limit, sufficient fluidity may not be obtained.

また、無機充填材(D)の含有量は、前記エポキシ樹脂(A)、硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)や、無機充填材(D)の比重を、それぞれ考慮し、重量%を体積%に換算して取り扱うようにしてもよい。   The content of the inorganic filler (D) is such that the epoxy resin (A), the curing agent (B) and the monofunctional phenolic compound (C) having one group represented by the general formula (1) or inorganic Considering the specific gravity of the filler (D), the weight% may be converted to volume% and handled.

本発明においては、任意に硬化促進剤を用いることができ、硬化促進剤としては、エポキシ樹脂(A)と硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)の硬化反応を促進する機能を有するものであれば、制限はない。具体的には、トリフェニルホスフィン及びトリターシャリーブチルホスフィンなどの有機ホスフィン化合物;トリブチルアミン及びベンジルジメチルアミン等のアミン系化合物;2−メチルイミダゾール及び2−フェニルイミダゾールなどのイミダゾール化合物;テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムブロマイド、及びテトラフェニルホスホニウム・テトラナフトイックアシッドボレートなどのホスホニウム塩類;テトラフェニルホスホニウムとビスフェノールAの分子化合物、テトラフェニルホスホニウムとビスフェノールFの分子化合物、テトラフェニルホスホニウムと2,3−ジヒドロキシナフタレンの分子化合物などの、ホスホニウム分子化合物;2−(トリフェニルホスホニオ)フェノラート、トリフェニルホスフィンとベンゾキノンの付加物などのホスホニウム分子内塩化合物;1,8−ジアザビシクロ(5,4,0)−7−ウンデセンなどのジアザビシクロアルケン化合物等の硬化促進剤が利用できる。また、これらの硬化促進剤に、微粉化、マイクロカプセル(コアシェル)化、メカノフュージョン処理などを施して使用することもできる。   In the present invention, a curing accelerator can be arbitrarily used. As the curing accelerator, a monofunctional compound having one group represented by the epoxy resin (A), the curing agent (B), and the general formula (1). If it has a function which accelerates | stimulates hardening reaction of a phenolic compound (C), there will be no restriction | limiting. Specifically, organic phosphine compounds such as triphenylphosphine and tritertiary butylphosphine; amine compounds such as tributylamine and benzyldimethylamine; imidazole compounds such as 2-methylimidazole and 2-phenylimidazole; tetraphenylphosphonium tetra Phosphonium salts such as phenylborate, tetraphenylphosphonium bromide, and tetraphenylphosphonium tetranaphthoic acid borate; molecular compounds of tetraphenylphosphonium and bisphenol A, molecular compounds of tetraphenylphosphonium and bisphenol F, tetraphenylphosphonium and 2,3 -Phosphonium molecular compounds, such as molecular compounds of dihydroxynaphthalene; 2- (triphenylphosphonio) phen Acrylate, phosphonium inner salt compounds such as the adduct of triphenylphosphine with benzoquinone; 1,8-diazabicyclo (5,4,0) -7-curing accelerators such diazabicycloalkene compounds such as undecene available. These curing accelerators can also be used after being finely divided, microcapsuled (core shell), mechano-fusion treated, or the like.

これらのうち、該ホスホニウム分子化合物、及び該ホスホニウム分子内塩化合物を用いた場合、エポキシ樹脂(A)、硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)の反応を良く促進し、十分な架橋の形成がなされるために好ましい。そのような好ましい硬化促進剤としては、テトラフェニルホスホニウムと2,3−ジヒドロキシナフタレンの分子化合物、テトラフェニルホスホニウムとビスフェノールFの分子化合物、2−(トリフェニルホスホニオ)フェノラート、トリフェニルホスフィンとベンゾキノンの付加物などが挙げられる。   Of these, when the phosphonium molecular compound and the phosphonium inner salt compound are used, the monofunctional phenol having one group represented by the epoxy resin (A), the curing agent (B) and the general formula (1) It is preferable because the reaction of the compound (C) is well accelerated and sufficient crosslinking is formed. Such preferable curing accelerators include molecular compounds of tetraphenylphosphonium and 2,3-dihydroxynaphthalene, molecular compounds of tetraphenylphosphonium and bisphenol F, 2- (triphenylphosphonio) phenolate, triphenylphosphine and benzoquinone. Examples include adducts.

本発明のエポキシ樹脂組成物において、硬化促進剤の使用量は、特に限定されないが、エポキシ樹脂(A)、硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)からなる樹脂成分に対して、0.01〜10重量%程度であるのが好ましく、0.1〜5重量%程度であるのが、より好ましい。これにより、エポキシ樹脂組成物の硬化性、流動性、及び硬化物特性がバランスよく発現する。   In the epoxy resin composition of the present invention, the amount of the curing accelerator used is not particularly limited, but the monofunctional group having one group represented by the epoxy resin (A), the curing agent (B) and the general formula (1). The amount is preferably about 0.01 to 10% by weight, more preferably about 0.1 to 5% by weight, based on the resin component composed of the phenol compound (C). Thereby, the sclerosis | hardenability, fluidity | liquidity, and hardened | cured material characteristic of an epoxy resin composition are expressed with sufficient balance.

また、本発明のエポキシ樹脂組成物には、エポキシ樹脂(A)、硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)の他に、必要に応じて、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン及びビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤;、カーボンブラック及びベンガラ等の着色剤;、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類又はパラフィン等の離型剤;、シリコーンオイル及びシリコーンゴム等の低応力化成分;、臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛及びフォスファゼン等の難燃剤;、酸化ビスマス水和物等の無機イオン交換体;等、種々の添加剤を適宜配合しても差し支えない。   The epoxy resin composition of the present invention is necessary in addition to the epoxy resin (A), the curing agent (B), and the monofunctional phenol compound (C) having one group represented by the general formula (1). Depending on the silane coupling agent such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane and vinyl silane, titanate coupling agent, aluminum coupling agent, coupling agent such as aluminum / zirconium coupling agent; Colorants such as carbon black and bengara; natural waxes such as carnauba wax; synthetic waxes such as polyethylene wax; mold release agents such as higher fatty acids such as stearic acid and zinc stearate and metal salts thereof or paraffin; silicone oil and Low stress components such as silicone rubber; Brominated epoxy Various additives such as resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and phosphazene; inorganic ion exchangers such as bismuth oxide hydrate; There is no problem.

本発明のエポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)、必要に応じて、無機充填材(D)、その他の添加剤等を、混合機を用いて充分に均一に混合した後、更に混練機で溶融混練し、冷却後粉砕して得られる。なお混合機としては特に限定しないが、例えばボールミル、ヘンシェルミキサー、Vブレンダーやダブルコーンブレンダー、コンクリートミキサーやリボンブレンダー等のブレンダー類がある。また混練機も特に限定しないが、熱ロール、加熱ニーダー、一軸又は二軸のスクリュー型混練機等が好適に使用される。   The epoxy resin composition of the present invention comprises an epoxy resin (A), a curing agent (B), a monofunctional phenol compound (C) having one group represented by the general formula (1), and if necessary, inorganic filling The material (D), other additives and the like are sufficiently uniformly mixed using a mixer, then melt-kneaded with a kneader, cooled and pulverized. The mixer is not particularly limited, and examples thereof include blenders such as a ball mill, a Henschel mixer, a V blender, a double cone blender, a concrete mixer, and a ribbon blender. The kneader is not particularly limited, but a hot roll, a heating kneader, a uniaxial or biaxial screw type kneader, or the like is preferably used.

本発明の半導体封止用エポキシ樹脂組成物は、本発明のエポキシ樹脂組成物におけるエポキシ樹脂(A)、硬化剤(B)及び一般式(1)で表される基を一つ有する単官能フェノール化合物(C)と、無機充填材(D)、必要に応じて、その他の添加剤を用いて、上記エポキシ樹脂組成物と同様の方法により得ることができる。   The epoxy resin composition for semiconductor encapsulation of the present invention is a monofunctional phenol having one group represented by the epoxy resin (A), the curing agent (B) and the general formula (1) in the epoxy resin composition of the present invention. The compound (C), the inorganic filler (D), and, if necessary, other additives can be used by the same method as the above epoxy resin composition.

本発明のエポキシ樹脂組成物を用いて、その硬化物により、半導体素子等の各種の電子部品を封止した半導体装置を得ることができるが、そのような半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来から用いられている成形方法で硬化成形すればよい。   The epoxy resin composition of the present invention can be used to obtain a semiconductor device in which various electronic components such as semiconductor elements are sealed with the cured product. To manufacture such a semiconductor device, a transfer mold is used. The molding may be performed by a conventionally used molding method such as a compression mold or an injection mold.

本発明の半導体装置の形態としては、特に限定されないが、例えば、SIP(Single Inline Package)、HSIP(SIP with Heatsink)、ZIP(Zig-zag Inline Package)、DIP(Dual Inline Package)、SDIP(Shrink Dual Inline Package)、SOP(Small Outline Package)、SSOP(Shrink Small Outline Package)、TSOP(Thin Small Outline Package)、SOJ(Small Outline J-leaded Package)、QFP(Quad Flat Package)、QFP(FP)(QFP Fine Pitch)、TQFP(Thin Quad Flat Package)、QFJ(PLCC)(Quad Flat J-leaded Package)、BGA(Ball Grid Array)等が挙げられる。
このようにして得られた本発明の半導体装置は、吸湿時の耐半田性に優れる。
The form of the semiconductor device of the present invention is not particularly limited. For example, SIP (Single Inline Package), HSIP (SIP with Heatsink), ZIP (Zig-zag Inline Package), DIP (Dual Inline Package), SDIP (Shrink) Dual Inline Package), SOP (Small Outline Package), SSOP (Shrink Small Outline Package), TSOP (Thin Small Outline Package), SOJ (Small Outline J-leaded Package), QFP (Quad Flat Package), QFP (FP) ( QFP Fine Pitch), TQFP (Thin Quad Flat Package), QFJ (PLCC) (Quad Flat J-leaded Package), BGA (Ball Grid Array), and the like.
The semiconductor device of the present invention thus obtained is excellent in solder resistance during moisture absorption.

本発明の半導体封止用エポキシ樹脂組成物は、ボールグリッドアレイ用封止材料として、ボールグリッドアレイ(BGA)構造を有する半導体装置に使用した場合、特に反りの低減に効果的であり、好ましい。   The epoxy resin composition for semiconductor encapsulation of the present invention is preferable because it is particularly effective for reducing warpage when used in a semiconductor device having a ball grid array (BGA) structure as a sealing material for ball grid array.

ボールグリッドアレイ構造の半導体装置の代表例について、図面を用いて説明する(図1)。
上記で得た半導体封止用エポキシ樹脂組成物を用いてボールグリッドアレイ構造を有する半導体装置を封止する例としては、スルーホールを有する半導体素子搭載用基板(b)に、半導体素子(a)を所定の場所に搭載するとともに、スルーホールに半田ボール(c)を配置した半導体素子搭載基板において、半田ボール(c)が配置された面とは反対の面のスルーホール上に形成された端子と、半導体素子(a)に形成された電極とをワイヤーボンド(d)により電気的接続を行った半導体素子搭載基板を用意し、前記半導体素子搭載基板の半導体素子が搭載された面の、半導体素子(a)、半田ボール(c)の端子、及びワイヤーボンド(d)を覆うように、半導体封止用エポキシ樹脂組成物を用いて、タランスファーモールドなどの成形方法により、硬化物(e)により封止して、ボールグリッドアレイ構造の半導体装置を得ることができる。
A typical example of a semiconductor device having a ball grid array structure will be described with reference to the drawings (FIG. 1).
As an example of sealing a semiconductor device having a ball grid array structure using the epoxy resin composition for semiconductor sealing obtained above, a semiconductor element (a) is mounted on a semiconductor element mounting substrate (b) having a through hole. In the semiconductor element mounting substrate in which the solder ball (c) is disposed in the through hole and the terminal formed on the through hole on the surface opposite to the surface on which the solder ball (c) is disposed And a semiconductor element mounting substrate in which electrodes formed on the semiconductor element (a) are electrically connected by wire bonding (d), and a semiconductor on the surface of the semiconductor element mounting substrate on which the semiconductor element is mounted Using an epoxy resin composition for semiconductor encapsulation so as to cover the element (a), the terminals of the solder balls (c), and the wire bonds (d), a composition such as a tarance fur mold is formed. The method, sealed with a cured product (e), it is possible to obtain a semiconductor device of ball grid array structure.

ボールグリッドアレイ構造の半導体装置は、基板(b)と半導体封止用エポキシ樹脂組成物の硬化物(e)との線膨張率の差が原因となり、基板(b)が上向きに、又は下向きに反る場合がある。本発明の半導体封止用エポキシ樹脂組成物を用いた場合、封止樹脂硬化物が低い弾性率を有し、かつ高いガラス転移温度を有することから、基板との線膨張率の差を緩和し、反りの不良が起こりにくい。   In the semiconductor device having the ball grid array structure, the difference in the linear expansion coefficient between the substrate (b) and the cured product (e) of the semiconductor sealing epoxy resin composition causes the substrate (b) to face upward or downward. May be warped. When the epoxy resin composition for semiconductor encapsulation of the present invention is used, since the cured resin product has a low elastic modulus and a high glass transition temperature, the difference in linear expansion coefficient from the substrate is alleviated. , Warpage defects are less likely to occur.

また、本実施形態では、本発明のエポキシ樹脂組成物を、半導体装置の封止材料として用いる場合について説明したが、本発明のエポキシ樹脂組成物の用途としては、これに限定されるものではない。   In the present embodiment, the case where the epoxy resin composition of the present invention is used as a sealing material for a semiconductor device has been described. However, the use of the epoxy resin composition of the present invention is not limited thereto. .

次に、本発明の具体的実施例について説明するが、本発明はこれにより何ら限定されない。   Next, specific examples of the present invention will be described, but the present invention is not limited thereto.

本発明の実施にあたり、比較用の単官能フェノールである1−ナフトールは、市販の試薬をそのまま用いた。本発明における単官能フェノール成分C1〜C10、比較用の単官能フェノール成分C11〜12、及び硬化促進剤E1〜E3は以下に記載した方法にて準備した。   In the practice of the present invention, a commercially available reagent was used as it was for 1-naphthol, which is a monofunctional phenol for comparison. Monofunctional phenol components C1 to C10, monofunctional phenol components C11 to 12 for comparison, and curing accelerators E1 to E3 in the present invention were prepared by the methods described below.

(化合物C1の合成)
容量100mLのビーカーに、4−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、安息香酸クロライド7.05g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末9.90gを得た。
この化合物をC1とした。化合物C1を、1H−NMR、マススペクトルで分析した結果、下記式(2)で示される化合物であることが確認された。得られた化合物C1の収率は、93%であった。
(Synthesis of Compound C1)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 4-aminophenol and 20 mL of dimethylformamide, stirred, and 7.05 g (0.050 mol) of benzoic acid chloride was added to dimethyl chloride while cooling the beaker with ice. A solution dissolved in 15 mL of formamide was added dropwise over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 9.90 g of a white powder.
This compound was designated C1. As a result of analyzing the compound C1 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (2). The yield of the obtained compound C1 was 93%.

Figure 2009227742
Figure 2009227742

(化合物C2の合成)
容量100mLのビーカーに、3−アミノフェノール5.45g(0.050mol)、ジエチルエーテル20mL、ピリジン5mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、安息香酸無水物11.30g(0.050mol)をジエチルエーテル15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液を、エバポレーターでおよそ10倍に濃縮し、析出した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末9.69gを得た。
この化合物をC2とした。化合物C2を、1H−NMR、マススペクトルで分析した結果、下記式(3)で示される化合物であることが確認された。得られた化合物C2の収率は、91%であった。
(Synthesis of Compound C2)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 3-aminophenol, 20 mL of diethyl ether, and 5 mL of pyridine. The mixture was stirred and the beaker was cooled with ice while cooling 11.30 g (0.3. (050 mol) in 15 mL of diethyl ether was added dropwise over 15 minutes. After dropping, the reaction solution obtained by continuing stirring at room temperature for 2 hours was concentrated about 10 times with an evaporator, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 9.69 g of a white powder.
This compound was designated C2. As a result of analyzing the compound C2 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (3). The yield of the obtained compound C2 was 91%.

Figure 2009227742
Figure 2009227742

(化合物C3の合成)
容量100mLのビーカーに、4−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、2−ナフトエ酸クロライド9.55g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末11.70gを得た。
この化合物をC3とした。化合物C3を、1H−NMR、マススペクトルで分析した結果、下記式(4)で示される化合物であることが確認された。得られた化合物C3の収率は、89%であった。
(Synthesis of Compound C3)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 4-aminophenol and 20 mL of dimethylformamide, stirred, and 9.55 g (0.050 mol) of 2-naphthoic acid chloride while the beaker was ice-cooled. Was dissolved dropwise in 15 mL of dimethylformamide over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 11.70 g of a white powder.
This compound was designated as C3. As a result of analyzing the compound C3 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (4). The yield of the obtained compound C3 was 89%.

Figure 2009227742
Figure 2009227742

(化合物C4の合成)
容量100mLのビーカーに、3−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、2−ナフトエ酸クロライド9.55g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末11.57gを得た。
この化合物をC4とした。化合物C4を、1H−NMR、マススペクトルで分析した結果、下記式(5)で示される化合物であることが確認された。得られた化合物C4の収率は、88%であった。
(Synthesis of Compound C4)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 3-aminophenol and 20 mL of dimethylformamide, stirred, and 9.55 g (0.050 mol) of 2-naphthoic acid chloride while the beaker was ice-cooled. Was dissolved dropwise in 15 mL of dimethylformamide over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 11.57 g of a white powder.
This compound was designated as C4. As a result of analyzing the compound C4 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (5). The yield of the obtained compound C4 was 88%.

Figure 2009227742
Figure 2009227742

(化合物C5の合成)
容量100mLのビーカーに、4−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、1−ナフトエ酸クロライド9.55g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末11.97gを得た。
この化合物をC5とした。化合物C5を、1H−NMR、マススペクトルで分析した結果、下記式(6)で示される化合物であることが確認された。得られた化合物C5の収率は、91%であった。
(Synthesis of Compound C5)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 4-aminophenol and 20 mL of dimethylformamide, stirred, and 9.55 g (0.050 mol) of 1-naphthoic acid chloride while the beaker was ice-cooled. Was dissolved dropwise in 15 mL of dimethylformamide over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 11.97 g of a white powder.
This compound was designated as C5. As a result of analyzing the compound C5 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (6). The yield of the obtained compound C5 was 91%.

Figure 2009227742
Figure 2009227742

(化合物C6の合成)
容量100mLのビーカーに、3−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、1−ナフトエ酸ブロマイド11.75g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末11.70gを得た。
この化合物をC6とした。化合物C6を、1H−NMR、マススペクトルで分析した結果、下記式(7)で示される化合物であることが確認された。得られた化合物C6の収率は、89%であった。
(Synthesis of Compound C6)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 3-aminophenol and 20 mL of dimethylformamide, stirred, and 11.75 g (0.050 mol) of 1-naphthoic acid bromide while cooling the beaker with ice. Was dissolved dropwise in 15 mL of dimethylformamide over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 11.70 g of a white powder.
This compound was designated as C6. As a result of analyzing the compound C6 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (7). The yield of the obtained compound C6 was 89%.

Figure 2009227742
Figure 2009227742

(化合物C7の合成)
容量100mLのビーカーに、5−アミノ−1−ナフトール7.95g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、安息香酸クロライド11.18g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末11.18gを得た。
この化合物をC7とした。化合物C7を、1H−NMR、マススペクトルで分析した結果、下記式(8)で示される化合物であることが確認された。得られた化合物C7の収率は、85%であった。
(Synthesis of Compound C7)
A beaker with a capacity of 100 mL was charged with 7.95 g (0.050 mol) of 5-amino-1-naphthol and 20 mL of dimethylformamide, stirred, and 11.18 g (0.050 mol) of benzoic acid chloride while the beaker was ice-cooled. ) In 15 mL of dimethylformamide was added dropwise over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 11.18 g of a white powder.
This compound was designated as C7. Compound C7 was analyzed by 1 H-NMR and mass spectrum, and as a result, it was confirmed that it was a compound represented by the following formula (8). The yield of the obtained compound C7 was 85%.

Figure 2009227742
Figure 2009227742

(化合物C8の合成)
容量100mLのビーカーに、4−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、4−フェニル安息香酸クロライド10.85g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末13.15gを得た。
この化合物をC8とした。化合物C8を、1H−NMR、マススペクトルで分析した結果、下記式(9)で示される化合物であることが確認された。得られた化合物C8の収率は、91%であった。
(Synthesis of Compound C8)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 4-aminophenol and 20 mL of dimethylformamide, stirred, and 10.85 g (0.050 mol) of 4-phenylbenzoic acid chloride while the beaker was ice-cooled. ) In 15 mL of dimethylformamide was added dropwise over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 13.15 g of a white powder.
This compound was designated as C8. Compound C8 was analyzed by 1 H-NMR and mass spectrum, and as a result, it was confirmed that it was a compound represented by the following formula (9). The yield of the obtained compound C8 was 91%.

Figure 2009227742
Figure 2009227742

(化合物C9の合成)
容量100mLのビーカーに、4−アミノフェノール5.45g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、4−プロピル安息香酸クロライド9.10g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末10.29gを得た。
この化合物をC9とした。化合物C9を、1H−NMR、マススペクトルで分析した結果、下記式(10)で示される化合物であることが確認された。得られた化合物C9の収率は、81%であった。
(Synthesis of Compound C9)
A beaker with a capacity of 100 mL was charged with 5.45 g (0.050 mol) of 4-aminophenol and 20 mL of dimethylformamide, stirred, and while cooling the beaker with ice, 9.10 g (0.050 mol) of 4-propylbenzoic acid chloride. ) In 15 mL of dimethylformamide was added dropwise over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 10.29 g of a white powder.
This compound was designated as C9. As a result of analyzing Compound C9 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (10). The yield of the obtained compound C9 was 81%.

Figure 2009227742
Figure 2009227742

(化合物C10の合成)
容量100mLのビーカーに、3、5−ジメチル−4−アミノフェノール6.90g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、2−ナフトエ酸クロライド9.55g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末13.14gを得た。
この化合物をC10とした。化合物C10を、1H−NMR、マススペクトルで分析した結果、下記式(11)で示される化合物であることが確認された。得られた化合物C10の収率は、90%であった。
(Synthesis of Compound C10)
Into a beaker with a capacity of 100 mL, 6.90 g (0.050 mol) of 3,5-dimethyl-4-aminophenol and 20 mL of dimethylformamide were added, stirred, and 2-naphthoic acid chloride was added while cooling the beaker with ice. A solution of 55 g (0.050 mol) dissolved in 15 mL of dimethylformamide was added dropwise over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 13.14 g of a white powder.
This compound was designated as C10. As a result of analyzing the compound C10 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (11). The yield of the obtained compound C10 was 90%.

Figure 2009227742
Figure 2009227742

(化合物C11の合成)
容量100mLのビーカーに、4−アミノフェノール5.46g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、無水フタル酸7.40g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、パラトルエンスルホン酸0.95g(0.005mol)をトルエン30mLに溶解したものを加え、この溶液を、ディーンスターク還留管を装着したフラスコに入れて、140℃4時間還留を行い、脱水閉環した。得られた反応液を500mLの水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、120℃の真空乾燥機で2時間真空乾燥し、白色の粉末10.63gを得た。
この化合物をC11とした。化合物C11を、1H−NMR、マススペクトルで分析した結果、下記式(12)で示される化合物であることが確認された。得られた化合物C11の収率は、89%であった。
(Synthesis of Compound C11)
A beaker with a capacity of 100 mL was charged with 5.46 g (0.050 mol) of 4-aminophenol and 20 mL of dimethylformamide, stirred, and 7.40 g (0.050 mol) of phthalic anhydride was added to dimethyl while the beaker was ice-cooled. A solution dissolved in 15 mL of formamide was added dropwise over 15 minutes. A solution obtained by dissolving 0.95 g (0.005 mol) of paratoluenesulfonic acid in 30 mL of toluene was added to a reaction solution obtained by continuing stirring at room temperature for 2 hours after the dropping, and this solution was added to a Dean-Stark tube. It put into the equipped flask, 140 degreeC was returned for 4 hours, and spin-dry | dehydrated and closed. The obtained reaction solution was dropped into 500 mL of water, and the precipitated powder was collected by suction filtration. This powder was vacuum-dried with a vacuum dryer at 120 ° C. for 2 hours to obtain 10.63 g of a white powder.
This compound was designated as C11. As a result of analyzing the compound C11 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (12). The yield of the obtained compound C11 was 89%.

Figure 2009227742
Figure 2009227742

(化合物C12の合成)
容量100mLのビーカーに、5−アミノサリチル酸7.65g(0.050mol)、ジメチルホルムアミド20mLを仕込み、これを攪拌し、ビーカーを氷冷しつつ、安息香酸クロライド7.05g(0.050mol)をジメチルホルムアミド15mLに溶解した溶液を、15分かけて滴下した。滴下後、2時間常温で攪拌を続けて得られた反応溶液に、1mol/L水酸化ナトリウム水溶液50mL(0.050mol)を加え、系のpHが7になるように中和した。この溶液を、5倍重量のイオン交換水に滴下し、沈殿した粉末を吸引濾過で回収した。この粉末を、140℃の真空乾燥機で2時間真空乾燥し、白色の粉末10.79gを得た。
この化合物をC12とした。化合物C12を、1H−NMR、マススペクトルで分析した結果、下記式(13)で示される化合物であることが確認された。得られた化合物C12の収率は、84%であった。
(Synthesis of Compound C12)
A beaker with a capacity of 100 mL was charged with 7.65 g (0.050 mol) of 5-aminosalicylic acid and 20 mL of dimethylformamide, stirred, and 7.05 g (0.050 mol) of benzoic acid chloride was added to dimethyl chloride while cooling the beaker with ice. A solution dissolved in 15 mL of formamide was added dropwise over 15 minutes. After the dropwise addition, 50 mL (0.050 mol) of a 1 mol / L sodium hydroxide aqueous solution was added to the reaction solution obtained by continuing stirring at room temperature for 2 hours, and neutralized so that the pH of the system was 7. This solution was added dropwise to 5 times the weight of ion-exchanged water, and the precipitated powder was collected by suction filtration. This powder was dried in a vacuum dryer at 140 ° C. for 2 hours to obtain 10.79 g of a white powder.
This compound was designated as C12. As a result of analyzing the compound C12 by 1 H-NMR and mass spectrum, it was confirmed to be a compound represented by the following formula (13). The yield of the obtained compound C12 was 84%.

Figure 2009227742
Figure 2009227742

(硬化促進剤E1の合成)
冷却管及び撹拌装置付きのセパラブルフラスコ(容量:200mL)に、2−ブロモフェノール10.4g(0.060mol)、トリフェニルホスフィン17.3g(0.066mol)、塩化ニッケル0.65g(5mmol)及びエチレングリコール40mL仕込み、攪拌下160℃で加熱反応した。反応液を冷却後、純水40mLを滴下し、析出した粉末をトルエンで洗浄後、濾過・乾燥し、白色の粉末を得た。
次に、得られた粉末をメタノール100mlに溶解し、1mol/L水酸化ナトリウム水溶液60mlと、純水500mlを順次投入した。得られた結晶をろ過、洗浄し、淡黄色結晶12.7gを得た。
この化合物をE1とした。化合物C1を、1H−NMR、マススペクトル、元素分析で分析した結果、目的のトリフェニル(2−ヒドロキシフェニル)ホスホニウムであることが確認された。得られた硬化促進剤E1の収率は、83%であった。
(Synthesis of curing accelerator E1)
In a separable flask (volume: 200 mL) equipped with a condenser and a stirrer, 10.4 g (0.060 mol) of 2-bromophenol, 17.3 g (0.066 mol) of triphenylphosphine, 0.65 g (5 mmol) of nickel chloride In addition, 40 mL of ethylene glycol was charged, and the reaction was performed at 160 ° C. with stirring. After cooling the reaction solution, 40 mL of pure water was added dropwise, and the precipitated powder was washed with toluene, filtered and dried to obtain a white powder.
Next, the obtained powder was dissolved in 100 ml of methanol, and 60 ml of 1 mol / L sodium hydroxide aqueous solution and 500 ml of pure water were sequentially added. The obtained crystals were filtered and washed to obtain 12.7 g of pale yellow crystals.
This compound was designated E1. Compound C1 was analyzed by 1 H-NMR, mass spectrum, and elemental analysis, and as a result, it was confirmed to be the target triphenyl (2-hydroxyphenyl) phosphonium. The yield of the obtained curing accelerator E1 was 83%.

(硬化促進剤E2の合成)
冷却管及び撹拌装置付きのセパラブルフラスコ(容量:200mL)に、ベンゾキノン6.49g(0.060mol)、トリフェニルホスフィン17.3g(0.066mol)及びアセトン40mLを仕込み、攪拌下室温で反応した。析出した結晶をアセトンで洗浄後、濾過・乾燥し、褐色結晶20.0gを得た。
この化合物をE2とした。化合物E2を、1H−NMR、マススペクトル、元素分析で分析した結果、目的のトリフェニルホスフィンとベンゾキノンの付加物であることが確認された。得られた硬化促進剤E2の収率は、84%であった。
(Synthesis of curing accelerator E2)
A separable flask (volume: 200 mL) equipped with a condenser and a stirrer was charged with 6.49 g (0.060 mol) of benzoquinone, 17.3 g (0.066 mol) of triphenylphosphine and 40 mL of acetone, and reacted at room temperature with stirring. . The precipitated crystals were washed with acetone, filtered and dried to obtain 20.0 g of brown crystals.
This compound was designated E2. Compound E2 was analyzed by 1 H-NMR, mass spectrum, and elemental analysis, and as a result, it was confirmed to be an adduct of the target triphenylphosphine and benzoquinone. The yield of the obtained curing accelerator E2 was 84%.

(硬化促進剤E3の合成)
撹拌装置付きのビーカー(容量:1000mL)に、テトラフェニルホスホニウムブロマイド25.2g(0.060mol)、2,3−ジヒドロキシナフタレン 17.28g(0.120mol)、及びメタノール200mLを仕込み、攪拌しながらよく溶解させた後、1mol/L水酸化ナトリウム水溶液60ml、及び純水600mLを順次添加した。析出した粉末を純水で洗浄後、濾過・乾燥し、白色の粉末を得た。
この化合物をE3とした。化合物E3を、1H−NMR、マススペクトル、元素分析で分析した結果、目的のテトラフェニルホスホニウムと2,3−ジヒドロキシナフタレンの分子化合物であることが確認された。得られた化合物E3の収率は、83%であった。
(Synthesis of curing accelerator E3)
A beaker with a stirrer (capacity: 1000 mL) is charged with 25.2 g (0.060 mol) of tetraphenylphosphonium bromide, 17.28 g (0.120 mol) of 2,3-dihydroxynaphthalene, and 200 mL of methanol, and may be stirred. After dissolution, 60 ml of 1 mol / L sodium hydroxide aqueous solution and 600 mL of pure water were sequentially added. The precipitated powder was washed with pure water, filtered and dried to obtain a white powder.
This compound was designated as E3. Compound E3 was analyzed by 1 H-NMR, mass spectrum, and elemental analysis, and as a result, it was confirmed to be a molecular compound of target tetraphenylphosphonium and 2,3-dihydroxynaphthalene. The yield of the obtained compound E3 was 83%.

[エポキシ樹脂組成物の調製および半導体装置の製造]
以下のようにして、前記化合物C1〜C10、比較用の化合物C11〜C12、硬化促進剤E1〜E3、およびその他のフェノール化合物を含むエポキシ樹脂組成物を調製し、半導体装置を製造した。
[Preparation of epoxy resin composition and manufacture of semiconductor device]
As described below, an epoxy resin composition containing the compounds C1 to C10, the comparative compounds C11 to C12, the curing accelerators E1 to E3, and other phenol compounds was prepared, and a semiconductor device was manufactured.

(実施例1)
まず、エポキシ樹脂(A)(成分(A))として、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製YX−4000HK、融点:105℃、エポキシ当量:193、150℃のICI溶融粘度:0.15poise)、硬化剤(B)(成分(B))として、フェノールアラルキル樹脂(三井化学(株)製XLC−LL、軟化点:77℃、水酸基当量:172、150℃のICI溶融粘度:3.6poise)、単官能フェノール化合物(C)(成分(C))として、上記合成で得た化合物C1、硬化促進剤として、上記合成で得た硬化促進剤E1、無機充填材(D)(成分(D))として、溶融球状シリカ(平均粒径15μm)、その他の添加剤として、カーボンブラック、臭素化ビスフェノールA型エポキシ樹脂およびカルナバワックスを、それぞれ用意した。
Example 1
First, as epoxy resin (A) (component (A)), biphenyl type epoxy resin (Japan Epoxy Resin Co., Ltd. YX-4000HK, melting point: 105 ° C., epoxy equivalent: 193, ICI melt viscosity at 150 ° C .: 0. 15 poise), as a curing agent (B) (component (B)), phenol aralkyl resin (XLC-LL manufactured by Mitsui Chemicals, Inc., softening point: 77 ° C., hydroxyl group equivalent: 172, ICI melt viscosity at 150 ° C .: 3. 6poise), monofunctional phenolic compound (C) (component (C)), compound C1 obtained by the above synthesis, curing accelerator E1 obtained by the above synthesis, inorganic filler (D) (component ( D)) as fused spherical silica (average particle size 15 μm), as other additives, carbon black, brominated bisphenol A type epoxy resin and carna The wax, were prepared, respectively.

次に、前記ビフェニル型エポキシ樹脂:55重量部、前記フェノールアラルキル樹脂:45重量部、硬化促進剤E1:1.8重量部、単官能フェノール化合物C1:4.3重量部、溶融球状シリカ:700重量部、カーボンブラック:2重量部、臭素化ビスフェノールA型エポキシ樹脂:2重量部、カルナバワックス:2重量部を、まず室温で混合し、次いで、熱ロールを用いて95℃で8分間混練した後、冷却し粉砕して、エポキシ樹脂組成物を得た。   Next, the biphenyl type epoxy resin: 55 parts by weight, the phenol aralkyl resin: 45 parts by weight, the curing accelerator E1: 1.8 parts by weight, the monofunctional phenolic compound C1: 4.3 parts by weight, and the fused spherical silica: 700 Parts by weight, carbon black: 2 parts by weight, brominated bisphenol A type epoxy resin: 2 parts by weight, carnauba wax: 2 parts by weight were first mixed at room temperature and then kneaded at 95 ° C. for 8 minutes using a hot roll. Then, it cooled and grind | pulverized and the epoxy resin composition was obtained.

次に、上記で得たエポキシ樹脂組成物を半導体封止用エポキシ樹脂組成物として用い、100ピンTQFPのパッケージ(半導体装置)を8個、および、16ピンDIPのパッケージ(半導体装置)を15個、それぞれ製造した。   Next, using the epoxy resin composition obtained above as an epoxy resin composition for semiconductor encapsulation, eight 100-pin TQFP packages (semiconductor devices) and 15 16-pin DIP packages (semiconductor devices) , Each manufactured.

100ピンTQFPは、金型温度175℃、注入圧力7.4MPa、硬化時間2分でトランスファーモールド成形し、175℃、8時間で後硬化させることにより製造した。   The 100-pin TQFP was manufactured by transfer molding at a mold temperature of 175 ° C., an injection pressure of 7.4 MPa and a curing time of 2 minutes, and post-cured at 175 ° C. for 8 hours.

なお、この100ピンTQFPのパッケージサイズは、14×14mm、厚み1.4mm、シリコンチップ(半導体素子)サイズは、8.0×8.0mm、リードフレームは、42アロイ製とした。   The package size of the 100-pin TQFP was 14 × 14 mm, the thickness was 1.4 mm, the silicon chip (semiconductor element) size was 8.0 × 8.0 mm, and the lead frame was 42 alloy.

また、16ピンDIPは、金型温度175℃、注入圧力6.8MPa、硬化時間2分でトランスファーモールド成形し、175℃、8時間で後硬化させることにより製造した。   The 16-pin DIP was manufactured by transfer molding at a mold temperature of 175 ° C., an injection pressure of 6.8 MPa and a curing time of 2 minutes, and post-cured at 175 ° C. for 8 hours.

なお、この16ピンDIPのパッケージサイズは、6.4×19.8mm、厚み3.5mm、シリコンチップ(半導体素子)サイズは、3.5×3.5mm、リードフレームは、42アロイ製とした。   The package size of the 16-pin DIP is 6.4 × 19.8 mm, the thickness is 3.5 mm, the silicon chip (semiconductor element) size is 3.5 × 3.5 mm, and the lead frame is made of 42 alloy. .

(実施例2)
実施例1において、硬化促進剤E1:1.8重量部に代わり、硬化促進剤E2:1.9重量部、化合物C1:4.3重量部に代わり、化合物C2:4.3重量部を用いた以外は、前記実施例1と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Example 2)
In Example 1, instead of the curing accelerator E1: 1.8 parts by weight, the curing accelerator E2: 1.9 parts by weight and the compound C1: 4.3 parts by weight are used instead of the compound C2: 4.3 parts by weight. Except for the above, an epoxy resin composition (epoxy resin composition for semiconductor encapsulation) was obtained in the same manner as in Example 1, and a package (semiconductor) was obtained in the same manner as in Example 1 using this epoxy resin composition. Device).

(実施例3)
実施例1において、硬化促進剤E1:1.8重量部に代わり、硬化促進剤E3:3.3重量部、化合物C1:4.3重量部に代わり、化合物C3:6.6重量部、YX−4000HK:55重量部に代わりYX−4000HK:57重量部、XLC−LL:45重量部に代わりXLC−LL:43重量部を用いた以外は、前記実施例1と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Example 3)
In Example 1, instead of curing accelerator E1: 1.8 parts by weight, curing accelerator E3: 3.3 parts by weight, compound C1: instead of 4.3 parts by weight, compound C3: 6.6 parts by weight, YX Epoxy resin composition in the same manner as in Example 1 except that YX-4000HK: 57 parts by weight instead of -4000HK: 55 parts by weight and XLC-LL: 43 parts by weight instead of 45 parts by weight of XLC-LL were used. A product (epoxy resin composition for semiconductor encapsulation) was obtained, and a package (semiconductor device) was produced using this epoxy resin composition in the same manner as in Example 1.

(実施例4)
実施例1において、硬化促進剤E1:1.8重量部に代わり、1,8−ジアザビシクロ−(5,4,0)−7−ウンデセン(サンアプロ(株)製、商品名:DBU):0.8重量部、化合物C1:4.3重量部に代わり、化合物C4:3.2重量部を用いた以外は、前記実施例1と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
Example 4
In Example 1, instead of the curing accelerator E1: 1.8 parts by weight, 1,8-diazabicyclo- (5,4,0) -7-undecene (manufactured by San Apro Co., Ltd., trade name: DBU): 0. 8 parts by weight, compound C1: Epoxy resin composition (epoxy resin composition for semiconductor encapsulation) in the same manner as in Example 1, except that 3.2 parts by weight of compound C4 was used instead of 4.3 parts by weight. And using this epoxy resin composition, a package (semiconductor device) was manufactured in the same manner as in Example 1.

(実施例5)
実施例1において、化合物C1:4.3重量部に代わり、化合物C5:10.5重量部を用いた以外は、前記実施例1と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Example 5)
In Example 1, an epoxy resin composition (epoxy resin for semiconductor encapsulation) was used in the same manner as in Example 1 except that Compound C5: 10.5 parts by weight was used instead of Compound C1: 4.3 parts by weight. And a package (semiconductor device) was produced in the same manner as in Example 1 using this epoxy resin composition.

(実施例6)
まず、成分(A)として、ビフェニルアラルキル型エポキシ樹脂(日本化薬(株)製NC−3000、軟化点:60℃、エポキシ当量:272、150℃のICI溶融粘度:1.3poise)、成分(B)として、ビフェニルアラルキル型フェノール樹脂(明和化成(株)製MEH−7851SS、軟化点:68℃、水酸基当量:199、150℃のICI溶融粘度:0.9poise)、単官能フェノール化合物(C)として、化合物C6、硬化促進剤として、硬化促進剤E2、成分(D)として、溶融球状シリカ(平均粒径15μm)、その他の添加剤として、カーボンブラック、臭素化ビスフェノールA型エポキシ樹脂およびカルナバワックスを、それぞれ用意した。
(Example 6)
First, as component (A), biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd. NC-3000, softening point: 60 ° C., epoxy equivalent: 272, ICI melt viscosity at 150 ° C .: 1.3 poise), component ( B), biphenyl aralkyl type phenol resin (MEH-7851SS manufactured by Meiwa Kasei Co., Ltd., softening point: 68 ° C., hydroxyl equivalent: 199, ICI melt viscosity at 150 ° C .: 0.9 poise), monofunctional phenol compound (C) Compound C6, curing accelerator E2 as curing accelerator, fused spherical silica (average particle size 15 μm) as component (D), carbon black, brominated bisphenol A type epoxy resin and carnauba wax as other additives Were prepared.

次に、前記ビフェニルアラルキル型エポキシ樹脂:60重量部、前記ビフェニルアラルキル型フェノール樹脂:40重量部、硬化促進剤E2:1.9重量部、化合物C6:5.3重量部、溶融球状シリカ:700重量部、カーボンブラック:2重量部、臭素化ビスフェノールA型エポキシ樹脂:2重量部、カルナバワックス:2重量部を、まず室温で混合し、次いで、熱ロールを用いて105℃で8分間混練した後、冷却粉砕して、エポキシ樹脂組成物を得た。   Next, the biphenyl aralkyl type epoxy resin: 60 parts by weight, the biphenyl aralkyl type phenol resin: 40 parts by weight, the curing accelerator E2: 1.9 parts by weight, the compound C6: 5.3 parts by weight, and the fused spherical silica: 700 Parts by weight, carbon black: 2 parts by weight, brominated bisphenol A type epoxy resin: 2 parts by weight, carnauba wax: 2 parts by weight were first mixed at room temperature and then kneaded at 105 ° C. for 8 minutes using a hot roll. Thereafter, the mixture was cooled and pulverized to obtain an epoxy resin composition.

次に、上記で得たエポキシ樹脂組成物を半導体封止用エポキシ樹脂組成物として用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。   Next, a package (semiconductor device) was manufactured in the same manner as in Example 1 using the epoxy resin composition obtained above as an epoxy resin composition for semiconductor encapsulation.

(実施例7)
実施例6において、硬化促進剤E2:1.9重量部に代わり、硬化促進剤E3:3.3重量部、化合物C6:5.3重量部に代わり、化合物C7:5.3重量部、NC−3000:60重量部に代わり、NC−3000:62重量部、MEH−7851SS:40重量部に代わり、MEH−7851SS:38重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Example 7)
In Example 6, instead of curing accelerator E2: 1.9 parts by weight, curing accelerator E3: 3.3 parts by weight, compound C6: instead of 5.3 parts by weight, compound C7: 5.3 parts by weight, NC -3000: 60 parts by weight, NC-3000: 62 parts by weight, MEH-7851SS: 40 parts by weight, MEH-7851SS: 38 parts by weight A resin composition (epoxy resin composition for semiconductor encapsulation) was obtained, and a package (semiconductor device) was produced in the same manner as in Example 1 using this epoxy resin composition.

(実施例8)
実施例6において、硬化促進剤E2:1.9重量部に代わり、DBU:0.8重量部、化合物C6:5.3重量部に代わり、化合物C8:7.2重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Example 8)
In Example 6, in place of the curing accelerator E2: 1.9 parts by weight, DBU: 0.8 parts by weight, Compound C6: 5.3 parts by weight, instead of Compound C8: 7.2 parts by weight In the same manner as in Example 6, an epoxy resin composition (epoxy resin composition for semiconductor encapsulation) was obtained, and using this epoxy resin composition, a package (semiconductor device) was obtained in the same manner as in Example 1. Manufactured.

(実施例9)
実施例6において、硬化促進剤E2:1.9重量部に代わり、硬化促進剤E1:1.8重量部、化合物C6:5.3重量部に代わり、化合物C9:3.8重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
Example 9
In Example 6, instead of curing accelerator E2: 1.9 parts by weight, curing accelerator E1: 1.8 parts by weight, compound C6: instead of 5.3 parts by weight, compound C9: 3.8 parts by weight were used. Except for the above, an epoxy resin composition (epoxy resin composition for semiconductor encapsulation) was obtained in the same manner as in Example 6, and the package (semiconductor) was obtained in the same manner as in Example 1 by using this epoxy resin composition. Device).

(実施例10)
実施例6において、化合物C6:5.3重量部に代わり、化合物C10:11.7重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Example 10)
In Example 6, an epoxy resin composition (epoxy resin for semiconductor encapsulation) was used in the same manner as in Example 6 except that compound C10: 11.7 parts by weight was used instead of compound C6: 5.3 parts by weight. And a package (semiconductor device) was produced in the same manner as in Example 1 using this epoxy resin composition.

(比較例1)
実施例6において、NC−3000:60重量部に代わり、NC−3000:62重量部、MEH−7851SS:40重量部に代わり、MEH−7851SS:38重量部、化合物C6:5.3重量部に代わり、化合物C11:4.8重量部、硬化促進剤E2:1.9重量部に代わり、硬化促進剤E3:3.3重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Comparative Example 1)
In Example 6, instead of NC-3000: 60 parts by weight, instead of NC-3000: 62 parts by weight, MEH-7851SS: 40 parts by weight, MEH-7851SS: 38 parts by weight, Compound C6: 5.3 parts by weight Instead, an epoxy was prepared in the same manner as in Example 6 except that the compound C11: 4.8 parts by weight and the curing accelerator E2: 1.9 parts by weight were used instead of the curing accelerator E3: 3.3 parts by weight. A resin composition was obtained, and using this epoxy resin composition, a package (semiconductor device) was produced in the same manner as in Example 1.

(比較例2)
実施例1において、化合物C1:4.3重量部に代わり、化合物C12:5.1重量部を用いた以外は、前記実施例1と同様にして、エポキシ樹脂組成物を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Comparative Example 2)
In Example 1, an epoxy resin composition was obtained in the same manner as in Example 1 except that Compound C12: 5.1 parts by weight was used instead of Compound C1: 4.3 parts by weight. Using the product, a package (semiconductor device) was manufactured in the same manner as in Example 1.

(比較例3)
実施例6において、硬化促進剤E2:1.9重量部に代わり、DBU:0.8重量部、化合物C6:5.3重量部に代わり、1−ナフトール:2.9重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Comparative Example 3)
In Example 6, in place of hardening accelerator E2: 1.9 parts by weight, DBU: 0.8 parts by weight, compound C6: 5.3 parts by weight, 1-naphthol: 2.9 parts by weight was used. Obtained an epoxy resin composition in the same manner as in Example 6, and a package (semiconductor device) was produced in the same manner as in Example 1 by using this epoxy resin composition.

(比較例4)
実施例1において、成分(C)に相当する成分を使用せず、硬化促進剤E1:1.8重量部に代わり、硬化促進剤E3:3.3重量部を用いた以外は、前記実施例1と同様にして、エポキシ樹脂組成物を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Comparative Example 4)
In Example 1, the component corresponding to the component (C) was not used and the curing accelerator E1: 1.8 parts by weight was used instead of the curing accelerator E3: 3.3 parts by weight. In the same manner as in Example 1, an epoxy resin composition was obtained, and using this epoxy resin composition, a package (semiconductor device) was produced in the same manner as in Example 1.

(比較例5)
実施例6において、成分(C)に相当する成分を使用せず、硬化促進剤E2:1.9重量部に変わり、硬化促進剤E3:3.3重量部を用いた以外は、前記実施例6と同様にして、エポキシ樹脂組成物を得、このエポキシ樹脂組成物を用いて、前記実施例1と同様にしてパッケージ(半導体装置)を製造した。
(Comparative Example 5)
In Example 6, the component corresponding to the component (C) was not used, but the curing accelerator E2 was changed to 1.9 parts by weight, and the curing accelerator E3 was used except that 3.3 parts by weight was used. In the same manner as in Example 6, an epoxy resin composition was obtained, and using this epoxy resin composition, a package (semiconductor device) was produced in the same manner as in Example 1.

[特性評価]
各実施例および各比較例で得られたエポキシ樹脂組成物(半導体封止用エポキシ樹脂組成物)の特性評価(1)〜(4)、および、各実施例および各比較例で得られた半導体装置の特性評価(5)を、それぞれ、以下のようにして行った。
[Characteristic evaluation]
Characteristic evaluation (1) to (4) of the epoxy resin composition (epoxy resin composition for semiconductor encapsulation) obtained in each example and each comparative example, and the semiconductor obtained in each example and each comparative example The characteristic evaluation (5) of the apparatus was performed as follows.

(1)スパイラルフロー
EMMI−I−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.8MPa、硬化時間2分で測定した。
(1) Spiral flow Using a mold for spiral flow measurement according to EMMI-I-66, measurement was performed at a mold temperature of 175 ° C, an injection pressure of 6.8 MPa, and a curing time of 2 minutes.

このスパイラルフローは、流動性のパラメータであり、数値が大きい程、流動性が良好であることを示す。   This spiral flow is a parameter of fluidity, and the larger the value, the better the fluidity.

(2)硬化トルク
キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIV PS型)を用い、175℃、300秒後のトルクを測定し、硬化トルクとして評価した。また、硬化トルクを100%として、90秒後のトルクの硬化トルクに対する比率(%)を、90秒トルク飽和度とした。
この硬化トルクは、数値が大きい程、硬化性が良好であることを示す。
(2) Curing torque Using a curast meter (Orientec Co., Ltd., JSR curast meter IV PS type), the torque after 175 ° C. and 300 seconds was measured and evaluated as a curing torque. Further, assuming that the curing torque was 100%, the ratio (%) of the torque after 90 seconds to the curing torque was defined as 90-second torque saturation.
This hardening torque shows that curability is so favorable that a numerical value is large.

(3)吸湿時90秒トルク飽和度
前述硬化トルクと同じ成形用の樹脂組成物を、タブレットに打錠した後に、温度30℃相対湿度60%の環境下で24時間保管し吸湿させたものをサンプルとして、キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIV PS型)を用い、175℃、300秒後のトルク(吸湿時硬化トルク)を測定した。この吸湿時硬化トルクを100%として、測定開始後90秒後のトルクの吸湿時硬化トルクに対する比率(%)を、吸湿時90秒トルク飽和度とした。
この吸湿時90秒トルク飽和度が高いほど、水分による硬化性の劣化が少ないことを示す。
(3) 90 seconds torque saturation at the time of moisture absorption After the resin composition for molding same as the above-mentioned curing torque is compressed into a tablet, it is stored for 24 hours in an environment with a temperature of 30 ° C. and a relative humidity of 60% to absorb moisture. As a sample, a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IV PS type) was used, and the torque after 175 ° C. for 300 seconds (curing torque during moisture absorption) was measured. This moisture curing torque was taken as 100%, and the ratio (%) of the torque 90 seconds after the start of measurement to the moisture cured torque was defined as the 90 second torque saturation at moisture absorption.
The higher the 90-second torque saturation at the time of moisture absorption, the less the deterioration of curability due to moisture.

(4)加水分解率
単官能フェノール化合物(C)に相当する化合物を使用している場合、該当する化合物(C)単体の加水分解率を評価した。上記で得た化合物(C)に相当する化合物400mgを、20mLの1.2mol/L塩酸ピリジン溶液、20mLのイオン交換水をの混合溶液中で、温度140℃、1時間処理し、反応後の溶液を0.1mol/L水酸化ナトリウム溶液をセットした、電位差自動滴定装置を用いて滴定し、その等量点から分解して発生したカルボン酸の量を定量した。この発生したカルボン酸の物質量の、400mg中に含まれる化合物(C)の物質量に対する比率(%)を加水分解率とした。
この加水分解率が高い化合物は、成型過程において加水分解生成物であるアミド酸が多量に発生し、硬化性が著しく悪化する。
(4) Hydrolysis rate When a compound corresponding to the monofunctional phenol compound (C) was used, the hydrolysis rate of the corresponding compound (C) alone was evaluated. 400 mg of the compound corresponding to the compound (C) obtained above was treated in a mixed solution of 20 mL of 1.2 mol / L pyridine hydrochloride solution and 20 mL of ion-exchanged water at a temperature of 140 ° C. for 1 hour. The solution was titrated using an automatic potentiometric titrator set with 0.1 mol / L sodium hydroxide solution, and the amount of carboxylic acid generated by decomposition from the equivalence point was quantified. The ratio (%) of the amount of the generated carboxylic acid to the amount of the compound (C) contained in 400 mg was defined as the hydrolysis rate.
A compound having a high hydrolysis rate generates a large amount of amic acid as a hydrolysis product in the molding process, and the curability is remarkably deteriorated.

(5)ガラス転移温度
500×10×3mmの成形品が得られる金型を用い、金型温度175℃、注入圧力6.8MPa、硬化時間5分で成型し作成した試験片を、175℃の温風乾燥機で4時間保管した後に、ジャスコインターナショナル(株)製、レオメーターRheopolymerを用いて、オシレーション歪制御測定モード、周波数1Hz、歪み0.03にて300℃まで測定し、位相角が1つめのピークを示す温度をガラス転移温度として測定した。ガラス転移温度は、樹脂で半導体を封止した際の耐半田クラック性に影響し、値が高いほど耐半田クラック性が向上する。
(5) Glass transition temperature Using a mold capable of obtaining a molded product of 500 × 10 × 3 mm, a test piece formed by molding at a mold temperature of 175 ° C., an injection pressure of 6.8 MPa, and a curing time of 5 minutes is 175 ° C. After storing in a hot air dryer for 4 hours, using a rheometer Rheopolymer, manufactured by Jusco International Co., Ltd., measured to 300 ° C in an oscillation strain control measurement mode, frequency 1 Hz, strain 0.03, and the phase angle was The temperature showing the first peak was measured as the glass transition temperature. The glass transition temperature affects the solder crack resistance when the semiconductor is sealed with resin, and the higher the value, the better the solder crack resistance.

(6)260℃の貯蔵弾性率(熱時弾性率)
500×10×3mmの成形品が得られる金型を用い、金型温度175℃、注入圧力6.8MPa、硬化時間5分で成型し作成した試験片を、175℃の温風乾燥機で4時間保管した後に、ジャスコインターナショナル(株)製、レオメーターRheopolymerを用いて、オシレーション歪制御測定モード、周波数1Hz、歪み0.03にて、260℃の貯蔵弾性率を測定した。高温での弾性率は、樹脂で半導体を封止した際の耐半田クラック性に影響し、値が低いほど耐半田クラック性が向上する。
(6) Storage elastic modulus at 260 ° C. (thermal elastic modulus)
Using a mold from which a molded product of 500 × 10 × 3 mm can be obtained, a test piece formed by molding at a mold temperature of 175 ° C., an injection pressure of 6.8 MPa, and a curing time of 5 minutes was obtained using a hot air dryer at 175 ° C. After storage for a period of time, a storage elastic modulus at 260 ° C. was measured using a rheometer Rheopolymer manufactured by Jusco International Co., Ltd. in an oscillation strain control measurement mode, a frequency of 1 Hz, and a strain of 0.03. The elastic modulus at high temperature affects the solder crack resistance when the semiconductor is sealed with resin, and the lower the value, the better the solder crack resistance.

(7)耐半田性
100ピンTQFPを85℃、相対湿度85%の環境下で168時間放置し、その後、260℃の半田槽に10秒間浸漬した。
(7) Solder resistance The 100-pin TQFP was left in an environment of 85 ° C. and 85% relative humidity for 168 hours, and then immersed in a solder bath at 260 ° C. for 10 seconds.

その後、顕微鏡下に、外部クラックの発生の有無を観察し、クラック発生率=(クラックが発生したパッケージ数)/(全パッケージ数)×100として、百分率(%)で表示した。   Then, the presence or absence of the occurrence of external cracks was observed under a microscope, and displayed as a percentage (%) as crack generation rate = (number of packages in which cracks occurred) / (total number of packages) × 100.

また、シリコンチップとエポキシ樹脂組成物の硬化物との剥離面積の割合を、超音波探傷装置を用いて測定し、剥離率=(剥離面積)/(シリコンチップの面積)×100として、8個のパッケージの平均値を求め、百分率(%)で表示した。   Further, the ratio of the peeled area between the silicon chip and the cured epoxy resin composition was measured using an ultrasonic flaw detector, and the peel rate = (peeled area) / (silicon chip area) × 100. The average value of the package was obtained and expressed as a percentage (%).

これらのクラック発生率および剥離率は、それぞれ、数値が小さい程、吸湿時の耐半田性が良好であり、得られたパッケージが信頼性に優れることを示す。   These crack generation rate and peeling rate indicate that the smaller the numerical value, the better the solder resistance at the time of moisture absorption, and the higher the reliability of the obtained package.

(8)パッケージ反り量
225ピンBGAパッケージ(基板は0.36mm厚のBT樹脂基板、パッケージサイズは24×24mm、厚み1.17mm、シリコンチップはサイズ9×9mm、厚み0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を、金型温度180℃、注入圧力7.8MPa、2分間でトランスファー成形し、更に175℃、4時間で後硬化した。室温に冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変異差の最も大きい値を半田処理前の反り量とした。更に、JEDEC条件のピーク温度260℃でIRリフロー処理を行ったのち、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変異差の最も大きい値を半田処理前の反り量とした。試験数n=10とし、測定単位はμmで測定し、そり量が全て80μm以下を合格(良好)とした。
(8) Package warpage 225-pin BGA package (substrate is a BT resin substrate with a thickness of 0.36 mm, package size is 24 × 24 mm, thickness 1.17 mm, silicon chip is size 9 × 9 mm, thickness 0.35 mm, chip and circuit The substrate bonding pad was bonded with a gold wire having a diameter of 25 μm.) Was transfer molded at a mold temperature of 180 ° C. and an injection pressure of 7.8 MPa for 2 minutes, and further post-cured at 175 ° C. for 4 hours. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest variation difference was taken as the warpage before soldering. Furthermore, after IR reflow treatment was performed at a peak temperature of 260 ° C under JEDEC conditions, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest variation difference was soldered. The amount of warpage before the treatment was used. The number of tests was set to n = 10, the measurement unit was measured in μm, and the warp amount was 80 μm or less for all (pass).

Figure 2009227742
Figure 2009227742

表1に示すように、実施例1〜10で得られたエポキシ樹脂組成物(本発明のエポキシ樹脂組成物、半導体封止用エポキシ樹脂組成物)は、いずれも、硬化性および流動性を損なうことなく、ガラス転移温度が維持されつつ、260℃貯蔵弾性率の値は低減されている。さらに、これら本発明のエポキシ樹脂組成物は、加水分解率が低い化合物(C)を用いているので、この硬化物で封止された各実施例のパッケージ(本発明の半導体装置)は、吸湿時に硬化性が低下することが無い。また、これらは耐半田性が良好で、信頼性に優れるものであり、BGAパッケージに用いた場合、良好な反り特性を示した   As shown in Table 1, the epoxy resin compositions obtained in Examples 1 to 10 (the epoxy resin composition of the present invention and the epoxy resin composition for semiconductor encapsulation) all impair the curability and fluidity. Instead, the value of 260 ° C. storage modulus is reduced while maintaining the glass transition temperature. Furthermore, since the epoxy resin composition of the present invention uses the compound (C) having a low hydrolysis rate, the package (semiconductor device of the present invention) sealed with this cured product has moisture absorption. Sometimes the curability does not decrease. Also, these have good solder resistance and excellent reliability, and showed good warpage characteristics when used in BGA packages.

これに対し、比較例1で得られたエポキシ樹脂組成物は、本発明に用いる単官能フェノール化合物(C)と異なる構造の単官能フェノール化合物で、しかも加水分解率が高いものを用いたことにより、吸湿時の硬化性が不十分であった。比較例2で得られたエポキシ樹脂組成物は、単官能で無いフェノール化合物を用いたため、260℃貯蔵弾性率を低減することが出来ず、耐半田性とパッケージの反りで不良が発生した。比較例3で得られたエポキシ樹脂組成物は、上記化合物(C)における特定の置換基を有さない単官能フェノールであり、260℃貯蔵弾性率が低減しているが、ガラス転移温度も著しく低減し、耐半田性で不良が生じており、反り特性も不十分であった。比較例4および5で得られたエポキシ樹脂組成物は、いずれも単官能フェノール化合物(C)に相当するものが含まれず、260℃貯蔵弾性率が高く、これらの比較例で得られたパッケージは、いずれも、耐半田性、反り特性に劣るものであった。   On the other hand, the epoxy resin composition obtained in Comparative Example 1 was a monofunctional phenol compound having a structure different from that of the monofunctional phenol compound (C) used in the present invention and having a high hydrolysis rate. The curability at the time of moisture absorption was insufficient. Since the epoxy resin composition obtained in Comparative Example 2 used a phenol compound that was not monofunctional, the 260 ° C. storage modulus could not be reduced, and defects occurred due to solder resistance and package warpage. The epoxy resin composition obtained in Comparative Example 3 is a monofunctional phenol having no specific substituent in the above compound (C) and has a 260 ° C. storage elastic modulus reduction, but also has a marked glass transition temperature. The soldering resistance was poor, and the warpage characteristics were insufficient. None of the epoxy resin compositions obtained in Comparative Examples 4 and 5 contains a monofunctional phenol compound (C), and has a high storage elastic modulus at 260 ° C. The packages obtained in these Comparative Examples are Both of them were inferior in solder resistance and warpage characteristics.

本発明のボールグリッドアレイ構造を有する半導体装置の代表例を説明するための断面図である。It is sectional drawing for demonstrating the typical example of the semiconductor device which has the ball grid array structure of this invention.

符号の説明Explanation of symbols

a 半導体素子
b 基板
c 半田ボール
d ワイヤーボンド
e 硬化物
a Semiconductor element b Substrate c Solder ball d Wire bond e Hardened material

Claims (7)

エポキシ樹脂(A)、硬化剤(B)及び下記一般式(1)で表される基を1つ有する単官能フェノール化合物(C)を含むエポキシ樹脂組成物。
Figure 2009227742
[式中、Xは、炭素数2以上12以下の芳香族基を示す。]
An epoxy resin composition comprising an epoxy resin (A), a curing agent (B), and a monofunctional phenol compound (C) having one group represented by the following general formula (1).
Figure 2009227742
[Wherein, X represents an aromatic group having 2 to 12 carbon atoms. ]
前記式(1)におけるXとしての芳香族基が、フェニル基又はナフタレニル基である、請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the aromatic group as X in the formula (1) is a phenyl group or a naphthalenyl group. 請求項1又は2に記載のエポキシ樹脂組成物と無機充填材(D)を含む半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor sealing containing the epoxy resin composition of Claim 1 or 2, and an inorganic filler (D). 前記エポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)、単官能フェノール化合物(C)及び無機充填材(D)の総量に対して、無機充填材(D)を50〜95wt%の比率で含む請求項3記載の半導体封止用エポキシ樹脂組成物。   The said epoxy resin composition is 50-95 wt% of inorganic fillers (D) with respect to the total amount of an epoxy resin (A), a hardening | curing agent (B), a monofunctional phenol compound (C), and an inorganic filler (D). The epoxy resin composition for semiconductor encapsulation according to claim 3, which is contained at a ratio of 前記半導体封止用エポキシ樹脂組成物は、ボールグリッドアレイ用封止材料である請求項4記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 4, wherein the epoxy resin composition for semiconductor encapsulation is a ball grid array sealing material. 請求項4又は5記載の半導体封止用エポキシ樹脂組成物の硬化物により電子部品が封止された半導体装置。   A semiconductor device in which an electronic component is sealed with a cured product of the epoxy resin composition for sealing a semiconductor according to claim 4 or 5. 前記半導体装置が、ボールグリッドアレイ構造を有するものである請求項6記載の半導体装置。   The semiconductor device according to claim 6, wherein the semiconductor device has a ball grid array structure.
JP2008072456A 2008-03-19 2008-03-19 Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device Pending JP2009227742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072456A JP2009227742A (en) 2008-03-19 2008-03-19 Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072456A JP2009227742A (en) 2008-03-19 2008-03-19 Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2009227742A true JP2009227742A (en) 2009-10-08

Family

ID=41243520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072456A Pending JP2009227742A (en) 2008-03-19 2008-03-19 Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2009227742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108524A1 (en) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP2013249458A (en) * 2012-06-04 2013-12-12 Hitachi Chemical Co Ltd Epoxy resin molding material for sealing and electronic component device
JP2017110234A (en) * 2017-02-06 2017-06-22 日立化成株式会社 Epoxy resin molding material for sealing and electronic component device
KR20180126974A (en) * 2017-05-19 2018-11-28 수원대학교산학협력단 Amide type phytoalexin compound and preparation method thereof and whitening cosmetic composition containing it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108524A1 (en) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
CN102844350A (en) * 2010-03-02 2012-12-26 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JPWO2011108524A1 (en) * 2010-03-02 2013-06-27 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
JP5892340B2 (en) * 2010-03-02 2016-03-23 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
JP2016053168A (en) * 2010-03-02 2016-04-14 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminated sheet
JP2013249458A (en) * 2012-06-04 2013-12-12 Hitachi Chemical Co Ltd Epoxy resin molding material for sealing and electronic component device
JP2017110234A (en) * 2017-02-06 2017-06-22 日立化成株式会社 Epoxy resin molding material for sealing and electronic component device
KR20180126974A (en) * 2017-05-19 2018-11-28 수원대학교산학협력단 Amide type phytoalexin compound and preparation method thereof and whitening cosmetic composition containing it
KR101964929B1 (en) * 2017-05-19 2019-04-02 수원대학교 산학협력단 Amide type phytoalexin compound and preparation method thereof and whitening cosmetic composition containing it

Similar Documents

Publication Publication Date Title
JP4163162B2 (en) Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device
US20130289187A1 (en) Resin composition for encapsulation and electronic component device
JP5692070B2 (en) Semiconductor sealing resin composition and semiconductor device
EP1369445A1 (en) Curing accelerator, epoxy resin composition, and semiconductor device
TWI536514B (en) Semiconductor-encapsulating resin composition and semiconductor device
JP4496786B2 (en) Epoxy resin composition and semiconductor device
JP2010070622A (en) Epoxy resin composition, epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP5386836B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2009227742A (en) Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device
JP2006225630A (en) Epoxy resin composition, method for forming latent of the same and semiconductor device
JP5167587B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5672947B2 (en) Resin composition for sealing and electronic component device
JP5407767B2 (en) Epoxy resin composition and semiconductor device
JP2006348283A (en) Curing promoter for epoxy resin, epoxy resin composition and semiconductor device
JP5261880B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
JP2012077152A (en) Resin composition for sealing electronic component and electronic component device
JP2009084360A (en) Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device
JP2005089486A (en) Epoxy resin composition and semiconductor device
JP4496778B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP5868573B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4341261B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
JPH10158360A (en) Epoxy resin composition
JP4496739B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP2008081683A (en) Epoxy resin composition, semiconductor sealing epoxy resin composition, and semiconductor device
JP4765294B2 (en) Semiconductor device