JP2009226348A - Permeable reaction wall and underground water purifying method - Google Patents

Permeable reaction wall and underground water purifying method Download PDF

Info

Publication number
JP2009226348A
JP2009226348A JP2008077165A JP2008077165A JP2009226348A JP 2009226348 A JP2009226348 A JP 2009226348A JP 2008077165 A JP2008077165 A JP 2008077165A JP 2008077165 A JP2008077165 A JP 2008077165A JP 2009226348 A JP2009226348 A JP 2009226348A
Authority
JP
Japan
Prior art keywords
reaction
reaction layer
wall
reducing agent
reaction wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008077165A
Other languages
Japanese (ja)
Other versions
JP4835624B2 (en
Inventor
Mikiji Enomoto
幹司 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008077165A priority Critical patent/JP4835624B2/en
Publication of JP2009226348A publication Critical patent/JP2009226348A/en
Application granted granted Critical
Publication of JP4835624B2 publication Critical patent/JP4835624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the clogging of a permeable reaction wall containing a powder-like metal reducing agent. <P>SOLUTION: The permeable reaction wall 1, which includes a first reaction layer 11 as an upstream reaction layer and a second reaction layer 12 as a downstream reaction layer 12, is embedded in the ground. The reaction wall 1 is installed so that the first reaction layer 11 is arranged on an upstream side with respect to the flow W of underground water, and the second reaction layer 12 is arranged on a downstream side. The first reaction layer 11 is constituted, for example, by mixing an iron powder having a large particle size as the metal reducing agent with a sand-like water permeable material so that a pore having a large diameter is formed to the second reaction layer 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原位置での地下水浄化に用いられる、地中に設置された壁状の透過反応壁およびこれを用いた汚染地下水の浄化方法に関する。本発明は特に、粒状の金属製の還元剤を含んで構成された液透過性の反応層を複数、地下水の流れに沿って配置して構成される複層型の透過反応壁およびこれを用いた汚染地下水の浄化方法に関する。   The present invention relates to a wall-shaped permeation reaction wall installed in the ground and used for purifying groundwater in its original position, and a method for purifying contaminated groundwater using the same. The present invention particularly relates to a multi-layer type permeation reaction wall configured by arranging a plurality of liquid-permeable reaction layers each including a granular metal reducing agent along the flow of groundwater, and the use thereof. It relates to a method for purifying contaminated groundwater.

廃棄物処理場や不法投棄廃棄物からの浸出液や工場廃液等が地下に浸透し、地下水を汚染する事例が発生している。このようにして汚染された地下水は、その流れにより汚染地域を広め、様々な環境汚染を引き起こす。そのため、このような汚染地下水による周辺地域の汚染を阻止するために様々な浄化技術が提案されている。   There have been cases where leachate from waste disposal sites and illegal dumping waste, factory effluent, etc. penetrated underground and contaminated groundwater. The contaminated groundwater spreads the contaminated area by its flow and causes various environmental pollution. For this reason, various purification techniques have been proposed in order to prevent contamination of surrounding areas with such contaminated groundwater.

従来、汚染地下水を浄化する方法として、浄化反応を担う透水性の壁状構造体(「透過性反応壁」:PRB、Permeable Reactive Barrier)を地中に造成する透過反応壁工法による浄化方法が知られている。この方法では、反応壁に地下水を通して地下水に含まれる有機ハロゲン化合物のような汚染物質を原位置で分解する。   Conventionally, as a method for purifying contaminated groundwater, there is known a purification method by a permeation reaction wall method in which a water-permeable wall-like structure (“permeable reaction wall”: PRB, Permeable Reactive Barrier) responsible for the purification reaction is created in the ground. It has been. In this method, pollutants such as organic halogen compounds contained in groundwater are decomposed in situ through groundwater through the reaction wall.

図3は、従来例に係る反応壁21が地中に埋設された状態を示す平面模式図である。図中、矢印は地下水の流れWを示しており、反応壁21は、地下水の流れWに対し、帯水層が汚染された領域(汚染領域)Gより下流に配置されている。反応壁21の両側には、この例に示すように必要に応じて一対の止水壁22が設けられ、汚染地水が止水壁22にぶつかることで反応壁21に向かって流れるように構成されている。   FIG. 3 is a schematic plan view showing a state in which the reaction wall 21 according to the conventional example is buried in the ground. In the figure, the arrow indicates the groundwater flow W, and the reaction wall 21 is disposed downstream of the groundwater flow W from the region (contaminated region) G where the aquifer is contaminated. As shown in this example, a pair of water blocking walls 22 are provided on both sides of the reaction wall 21 as necessary, and the contaminated ground water flows toward the reaction wall 21 by hitting the water blocking wall 22. Has been.

反応壁21は、粒状の金属還元剤を含み、砂等の粒状物と金属還元剤とを混合する等して全体として透水性を有するように構成されている。汚染地下水は、このような反応壁21を通過する際に金属還元剤と接触することで、金属還元剤により有機ハロゲン化合物のような汚染物質が分解され、地下水の浄化が行われる。   The reaction wall 21 includes a granular metal reducing agent, and is configured to have water permeability as a whole by mixing a granular material such as sand and a metal reducing agent. When contaminated groundwater passes through such a reaction wall 21 and comes into contact with the metal reducing agent, contaminants such as organic halogen compounds are decomposed by the metal reducing agent, and the groundwater is purified.

透過反応壁工法は、一度、反応壁を施工すればメンテナンスが殆ど不要である。よって、汚染地下水を地上に汲み上げて浄化する揚水処理等と比較して低コストであり、浄化中の土地を有効に利用できるという利点もある。   The permeation reaction wall method requires almost no maintenance once the reaction wall is constructed. Therefore, the cost is lower than that of the pumping treatment that pumps contaminated groundwater to the ground and purifies it, and there is an advantage that the land being purified can be used effectively.

このような透過反応壁に用いる金属還元剤としては、還元力を有する鉄粉のような金属鉄が挙げられる。例えば特許文献1および特許文献2には、透過反応壁を構成する金属還元剤として微粉状、切片状または繊維状の鉄あるいはこれらの鉄と活性炭の複合物を使用することが開示されている。特許文献3および特許文献4は、金属鉄を金属還元剤として用いて有機ハロゲン化合物を分解する際の反応条件や反応促進法を開示している。   Examples of the metal reducing agent used for such a permeation reaction wall include metallic iron such as iron powder having reducing power. For example, Patent Document 1 and Patent Document 2 disclose the use of fine powder, sliced or fibrous iron, or a composite of these iron and activated carbon as a metal reducing agent constituting the permeation reaction wall. Patent Document 3 and Patent Document 4 disclose reaction conditions and reaction promotion methods for decomposing an organic halogen compound using metallic iron as a metal reducing agent.

透過反応壁には、異なる性状の反応層を複数、並べて構成した、いわゆる複層型の透過反応壁もある。例えば、特許文献5には、2層の反応層を具備する複層型透過反応壁が開示されている。特許文献5に開示された透過反応壁は、鉄粉を含む部分(第1の反応層)と銅含有鉄粉を含む部分(第2の反応層)という2層を具備する。
特表平5−501520号公報 特表平6−506631号公報 特公平2−49158号公報 特公平2−49798号公報 特開2001−9475号公報
As the permeation reaction wall, there is also a so-called multilayer permeation reaction wall in which a plurality of reaction layers having different properties are arranged side by side. For example, Patent Document 5 discloses a multi-layer permeation reaction wall including two reaction layers. The permeation reaction wall disclosed in Patent Document 5 includes two layers: a portion containing iron powder (first reaction layer) and a portion containing copper-containing iron powder (second reaction layer).
Japanese Patent Publication No. 5-501520 JP-T 6-506631 Publication Japanese Examined Patent Publication No. 2-49158 Japanese Patent Publication No. 2-49798 JP 2001-9475 A

ところで、地下水には一般にカルシウムやマグネシウム等の硬度成分が含まれる。これらの硬度成分は地下水中で不溶性の化合物を生成することがある。また、反応壁を構成する際に金属還元剤として鉄粉を用いる場合、鉄粉の還元反応により二価鉄イオンが発生するが、硬度成分と同様、二価鉄イオンも地下水中で不溶性の化合物を生成することがある。このため、反応壁を長期間に渡って使用すると、硬度成分や二価鉄イオンにより生成された不溶性化合物によって透過反応壁の間隙が徐々に埋まり、将来的には透過反応壁の透水性が局部的または全体的に低下してしまう恐れがある。   By the way, generally groundwater contains hardness components, such as calcium and magnesium. These hardness components may produce compounds that are insoluble in groundwater. In addition, when iron powder is used as a metal reducing agent when forming the reaction wall, divalent iron ions are generated by the reduction reaction of the iron powder. Like the hardness component, divalent iron ions are also insoluble in groundwater. May be generated. For this reason, when the reaction wall is used for a long period of time, the gap between the permeation reaction walls is gradually filled with insoluble compounds generated by hardness components and divalent iron ions, and in the future, the permeability of the permeation reaction walls will be localized. There is a risk of deteriorating the target or the whole.

図4は、図3の反応壁21の使用に伴う変化を示す模式図である。図4(a)は浄化開始時における反応壁21のZ−Z線に沿った断面模式図、(b)は(a)の反応壁21に対する水の流れを示す平面模式図である。図4(c)は使用を継続した結果、透過反応壁の透水性が局部的に低下した状態における反応壁21のZ−Z線に沿った断面模式図、(d)は(c)の反応壁21に対する水の流れを示す平面模式図である。 FIG. 4 is a schematic diagram showing changes associated with the use of the reaction wall 21 of FIG. 4A is a schematic cross-sectional view of the reaction wall 21 taken along the line Z 1 -Z 2 at the start of purification, and FIG. 4B is a schematic plan view showing the flow of water with respect to the reaction wall 21 of FIG. FIG. 4C is a schematic cross-sectional view along the Z 1 -Z 2 line of the reaction wall 21 in a state where the water permeability of the permeation reaction wall is locally reduced as a result of continuing use, and FIG. It is a plane schematic diagram which shows the flow of the water with respect to the reaction wall 21.

従来例に係る反応壁21については、反応壁21を構成する金属還元剤および砂のような透水性材料の粒径は地下水流れ方向(すなわち反応壁21の厚さ方向D)に沿って概ね一定である。このため、反応壁21による浄化開始時には、図4(a)に示すように、反応壁21の空隙は厚さD方向にほぼ一定で、地下水の透水性も厚さD方向でほぼ等しい。   Regarding the reaction wall 21 according to the conventional example, the particle size of the metal reducing agent and the water-permeable material such as sand constituting the reaction wall 21 is substantially constant along the groundwater flow direction (that is, the thickness direction D of the reaction wall 21). It is. For this reason, when the purification by the reaction wall 21 is started, as shown in FIG. 4A, the gap of the reaction wall 21 is substantially constant in the thickness D direction, and the water permeability of the groundwater is also substantially equal in the thickness D direction.

しかし浄化反応が進むと、硬度成分や鉄イオンにより生成された不溶性化合物が反応壁21中に蓄積して反応壁21の間隙の大きさを小さくするため、地下水の透水性が低下する。透水性が低下すると、図4(d)に示すように汚染物質を含む地下水が反応壁21を透過せず迂回するようになる。この迂回量が多くなるに従い、有機ハロゲン化合物を効率的に処理することができなくなる。   However, as the purification reaction proceeds, insoluble compounds generated by hardness components and iron ions accumulate in the reaction wall 21 and reduce the size of the gap between the reaction walls 21, so that the permeability of groundwater decreases. When the water permeability decreases, the groundwater containing the contaminants bypasses the reaction wall 21 as shown in FIG. As this detour amount increases, the organic halogen compound cannot be treated efficiently.

本発明は上記課題に鑑みてなされ、閉塞が防止される透過反応壁の構造および透過反応壁を用いた汚染地下水の浄化方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the purification | cleaning method of the contaminated groundwater using the structure of the permeation | transmission reaction wall in which obstruction | occlusion is prevented, and a permeation | transmission reaction wall.

従来、金属還元剤として用いる鉄粉の粒径については、十分な検討はなされておらず、反応層が地下水の透水性を確保できる程度に大きく、かつ、高い反応効率を維持するために必要な表面積が確保される程度に小さいことが好ましいという程度の認識しかされていなかった。これに対し、上記課題を検討した結果、透過反応壁の透水性の低下は、透過反応壁の入口側、すなわち地下水流れに対して上流側から起こることを見出した。本発明は、かかる知見に基づき完成され、透過反応壁の入口側の空隙率を大きくし、析出物が生成されても反応壁の透水性の低下による処理不良を防止する。具体的には、本発明は以下を提供する。   Conventionally, the particle size of iron powder used as a metal reducing agent has not been sufficiently studied, and the reaction layer is large enough to ensure the permeability of groundwater and is necessary to maintain high reaction efficiency. It was only recognized that it is preferable that the surface area be as small as possible. On the other hand, as a result of examining the above problems, it has been found that the decrease in the permeability of the permeation reaction wall occurs from the inlet side of the permeation reaction wall, that is, the upstream side of the groundwater flow. The present invention has been completed on the basis of such findings, and increases the porosity on the inlet side of the permeation reaction wall, and prevents processing defects due to a decrease in water permeability of the reaction wall even if precipitates are generated. Specifically, the present invention provides the following.

(1) 地中に設けられた壁状の透過反応壁であって、
前記地中を流れる汚染された地下水の流れの上流側に設けられ粒状の金属還元剤を含む上流反応層と、
前記上流反応層に対して前記地下水の流れの下流側に設けられ粒状の金属還元剤を含む下流反応層と、を有し、
前記上流反応層の金属還元剤は前記下流反応層の金属還元剤より平均粒径が大きくされている透過反応壁。
(2) 前記上流反応層および前記下流反応層は、前記金属還元剤と粒状の透水性材料とを混合して構成され、
前記上流反応層の透水性材料は、前記下流反応層の透水性材料より平均粒径が大きくされている(1)に記載の透過反応壁。
(3) 前記金属還元剤は鉄粉であり、
前記上流反応層の金属還元剤および透水性材料は、平均粒径が0.5mm〜10.0mmである(1)または(2)に記載の透過反応壁。
(4) 前記上流反応層の厚みは、前記透過反応壁全体の厚みの10〜50%である(1)から(3)のいずれかに記載の透過反応壁。
(5) 請求項1から4のいずれかに記載の透過反応壁に、有機ハロゲン化合物を含む地下水を通過させて浄化する地下水の浄化方法。
(1) A wall-shaped permeation reaction wall provided in the ground,
An upstream reaction layer comprising a particulate metal reducing agent provided upstream of a flow of contaminated groundwater flowing through the ground;
A downstream reaction layer provided on the downstream side of the groundwater flow with respect to the upstream reaction layer and containing a particulate metal reducing agent,
A permeation reaction wall in which the metal reducing agent in the upstream reaction layer has an average particle size larger than that of the metal reducing agent in the downstream reaction layer.
(2) The upstream reaction layer and the downstream reaction layer are configured by mixing the metal reducing agent and a granular water permeable material,
The permeable reaction wall according to (1), wherein the water permeable material of the upstream reaction layer has an average particle size larger than that of the water permeable material of the downstream reaction layer.
(3) The metal reducing agent is iron powder,
The permeation reaction wall according to (1) or (2), wherein the metal reducing agent and the water permeable material of the upstream reaction layer have an average particle diameter of 0.5 mm to 10.0 mm.
(4) The permeation reaction wall according to any one of (1) to (3), wherein the thickness of the upstream reaction layer is 10 to 50% of the thickness of the entire permeation reaction wall.
(5) A groundwater purification method for purifying groundwater containing an organic halogen compound through the permeation reaction wall according to any one of claims 1 to 4.

本発明によれば、反応壁を地下水が通過する際に生成される析出物による反応壁の透水性の低下を防止できる。よって、本発明によれば、反応壁の透水性の低下による浄化不良を防ぎ、反応壁の寿命を長くできる。   ADVANTAGE OF THE INVENTION According to this invention, the fall of the water permeability of the reaction wall by the deposit produced | generated when groundwater passes a reaction wall can be prevented. Therefore, according to the present invention, it is possible to prevent purification failure due to a decrease in the water permeability of the reaction wall and to prolong the life of the reaction wall.

以下、図面を参照して本発明について詳細に説明する。以下、同一部材には同一符号を付し、説明を省略または簡略化する。   Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明の第1実施形態に係る複層型の透過反応壁1が地中に埋設された状態を示す平面模式図である。図2は、使用に伴う図1の反応壁1の変化を示す模式図である。図2(a)は浄化開始時における反応壁1のX−X線に沿った地中断面模式図、(b)は(a)の反応壁1に対する水の流れを示す平面模式図である。図2(c)は使用を継続した反応壁1のZ−Z線に沿った地中断面模式図、(d)は(c)の反応壁1に対する水の流れを示す平面模式図である。 FIG. 1 is a schematic plan view showing a state in which a multilayer permeation reaction wall 1 according to the first embodiment of the present invention is buried in the ground. FIG. 2 is a schematic diagram showing a change in the reaction wall 1 of FIG. 1 with use. FIG. 2A is a schematic cross-sectional view of the reaction wall 1 taken along line X 1 -X 2 at the start of purification, and FIG. 2B is a schematic plan view showing the flow of water with respect to the reaction wall 1 of FIG. is there. FIG. 2C is a schematic cross-sectional view of the reaction wall 1 that continues to be used along the Z 1 -Z 2 line, and FIG. 2D is a schematic plan view showing the flow of water with respect to the reaction wall 1 of FIG. is there.

反応壁1は、地中に起立する壁体であり、上流反応層としての第1反応層11と、下流反応層としての第2反応層12という2層の反応層を含む。第1反応層11と第2反応層12とは厚さ方向Dに並べられ、第1反応層11は、地下水の流れWに対して第2反応層12より上流側に配置されている。反応壁1は壁面が汚染地下水の流れに対して略直交するように配置され、最深部に位置する端縁(下端)は、地下水が流れる帯水層72の下部の不透水層73に達している。反応壁1の上端(下端と向かい合う端縁)は、地下水位から0〜100cm程度、地上側にあって、この例では表層土で構成される飽和層71に位置している。また、この例では下端と上端とを接続する一対の端縁(側縁)に接して一対の止水壁2が配置されている。   The reaction wall 1 is a wall body standing in the ground, and includes two reaction layers, a first reaction layer 11 as an upstream reaction layer and a second reaction layer 12 as a downstream reaction layer. The first reaction layer 11 and the second reaction layer 12 are arranged in the thickness direction D, and the first reaction layer 11 is disposed upstream of the second reaction layer 12 with respect to the groundwater flow W. The reaction wall 1 is arranged so that the wall surface is substantially perpendicular to the flow of contaminated groundwater, and the edge (lower end) located at the deepest part reaches the impermeable layer 73 below the aquifer 72 through which the groundwater flows. Yes. The upper end (edge facing the lower end) of the reaction wall 1 is on the ground side, about 0 to 100 cm from the groundwater level, and in this example, is located in a saturated layer 71 composed of surface soil. In this example, a pair of water blocking walls 2 are disposed in contact with a pair of edges (side edges) connecting the lower end and the upper end.

止水壁2は、遮水性の板、例えば矢板で構成され、反応壁1と同様に壁面が地下水の流れを遮るように、地中に壁面が垂直に起立するように設置されている。一対の止水壁2は地下水の上流側から下流側に向かって間隔が狭くなるように配置され、下流側の端縁同士の間に反応壁1が挟まれた状態で配置され、地下水は止水壁2により集水され反応壁1を通過する。   The water blocking wall 2 is constituted by a water-impervious plate, for example, a sheet pile, and is installed so that the wall surface stands vertically in the ground so that the wall surface blocks the flow of groundwater, like the reaction wall 1. The pair of water blocking walls 2 are arranged so that the distance between them becomes narrower from the upstream side to the downstream side, and the reaction wall 1 is sandwiched between the downstream edges so that the ground water is stopped. Water is collected by the water wall 2 and passes through the reaction wall 1.

反応層11、12は、どちらも金属還元剤としての鉄粉を粒状の透水性材料と混合して構成されている。透水性材料としては、砂や砕石等が用いられる。金属還元剤としては、鉄粉以外に粒状のアルミニウムや亜鉛等を用いることもできるが、コスト面から鉄粉が好適に使用でき、銑鉄(鋳鉄)屑等のような鉄の廃棄物を使用してもよい。鉄粉は、還元鉄が好ましい。   The reaction layers 11 and 12 are both configured by mixing iron powder as a metal reducing agent with a granular water-permeable material. Sand or crushed stone is used as the water permeable material. As the metal reducing agent, granular aluminum, zinc, etc. can be used in addition to iron powder, but iron powder can be suitably used in terms of cost, and iron waste such as pig iron (cast iron) scraps is used. May be. The iron powder is preferably reduced iron.

鉄粉および透水性材料はどちらも略粒状であり、鉄粉と透水性材料との混合物が充填されて構成される反応層11、12には、粒体と粒体との間に生じる多数の空隙が形成される。本発明では、第2反応層12に比して空隙を大きくした第1反応層11を、第2反応層12に対して地下水流れWの上流側に配置する。   Both the iron powder and the water permeable material are substantially granular, and the reaction layers 11 and 12 configured by being filled with a mixture of the iron powder and the water permeable material have many particles generated between the particles. A void is formed. In the present invention, the first reaction layer 11 having a larger gap than the second reaction layer 12 is disposed on the upstream side of the groundwater flow W with respect to the second reaction layer 12.

反応層11、12の空隙の大きさを調整するために、粒状の金属還元剤(鉄粉)および/または透水性材料の粒径を調整する。反応層を構成する材料の中で金属還元剤が占める割合は、質量比で10〜100%、好ましくは20〜100%である。金属還元剤と透水性材料とを混合して反応層を構成する場合(つまり、反応層を構成する材料の中で金属還元剤が占める割合が100%未満の場合)、両者の混合割合を考慮しながら金属還元剤および透水性材料の一方または両方について、第1反応層11の金属還元剤(および/または透水性材料)の平均粒径を、第2反応層12の金属還元剤(および/または透水性材料)の平均粒径より大きくする。   In order to adjust the size of the gap between the reaction layers 11 and 12, the particle size of the particulate metal reducing agent (iron powder) and / or the water-permeable material is adjusted. The ratio which a metal reducing agent accounts in the material which comprises a reaction layer is 10 to 100% by mass ratio, Preferably it is 20 to 100%. When mixing a metal reducing agent and a water-permeable material to form a reaction layer (that is, when the proportion of the metal reducing agent in the material constituting the reaction layer is less than 100%), consider the mixing ratio of the two However, for one or both of the metal reducing agent and the water permeable material, the average particle size of the metal reducing agent (and / or the water permeable material) of the first reaction layer 11 is set to the metal reducing agent (and / or the second reaction layer 12). Alternatively, the average particle size of the water-permeable material) is made larger.

具体的には、第1反応層11の金属還元剤は平均粒径が0.5mm以上であるようにされていることが好ましい。本明細書では、第1反応層11に含まれる金属還元剤の50質量%以上が上記値以上の粒径であれば、第1反応層11の金属還元剤の平均粒径が前記値以上であるとして扱う。また、反応層11、12は、その構成材料の中に金属還元剤が50質量%以上含まれている場合、金属還元剤による浄化作用を奏する反応層として扱う。   Specifically, it is preferable that the metal reducing agent of the first reaction layer 11 has an average particle size of 0.5 mm or more. In this specification, if 50% by mass or more of the metal reducing agent contained in the first reaction layer 11 has a particle size of the above value or more, the average particle size of the metal reducing agent of the first reaction layer 11 is not less than the above value. Treat as there is. Moreover, when the metal reducing agent is contained in the constituent material in an amount of 50% by mass or more, the reaction layers 11 and 12 are treated as reaction layers having a purification action by the metal reducing agent.

金属還元剤については、平均粒径が大きすぎると反応性が不足する恐れがあるため、その上限は10.0mmとすることが好ましい。一方、第1反応層11の透水性材料については、透水性を確保するため平均粒径が0.5mm以上であることが好ましい。しかし、第1反応層11の透水性材料の平均粒径が大きすぎると透水性材料の間に形成されるべき隙間に金属還元剤が入り込み、空隙が塞がれ、かえって反応壁全体の透水性が低下する恐れがある。このため、透水性材料の平均粒径は10mm以下であることが好ましい。   As for the metal reducing agent, if the average particle size is too large, the reactivity may be insufficient, so the upper limit is preferably 10.0 mm. On the other hand, the water-permeable material of the first reaction layer 11 preferably has an average particle size of 0.5 mm or more in order to ensure water permeability. However, if the average particle diameter of the water-permeable material of the first reaction layer 11 is too large, the metal reducing agent enters the gaps that should be formed between the water-permeable materials, and the gaps are blocked, and instead the water permeability of the entire reaction wall. May decrease. For this reason, it is preferable that the average particle diameter of a water-permeable material is 10 mm or less.

反応層11、12を構成する金属還元剤および透水性材料は、反応層ごとに平均粒径が異なっていてもよいが、同一の反応層については粒径が揃っていることが好ましい。具体的には、全体の50質量%以上が平均粒径(重量平均)に対して±20%程度の粒径の粒状体であるよう、所定の大きさの目開きのふるい等を用いて分級されていることが好ましい。また、同一の反応層では、金属還元剤と透水性材料の粒径も近似していることが好ましく、特に空隙を大きくすべき第1反応層11については、透水性材料と金属還元剤とは平均粒径の比が1:0.8〜1:1.2程度となるようにするとよい。   The metal reducing agent and the water-permeable material constituting the reaction layers 11 and 12 may have different average particle diameters for each reaction layer, but it is preferable that the particle diameters of the same reaction layer are uniform. Specifically, classification is performed using a sieve having a predetermined size so that 50% by mass or more of the whole is a granule having a particle size of about ± 20% of the average particle size (weight average). It is preferable that Moreover, in the same reaction layer, it is preferable that the particle diameters of the metal reducing agent and the water permeable material are also approximated. In particular, for the first reaction layer 11 that should have a large gap, the water permeable material and the metal reducing agent are The ratio of the average particle diameter is preferably about 1: 0.8 to 1: 1.2.

第2反応層12の金属還元剤については、平均粒径は0.25mm以上であればよく、0.25mm〜2.5mm程度であればよい。第2反応層12の透水性材料については、平均粒径が0.25mm以上であればよく0.25mm〜2.5mm程度であればよい。第2反応層12については、金属還元剤および透水性材料は粒径が揃えられている必要性は低く、金属還元剤と透水性材料との平均粒径の比も任意でよい。   About the metal reducing agent of the 2nd reaction layer 12, an average particle diameter should just be 0.25 mm or more, and should just be about 0.25 mm-2.5 mm. About the water permeable material of the 2nd reaction layer 12, an average particle diameter should just be 0.25 mm or more, and should just be about 0.25 mm-2.5 mm. Regarding the second reaction layer 12, the metal reducing agent and the water-permeable material need not have the same particle diameter, and the ratio of the average particle diameter of the metal reducing agent and the water-permeable material may be arbitrary.

第1反応層11と第2反応層12とを合わせた反応壁1全体の厚さDは10cm〜5m程度であり、第1反応層11の厚さは反応壁1全体に対して10〜50%となるように設定することが好ましい。   The total thickness D of the reaction wall 1 including the first reaction layer 11 and the second reaction layer 12 is about 10 cm to 5 m, and the thickness of the first reaction layer 11 is 10 to 50 with respect to the entire reaction wall 1. It is preferable to set to be%.

次に、反応壁1を造成する方法について説明する。反応壁1を造成するに先立ち、汚染された地下水が流れる帯水層72に対し、地下水の流れWの方向をあらかじめ把握し、汚染された地下水が反応壁1に向かって流れるよう、反応壁1の設置場所を決定する。反応壁1は、壁面が地下水の流れWを遮るように、壁面の延伸方向と地下水流れW方向とがほぼ直角になるように設置する。   Next, a method for creating the reaction wall 1 will be described. Prior to the formation of the reaction wall 1, the direction of the groundwater flow W is grasped in advance with respect to the aquifer 72 through which the contaminated groundwater flows, so that the contaminated groundwater flows toward the reaction wall 1. Determine the installation location. The reaction wall 1 is installed so that the extending direction of the wall surface and the direction of the groundwater flow W are substantially perpendicular so that the wall surface blocks the groundwater flow W.

地中に反応壁1を埋設する方法は限定されるものではないが、反応壁1の設置予定地盤を掘削して不透水層73に達する溝(トレンチ)を形成し、トレンチ内を金属還元剤と透水性材料との混合物で埋め戻す方法が挙げられる。トレンチ内は、地下水流れWに対して上流側に第1反応層11が形成され、下流側に第2反応層12が形成されるよう、少なくとも2以上に区分し、それぞれの区画に上述したように異なる粒径の金属還元剤または/および透水性材料の混合物を埋設すればよい。具体的には、トレンチ内の第1反応層11と第2反応層12との境界部分に矢板のような壁を設置し、それぞれの区画に各反応層を構成する混合物を充填した後、区画を隔てる壁を引き抜けばよい。   Although the method of burying the reaction wall 1 in the ground is not limited, a groove (trench) reaching the impermeable layer 73 is formed by excavating the ground where the reaction wall 1 is to be installed, and a metal reducing agent is formed in the trench. And a method of backfilling with a mixture of water permeable material. In the trench, the first reaction layer 11 is formed on the upstream side with respect to the groundwater flow W, and the second reaction layer 12 is formed on the downstream side. It is sufficient to embed a mixture of metal reducing agents having different particle diameters and / or water-permeable materials. Specifically, a wall such as a sheet pile is installed at the boundary between the first reaction layer 11 and the second reaction layer 12 in the trench, and each compartment is filled with a mixture constituting each reaction layer, and then the compartment Just pull through the wall separating the two.

次に、上記反応壁1を用いた汚染地下水の処理方法について説明する。本発明では、汚染物質として有機ハロゲン化合物を含む地下水を処理対象とする。有機ハロゲン化合物とは、例えばテトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、トリクロロエタン、四塩化炭素、およびジクロロメタン等が挙げられる。本発明では浄化に鉄粉のような金属還元剤を用いるため、ダイオキシンやPCBといった難分解性の有機ハロゲン化合物は処理対象外となる。   Next, a method for treating contaminated groundwater using the reaction wall 1 will be described. In the present invention, groundwater containing an organic halogen compound as a pollutant is treated. Examples of the organic halogen compound include tetrachloroethylene, trichloroethylene, dichloroethylene, trichloroethane, carbon tetrachloride, and dichloromethane. In the present invention, since a metal reducing agent such as iron powder is used for purification, a hardly decomposable organic halogen compound such as dioxin or PCB is not treated.

本発明では、上述した第1反応層および第2反応層を含む反応壁を汚染地下水が流れる地中に埋設し、汚染地下水がこの反応壁を通過するようにする。汚染地下水は、反応壁を通過する際に、反応壁に含まれる金属還元剤と接触することで有機ハロゲン化合物が金属鉄に還元され脱塩素され、浄化される。金属還元剤として鉄粉を用いて有機ハロゲン化合物を分解するときの作用を以下に例示する。   In the present invention, the reaction wall including the first reaction layer and the second reaction layer described above is buried in the ground through which contaminated groundwater flows, and the contaminated groundwater passes through the reaction wall. When contaminated groundwater passes through the reaction wall, it comes into contact with a metal reducing agent contained in the reaction wall, whereby the organic halogen compound is reduced to metallic iron, dechlorinated, and purified. The action when decomposing an organic halogen compound using iron powder as the metal reducing agent is exemplified below.

有機ハロゲン化合物が金属鉄に還元され、脱塩素される際、反応壁に含まれた鉄はゼロ価の金属鉄からニ価の鉄イオンとなり、地下水中に溶出する。例えば、有機ハロゲン化合物がトリクロロエチレン(TCE)の場合、その反応は化学式1に示す反応となる。
(化学式1)
CClCCHCl+3Fe+3HO→CHCH+3Fe2++3OH+3Cl
When the organohalogen compound is reduced to metallic iron and dechlorinated, the iron contained in the reaction wall changes from zero-valent metallic iron to divalent iron ions and elutes into the groundwater. For example, when the organic halogen compound is trichlorethylene (TCE), the reaction is a reaction represented by Chemical Formula 1.
(Chemical formula 1)
CCl 2 CCHCl + 3Fe + 3H 2 O → CH 2 CH 2 + 3Fe 2+ + 3OH + 3Cl

また、地下水が反応壁を通過する際、化学式1の有機ハロゲン化合物の還元反応とは別に金属鉄が水に酸化される下記化学式2や化学式3の反応も起こる。
(化学式2)
Fe+2HO→Fe2++H2aq+2OH
(化学式3)
4Fe+3O2aq+6HO→4Fe3++12OH
In addition, when groundwater passes through the reaction wall, in addition to the reduction reaction of the organic halogen compound of Chemical Formula 1, reactions of Chemical Formula 2 and Chemical Formula 3 in which metallic iron is oxidized to water also occur.
(Chemical formula 2)
Fe + 2H 2 O → Fe 2+ + H 2aq + 2OH
(Chemical formula 3)
4Fe + 3O 2aq + 6H 2 O → 4Fe 3+ + 12OH

化学式1および化学式2の反応で生成された二価の鉄イオンや化学式3の反応で生成された三価の鉄イオンは地下水中に溶出する。また、化学式1〜化学式3に示す反応で生成された水酸化物イオン(OH)により、反応壁を通過する水のpHが上昇する。二価鉄イオンはpHが上昇すると不溶性の水酸化鉄(Fe(OH))を形成する。この結果、反応壁中に水酸化鉄が析出し、反応壁の空隙を小さくして透水性が悪くなる。 The divalent iron ions generated by the reaction of Chemical Formula 1 and Chemical Formula 2 and the trivalent iron ions generated by the reaction of Chemical Formula 3 are eluted into the ground water. Further, the hydroxide ions (OH ) generated by the reactions shown in Chemical Formulas 1 to 3 increase the pH of the water passing through the reaction wall. Divalent iron ions form insoluble iron hydroxide (Fe (OH) 2 ) as the pH increases. As a result, iron hydroxide precipitates in the reaction wall, and the water permeability becomes worse by reducing the voids in the reaction wall.

本発明者の知見によれば、このような反応壁の空隙の縮小は、反応壁の最上流側の部分でより顕著に起こる。これは、反応壁の最上流側の部分では、有機ハロゲン化合物が還元脱塩素される化学式1の反応がより活発に起こることに起因すると考えられる。一方、地下水が反応壁中を透過するに伴って地下水中の有機ハロゲン化合物は分解されてその濃度は減少するため、反応壁の下流側に向かうに従って化学式1の反応は起こりにくくなる。よって、下流側では鉄イオンの溶出も水酸化物イオンの生成によるpHの上昇も起こりにくくなり、鉄イオンの不溶化による析出物が生成されにくい環境となると考えられる。   According to the knowledge of the present inventor, such a reduction in the gap of the reaction wall occurs more remarkably in the most upstream portion of the reaction wall. This is considered to be due to the fact that the reaction of Formula 1 in which the organic halogen compound is reductively dechlorinated occurs more actively in the most upstream portion of the reaction wall. On the other hand, as the groundwater permeates through the reaction wall, the organic halogen compound in the groundwater is decomposed and the concentration thereof decreases, so that the reaction of Formula 1 is less likely to occur toward the downstream side of the reaction wall. Therefore, elution of iron ions and increase in pH due to generation of hydroxide ions hardly occur on the downstream side, and it is considered that an environment in which precipitates due to insolubilization of iron ions are difficult to be generated is obtained.

このように、不溶性の鉄化合物の析出による反応壁の空隙の縮小は、その最上流部付近で最も生じやすい。反応壁の最上流付近の透水性が減少すると、下流への流れが阻害され、反応壁全体の透水性が悪くなって透過反応壁の浄化性能は悪化する。   As described above, the reduction of the void in the reaction wall due to the precipitation of the insoluble iron compound is most likely to occur in the vicinity of the most upstream part. When the water permeability in the vicinity of the uppermost stream of the reaction wall decreases, the downstream flow is hindered, the water permeability of the entire reaction wall is deteriorated, and the purification performance of the permeation reaction wall is deteriorated.

さらに、地下水にはカルシウムやマグネシウムのような硬度成分(Ca2+、Mg2+)も含まれており、これら硬度成分が反応壁の構成材表面に析出して反応壁を閉塞させその透水性を低下させる原因となる可能性がある。この傾向も、入口付近ほど強くなる。 Furthermore, the groundwater also contains hardness components such as calcium and magnesium (Ca 2+ , Mg 2+ ), and these hardness components precipitate on the surface of the reaction wall components, block the reaction wall and reduce its water permeability. There is a possibility of causing it. This tendency becomes stronger near the entrance.

このような問題に対し、本発明では反応壁を複層型とし、地下水流れに対して反応壁の最上流側に該当する部分を、空隙を大きくして透水性を高めた第1の反応層(上流反応層)とする。これにより、不溶性化合物が生成され反応壁中で析出しても反応壁際上流部の透水性が確保されるので、図2(d)に示すように地下水は反応壁1を迂回せずに流れ、全体の透水性を損なう問題を回避できる。   In order to solve such a problem, in the present invention, the reaction wall is a multi-layer type, and a portion corresponding to the uppermost stream side of the reaction wall with respect to the groundwater flow is a first reaction layer in which the water permeability is increased by increasing the gap (Upstream reaction layer). As a result, even if an insoluble compound is generated and deposited in the reaction wall, the water permeability of the upstream portion of the reaction wall is secured, so that the groundwater flows without bypassing the reaction wall 1 as shown in FIG. Problems that impair the overall water permeability can be avoided.

反応壁は上述したとおり、砂のような粒状の透水性材料と鉄粉のような粒状の浄化材で構成でき、その透水性はこれら粒体の粒径を大きくすることで調整できる。ここで、Creagerの式によれば透水係数は、10%粒径の2乗に比例するとされ、粒径が大きいほど透水性を高くできる。一方で、反応壁は大きな粒径の粒状体で構成するほど、比表面積が減少するため還元反応が進まなくなる。よって、反応壁全体について、これを構成する金属還元剤の粒径を大きくすると、有機ハロゲン化合物を分解する能力が低下する。これに対し、本発明では、反応壁を複層型として下流側には粒径の小さな金属還元剤を使用する。これにより、透過反応壁全体の分解能を損なわずに透過反応壁の透水性の低下を防ぐことができる。   As described above, the reaction wall can be composed of a granular water-permeable material such as sand and a granular purification material such as iron powder, and the water permeability can be adjusted by increasing the particle size of these particles. Here, according to Creager's equation, the water permeability coefficient is proportional to the square of the 10% particle diameter, and the larger the particle diameter, the higher the water permeability. On the other hand, the more the reaction wall is made of a granular material having a larger particle size, the more the reduction reaction proceeds because the specific surface area decreases. Therefore, when the particle size of the metal reducing agent constituting the entire reaction wall is increased, the ability to decompose the organic halogen compound is lowered. In contrast, in the present invention, the reaction wall is a multi-layer type and a metal reducing agent having a small particle diameter is used on the downstream side. Thereby, the fall of the water permeability of a permeation | transmission reaction wall can be prevented, without impairing the resolution | decomposability of the whole permeation | transmission reaction wall.

本発明に係る反応壁は、上記第1実施態様に係る反応壁1以外に種々の変形が可能である。例えば、第1反応層(上流反応層)と第2反応層(下流反応層)以外の層を設けてもよい。具体的には、地下水流れに対し、第1反応層よりさらに上流側に硬度成分除去剤を充填した層を配置すること(特開2004−255314号参照)、および、第1反応層より下流側の任意の位置にフッ素を吸着する吸着層を配置すること(特開2007−260525号参照)等が挙げられる。前者は、地下水の硬度が高い場合、後者は地下水が有機ハロゲン化合物以外にフッ素を含む場合に適している。なお、金属鉄の腐食によって金属鉄自身は消費されることになるので、その分、空隙率は高くなる。しかし、金属鉄の真比重は8g/cmであるのに対し、Fe(OH)の真比重は3.4g/cmであり、モル体積で比較すると、金属鉄7cm/molに対し、Fe(OH)は26cm/molであり、同じモル濃度で比較した場合、金属鉄は水酸化鉄と比べて3倍以上の体積となる。したがって、金属鉄の腐食の際には金属鉄消費による空隙増加分よりも、水酸化鉄生成による空隙減少分の方が大きいと考えられる。また、本発明の反応壁は、図1に示すような止水壁を使用するタイプに限定されず、例えば反応壁だけで構成されてもよい。 The reaction wall according to the present invention can be variously modified in addition to the reaction wall 1 according to the first embodiment. For example, a layer other than the first reaction layer (upstream reaction layer) and the second reaction layer (downstream reaction layer) may be provided. Specifically, with respect to the groundwater flow, a layer filled with a hardness component removing agent is disposed further upstream than the first reaction layer (see Japanese Patent Application Laid-Open No. 2004-255314), and downstream from the first reaction layer. For example, disposing an adsorption layer that adsorbs fluorine at any position (see JP-A-2007-260525). The former is suitable when the hardness of groundwater is high, and the latter is suitable when the groundwater contains fluorine in addition to the organic halogen compound. In addition, since metallic iron itself will be consumed by corrosion of metallic iron, the porosity will become high correspondingly. However, the true specific gravity of metallic iron is 8 g / cm 3 , whereas the true specific gravity of Fe (OH) 2 is 3.4 g / cm 3. Compared with the molar volume of metallic iron, it is 7 cm 3 / mol. , Fe (OH) 2 is 26 cm 3 / mol, and when compared at the same molar concentration, metallic iron has a volume three times or more that of iron hydroxide. Therefore, it is considered that the amount of void reduction due to iron hydroxide generation is greater than the amount of void increase due to metal iron consumption during corrosion of metallic iron. Moreover, the reaction wall of this invention is not limited to the type which uses a water stop wall as shown in FIG. 1, For example, you may be comprised only with a reaction wall.

[比較例1]
塩化ビニル樹脂製の円筒カラム(内径10cmφ×高さ1m)に平均粒径1mmの球状鉄粉を充填し、上端および下端に目皿を配置して実験用カラムC1とし、通水装置を取り付けた実験装置を作成した。このカラムC1にはタンクTからポンプPを介して流速0.2mL/minで通水をした。カラムC1内の鉄粉の腐食を促進させるため、NaClを5g/Lで溶解させた水道水を調整して加速試験用の調整液とし、カラムC1に上向流通水した。
[Comparative Example 1]
A cylindrical column made of a vinyl chloride resin (inner diameter 10 cmφ × height 1 m) was filled with spherical iron powder having an average particle diameter of 1 mm, and a pan was placed at the upper and lower ends to form an experimental column C1, and a water flow device was attached. An experimental device was created. Water was passed through the column C1 from the tank T through the pump P at a flow rate of 0.2 mL / min. In order to promote the corrosion of the iron powder in the column C1, tap water in which NaCl was dissolved at 5 g / L was adjusted to prepare an adjustment liquid for an acceleration test, and the upward circulating water was supplied to the column C1.

また、カラムC1内に形成した反応層の透水係数の経日的な変化を追うために、カラムC1を通水装置から取り外し、カラムC1の上端および下端それぞれに水槽を配置した図5(b)に示す装置を用いて透水係数を測定した。10日間に1回のペースで透水係数を測定した。透水係数は数式1で示されるダルシーの法則を変形した数式2で計算される。なお、数式1において、qは水の体積フラックス(cm/s)、ΔHは水頭差(cmHO)、Δxは流れに沿った方向の距離(cm)、kは飽和透水係数(cm/s)を示す。また、数式2のカラム勾配はΔH/Δxで求められる
(数式1)
q=−k(ΔH/Δx)
(数式2)
カラム全体の透水係数=流量×カラム断面積/カラム勾配
Further, in order to follow the daily change in the water permeability coefficient of the reaction layer formed in the column C1, the column C1 is removed from the water flow apparatus, and water tanks are arranged at the upper end and the lower end of the column C1, respectively (FIG. 5B). The water permeability coefficient was measured using the apparatus shown in FIG. The hydraulic conductivity was measured once every 10 days. The hydraulic conductivity is calculated by Formula 2, which is a modification of Darcy's law expressed by Formula 1. In Equation 1, q is the volume flux of water (cm / s), ΔH is the head differential (cmH 2 O), Δx is the distance in the direction along the flow (cm), and k is the saturated hydraulic conductivity (cm / s). ). Further, the column gradient of Equation 2 is obtained by ΔH / Δx (Equation 1).
q = −k (ΔH / Δx)
(Formula 2)
Hydraulic conductivity of the entire column = flow rate x column cross-sectional area / column gradient

比較例1のカラム内の反応層の透水係数の経日変化の測定結果を図6に示す。ここで、濃度5g/Lの濃度のNaCl水溶液と接する金属鉄の腐食速度は、水に対する腐食速度の100倍とされている。このことから推算すると、NaClを含む調整液を通水した場合の透水係数は試験開始から60日後に約50%低下しているから、自然環境中の水を通水する場合、この100倍つまり6000日(約16年)経過後に透水係数が約50%低下するものと考えられる。   The measurement result of the daily change of the water permeability of the reaction layer in the column of Comparative Example 1 is shown in FIG. Here, the corrosion rate of metallic iron in contact with the NaCl aqueous solution having a concentration of 5 g / L is 100 times the corrosion rate with respect to water. As estimated from this, the permeability coefficient when the adjustment liquid containing NaCl is passed is reduced by about 50% after 60 days from the start of the test. Therefore, when water in the natural environment is passed, It is considered that the hydraulic conductivity decreases by about 50% after 6000 days (about 16 years).

[実施例1]
実施例1として、比較例1で用いたカラムC1について、カラムC1の入り口側10cmまでの部分に平均粒径4mmの球状鉄粉を充填し、残りの90cmの部分には平均粒径1mmの球状鉄粉を充填した。このようにカラムC1内部の反応層の構成を変更した以外は比較例と同様の実験を行った。結果を図7に示す。
[Example 1]
As Example 1, the column C1 used in Comparative Example 1 was filled with spherical iron powder having an average particle diameter of 4 mm in the part up to 10 cm on the inlet side of the column C1, and the remaining 90 cm part was spherical with an average particle diameter of 1 mm. Filled with iron powder. An experiment similar to the comparative example was performed except that the configuration of the reaction layer inside the column C1 was changed in this way. The results are shown in FIG.

図7に示すように、60日経過後のNaCl調整液を通水した場合の透水係数は約5%低下しているから、比較例1と同様にして推算すると、自然環境中の水を通水する場合はこの100倍つまり6000日(約16年)経過後、透水係数は約5%低下するものと考えられる。   As shown in FIG. 7, the water permeability in the case where the NaCl adjustment liquid after 60 days passed is reduced by about 5%. In this case, the permeability coefficient is considered to decrease by about 5% after 100 times, that is, 6000 days (about 16 years).

このように、カラムの入口側10cmの部分を残りの90cmの部分よりも大きな粒径の鉄粉で構成することで、空隙の縮小による透水係数の低下を遅らせることができることが示された。   Thus, it was shown that the lowering of the hydraulic conductivity due to the reduction of the voids can be delayed by configuring the 10 cm portion on the inlet side of the column with iron powder having a larger particle size than the remaining 90 cm portion.

さらに、本発明により空隙の縮小が防止されることを裏付けるため、比較例1および実施例1のカラムを開封し、入口側から10cmごとに鉄粉を取り出し、それぞれの位置における空隙率を測定した。また、比較例1と実施例1において通水前の空隙率を再現するために、新たに図5(b)の装置に平均粒径1mmの球状鉄粉を充填したカラムを用いて同様の方法で測定した値をブランクとした。結果を図8および図9に示す。   Further, in order to confirm that the void is prevented from being reduced by the present invention, the columns of Comparative Example 1 and Example 1 were opened, iron powder was taken out every 10 cm from the inlet side, and the porosity at each position was measured. . Further, in order to reproduce the porosity before water flow in Comparative Example 1 and Example 1, the same method was used using a column newly filled with spherical iron powder having an average particle diameter of 1 mm in the apparatus of FIG. The value measured in was used as a blank. The results are shown in FIG. 8 and FIG.

図8に示すように、比較例1では60日間の通水によってカラム入口付近での空隙率が減少していることがわかる。これに対し、図9によると実施例1では、60日間の通水によってカラム入口付近で空隙率の減少傾向が若干見られるが、もともと空隙率が高かったために、カラム全体の空隙率と同等レベルの高い状態に維持されていることがわかる。   As shown in FIG. 8, it can be seen that in Comparative Example 1, the porosity in the vicinity of the column inlet is reduced by passing water for 60 days. On the other hand, according to FIG. 9, in Example 1, there is a slight decreasing tendency of the porosity in the vicinity of the column inlet due to water flow for 60 days, but since the porosity was originally high, it was the same level as the porosity of the entire column. It can be seen that the state is maintained at a high level.

このような結果から、予めカラム入口付近の部分の空隙率を高くしておくことで、入口付近で鉄粉が腐食して水酸化鉄となってカラム内で析出し付着したとしても、カラム全体の透水係数が低下しないようにすることができることが示された。   From these results, by increasing the porosity in the vicinity of the column inlet beforehand, even if the iron powder corrodes near the inlet and becomes iron hydroxide and deposits in the column, it adheres to the entire column. It was shown that the hydraulic conductivity of the can be prevented from decreasing.

本発明は、汚染地下水の原位置浄化用等の構造体の建造工事に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for construction work of structures such as in-situ purification of contaminated groundwater.

本発明の第1実施態様に係る透過反応壁の平面図。The top view of the permeation | transmission reaction wall which concerns on the 1st embodiment of this invention. 前記透過反応壁の使用に伴う変化を示す模式図。The schematic diagram which shows the change accompanying use of the said permeation | transmission reaction wall. 従来例に係る透過反応壁の平面図。The top view of the permeation | transmission reaction wall which concerns on a prior art example. 前記透過反応壁の使用に伴う変化を示す模式図。The schematic diagram which shows the change accompanying use of the said permeation | transmission reaction wall. 試験に用いた装置を示す模式図。The schematic diagram which shows the apparatus used for the test. 比較例1の結果を示すグラフ図。The graph which shows the result of the comparative example 1. FIG. 実施例1の結果を示すグラフ図。FIG. 3 is a graph showing the results of Example 1. 比較例1の結果を示すグラフ図。The graph which shows the result of the comparative example 1. FIG. 実施例1の結果を示すグラフ図。FIG. 3 is a graph showing the results of Example 1.

符号の説明Explanation of symbols

1 透過反応壁
2 止水壁
11 第1反応層(上流反応層)
12 第2反応層(下流反応層)
G 汚染領域
W 地下水の流れ
1 Permeation reaction wall 2 Water blocking wall 11 First reaction layer (upstream reaction layer)
12 Second reaction layer (downstream reaction layer)
G Pollution area W Groundwater flow

Claims (5)

地中に設けられた壁状の透過反応壁であって、
前記地中を流れる汚染された地下水の流れの上流側に設けられ粒状の金属還元剤を含む上流反応層と、
前記上流反応層に対して前記地下水の流れの下流側に設けられ粒状の金属還元剤を含む下流反応層と、を有し、
前記上流反応層の金属還元剤は前記下流反応層の金属還元剤より平均粒径が大きくされている透過反応壁。
A wall-shaped permeation reaction wall provided in the ground,
An upstream reaction layer comprising a particulate metal reducing agent provided upstream of a flow of contaminated groundwater flowing through the ground;
A downstream reaction layer provided on the downstream side of the groundwater flow with respect to the upstream reaction layer and containing a particulate metal reducing agent,
A permeation reaction wall in which the metal reducing agent in the upstream reaction layer has an average particle size larger than that of the metal reducing agent in the downstream reaction layer.
前記上流反応層および前記下流反応層は、前記金属還元剤と粒状の透水性材料とを混合して構成され、
前記上流反応層の透水性材料は、前記下流反応層の透水性材料より平均粒径が大きくされている請求項1に記載の透過反応壁。
The upstream reaction layer and the downstream reaction layer are configured by mixing the metal reducing agent and a granular water permeable material,
The permeable reaction wall according to claim 1, wherein the water permeable material of the upstream reaction layer has an average particle size larger than that of the water permeable material of the downstream reaction layer.
前記金属還元剤は鉄粉であり、
前記上流反応層の金属還元剤および透水性材料は、平均粒径が0.5mm〜10.0mmである請求項1または2に記載の透過反応壁。
The metal reducing agent is iron powder,
The permeation reaction wall according to claim 1 or 2, wherein the metal reducing agent and the water-permeable material in the upstream reaction layer have an average particle diameter of 0.5 mm to 10.0 mm.
前記上流反応層の厚みは、前記透過反応壁全体の厚みの10〜50%である請求項1から3のいずれかに記載の透過反応壁。   The permeation reaction wall according to any one of claims 1 to 3, wherein a thickness of the upstream reaction layer is 10 to 50% of a thickness of the entire permeation reaction wall. 請求項1から4のいずれかに記載の透過反応壁に、有機ハロゲン化合物を含む地下水を通過させて浄化する地下水の浄化方法。   A method for purifying groundwater, wherein groundwater containing an organic halogen compound is passed through the permeation reaction wall according to any one of claims 1 to 4.
JP2008077165A 2008-03-25 2008-03-25 Permeation reaction wall and groundwater purification method Active JP4835624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077165A JP4835624B2 (en) 2008-03-25 2008-03-25 Permeation reaction wall and groundwater purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077165A JP4835624B2 (en) 2008-03-25 2008-03-25 Permeation reaction wall and groundwater purification method

Publications (2)

Publication Number Publication Date
JP2009226348A true JP2009226348A (en) 2009-10-08
JP4835624B2 JP4835624B2 (en) 2011-12-14

Family

ID=41242406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077165A Active JP4835624B2 (en) 2008-03-25 2008-03-25 Permeation reaction wall and groundwater purification method

Country Status (1)

Country Link
JP (1) JP4835624B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543424A (en) * 2010-07-15 2013-12-05 ホガナス アクチボラゲット Iron-copper composition for fluid purification
CN111620509A (en) * 2019-02-28 2020-09-04 中国水电基础局有限公司 Blocking type modularized underground water reaction wall and implementation method
CN111924927A (en) * 2020-08-04 2020-11-13 安徽省环境科学研究院 Method for treating nitrite in underground water based on PRBS technology
CN113582392A (en) * 2021-08-03 2021-11-02 天津大学 Permeable reactive barrier and method for repairing underground water pollution of landfill and polluted site
CN114230025A (en) * 2022-01-13 2022-03-25 重庆大学 Small permeable reactive barrier system and method for simple landfill soil medium-current remediation
CN114315213A (en) * 2021-12-29 2022-04-12 北京建工环境修复股份有限公司 Wall protecting material, permeable reactive barrier and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009475A (en) * 1999-07-01 2001-01-16 Dowa Mining Co Ltd Cleaning of contaminated underground water
JP2003047978A (en) * 2001-08-08 2003-02-18 Fudo Constr Co Ltd Material for underground water purifying pile, its manufacturing method, and underground water purifying pile
JP2005046722A (en) * 2003-07-28 2005-02-24 Mirai Kensetsu Kogyo Kk Cleaning structure for polluted underground water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009475A (en) * 1999-07-01 2001-01-16 Dowa Mining Co Ltd Cleaning of contaminated underground water
JP2003047978A (en) * 2001-08-08 2003-02-18 Fudo Constr Co Ltd Material for underground water purifying pile, its manufacturing method, and underground water purifying pile
JP2005046722A (en) * 2003-07-28 2005-02-24 Mirai Kensetsu Kogyo Kk Cleaning structure for polluted underground water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543424A (en) * 2010-07-15 2013-12-05 ホガナス アクチボラゲット Iron-copper composition for fluid purification
US11124429B2 (en) 2010-07-15 2021-09-21 Höganäs Ab (Publ) Iron copper compositions for fluid purification
CN111620509A (en) * 2019-02-28 2020-09-04 中国水电基础局有限公司 Blocking type modularized underground water reaction wall and implementation method
CN111924927A (en) * 2020-08-04 2020-11-13 安徽省环境科学研究院 Method for treating nitrite in underground water based on PRBS technology
CN113582392A (en) * 2021-08-03 2021-11-02 天津大学 Permeable reactive barrier and method for repairing underground water pollution of landfill and polluted site
CN114315213A (en) * 2021-12-29 2022-04-12 北京建工环境修复股份有限公司 Wall protecting material, permeable reactive barrier and preparation method thereof
CN114230025A (en) * 2022-01-13 2022-03-25 重庆大学 Small permeable reactive barrier system and method for simple landfill soil medium-current remediation
CN114230025B (en) * 2022-01-13 2023-03-31 重庆大学 Small permeable reactive barrier system and method for simple landfill soil medium-current remediation

Also Published As

Publication number Publication date
JP4835624B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835624B2 (en) Permeation reaction wall and groundwater purification method
JP5276429B2 (en) Contaminated soil area improvement method
JP5292672B2 (en) Contaminated groundwater purification method and purification structure
JP4470408B2 (en) Soil purification method and system
JP3516613B2 (en) Contaminated groundwater purification method
JP5211427B2 (en) Groundwater purification method
JP4329361B2 (en) Groundwater purification wall and groundwater purification method
JP2008194544A (en) Groundwater neutralization method of heavy metal- containing acidic soil
JP2011240289A (en) Contaminated component diffusion preventive structure, and method of cleaning contaminated soil
JP4067440B2 (en) Underground purification body with poorly permeable partition layer and construction method of underground purification body
CN210419496U (en) Pollution prevention and control system for mine waste land
JP2004261738A (en) Purification method for underground water polluted by cyanogen
JP4218564B2 (en) Method for purification of contaminated aquifer using purification agent for water containing pollutant
JPH0957247A (en) Method for purifying leaching contaminated water in original position
JP4067279B2 (en) Soil shielded water-filled disposal site
KR101039534B1 (en) In-situ capping treatment device of contaminated marine sediments with composite additives mat
JP2004105882A (en) Soil cleaning method
JP2004283760A (en) Method for purifying ground water
KR20100119678A (en) Permeable reactive barriers containing waste foundry sands and method of remediation of contaminated groundwater with zinc using permeable reactive barriers
JP7375423B2 (en) underground purification wall
KR101155392B1 (en) Restoration system for contamination soil using eco-friendly vertical drain and restoration memethod for contamination soil using the same
JP2010115597A (en) Ground water cleaning wall and method for cleaning ground water
JP7098990B2 (en) Contaminated water purification method
JP2006223956A (en) Polluted soil modifying method
CN116332417A (en) Groundwater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250